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Dedicated to the memory of Erhard Schmidt

Let A; and A, be expansive dilations, respectively, on R™ and R™. Let A = (A1, As) and A, (A) be the

class of product Muckenhoupt weights on R” x R™ for p € (1, oo]. When p € (1, 00) and w € A, (A),
the authors characterize the weighted Lebesgue space L, (R™ x R™) via the anisotropic Lusin-area function
associated with A. When p € (0, 1], w € A (A), the authors introduce the weighted anisotropic product

—

Hardy space HE, (R™ x R™; A) via the anisotropic Lusin-area function and establish its atomic decomposition.

—

Moreover, the authors prove that finite atomic norm on a dense subspace of HE (R™ xR™; A) is equivalent with
the standard infinite atomic decomposition norm. As an application, the authors prove that if 7" is a sublinear
operator and maps all atoms into uniformly bounded elements of a quasi-Banach space B, then 1" uniquely

—

extends to a bounded sublinear operator from HE (R™ x R™; A) to B. The results of this paper improve the
existing results for weighted product Hardy spaces and are new even in the unweighted anisotropic setting.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The theory of Hardy spaces plays an important role in various fields of analysis and partial differential equations;
see, for example, [17,22,32,43,54-56]. One of the most important applications of Hardy spaces is that they are
good substitutes of Lebesgue spaces when p € (0, 1]. For example, when p € (0, 1], it is well-known that Riesz
transforms are not bounded on L?(R" ), however, they are bounded on Hardy spaces H” (R™). There were several
efforts of extending classical function spaces and related operators arising in harmonic analysis from Euclidean
spaces to other domains and anisotropic settings; see [3,9, 10,28,52,59-61]. Fabes and Riviere [20,21,47]
initiated the study of singular integrals with mixed homogeneity, and Calder6n and Torchinsky [8—10] the study
of Hardy spaces associated with anisotropic dilations. Recently, a theory of anisotropic Hardy spaces and their
weighted theory were developed in [3,6]. Another direction is the development of the theory of Hardy spaces on
product domains initiated by Gundy and Stein [35]. In particular, Chang and Fefferman [12, 13] characterized
the classical product Hardy spaces via atoms. Fefferman [26], Krug [38] and Zhu [66] established the weighted
theory of the classical product Hardy spaces, and Sato [49, 50] established parabolic Hardy spaces on product
domains. It was also proved that the classical product Hardy spaces are good substitutes of product Lebesgue
spaces when p € (0, 1]; see, for example, [23, 25,26, 50, 53]. Recently, the boundedness of singular integrals on
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product Lebesgue spaces was further proved to be useful in solving problems from the several complex variables
by Nagel and Stein [44].

On the other hand, to establish the boundedness of operators on Hardy spaces, one usually appeals to the
atomic decomposition characterization, see [8, 14, 16,25,28,41, 58], which means that a function or distribution
in Hardy spaces can be represented as a linear combination of functions of an elementary form, namely, atoms.
Then, the boundedness of operators on Hardy spaces can be deduced from their behavior on atoms or molecules
in principle. However, caution needs to be taken due to an example constructed in [4, Theorem 2]. There
exists a linear functional defined on a dense subspace of H*(R™), which maps all (1, oo, 0)-atoms into bounded
scalars, but yet it does not extend to a bounded linear functional on the whole H!(R™). This implies that the
uniform boundedness of a linear operator 7" on atoms does not automatically guarantee the boundedness of T’
from H'(R") to a Banach space B.

Recently, there was a flurry of activity addressing the problem of boundedness of operators on H?(R™) via
atomic decompositions in addition to older contributions; see [30,41,42, 58, 62] and the references therein. Let
p € (0,1], ¢ € [1, oo] N (p, 00| and s be an integer no less than |n(1/p — 1)], where and in what follows, |- |
denotes the floor function. Using the Lusin-area function characterization of classical Hardy spaces, it was proved
in [64] that if a sublinear operator 7" maps all smooth (p, 2, s)-atoms into uniformly bounded elements of a quasi-
Banach space B, then T uniquely extends to a bounded sublinear operator from H?(R™) to /3. This result was
generalized to the classical product Hardy spaces in [11]. At the same time, Meda, Sjogren, and Vallarino [40]
independently obtained a related result using the grand maximal function characterization of H?(R"™). Precisely,
they proved that the norm of H”(R"™) can be reached on some dense subspaces of H?(IR™) via finite combinations
of (p, ¢, s)-atoms when ¢ < oo and continuous (p, co, s)-atoms. Their result immediately implies that if 7" is
a linear operator and maps all (p, g, s)-atoms with ¢ < oo or all continuous (p, co, s)-atoms into uniformly
bounded elements of a Banach space 3, then T uniquely extends to a bounded linear operator from H?(R") to
B. This result was further generalized to the weighted anisotropic Hardy spaces in [6] and the Hardy spaces on
spaces of homogeneous type enjoying the reverse doubling property in [33] when p < 1 and near to 1. Very
recently, Ricci and Verdera [46] showed that if p € (0, 1), then the uniform boundedness of a linear operator T’
on all (p, oo, s)-atoms does guarantee the boundedness of 7" from H?(R™) to a Banach space B.

In this paper, we always let A; and Ao be expansive dilations, respectively, on R™ and R™. Let A=

—

(A1, As) and Ap,(A) be the class of product Muckenhoupt weights on R™ x R™ for p € (1, co]. When
p € (1,00) and w € Ap(ff ), we characterize the anisotropic weighted Lebesgue space LE (R™ x R™) via

the anisotropic Lusin-area function associated with expansive dilations. For p € (0, 1] and w € A (A ) and ad-
missible triplet (p, ¢, §). (see Definition 4.2 below), we introduce the weighted anisotropic product Hardy space

— - — e —

HP (R™ x R™; A), the atomic one H?; % 5(R™ x R™; A) and the finite atomic one H?* % *(R™ x R™; A ), re-

w, fin
spectively, via the anisotropic Lusin-area function, (p, ¢, §).,-atoms and finite linear combinations of (p, ¢, §)% -

- - -

atoms. We then prove that H? (R™ x R™; A ) coincides with HP; © 5(R™ x R™; A), that H fj}%f (R™ x R™; A)

is dense in H? (R™ x R™; A) and that both the quasi-norms || - ”H{;(Rnkaﬁ) and || - ||Hp,%, S (g e 4y With

§ being sufficiently large are equivalent on H. 5)%5 (R™ x R™; A ). As an application, we prove that if 7" is a
sublinear operator and maps all (p, ¢, §)% -atoms into uniformly bounded elements of a quasi-Banach space 5,
then T uniquely extends to a bounded sublinear operator from HE, (R" x R™; A ) to B.

We point out that the setting in this paper includes the classical isotropic product Hardy space theory of Gundy
and Stein [35] and Chang and Fefferman [12, 13], the parabolic product Hardy space theory of Sato [49, 50] and
the weighted product Hardy space theory of Fefferman [26], Krug [38] and Zhu [66]. Most results of this paper
are new even in the unweighted setting. They also improve the corresponding results on the isotropic weighted
product Hardy spaces in [26], [38] and [66]. The paper is organized as follows.

In Section 2, we recall some notation and definitions concerning expansive dilations, Muckenhoupt weights
and maximal functions, whose basic properties are also presented. Moreover, we establish discrete Calder6én
reproducing formulae (see Proposition 2.16 below) associated to the product expansive dilations for distributions
vanishing weakly at infinity, which were introduced by Folland and Stein [28] on homogeneous groups. These
Caldero6n reproducing formulae are crucial tools for this paper. Another key tool used in this paper are the dyadic
cubes of Christ [15], which substitute the role played by dilated balls and cubes in [3-5], and are used in deriving
the atomic decomposition of product Hardy spaces via the Lusin-area function. Here we point out that a subtle
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relation between the dyadic cubes of Christ [15] and dilated balls associated to expansive dilations is established
in Lemma 2.3(iv) according to the levels of dyadic cubes. This relation and the concept of the level of dyadic
cubes play an important role in the whole paper, especially in the choice of dyadic rectangles of R™ x R™; see
(4.1) and (5.4) below.

