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ABSTRACT. We establish dilation theorems for non-tight frames with addi-
tional structure, i.e., frames generated by unitary groups of operators and
projective unitary representations. This generalizes previous dilation results
for Parseval frames due to Han and Larson, and Gabardo and Han. We
also extend the dilation theorem for Parseval wavelets due to Dutkay, Han,
Picioroaga, and Sun by identifying the optimal class of frame wavelets for
which dilation into an orthonormal wavelet is possible.

1. INTRODUCTION

Definition 1.1. A sequence {f;};cs in a Hilbert space H is called a frame if there
exist 0 < A < B < oo such that

(1.1) AlIFIP < STIE P < BlFI? forall f €.

The numbers A and B are called the frame bounds. The supremum over all A’s
and infimum over all B’s which satisfy (1)) are called the optimal frame bounds.
If A = B, then {f;} is said to be a tight frame. In addition, if A = B = 1, then
{fi} is called a Parseval frame.

The most basic dilation result for frames says that a Parseval frame in a Hilbert
space H is an image of an orthonormal basis under an orthogonal projection of
some larger Hilbert space K O H onto H. This is now a classical fact which can
be attributed to Han and Larson [7], who also proved the following result. If the
Parseval frame has some additional structure, i.e., if it is generated by an action of
a unitary group of operators on H, then the corresponding orthonormal basis is also
generated by a unitary group of operators on . Gabardo and Han [5] proved that
similar results hold for group-like unitary operator systems, which include Gabor
systems. Even more general frames generated by projective unitary representations
were studied by Han and Larson [§]. Another remarkable result in this direction is
due to Dutkay, Han, Picioroaga, and Sun [4], who established a dilation theorem
for Parseval wavelets.
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Despite this progress, much less was known about dilation results for non-tight
frames. Han and Larson [7, Proposition 1.6] proved that any frame is an image of a
Riesz basis under an orthogonal projection and that the frame and Riesz bounds are
the same. Recently, Bownik and Jasper [3, Proposition 2.3] proved a dilation result
for non-tight frames which is also implicitly contained in the work of Antezana,
Massey, Ruiz, and Stojanoff [Il Proposition 4.5]. This result says that any frame
with frame bounds A and B is the image of an orthonormal basis under a positive
(self-adjoint) operator with spectrum contained in {0} U [v/A,v/B]. In the case of
Parseval frames, when A = B = 1, this easily reduces to the classical Han and
Larson dilation theorem.

The goal of this paper is to extend the dilation theorem [3] to non-tight frames
with some additional structure. We mainly concentrate on frames and orthonormal
bases generated either by an action of a unitary group or by a projective unitary
representation. We show that any such frame is the image of an orthonormal basis
under a positive operator with suitable spectrum. Moreover, it is possible to choose
the orthonormal basis so as to have the same structure as the frame. In the case
of Parseval frames, the positive operator is actually a projection; hence, our results
generalize those of Han, Gabardo, and Larson. Finally, we also extend the dilation
theorem for Parseval wavelets in [4], albeit with an additional twist. It turns out
that orthonormal dilation is possible only for a proper subset of frame wavelets
which contains all Parseval wavelets. We characterize the class of frame wavelets
for which a generalization of [4, Theorem 2.6] holds.

2. FRAME VECTORS FOR UNITARY GROUPS

In this section we establish the dilation theorem for frame vectors generated
by a unitary group. Theorem 2] generalizes the result of Han and Larson [7,
Theorem 3.8] from the setting of Parseval frames to general non-tight frames.

Definition 2.1. Let U be a set of unitary operators on a Hilbert space H. We say
that f € H is a frame vector for U if {U f}yey is a frame for H. We say that e € H
is a complete wandering vector if {Ue}yey is an orthonormal basis of H.

Theorem 2.1. LetU be a group of unitary operators on a Hilbert space H. Suppose
that f € H is a frame vector for U with optimal bounds A% and B?. Then, there
exist:

(i) a Hilbert space K 2 H and a unitary group ¥V on K, such that the restriction
map V 3V — Vg is a group isomorphism of V onto U,
(ii) @ positive operator E : IKC — H such that {A, B} C o(E|y) C [A, B], and
(iii) a complete wandering vector e € K for V such that EVe =V f =UF.
More precisely, we have E(Ve) =V f for all V € V.