—

In Section 3, for p € (1, 00) and w € Ay(A) (resp. w € A,(A)), with the aid of the theory of one-
parameter vector-valued Calderén-Zygmund operators, we characterize the anisotropic weighted Lebesgue space
L2 (R™ x R™) (resp. LP (R™)) via the anisotropic Lusin-area function associated with expansive dilations A
(resp. A); see Theorem 3.2 and Theorem 3.4 below.

In Section 4, let p € (0, 1], w € Ax(A) and (p, ¢, §). be admissible. We introduce the Hardy space
HP(R™ x R™; A) and the atomic one H? %¥(R™ x R™; A), respectively, via the Lusin-area function and
(p, q, §)w-atoms. Using some ideas from [12, 13,26, 66] and the Calderén reproducing formulae established
in Proposition 2.16, we prove that H2 (R™ x R™; A ) coincides with HP: % 5(R™ x R™; A ); see Theorem 4.5
below. We point out that since we are working on weighted anisotropic product Hardy spaces, when we de-
compose a distribution into a sum of atoms, the dual method for estimating norms of atoms in [12] does not
work any more in the current setting. Instead, we invoke a method from Fefferman [26] with more subtle esti-
mates involving rescaling techniques specific to the anisotropic setting. We also notice that a variant of Journé’s
covering lemma for expansive dilations established in Lemma 4.9 is crucial to the proof of the imbedding of
HP%5(R™ x R™; A) into H?,(R™ x R™; A). In fact, Lemma 4.9 plays an important role in obtaining the
boundedness of operators on HE (R™ x R™; A ). In particular, using Lemma 4.9, we obtain the boundedness of

—

the anisotropic grand maximal function from HZ (R™ x R™; A) to L2 (R™ x R™); see Proposition 4.11 below.

In Section 5, we introduce H” %ng (R™ x R™; A) to be the set of all finite combinations of (p, ¢, §)%,-atoms.
Via the Lusin-area function together with the Calderén reproducing formula and by using ideas from [40], we

prove that HZ’%;(RTI x R™; A) is dense in HP,(R™ x R™; A) and that the quasi-norm || - I iz, (e e 4 18

equivalent to || - on HY %ng (R™ x R™; A) with 5 being sufficiently large; see Theorem 5.2

2z o2 em; )
below. In fact, by a careful choice of dyadic rectangles in R™ x R™ (see (5.4) below), we first construct some
finite (p, g, §)% -atoms and then by a subtle size estimate on the complement of the union of chosen rectangles,
we prove that the difference between the original function and the linear combination of these finite (p, g, §)% -
atoms is still a (p, ¢, §)% -atom multiplied by a small constant. We should point out that while the main idea
comes from [40], Meda, Sjogren, and Vallarino used the grand maximal function characterization of the classical
Hardy space HP(R™) to obtain the desired estimates instead. See also [6] for the weighted anisotropic Hardy
space HE (R™; A). Tt is not clear if their approach [40] also works here, since so far, it is not known whether
HP (R™ x R™; A ) can be characterized via the grand maximal function. Moreover, comparing with the non-
product case (see [6,33,40]), our results require additional assumptions (5.1) and (5.2) on vanishing moments of
atoms.

In Section 6, we present applications of Theorem 5.2. If T is a sublinear operator defined on

—

HY %ng (R™ x R™; A) and maps all (p, ¢, §)% -atoms into uniformly bounded elements of a quasi-Banach space
B, then T uniquely extends to a bounded sublinear operator from H? (R™ x R™; A ) to B; see Theorem 6.2
bellow. This result is an extension of [11, Theorem 1.1]. Using Theorem 6.2 and Journé’s covering lemma, we
establish a criteria on the boundedness of certain sublinear operators via their behavior on rectangular atoms,

which extends and complements a result of Fefferman [25, Theorem 1].

We mention that there exist many predictable applications of our results in the study of boundedness of sub-
linear operators on the weighted product Hardy spaces. For example, in [39], we establish the boundedness on
these weighted product Hardy spaces of singular integrals appearing in the work of Nagel and Stein [44].

We finally make some conventions. Throughout this paper, we always use C' to denote a positive constant
which is independent of the main parameters involved but whose value may differ from line to line. Constants
with subscripts do not change through the whole paper. Denote by N the set {1, 2, ... } and by Z . the set NU{0}.
Weuse f Sgorg 2 ftodenote f < Cg,andif f < g < f, we then write f ~ g. Denote by M, (R) the set of
all real n x n matrices.
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2 Preliminaries

We begin with the following notation and properties concerning expansive dilations.

Definition 2.1 A € M, (R) is said to be an expansive dilation, shortly a dilation, if minye, (4 |A| > 1, where
o(A) is the set of all eigenvalues of A.

If A is diagonalizable over C, we take A = min{|\|, A € o(A)} and Ay = max{|\|, A € o(A)}.
Otherwise, let A_ and A\ be two positive numbers such that

1< A <min{|Al,; A € 0(4)} < max{|A|, A € a(A)} < A4.

Throughout the whole paper, for a fixed dilation A, we always let b = | det A|.

It was proved in [3, Lemma 2.2] that for a given dilation A, there exist an open and symmetric convex ellipsoid
Aandr € (1, co) such that A C rA C AA, and one can additionally assume that |A| = 1, where |A| denotes
the n-dimensional Lebesgue measure of the set A. Throughout the whole paper, we set B, = AFA for k € 7Z
and let o be the minimum integer such that 2By C A° By. Then By, is open, By, C 7By, C Byy1 and |Bg| = bk,
Obviously, o > 1. For any subset & of R", let Eb =Rn \ E. Then it is easy to prove (see [3, p.8]) that for all
k, £ € 7, we have

By + B, C Bmax(k,2)+aa (2.1)
Bi + (Bryo)® C (B, (2.2)

where F + F denotes the algebraic sums {x +y : € E, y € F} ofsets E, FF C R" (see [3, p. 8]).
Recall that the homogeneous quasi-norm associated with A was introduced in [3, Definition 2.3] as follows.

Definition 2.2 A homogeneous quasi-norm associated with an expansive dilation A is a measurable mapping

p: R™ — [0, 00) satisfying that
(1) p(z) = 0 if and only if z = 0;
(i) p(Azx) = bp(x) for all z € R™;

(i) p(z +y) < Hp(z) + p(y)] for all z, y € R™, where H is a constant no less than 1.

In the standard dyadic case A = 21,,xn, p(x) = |z|™ is an example of homogeneous quasi-norms associated
with A, where and in what follows, I,,«,, always denotes the n x n unit matrix and | - | is the Euclidean norm in
R™.

Define the step homogeneous quasi-norm p associated with A and A by setting, for all z € R, p(z) = b*
if £ € Bgy1 \ Bi orelse 0 if z = 0. It was proved that all homogeneous quasi-norms associated with a given
dilation A are equivalent (see [3, Lemma 2.4]). Therefore, for a given expansive dilation A, in what follows, for
convenience, we always use the step homogeneous quasi-norm p.

For the step homogeneous quasi-norm p, from (2.1) and (2.2), it follows that for all z, y € R™, p(z + y) <
b? max {p(x), p(y)} < b7[p(z) + p(y)]; see [3, p.8].

The following inequalities concerning A, p and the Euclidean norm | - | established in [3, Section 2] are used
in the whole paper: There exists a positive constant C' such that

Clp(x)]~ < |z| < Clp(x)]*+ for all p(z) > 1, and (2.3)

Cp(x)] < |z| < Clp(x)]S~  for all p(z) <1, 2.4
where and in what follows {4 = In(A;)/Inband (_ = In(A_)/Inb, and that

C% |z| < |AVx| < O+ x| for all j >0, and (2.5

C % || < |ATx| < OV~ || for all 5 < 0. (2.6)

Moreover, (R™, p, dx) is a space of homogeneous type in the sense of Coifman and Weiss [18], where dx is
the n-dimensional Lebesgue measure. On such homogeneous spaces, Christ [15] provided an analogue of the
grid of Euclidean dyadic cubes as follows.

www.mn-journal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Lemma 2.3 Let A be a dilation. There exists a collection Q@ = {Q¥ C R" : k € Z, o € I1,} of open subsets,

where I, is certain index set, such that
(i) ’R" \ UaQ’;‘ = 0 for each fixed k and Q¥ N QZ =0ifa#p;
(ii) for any o, B, k, £ with £ > k, either QF N Qf, =PorQ c Qg;

(iii) for each (¢, B) and each k < { there exists a unique o such that Qé C QF;

(iv) there exist certain negative integer v and positive integer u such that for all Q¥ with k € Z and o € Iy,
there exists xqr € QF satisfying that for any & € QF, zqQr + Byg—u C QF C z+ Buptu-

In what follows, for convenience, we call k the level of the dyadic cube Q’é with k£ € Z and o € I;, and denote
itby ¢ (Qg) Lemma 2.3 can be proved by a slight modification of the proof of [15, Theorem 11]. In fact, we only
need to choose ¢ in the proof of [15, Theorem 11] to be b* with v being negative integer. We omit the details.
From now on, we call {Q’é }kez, wel, in Lemma 2.3 dyadic cubes.

For any locally integrable function f, the Hardy-Littlewood maximal function M(f) of f is defined by

M(f)(x) =sup sup L

— |f(z)|dz, = eR"
ez zey+ Br, |Br| Jy+ B,

It was proved in [3, Theorem 3.6] that M is bounded on LP(R™) with p € (1, oo] and bounded from L*(R"™) to
L1 (R™).
We now recall the weight class of Muckenhoupt associated with A introduced in [5].

Definition 2.4 Let p € [1, 00), A a dilation and w a nonnegative measurable function on R™. The function w
is said to belong to the weight class of Muckenhoupt A,(A) = A,(R™; A), if there exists a positive constant C
such that when p > 1

1 1 o p-1
sup sup{— w(y) dy}{— fw(y)] /@Y dy} <c,
rER™ kEZ |B;€| x+By, |Bk| z+By

and whenp =1

1
([ vt} {sspiow ) <c
zER™ kEZ |Bk| x4+ By yEx+ By,

and, the minimal constant C' as above is denoted by C}, 4. »(w).

Define Aso (A) = U< oo Ap(A4).

It is easy to see that if 1 < p < ¢ < oo, then A, (A) C Ay (A).
In what follows, for any nonnegative local integrable function w and any Lebesgue measurable set E, let
w(E) = [, w(x)dz. Forp € (0, o), denote by LE (R™) the set of all measurable functions f such that

1/p
£l e @ny = {/R |f(z)|Pw(x) d:c} < 00,
and L°(R™) = L°°(R™). The space L,;>(R™) denotes the set of all measurable functions f such that

11 Loy = sup Aw({z € R™ ¢ [f(z)] > A}) < 0.

Moreover, we have the following conclusions.

Proposition 2.5 (i) If p € [1, o0) and w € A,(A), then there exists a positive constant C' such that for all
r € R"and k, m € Z with k < m,

w(z + Bp)

o~ pm=k)/pr <
w(x 4+ By)

< Ob(m—k)p;

(ii) If p € (1, 00), then the Hardy-Littlewood maximal operator M is bounded on LE,(R™) if and only if
w € Ay(A); ifp =1, then M is bounded from L. (R™) to L}, (R™) if and only if w € A;(A).

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Www.mn-joumal.com
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Proposition 2.5(i) is just [6, Proposition 2.1(i)]. The proof of Proposition 2.5(ii) is also standard; see [30,32,57]
for more details.

Let S(R™) be the space of Schwartz functions on R™ as in [3, p. 11], namely, the space of all smooth functions
¢ satisfying that for all & € (Z4)" and m € Z4, ||¢]la,m = sSupern[p(2)]™0%¢(z)| < oo, where and in
what follows, o = (a1, ...,q,) and 9% = (8%1)0‘1 ...(%)a". It is easy to see that S(R™) forms a locally
convex complete metric space endowed with the seminorms {|| - [|a, m }ae(z, ), mez, - From (2.3) and (2.4), it
follows that S(R™) coincides with the classical space of Schwartz functions; see [3, p. 11]. Moreover, we denote
by Ss(R") the set of all 1) € S(R™) satisfying that [, ¥(x)x” dx = 0 for all v € (Z4)™ with |y] < s. Let
SOO(R”) = ﬂsEN SS(RTL)~

The following lemma is a slight improvement of [6, Lemma 2.2]. We omit the details.

Lemma 2.6 Letp € [1, oo] and w € A,(A). Then

(i) if Lp+1/p' =1, then SR™) C L” _, ,, , (R™);

(ii) L? (R™) C S'(R™) and the inclusion is continuous.

Lemma 2.7 M(xp,)(z) ~ i forall k € Zand z € R".

Proof. Leto beasin (2.1). If x € By, then

which together with p(z) < b* yields the desired estimate in this case.

Assume now that z € By, . Then p(x) > b¥. For any y + By such that x € y + By and (y + By) N By # 0,
assume that zo € (y + By) N By. By (2.1), we have = € 20 + (y — 20) + B¢ C By + Be + By C Bax(t40, k) 4o
From this and 2 ¢ By, it follows that £ + o > k and further z € By 2,, which implies that p(z) < b’.
Moreover, by the definition of step homogeneous quasi-norm p, there exists s € Z such that x € B, \ Bs_1, thus
we obtain B, C By, and p(z) = | Bs|. From this, p(x) < b’ and By, C B, it follows that

_ B B
Mica)@) = swp s b [ (e de 5 8 L2 < a0,
ZJGR" r€y+By y+ By p(JC) |BS|
to>k
which together with p(z) > b gives the desired estimate. This finishes the proof of the Lemma 2.7. O

Let m, n € N. In what follows, for convenience, we often let ny = n and no = m. Fori = 1, 2, let
A; € M, (R) be a dilation and b;, B,i?, pi» u; and v; associated with A; as above.

For any locally integrable function f on R™ x R™, the strong maximal function M(f) is defined by setting,
for all z € R™ x R™,

M(f)@)= sup  sup L

o | @
ki k€2 peyt BV x B2 017 V2" Jyt By < By,

Obviously, M,(f)(z) < MMM (f)](z) for all z € R™ x R™ and M, is bounded on LP(R" x R™) for
p € (1, oo], where M@ denotes the Hardy-Littlewood maximal operator on R™:.

Remark 2.8 By a slight modification of the proof of Lemma 2.7, we also obtain that for all k;, ko € Z and

2 pri . .
r € R™ x R™2, M, (XB,Sl)xBff;) () ~ T2y ) We omit the details here.

Now we introduce the weight class of Muckenhoupt on R™ x R™ associated with A; and A, which coincides
with the isotropic product weights as in [25] and [51] when A; = 2[,,«,, and Ay = 21,,,x.,m. Among several
equivalent ways of introducing product weights [30, Theorem VI1.6.2] we adopt the following definition.

Definition 2.9 For i = 1, 2, let A; be a dilation on R™ and A = (A;, As). Letp € (1, 00) and w be a
nonnegative measurable function on R™ x R™. The function w is said to be in the weight class of Muckenhoupt
Ap(A) = A,(R" x R™, A), if w(z:, -) € Ap(As) for almost everywhere z; € R” and

esssup Cp a,, m(w(w1, -)) < 00,
x1 ER™

www.mn-journal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and w(-, x2) € Ap(Ay) for almost everywhere 2o € R™ and esssup ,,cgmCp, 4, n(w(:, 22)) < 0o. In what
follows, let

C, i n m(w) = max { esssup Cp, a,, m(w(x1, +)), esssup Cp a,,n(w(:, :EQ))} .
x1 ER™ xo ER™

Define Ay (A) = Ui<peoo Ay (A).