We will use the following standard terminology.
Definition 2.2. If {f;};c; is a frame we call the operator T : H — ¢2(I), given by

(2.1) Tf={{f. fi) tier,
the analysis operator. The adjoint T* : £2(I) — H given by

(2.2) T ({az‘}iel) = Z a;fi

i€l
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is called the synthesis operator. The operator S = T*T given by

(2.3) Sf= (1. f:)

il
is called the frame operator.
The following is a standard fact about frames.

Proposition 2.2. If {fi}icr is a frame for H with frame operator S, then
{S=Y2fYicr is a Parseval frame for H. In this case, {S™Y2f;Yicr is said to
be the canonical Parseval frame of {f;}ier-

For the purpose of the proof it is convenient to reformulate Theorem 2] in
more explicit terms as follows. Let U be a group of unitary operators on a Hilbert
space H. Let {ey}uvey be the coordinate basis of ¢2(U). For each U € U, we
define the unitary operator Ay on £2(U) by Apey = eyy. The map U — Ay is
often called the left-regular unitary representation of /. Define the unitary group
V = {Av : U € U}. Finally we are ready to state and prove the explicit version of
Theorem 211

Theorem 2.3. Suppose that f € H is a frame vector for U with optimal bounds
A? and B?. Then,
(i) there exists an isometry ® : H — (2(U) such that ®*X\y® = U for all
Uel,
(ii) there exists a positive operator E : (?(U) — ®(H) such that {A,B} C
o(Elam)) € [A, B], and
(ili) we have E(Vey) = ®(US), where I is the identity on H. More precisely,

FEey = FEM\ye; =0Uf forallU e U.

Moreover, E? is the Gramian of Uf, i.e., (E*ey,ev) = (Uf,Vf) for all U,V € U.
In particular, E? is unitarily equivalent to S @ 0, where S is the frame operator of
UF and 0 is the zero operator on ®(H)*.

Note that Theorem 2.3l immediately implies Theorem 2.1 by identifying H with
®(H), by letting K = (2(U), V = {\y : U € U}, and by setting e = ey, which is a
complete wandering vector for V.

Proof. Let S be the frame operator of U f. By Proposition 22, S~Y2Uf is a
Parseval frame. For U € U set py = S~Y/2Uf, and let ® be the analysis operator
of {pv }veu; that is

dg = Z (9,pU)ev for all g € H.
veu

Since {pu }uey is a Parseval frame, ® is an isometry. First, we show that SU = US
for each U € U. Indeed, for g € H,

USg=U (Z (9, Vf>Vf> = > (g VAUV =" (Ug,UVUV]=SUg.

veu veu Veu
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Since S is self-adjoint, we also have S~Y/2U = US~'/2 for each U € Y. Thus, for
geH,

Au®g = Ay (Z <g,Sl/2Vf>ev> = > (Ug,US™?V fepy

Veu veu

=Y (Ug,S7V2UV flevy = > (Ug.puv)evy = ®Ug.
veu veu

Since ®*® is the identity on H, this shows (i).
Next, note that ®* is the synthesis operator of {py }vey given by

o*g = Z (9, ev)pu for all g € £2(U).
veu

Hence, we have ®*e;; = py. Define E = ®S/2®*. Then, for any U € U we have
(2.4) Eey = ®5'20% ey = 05 ?py = 0525 12U f = oUY,
which proves (iii). Hence, for U,V € U,

(E%ey,ev) = (Fey, Eey) = (DU, ®V f) = (Uf, V f).

This shows that E? is the Gramian of I/ f.
Moreover, using ([2.4]) we have

IEgl> = > (Eg,e0)l> =Y (g, Eer)* = Y [{g, ®UF)[*.

veu veu veu

Since ® is unitary, ®(Uf) is a frame for ®(H) with optimal frame bounds A% and
B2. The frame property now implies

A%|gl* < |1 Egl* < B?|lgl*  for all g € ®(H),
which shows (ii).

Finally, to show the last part of Theorem 23] we define Uy : H® ®(H) L+ — 2(U)
by

It is clear that Uy is unitary, since ® : H — ®(H) is an isometric isomorphism.
Since ®*® is the identity on H,

E? = S0 9SY 20" = dSP*.
Hence,

E2U _ E2(I)g = (Psg = UOS% g < H,
09 = 2. _ * o 1
Efg=0Sd*g=0=U0g9 g<c P(H)".