For any w € A (A), define the critical index of w by
qw =inf{g € (1, 00) : w e A, (A)}. 2.7)

Obviously, ¢, € [1, 00). If ¢, € (1, 00), thenw & A, , and if g, = 1, Johnson and Neugebauer [36, p. 254]
gave an example of w ¢ A;(21,x,) such that ¢,, = 1. Itis easy to see thatif 1 < p < ¢ < oo, then
Ap(A) € Ay(A). Tfw € Ay(A) with p € (1, oc), then there exists an e € (0, p — 1] such that w € A,_(4)
by the reverse Holder inequality.

Throughout the whole paper, for any measurable set E C R™ x R™ and p € R, we always set wP(E) =
J[w(x)]? dx. Moreover, by the definition of Ap(/Y ) and Proposition 2.5, we have the following proposition. We
omit the details.

Proposition 2.10 Let Abeasin Definition 2.9.

(i)If p € (1,00] and w € .Ap(ff), there exists a positive constant C' such that for all x € R™ x R™ and
ki, 4; € Zwith k; <,

w(z + B x BY)
w(z + B,g) X B,g )

C—lbgll—kl)/Pbgb—kz)/p < < Cbg&—kl)Pbéfz—kz)P;

(i) If p € (1, ), w € Ap(/f) and q € (1, 0|, then the strong maximal operator M is bounded on
L2 (R™ x R™) and moreover, there exists a positive constant C such that for all { f;}jen C LE,(R™ x R™),

1/q 1/q

> M) <Cle D151
JEN JEN
LE, (R™ xR™) LE, (R™ xR™)

In fact, the vector-valued inequality (ii) can be obtained simply by iterating the corresponding vector-valued
inequality for the Hardy-Littlewood maximal function in [1].

For s1, s3 € Zy, let S, 5, (R™ x R™) be the collection of all functions ¢ € S(R™ x R™) satisfying that
Jpn ¥(@1, 22)2] doy = 0 for all v € (Z4)", |y| < s1 and x5 € R™, and [, ¥(z1, zz)xg dzo = 0 for all
Be€(Zi)™ |0 < s2andx; € R™. Let Soo (R™ x R™) = ﬂsl)SQEN Soy,5,(R™ x R™).

Throughout the whole paper, for a dilation A, we always let A* be its transpose. For functions ¢ on R™, 1) on
R™ x R™ and k, ki, ko € Z, let pi(x) = b~ p(A~*2) for all x € R™ and

Uiy ey (X) = bl_klb;k%/J(Al_klxh AQ_k2$2)

forall z = (21, x2) € R™ x R™.

Proposition 2.11 (i) Let ¢ € S(R") and [, ¢(x) dx = 1. Forany f € S(R") (or f € S'(R™)), f*or — f
in S(R™) (or S'(R™)) as k — —oo.

(ii) Let ¢ € S(R™ x R™) and [y, pm ©(x)dx = 1. Forany f € S(R* x R™) (or f € §'(R™ x R™)),
[ %0k, by — [in S(R" x R™) (or S'(R™ x R™)) as k1, ke — —o0.

In fact, Proposition 2.11(i) is just [3, Lemma 3.8]. The proof of Proposition 2.11(ii) is similar to that of (i).
We omit the details.

We recall from [28] that f € S’(R™) is said to vanish weakly at infinity if for any ¢ € S(R™), f *xpr — 0
in §’(R") as k — oo. Denote by S/, ,,(R™) the collection of all f € S’(R") vanishing weakly at infinity. As
pointed out in [28], if f € LP(R™) with p € [1, 00), then f € S, (R"). Similarly, f € S'(R" x R™) is
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said to vanish weakly at infinity if for any ") € S(R™) and ¢® € S(R™), f * pr, k, — 0in S’ (R™ x R™)
as ki, ko — oo, where p(z) = oW (21)0® (zg) for all z = (x1, 22) € R™ x R™. We also denote by
Sl w(R™ x R™) the set of all f € S'(R™ x R™) vanishing weakly at infinity.

Now we establish the following Calderén reproducing formulae.

Lemma 2.12 Let A be a dilation on R™ and A* its transpose. Let o € S(R™) such that supp @ is compact
and bounded away from the origin and for all ¢ € R™ \ {0},

> B((ATYe) = 1. 2.8)

JEZL

Then for any f € L*(R"), f = djen f*pjin L?(R™). The same holds in S(R™) or §'(R"), respectively, for
[ €S8R or f €S, ,(R").

Proof. We first prove the lemma for f € L*(R™). Define F(£) = 3, [p((A*)/€)| for all £ € R™.
Obviously, F(§) = F(A*¢) for all ¢ € R™, which implies that to show F' € L>°(R™), it suffices to consider the
values of F' on B} \ Bf, where B is the unit ball associated with the dilation A*. Let p* be the homogeneous
quasi-norm associated with A*. Since ¢ € S(R") and $(0) = 0, we know that |p(&)| < p*(€)~? for all
e R™\ Bfand |p(&)| < [¢] for € € Bi. Thus by (2.6), b > 1 and (_ > 0, forany £ € By \ Bg, we have

&) <D pr((A"Ye ‘+Z\A* IR RS ¥ 2.9)

>0 7<0 >0 j<0

Thus, F € LOO(]R”) By this, the Lebesgue dominated convergence theorem and (2.8), for f € L?(R™), we have
f E]EZ P((A*)! )f in L?(R™), and thus f = 2762 @; * fin L2(R™).

Now let us prove the lemma for f € Soo(R™) (or f € SL, ,,(R™)). Set ¢ = 3777 ;. Since ¢ € S(R”) and

wj(x) =b I p(A™7x), then ¢ is well-defined pointwise on R". We claim that ¢ € S(R") and [, ¢(x)dx = 1.
Assuming the claim for the moment, by Proposition 2.11, we have f * ¢_n — f in S(R™) (or S’ (R”))
N — oco. On the other hand, by Holder’s inequality, for f € Soo(R™) (orby f € 8., ,,(R™)), we obtain that
f*¢on — 0in S(R™) (or S'(R™)) as N — oco. Therefore, for f € Sy (R™) (or f € Sl w(R™)), we have
fxo_n— fxodny — fin S(R™) (or S'(R™)) as N — co. Moreover, observing that ¢ = Z;io(%)k =
> 7=k #j» and thus ZN NP = b_N — dn+1, wWe obtain the lemma for f € Soo (R™) (or f € S, ,(R™)).

Let us now prove the above claim. Let G(§) = - =0 <p( (A*)I¢) for all € € R™. Then it suffices to prove that
GeS[R"), ¢ =F 'Gand [g, ¢(x)dx =1, where F~* denotes the inverse Fourier transform.

Since supp @ is compact, we may assume that supp @ C By, for certain ko € Z. Then for any j € Z4, we
have supp ¢((A*)’-) C By _; C By, which implies that supp G C B} . To prove G € C*(R"), for any
o € (Z4)" and £ € R™, set F,(§) = dez |0%[P((A*)7€)]]. Let us now show F, € L*°(R™). Notice that for
all € € R,

=D _[0°[B((AY ]| =D 107[B(A"Y )] = Fal8),

JEL JEL

which implies that to verify F,, € L*(R™), we only need to consider the values of F,, on Bf \ Bj. By (2.19)
in [5], ¢ € S(R™) and p*(§) ~ 1, we have

0°B(A"VE)| S VI (0 B4V S V11 ey <07

when j > 0, and |0°®((A*)7€)| < b71*l<~ when j < 0. From this, b > 1 and (_ > 0, by (2.6), it fol-
lows that F,(§) < 3,001 + 3. 0677 < 1, and hence F,, € L>(R"). Notice that °G(¢) =
ZJ 0 0“[P((A*)7¢)] for all ¢ € R™. Thus, G € C>°(R"). From this and suppG C By , we deduce
G € S(R™).
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Moreover, by the proof of suppG C Bj , it is easy to see that supp (E?O:O |5((A*)7.)]) € By, which
together with Holder’s inequality and Minkowski’s inequality implies that

5 1/2
[ > iaarvorae < s [ S leayol] e
R =0 B \d=0

o0

Soy ( / laanyor dg)m

Jj=0

< pko/2 Z p—i/2
7=0
<1.

Then by Fubini’s theorem, we obtain F~'G' = >~ ., F~'[$((A*)7+)] = ¢ and hence, ¢ € S(R™).
Lete; = (1,0, ..., 0). Since € S(R™), by (2.8), we obtain

¢(z)dr =6(0) = lim ¢((4")*e1) = lim Z (A% +e)) =D (A% er) =1,
= jez
which completes the proof of our claim and hence the proof of Lemma 2.12. O

Remark 2.13 From the proof of Lemma 2.12, it is easy to see that if ¢ € S(R™) and $(0) = 0, then
F() =3z |B((A*)7€)] for all £ € R™ is bounded on R™.
Using Lemma 2.12, we have the following Calderén reproducing formulae.
Proposition 2.14 Let s € Z, and A be a dilation on R™. Then there exist 6, 1) € S(R™) such that
(i) suppf C By, [p, 270(x)dx = 0 for all v € (Zy)" with |y| < s, 0(¢) > C > 0 for £ in certain
annulus, where C'is a positive constant;
(ii) supp 1,2/\ is compact and bounded away from the origin;
(iii) 3 jer V((ATYE)O((A*)€) = Lforall § € R™\ {0}.
Moreover, for all f € L*(R"), f = 3 ic; f * ¢ * 05 in L*(R™). The same holds in S(R™) or S'(R™),
respectively, for any [ € S (R™) or f € S, ,,(R™).
We point out that the existences of such # and v in Proposition 2.14 were proved in Theorem 5.8 of [5]. The
conclusions of Proposition 2.14 then just follow from Lemma 2.12 by taking ¢ = 6 % 1. Moreover, we also need
the following variant on R"” x R" of Lemma 2.12.

Lemma 2.15 Leri = 1, 2, A; be a dilation on R™ and o) € S(R™) such that supp ¢©) is compact and
bounded away from the origin and for all £; € R™ \ {0}, (2.8) holds with A replaced by A;, ¢ by ©*) and
€ by &. Set p(z) = oW (21)pP) (22) for all x = (x1, x2) € R™ x R™. Then for any f € L*(R" x R™),
f= Zj17j2€Z f* @4 g, in L*(R™ x R™). The same holds in S(R™ x R™) or §'(R™ x R™), respectively, for
any f € Soo(R" x R™) or f € S, ,,(R" x R™).

Proof. We first prove the lemma for f € L*(R" x R™). For ¢ = ()¢ by (2.9), we obtain that for all
§=(&, &) eR™ xR™,

F = Y (A&, (43)728) = Zw(l) (A1) &) Z%)(?) ((A3)72¢&2)
J1, j2 €L J1EZ J2€L
is bounded on R™ x R™. Then from this and the fact that -, . _, G((A7)*&1, (A5)28) = 1 forany £ €
(R™ x R™) \ {(0,0)}, similarly to Lemma 2.12, we deduce the desired formula for f € L%(R™ x R™).
For f € Soo(R" x R™) or f € S, ,,(R™ x R™), observing that in the proof of Lemma 2.12, we have shown

that ¢(0) = dr—owi € S(R™) and [y, ¢(x;)dz; = 1 fori = 1,2, which implies that ¢ = pM e ¢
S(R™ x R™) and [, gm ¢(x)dz = 1. Then, similarly to the proof of Lemma 2.12, we obtain the desired
formulae, which completes the proof of Lemma 2.15. O
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By Lemma 2.15, we have the following proposition.

Proposition 2.16 Let s; € 7. and A; be a dilation on R™ fori = 1, 2. Suppose that 0, () € S(R™)
satisfy the conditions (i) through (iii) of Proposition 2.14 on R™. Set (¢) = 01 ()03 (&) and ¥(§) =
M ()P (&) forall € = (€1, &) € R™ x R™. Then for any f € L>(R™ x R™),

f= Z frtbyy, o %8505,

J1,J2€Z

in L2(R™ x R™). The same holds in S(R™ x R™) or S'(R™ x R™), respectively, for any f € Soo(R™ x R™)
or f €Sl (R xR™).

3 A weighted anisotropic Littlewood-Paley theory

We begin with the one parameter Lusin-area function.

Definition 3.1 Let A be a dilation on R™. Suppose ¢ € S(R™) such that $(0) = 0. For all f € S'(R™) and
x € R™, define the anisotropic Lusin-area function of f by

So(f)(@) = {Zb—’“ /

keZ Br

1/2
| * or(z —y)? dy} :
By the Plancherel formula and Remark 2.13, we have

19 Eaguey = 07 [ [ 15+ oute P dedy

keZ

=Z/Rn HGIREAGIES (3.1)

kEZ
17 1 2

<
S Iz @),

which implies that S, is bounded on L?(R™). Moreover, we have the following theorem.

Theorem 3.2 Let A be a dilation on R", p € (1, o), w € A,(A), and 0, 1 be as in Proposition 2.14.
Suppose ¢ = 0 or 1. Then f € LL (R™) ifand only if f € S, ,,(R") and S,(f) € L% (R™). Moreover, for all
fe LL,R™), 1 fllze@ny ~ 1S (H)ll Lz @n)-

The proof of Theorem 3.2 will be given later. Similarly, we can introduce the product Lusin-area function as
follows.

—

Definition 3.3 Let A; be a dilation on R™ and () € S(R™) with ¢()(0) = 0 fori = 1, 2. Set (z) =
oM (1)@ (x2) for all z = (7, 29) € R* x R™. Forall f € §'(R* x R™) and 2 € R™ x R™, define the
anisotropic product Lusin-area function of f by

1/2

SN =g 3wt [l s S =Py

(1)
k1, k2 €Z By, xBy,

Then by the Plancherel formula and Remark 2.13, similarly to (3.1), we know that 5'(/, is bounded on
L?(R™ x R™). Moreover, we have the following product version of Theorem 3.2 which will be proved later.

—

Theorem 3.4 Let A; be adilationon R™ fori =1, 2,p € (1, 00), w € A,(A) and 8, 1 be as in Proposition
2.16. Suppose ¢ = 0 or +p. Then f € LE(R™ x R™) if and only if f € S/, ,(R" x R™) and S.(f) €
L (R™ x R™). Moreover, for all f € LY (R™ x R™), || fll e nxrm) ~ 190 ()]l L2, (mr xmm)-
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Remark 3.5 For convenience, we can also rewrite S, (f) as

=3[ o s ay ) N
Fw (pt17t2 btlbtz )

where I'(z) = {(y7 t):yex+ B(l) X Bg), t=(t1, t2) € R2} and o is the integer counting measure on R,
i.e., forall E C R, o(F) is the number of integers contained in E.

Theorems 3.2 and 3.4 will be proved by viewing the Lusin-area function as the vector-valued Calderén-
Zygmund operator and applying a duality argument. In fact, we will verify that the kernel of Lusin-area function
satisfies the standard conditions of vector-valued Calderén-Zygmund operators, and then we will apply a well-
known result on the boundedness of vector-valued Calderén-Zygmund operators in L2 (R™) with p € (1, c0);
see Proposition 3.6.