Thus, E? = Uy(S @ 0)U, which completes the proof of Theorem 2.3 O
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3. FRAME VECTORS FOR PROJECTIVE UNITARY REPRESENTATIONS

In this section we establish a variant of Theorem [21]in the context of projective
unitary representations [§]. Initially, Han and Larson formulated their dilation
theorem in terms of unitary group representations in [7, Theorem 3.8']. Since
this setting does not include Gabor systems, Gabardo and Han [0] established the
dilation theorem for group-like unitary systems which covers Gabor systems as a
special case. Recently, Han and Larson [§] adapted these arguments to the even
more general setting of projective unitary representations [9].

Let G be a countable group and U(H) be the group of unitary operators on
a separable Hilbert space H. A projective unitary representation is a mapping
7 : G — U(H) such that

m(g)m(h) = p(g, h)m(gh) for all g,h € G,

where p : G X G — T is a multiplier of m. To emphasize the dependence of u, we
also say that m is a p-projective unitary representation. Any multiplier p for G
must satisfy

(3.1) (91, 9293) (92, 93) = 11(9192, 93) (91, 92),  91,92,93 € G,
(3.2) u(g,e) = ple,g) =1, g € G, where e is the group unit of G.

Similar to the case of unitary representations, a prominent role is played by the
left (and right) regular projective representations. Let u be a multiplier for G. For
g € G, we define a unitary operator A, : £2(G) — (*(G) by

Agen = (g, h)egn, h e @,

where {e, : g € G} is the standard orthonormal basis of 2(G). By ([B.1)) and ([3.2),
A is a p-projective unitary representation of G, which is called the left-regular p-
projective representation. Likewise, we could define the right-regular p-projective
representation, but we shall only need its left variant in the proof of Theorem [3.1]

Theorem 3.1. Suppose G is a group, 7 is a projective unitary representation of G
on a Hilbert space H with a multiplier p, and {m(g)f}qecc is a frame for H. Then:

(i) There exists a vector fi € H such that {m(g)f1}gec is a Parseval frame
for H. If S is the frame operator of {m(g)f}qseq, then

(3.3) SY2(n(g)fr) =7(g)f  forallg€G.

(ii) There exist a p-projective unitary representation ©" of G on a Hilbert space
K and a vector fo € K such that {n'(g) f2}4ec is a Parseval frame for K
and {m(g)f1 ® 7'(g9) f2}gec is an orthonormal basis for H & K.

Remark 3.1. Tt is worth adding that Theorem [B.]is not merely a reformulation of
Theorem 23] even if we restrict ourselves to the setting of unitary representations.
This is because a representation 7 in Theorem [3.I] does not have to be injective.
Moreover, the case when 7 is non-injective does not follow easily from the case
when 7 is injective, say, by taking quotients. In particular, it does not appear
that [7, Theorem 3.8'] is merely a restatement of [7, Theorem 3.8] as the authors
claim. Consequently, it is necessary to provide another argument as to why [7), The-
orem 3.8'] holds. Below we shall achieve this goal by generalizing [7, Theorem 3.8']
in two orthogonal directions: (i) for general (not necessarily tight) frames and (ii)
for general projective unitary representations.
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Proof. First, we will show that 7(g) and S commute for all g € G, and thus 7(g)
and S~/2 commute. Let g € G and = € #. Then:

7(9)Sz = m(g) (Z<wﬂr(h)f>7f(h)f> = 3" (nlg)a, wlg)m(h) f)m(g)m(h) f
heG heG

=Y (n(g)w, ulg, W)w(gh) fHu(g, h)m(gh)f = > (w(g)a, x(W) f)m(h) f = Sm(g)w.

heG h'eG

By Proposition the system {S~'/27m(g)f},ec is a Parseval frame. Since
S=1271(g)f = w(g)S~Y/2f, by defining f; = S~/2f we have shown part ().

Next we will show (). Let {e;}sec be the coordinate basis for ¢2(G). Let
® : H — (*(G) be the analysis operator of the Parseval frame {7 (g)f1}gsec. Con-
sequently, ® is an isometry. Let P be the orthogonal projection onto ®(#). Let
A be the left-regular p-projective representation of G as defined above. Note that
7(g71) = u(g, g7 )7*(g). Hence, for x € H we have

(3.4)
er(g)r =Y (m(g)z, w(h)fi)en = Y (w,u(g.g g~ h)m(g " h) fi)en
heG heG
- Ag< S (anlg ) ) ulg g~ e g e, h)eg-lh) _ A
heG

In the penultimate step we used the identity Age,-15, = p(g, 9 'h)es, and in the
last step we used BI)) and (B2) to eliminate three multiplier terms. Hence, we
have established the identity

(3.5) (g) = 2" AP for all g € G.