To this end, we first recall the theory of vector-valued Calder6n-Zygmund operators. Let B be a complex
Banach space with norm || - ||z and B* its dual space with norm || - ||5~. A function f : R™ — B is called
B-measurable, if there exists a measurable subset © of R™ such that [R™ \ Q| = 0, the values of f on € are
contained in some separable subspace By of B, and for every u* € B*, the complex valued map x — (u*, f(x))
is measurable. From this definition and theorem in [65, p.131], it follows that the function x — || f(z)||z on R™
is measurable. For Banach spaces B1, Ba, denote by L(B1, B2) the space of all the bounded linear operators
from By to Bs.

For all p € (0, oo], denote by LP(R™, B) the space of all B-measurable functions f on R satisfying

1/p
I fllzen, ) = {/R f(z)]|% daz} < 00

with a usual modification made when p = co. Denote by LS°(R™, B) the space of f € L>°(R™, B) with compact
support.
The proof of the following proposition is presented in Appendix at the end of this paper.

Proposition 3.6 Let A be a dilation on R", and 1By and By be Banach spaces. Assume that T is a linear

operator bounded from L*(R™, By) to L2(R™, By). Moreover; assume that there exists a continuous vector-
valued function KC: R™ \ {0} — L(B1, Ba) such that for all f € L (R™, B1) and x ¢ supp f,

T(f)(@) = | Kz —y)f(y)dy.

R~

If there exist positive constants C and e such that for all y € R™ \ {0},

C
K < “ 3.2
|| (y)||L(B1,B2) = p(y) ( )
and for all z, y € R™ \ {0} with p(z — y) < b=27p(y),
IKG) = K@z, 5 < OO 63)

ply)tte’
then for all p € (1, 00) and w € A,(A), T is bounded from LY (R™, B1) to L? (R™, Bs).

Now we turn to the proofs of Theorems 3.2 and 3.4.

Proof of Theorem 3.2. Let f € LY (R"). By Lemma 2.6, f € S’(R"™). To show that f vanishes weakly
at infinity, for any ¢ € S(R™) and k € Z, by Holder’s inequality, we obtain

< n / .
o0 < WLz oy |
Moreover, by the definition of AP(A) and Proposition 2.5(i), we have that for j € Z,

w Y P=D(B;) = / [w(z)]~Y®=D g < [w(Bj)]—l/(p—1)|Bj|p’ < il =1/(p(p—=1)]
B;
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From this and ¢ € S(R™), it follows that

/ ok (@) [w ()] /D da
SO B 0 Y [ ] ]
=k 7 Bij+1\B;
< Zb—jp/w—l/(p—l)(Bj)
=k

< Z p—3/p(p—1)]
J=k
< p=k/Iplp=1],

which implies that f vanishes weakly at infinity and hence, f € S/ ,,(R™).
We now prove the boundedness of Sy, on L (R™) with p € (1, c0). Let

H ={F ={fr}rez : fris a measurable function on By for any k € Z and ||F||» < oo},

1/2
where ||[F||x = {Zkez bk [ 1fe()? dy} . Obviously, H is a Hilbert space. For all z € R™ \ {0},

set K(z) = {pr(x —2) : k € Z,z € Br} € L(C, H), and for all f € L(R") and ¢ supp f, define
T :L¥(R") — Hby

TN@) = | Kle=y)fly)dy ={epfle=2): 2 € By, k € 2}
Then || 7(f)(z)||3 = S,(f)(x) for all z € R™. From this and (3.1), it follows that 7 is bounded from L?(R™)
to L2(R™, H). To obtain the boundedness of S, on L? (R™), it suffices to prove K satisfies (3.2) and (3.3).
To see (3.2), for z € By and y € R™ \ {0}, let jo € Z such that p(y) = b. By Definition 2.2(iii),
p(y) < b7[p(2) + ply — 2)] < b2 [b* + p(y — 2)], which implies that b0=% < 1+ b=*p(y — 2). Then for all
y € R™\ {0}, we obtain

WL e, 7 = Her(y — rezll?

=Yt [ ety -2 d

keZ By
b—2k

< bk / dz
S

< Z b—2kb—4(j0—7€) + Z b—2k
k<jo k>jo

< p=2Jo

~ lp(w)] 7%,

which gives (3.2).
To show (3.3), let y, z € R™ with y # 0 and p(z — y) < b=27p(y). Without loss of generality, we may
assume that p(x — y) = b% and p(y) = b0 T2 729 for certain jo € Z and j; € Z,. Write
1K(x) — K(?l)”%((c, H)
= {ewly =) — enlz —)rezl¥
=07 [ oAM= 2) (At - ) e <
keZ
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Szb‘?”“/ sup |V (A™H(y — 2 = ) [*|A™ (@ - y)|"d=

kEL By, £€Bjq

Z+ Z + Z 11)_3’“/]3 sup [1+p(A_k(y—2—5))}_4’A_k(x—y)’2dz

k<jo jo<k<jotji jot+i1<k » €€ Bjo
=10 + 1+ 1s.

S

To estimate I, since p(A~(z — y)) = b7°=% > 1 for k < jo, by (2.3), we obtain
AT (@ — )] S [p(A™ (= y))] ¢ = b Lot (34)

Observe that for y € B][;o+j1+2t77 z € By, j1 20, jo > kand{ € Bj,, by (2.1)and (2.2), we hgve A‘_k(y —z—
€ € B4E0—7€+j1+20 + Bo+ Bj,—r C BEO_k"F]‘l"FU” which implies that p(A=F(y — z — &)) > pJo~F+i1+7 From

this, (3.4), (+ < 1, p(x — y) = b and p(y) = b0 T71+29 it follows that

LS 3 btk 2 k) < 2=t [ply — 2)I°
k<jo

To estimate I, since p(A=%(y — x)) = b0 =% < 1 for k > jo, by (2.4), we obtain
A7 (@ — )| S [p(A7F(z = y))] ~ b0, (3.5)

Moreover, observe that for jo < k < j +‘j1, y € B][':o+j1+20’ z € By, £ € By, and.jl > 0, by (2.1) aqd (2.2),
we still have that p(A=%(y — z — £)) > blo—*+51+9_ From this, (3.5), p(z — y) = b/ and p(y) = o T71+27 jt
follows that

2¢—
LS S by alemkripa-Gok) < 2okt g [o(y — x)]*

Jo<k<jo+j1 [p(y)]2(1+<7) ’

To estimate I3, by (3.5), p(z — y) = b%°, p(y) = b°F91729 and j; > 0, we have

]2
—2k12(jo—k)(— —2(jo+7) 1—251¢— [p(y — )]
I3 < Z p—2kp200 < b2t =2l < DT

Combining the estimates of I, Is and I3 finishes the proof of (3.3). Thus, by Proposition 3.6, we obtain the
boundedness of S, on L (R™) for p € (1, o0).

Conversely, let f € S, ,(R") and S, (f) € L (R™) with p € (1, co). Set 0(x) = (—x) forall x € R™.
For any h € S(R™) with [|A[, < 1, by Proposition 2.14, the boundedness of S; on L% (R™) with

k>jo+j1

//p (B™)
-p'/p
p € (1, o) and Holder’s inequality, we have

[(f, h)| = Z f % g * O (x)h(x) do

kez/R"
= i (@)h * O (z) da
=207 f % Yx(@)h % By (2) dy da

l; /" /:E"FBk g F
= b—k % h*a de d

/R"gz /1/+ka V() k() du dy

1/2 1
o i *d bt hx Oy ()2 d d

: /R" {;Z /y+Bk 1+ ()] x} {gz /y+Bk |h o O ()] w} y <

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-joumal.com



Math. Nachr. 283, No. 3 (2010) 405

< ISe el oMl gy
w P /P
S UISe Dz bl g
w—p'/P
SISy ()l 2z, @ny

which together with the density of S(R™) in Lﬁ:fp,/p (R™) and (Li}lfp,/p(R”)) = LP (R™) implies that f €

LE,(R™) and || f]| e, mn) S 1S9 (f)llLr,. Similarly, for f € S., ,(R™) and Sp(f) € L%, (R"™), we have f €
L (R™) and || f|| & (rn) S [1Se(f)ll £z, This finishes the proof of Theorem 3.2. O

Proof of Theorem 3.4. We shall only prove that §<p is bounded on L? (R™ x R™). This is because the
proofs of the other conclusions are similar to those of Theorem 3.2.

Let H; be the space H as in the proof of Theorem 3.2 with By, and b replaced, respectively, by B,(f) and b;
withi =1, 2. Let H1 ® Ha2 be the set of all sequences F' = { fx,, k, } k1, kocz such that each fi, x, is measurable

on B,(;) X B,g) and

1/2
1Elr0m, = {Z > b_klb_]”/(?) /(1) [ fien, ke (g1, 92) I dyn dyz}

k1€Z ko €Z

1/2
- {Z ol BN FRCPSIES dyz} .
B

ko€Z

The last equation is the consequence of the fact that H; ® H> can be thought of as a collection of measurable

H;-valued functions { f. , (-, y2) }k,ez defined almost everywhere for y, € B,(i). Clearly, H1, Ha, H1 @ Ho
are Hilbert spaces. Here and in what follows, we always let

@;ill) 1 g(21, 22) = /}R"1 @;ill)(zl —y1)9(y1, x2) dys
and
%i) *2 g(21,22) = /}R"2 %(.322)(172 —y2)9(x1, y2) dys.
For any x5 € R"2 \ {0}, define K® (z3) : H; — H1 ® Ho by tensoring
IC(2)(.%'2) = {(p,(i)(xg —29): ko €Z, 25 € B(Q)}.

As in the proof of Theorem 3.2, we know that K2 gatisfies (3.2) and (3.3) with B; = Hq and By = H1 ® Has.
Moreover, for any F'(-) = {Fkl(yl, Yy € B,(Ci)}k , € LE(R™, Hy), define
1€
T (F)(x2) = K@ %y F(22)
{(gp,(C ) *9 F)(ch —y2): Y2 € B,gz), ko € Z}

{((pl(cz) *o Fkl)(yh Ty — yg) Y1 € Béi), Y2 € Bl(i), kl, ko € Z}

Denote by F5 the Fourier transform on the second variable. By the Plancherel formula and Remark 2.13, we have
|7 (F ||L2(Rm H1®@H2)

2
/ Z bty kQ/ / |"Dl(fz) *2 Fio, (y1, x2 — y2)|” dy1 dyz dwy =
R B2 JBY

k1€EZ ko €Z
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Z b /(1)/ ‘Pm &2) |7:2Fk1 (y1, &)|?d & dyy
B R™
k1€Z kacZ
/ Z bl " /(1) Z |Fk1 (yla y2)|2 dyl dy2
kiez Biy koez

SIFIZ2@m, 240y

Therefore by Proposition 3.6, for any p € (1, 00) and w € A,(A2), T is bounded from L% (R™, Hy) to
LP(R™, Hy ® Ha).
Let f € L°(R™ x R™). For any z; € R"™ and 23 € R™, set

F, (x2) = {((p,(cl) x1 f)(x1 —y1, x2) : Y1 € B,(;), k€ Z} € Hi.
Then F,, € L2 (R™, H;) and we have
T(Fyp,)(x2) = {((Pkl,kg * F)(x1 —y1, x2 —y2) : Y1 € B;(i), ki1 €Z,y € B,ﬁ), ko € 2}7

and S, (f)(z1, x2) = || T (Fe,)(2)|| 2, .. Recall that by Definition 2.9, for almost all 1 (or 22), w(z1, -) €
Ap(Ag) (or w(-, x2) € Ay(A;1)) and the weighted constants are uniformly bounded. Then, by Theorem 3.2 for

Sy, we have

03] :/]R {/m T (Fa, ) (@2) 15y, e, w(1, mm} da

n R
S [ ] IR ) e, ) doz oy

~ [ AL st @, e b a

fg ||f||1[7,ﬁ}(Rn xRm)>

which completes the proof of Theorem 3.4. O

4 Weighted anisotropic product Hardy spaces

We begin with the notion of weighted anisotropic product Hardy spaces.

Definition 4.1 Let p € (0, 1], w € A (A) and ¢, be as in (2.7), ¥ be as in Proposition 2.16. Define the
weighted anisotropic product Hardy space by

HE (R x R™; A)={f € Sk (R X R™) 2 |1 o 4y = I (F) |ty ey < 00}

Notice that if p € (gu,, 00), where g, is as in (2.7), then by Theorem 3.4, we obtain HZ (R™ x R™; A) =
LP (R™ x R™) with equivalent norms. If p € (1, g,], the element of HE(R"™ x R™; A) may be a distribu-
tion, and hence, H? (R™ x R™; A ) # LP (R™ x R™); see [57, p. 86] for one parameter case. For applications
considered in this paper, we concentrate only on H?(R™ x R™; A ) with p € (0, 1].

To define atomic Hardy spaces, we introduce the following notation and notions. Let A; be a dilation on R™:,
and Q) £(Q;), v;, u; be the same as in Lemma 2.3 corresponding to A; fori = 1, 2. Let R = oM x 9@,
For R € R, we always write R = R; X Ry with R; € O andcall R a dyadic rectangle. For (k1, ko) € Z X Z,
define Ry, k, ={R € R : l(R1) = k1, {(R2) = ka}. For R € R, let

R+ = {(y, t) tyER, t= (t17 tg) S R27 t; ~ Ulg(Rl) +u;, =1, 2}7 “.1)
where and in what follows, t; ~ v;¢(R;) 4+ u; always means
Vil(R;) +u; + 03 <t <vi(0(R;) — 1) 4 ui + 03, 4.2)
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and o; is as in (2.1) and (2.2) associated with A; fori = 1, 2. Note that the inequality (4.2) is seemingly reversed
since the v;’s are negative.

Assume that ) is an open set of R™ x R™. A dyadic rectangle R C (2 is said to be maximal in € if for
any rectangle S C (2 satisfying that R C S, then S = R. Denote by m(f2) the family of all maximal dyadic
rectangles contained in 2. We choose a positive integer ¢o > 2 such that by "1, > < (b7 >"“1b; %2/ 2) and
set

Q= {z € R" x R™, M(xo)(z) > by " by 0"} . (4.3)

Definition 4.2 Let w € A, ([f) and g, be as in (2.7). The triplet (p, ¢, §)., is said to be admissible if
p€(0,1],q € [2,00) N (qu, o0) and s; > (L& — I)Cl__lj, where (; _ is defined as in (2.3), ¢ =1, 2.

A function a is said to be a (p, ¢, §)-atom associated to an open set 2 of R” x R™ with w(2) < oo if
(I) a can be written as a = ZRem@) ap in 8'(R™ x R™), where ap, satisfies that
()

v (€(Ri)—1)+u;+30;
(>ii) fR" ar(x1, x2)x§ dry = 0 forall |a| < s; and almost all zo € R™, and

(i) ag is supported on R” = R x R}, where R} = zp, + B fori =1, 2.

me ar(xy, xg)zg dxo = 0 for all |8| < so and almost all z; € R™.

Here ar is called a particle associated with the rectangle R.
D) [lal| g, @nxrm) < To(@]Y1VP and 3 e @) IR 17 oy < (@977,

—

Definition 4.3 Let p € (0, 1], w € Ax(A) and g, be as in (2.7) and (p, ¢, §)., be an admissible triplet.
The weighted atomic anisotropic product Hardy space H: ¢ s (R™ x R™; A ) is defined to be the collection of
all f € S'(R™ x R™) of the form f = 3, yAja; in S'(R™ x R™), where ., \[A;|P < oo and {a;};en are
(p, q, §)w-atoms. For f in H?%5(R™ x R™; A), the norm f on HP: % ¥(R"™ x R™; A) is defined by

1/p

||f||H5]“1~§(Ranm;A’) = inf Z|)\Z|p s
JEN

where the infimum is taken over all the above decompositions of f.