Since {7(g) f1}4ec is a Parseval frame for H and ® is an isometry, {®7(g) f1}gea
is a Parseval frame for ®(H). Thus, we have

(3.6)
Pey = > (Pey, @n(h) f1)®m(h) f1 = D (e, POT(h) f1)®x(h) f1
heG heG
=9 <Z<eg, <I>7r<h>f1>7r<h)f1> =3 (Zw(g)fl,w(h)flm(h)fl) =d(r(g9) f1)-
heG heG

Using 84) and (B6) for any h € G we have
AgPen = Ag®(m(h) f1) = (7 (g)7(h) f1)
= p(g, h)®(m(gh) f1) = p(g, h)Pegn = PAgen.

Since A\, P and P\, agree on elements of the coordinate basis of ¢*(G), we have
established the commutation relation

(3.7) AgP = P, for all g € G.

For g € G define n’'(g) = (I — P)A\;. Let e € G be the group unit, and define
fo = (I — P)ee. Using ([B.7) we have

m'(9)f2 = (I = P)Agfo = (I = P)Ag(I = P)ee = (I = P)*Agee = (I — P)eg.



ORTHONORMAL DILATIONS OF NON-TIGHT FRAMES 3253

Since (I — P) is an orthogonal projection, this shows that {7'(g) f2}4e¢ is a Parseval
frame for K = ®(H)*+. For g,h € G we have

' (gh) = (I = P)Agn = (g, B)(I = P)Aghn = (g, h)(I = P)* A\
= (g, h)(I = P)Ag(I = P)A, = p(g, h)7'(g)' (h).
Moreover, for any g € G,

(7'(9))" = As(I = P)* = pu(g,g " )A\g—1 (I — P)
=g, g )T = P)A\g—r = u(g, g~ )7 (g7 1),
)

which implies that (7'(g))*n'(g9) = 7'(9)(x'(g))* = «'(e) = I — P. Thus, by
restricting the domain of 7'(g) to K, 7/(g) becomes a unitary operator on K. This
shows that 7’ is a p-projective unitary representation of G on K.

Define the map W : 2(G) — H @ K by

vy {cblf for f € ®(H),
f for f € K.

Clearly, ¥ is an isometric isomorphism, since ® is an isometric isomorphism between
H and ®(H). Note that

eg = Peg+ (I — P)eg = @(m(9) f1) + 7'(9) f2-
Since {ey}4ec is an orthonormal basis of £2(G), so is {We, }yeq, where
Vey =m(g)fr &7 (g)fo
This completes the proof of Theorem [3.11 O
We shall illustrate Theorem [3.1] by showing that any Gabor type unitary system

has a dilation property. For (t,s) € R™ x R™, define the time-frequency (Gabor
representation) o on L?(R") by

7T(t, S) = MSTtv

where M, f(z) = ¢"®*) f(x) and T;f(z) = f(z —t) for f € L?(R™). Let G be a full
rank lattice in R™ x R"™; that is, G = P(Z" x Z") for some (2n) x (2n) invertible
real matrix. Observe that

mo(t, s)mo(t',s") = e X my(t + ', s + §).
Thus, the Gabor representation 7|g is a projective unitary representation with the
multiplier
(3.8) w((t,s), (', s")) = et for (t,s),(t',s") € G C R" x R™.

For a general Hilbert space H we adopt the following notion.

Definition 3.1. Let H be a separable Hilbert space and G be a full rank lattice
in R® x R®. We say that w is a Gabor type representation of the lattice G if
m: G — U(H) is a p-projective unitary representation with the multiplier p given

by B3).
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As an immediate application of Theorem [3.I] we have

Theorem 3.2. Suppose G is a full rank lattice and {m(9)f}g4ecq is a Gabor frame
for H with optimal bounds A% and B?. Then, there exist:

(i) a Gabor type representation ' of the lattice G on a Hilbert space K,
(ii) a complete wandering vector e = f1 @ fo € HB K for m & «', and
(iii) a positive operator E : H — H with {A, B} C o(E) C [A, B], such that

(3.9) E(n(9)fr) =7(9)f  forallgeG.

In the case when G = aZ x bZ, a,b > 0, a Gabor type representation is
uniquely determined by two generators {M,T} satistying TM = e " MT. In-
deed, 7(an,bm) = M™T", where M = w(0,b) and T' = 7(a,0). In this case, we can
simply say that {M™T"™ : m,n € Z} is a Gabor type unitary system of G = aZ x bZ.
Then, Theorem yields Corollary B3] which generalizes the result of Han and
Larson [7, Theorem 4.8] from the setting of Parseval frames to general non-tight
frames.

Corollary 3.3. LetU = {M™T™ : m,n € Z} be a Gabor type unitary system on a
Hilbert space H of the lattice aZ x bZ. Suppose that f € H is a frame vector for U
with optimal bounds A% and B2. Then, there exist:
(i) a Gabor type unitary system U’ = {(M')™(T")" : m,n € Z} on a Hilbert
space IC of the lattice aZ x bZ,
(ii) a complete wandering vector e = f1 @ fo € H® K for

UsU = {(M"T")® (M)™(T")") : m,n € Z}, and
(ili) a positive operator E : H — H with {A, B} C o(E) C [A, B], such that
EM™T"f))=M"T"f for allm,n € Z.

Interesting results about dilations of pairs of dual Gabor frames were recently
shown by Han [6].

4. DILATIONS OF FRAME WAVELETS

In this section we generalize the result of Dutkay, Han, Picioroaga, and Sun [4]
from the setting of Parseval wavelets to non-tight frame wavelets. We find optimal
conditions on non-tight frame wavelets for which a generalization of [4, Theorem 2.6]
holds. It turns out that our dilation result is not possible for arbitrary non-tight
frame wavelets. This marks a significant distinction between the previously consid-
ered situations of Gabor systems and unitary groups and the case of wavelets. In
particular, one cannot expect that every dilation result will extend automatically
from the tight to the non-tight setting.

Following [4] we adopt the following definition. The Baumslag-Solitar group [2]
is given by the group presentation

BS(1,2) := (d, t|dtd™" = t?).
Thus, any unitary representation of BS(1,2) is given by two unitary operators D
and T on some Hilbert space H that satisfy the relation DT D~! = T2

Definition 4.1. Let {D,T} be a representation of the Baumslag-Solitar group
BS(1,2) on a Hilbert space 1. We say that ¢ € H is a frame (or orthonormal)
wavelet for {D, T} if {DIT*y : j,k € Z} is a frame (or orthonormal basis) for H,
respectively.
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In order to state our dilation theorem for frame wavelets we need one more
notion. Following [7], we define the local commutant of a set of unitary operators
U of H at ¢ € H as

CyU) ={T € B(H) : TU = UTy YU € U}.

Theorem 4.1. Let {D,T} be a representation of the Baumslag-Solitar group
BS(1,2) on a Hilbert space H, and let ¢ € H be a frame wavelet for {D,T} with
optimal bounds A% and B2. Let S be the frame operator of {DiT* : j k € Z},
and assume that S~'/2 is in the local commutant

(4.1) S~V2 e C,({D'T" : j, k € Z}).
Then, there exist:
(i) a representation {D',T'} of BS(1,2) on a Hilbert space K,
(ii) an orthonormal wavelet V1 @ Py € H B K for the representation {D &
D\ TaT'} of BS(1,2) on H® K, and
(iii) a positive operator E : H — H with {A, B} C o(E) C [A, B], such that

(4.2) E(D’T*) = DIT*)  for all j, k € Z.
Conversely, if (i)—(iil) hold, then @I necessarily holds.

Proof. Define 11 = S~1/24. By our assumption (@),

(4.3) STV2(DITkY) = DIT ), for all j, k € Z.

Since, {S™Y/2(DIT*y) : j,k € Z} is a Parseval frame in H, 1/, is a Parseval wavelet

for {D,T}. Applying [4, Theorem 2.6] yields a representation {D’,T"} of BS(1,2)

on a Hilbert space K satisfying (ii). Moreover, (iii) holds for E := $/2 by @3).
Conversely, assume (i)—(iii). By ([@2]) the frame operator S satisfies for f € H,

Sf="Y (£, DIT*)DITE) = Y~ (f, EDIT ) EDITFe),

J.kEL J,kEL

— E( > (Ef, DjT%l)DjT’wl) = E%f.
J,k€EZ
In the last step we used the fact that {DJT*, : j, k € Z} is a Parseval frame in H,
which is a consequence of (ii). Hence, E = S/2. Letting j = k = 0 in (@2 yields
S1/24p = p. Thus, [@2) takes the form of {@3). By definition, [@3) is equivalent to
the local commutant property (). This completes the proof of Theorem 1l O

Remark 4.1. The local commutant assumption (4] is a convenient way of stating
that the canonical Parseval frame of the affine system {D/T*4) : j,k € Z} is also
an affine system {DIT*; : j, k € Z} for some 1, € H. If ¢ is a Parseval wavelet
for {D, T}, then (1) is automatically satisfied since S = Id. Thus, Theorem FTI
provides a generalization of the result of Dutkay, Han, Picioroaga, and Sun [4,
Theorem 2.6]. At the same time, Theorem F] asserts that dilation results of this
kind are only possible for frame wavelets whose canonical Parseval frame is an affine
system. This is in stark contrast with Gabor systems, where Corollary [3.3] holds
regardless of such an a priori assumption. In retrospect, this is not that surprising
since the canonical Parseval frame of a Gabor system is always known to be a Gabor
system.



3256 MARCIN BOWNIK, JOHN JASPER, AND DARRIN SPEEGLE

REFERENCES

1. J. Antezana, P. Massey, M. Ruiz, D. Stojanoff, The Schur-Horn theorem for operators and
frames with prescribed norms and frame operator, Illinois J. Math. 51 (2007), 537-560.
MR2342673)(2009g:42049)

2. G. Baumslag, D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer.
Math. Soc. 68 (1962), 199-201. MR0142635/[(26:204)

3. M. Bownik, J. Jasper, Characterization of sequences of frame norms, J. Reine Angew. Math.
(to appear).

4. D. Dutkay, D. Han, G. Picioroaga, Q. Sun, Orthonormal dilations of Parseval wavelets, Math.
Ann. 341 (2008), 483-515. MR2399155//(2009¢:42080)

5. J.-P. Gabardo, D. Han, Frame representations for group-like unitary operator systems, J. Op-
erator Theory 49 (2003), 223-244. MR1991737(2004e:42047)

6. D. Han, Dilations and completions for Gabor systems, J. Fourier Anal. Appl. 15 (2009), 201—
217. MR2500922/(2010a:42122)

7. D. Han, D. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147
(2000), no. 697, x+94 pp. MR1686653|(2001a:47013)

8. D. Han, D. Larson, Frame duality properties for projective unitary representations, Bull. Lond.
Math. Soc. 40 (2008), 685-695. MR2441141 (2009g:42057)

9. V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer, New York, 1985. MR805158
(872a:81009)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403-1222
E-mail address: mbownik@uoregon.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403-1222
E-mail address: jjasper@uoregon.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SAINT LoOuls UNIVERSITY, 221
N. GRAND BOULEVARD, ST. Louils, MissOURrIl 63103
E-mail address: speegled@slu.edu


http://www.ams.org/mathscinet-getitem?mr=2342673
http://www.ams.org/mathscinet-getitem?mr=2342673
http://www.ams.org/mathscinet-getitem?mr=0142635
http://www.ams.org/mathscinet-getitem?mr=0142635
http://www.ams.org/mathscinet-getitem?mr=2399155
http://www.ams.org/mathscinet-getitem?mr=2399155
http://www.ams.org/mathscinet-getitem?mr=1991737
http://www.ams.org/mathscinet-getitem?mr=1991737
http://www.ams.org/mathscinet-getitem?mr=2500922
http://www.ams.org/mathscinet-getitem?mr=2500922
http://www.ams.org/mathscinet-getitem?mr=1686653
http://www.ams.org/mathscinet-getitem?mr=1686653
http://www.ams.org/mathscinet-getitem?mr=2441141
http://www.ams.org/mathscinet-getitem?mr=2441141
http://www.ams.org/mathscinet-getitem?mr=805158
http://www.ams.org/mathscinet-getitem?mr=805158

	1. Introduction
	2. Frame vectors for unitary groups
	3. Frame vectors for projective unitary representations
	4. Dilations of frame wavelets
	References