Remark 4.4 a) We remark here that the restriction ¢ € [2,00) in Definition 4.2 seems reasonable, since
we use the Lusin-area function to introduce HE (R™ x R™; A ). Moreover, from the known result on classical
product Hardy spaces, we know that {s; };—1, 2 in Definition 4.2 are best possible.

b) Notice that if (p, ¢, ) and (p, r, t),, are admissible, ¢ < 7 and s; < t; fori = 1, 2, then a (p, 7, T )-

atomis a (p, ¢, §),-atom. Thus, the space HP:™F(R™ x R™) C HP:45(R" x R™; A).
The main result of this section is as follows.

—

Theorem 4.5 Let w € A (A) and q,, be as in (2.7). If (p, q, §) is an admissible triplet, then
HP(R" x R™; A) = HZ @ (R" x R™; A)
with equivalent norms.

From Theorem 4.5, we immediately deduce that the definition of the Hardy space HE (R"™ x R™; ff) in
Definition 4.1 is independent of the choice of 1) as in Proposition 2.16.

Since the proof of Theorem 4.5 is quite complicated, we will use several lemmas. Precisely, by choosing
s; such that s; > |(quw/p — 1)¢;, — ] and (s; +1)(;,— > 1 for ¢ = 1, 2, we first prove in Lemma 4.6 bellow

that H?,(R™ x R™; A) c HP%5(R™ x R™; A). Conversely, for all admissible (p, ¢, )., in Lemma 4.8, we
prove

[HE (R x R™; A) N 8L, (R")] € HL(R" x R™; A)

by using Journé covering lemma established in Lemma 4.9 below, and in Lemma 4.10, we further show that

HP 2SR x R™; A) C St w(R™). Combining Lemmas 4.6, 4.8, 4.9 and Remark 4.4 b) then finishes the
proof of Theorem 4.5.
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—

Lemma 4.6 Let w € Ax(A) and gy, be asin (2.7). If (p, q, § ). is an admissible triplet and (s; +1)(; — > 1
fori =1, 2, then there exists a positive constant C such that || || ;».a. TR xR, A) S Clfll e (Rn x®m; A Jor

all f € HP(R™ x R™; A).

Proof. To prove this lemma, we borrow some ideas from Fefferman [24,26]. The whole proof is divided
into 8 steps. In Step 1, we use the Calderén reproducing formula from Proposition 2.16 to decompose f into a
sum of functions {er} r essentially supported in rectangles and recombine these functions (according to the size
of the intersection between their corresponding rectangles and the level sets of the Lusin-area function) to obtain
the particles {ap}p and atoms {ay }x; see (4.6), (4.7) and (4.8). In Step 2 through Step 5, we show that {ay }
are (p, ¢, §)y-atoms. The crucial step is to estimate the size of these atoms in Step 3. Here we use the method
from Fefferman [26] instead of the dual method used in [12] via a subtle inequality (4.10). Step 6 through Step
8 is devoted to proving the inequality (4.10), which when n = m = 1 was established in [13,26]. To obtain
(4.10) here, in Step 6, we conclude its proof to the proofs of the inequalities (4.17) and (4.18), which are given,
respectively, in Step 7 and Step 8. To prove (4.17), a main technique used here is to scale the longer sides of
considered rectangles to 1 via the anisotropic dilation invariance of the Lebesgue measure so that we can obtain
a desired decreasing factor; see [¢((R;) — ¢(P;)| in (4.17).

We now start to prove Lemma 4.6 by letting ) be as in Proposition 2.16 and f € HP (R™ x R™; A ).

Step 1. Decompose f by the Calderén reproducing formula.
Fork € Z,set Q, = {z € R* x R™ : Sy(f)(z) > 2*} and
Rr={ReR: |RNQ| >|R|/2, |[RN Q1] < |R|/2}.

Then for each R = R; X Ry € R, there exists a unique k € Z such that R € Ry,. Thus,
Ur= U U r=U U R (4.4)
RER ki,k2€Z RERk  ky k€ Z RER,,

Moreover, for all R € Ry, and all z € R, by Lemma 2.3(iv), we obtain

1
v1l(R1)4u13v20(R2)+u2 (1) (2)
bl bg TRYTB Ry )tuy X Buge(Ry)fug
2’(1,2 |Qk m Rl
|R|

M;s(xa,) () =

xa. () dy

—2u —
207" by
> bl—Coul b2—Co’u.2’
which implies that

U Rc . (4.5)
RERy

where Qk is as in (4.3).
Let ) and (") be as in Proposition 2.14 such that each #(*) has the vanishing moments up to degree s3 =
2max(s1,s2) + 1, where s; > |(quw/p — I)Ciflj and (s; + 1)¢, - > 1,0 = 1,2. Set § = 0V9?) and

¥ = (M2 Then by Proposition 2.16, Lemma 2.3(i) and (4.4), for all 2 € R™ x R™, we have
F@) =Y Ok k% try ks = f(2)

k1, ko€Z

SIDTD DEN I L

n m
k1, ko €Z mi~viki+ug xR
mo~uvgkytun

= > > > /Remwm‘ywml,mz*f(y)dy:

k1, k2€Z RERK,, ky ™1~v1k1+uUL
mo~vokotug
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— Z Z //R 9t1,t2 - y)@[}tl,tz * f(y) dy dO'(tl) dO'(tQ)

kE€Z RER

in §'(R™ x R™), where R is as in (4.1) and o is the counting measure on R.
Set A, = 2F[w(Qx)]Y/? and ai, = A > Rer, €r> Where forall z € R™ x R™,

v) = / /R e =9 ) dydo ) o) (4.6)

It is not hard to show that e € Sy, 5, (R™ x R™). Let m(ﬁk) be the set of all maximal dyadic rectangles

contained in €. For each R € Ry, by (4.5), there exists at least one maximal dyadic rectangle in m(ﬁk)
containing R; if there exists only one such maximal dyadic rectangle, we then denote it by R*; if there exist more
than one such cubes, we denote the one which has the “longest” side in the R™ “direction” by R*. We point out
that R* is unique by the choice. For each P € m(ﬁk), let

ap = )\;1 Z eR, 4.7)
RERy, R*=P

and then ay, = ZPEm@k) ap in §'(R™ x R™). Moreover, we rewrite f as

F=Y"Mae=Y "M > ap=> X Y, > Xler (4.8)

k€eZ keZ Pem(Qx) kEZ Pem(Qy) BERE, R*=P
in &'(R™ x R™).
Then we have

Z)\P Z2Pk Qk) < ||S’¢( )HLP (R xR™) — ||f||Hp (R™ xR™; A)

k€EZ keZ

By this and (4.8), to conclude the proof of Lemma 4.6, we must show that each ay, is a fixed multiple of a
(p, ¢, §)w-atom associated with 2.

Step 2. Show suppap C P” = P’ x P}.
If € suppap, by (4.7), ap(z) # 0 implies that there exists R € Ry, such that R* = P and eg(z) # 0.
Recall that for all ¢, t2 € Z and (21, z3) € R™ x R™,

Oir. 1 (21, m2) = b7 105200 (AT 1 21)007) (A5 P2 25)

and supp 6 C B((f). If er(21, T2) # 0, by (4.6), there exists (y, (t1, t2)) € Ry such that A (z; —y;) € Béi).
Moreover, by (4.2), we have t; < v;[¢(R;) — 1] + u; + 0;. Therefore, by Lemma 2.3(iv) and (2.1), we further
have

i) (i) (i) (i) _
i € Yi+ Byl C 2R+ Buyryyrus T Buiery-vuiter © TR Bultery - uir2e, = Bi
Thus,
supper C R’ = R} x Rj. (4.9)

Since R; C P;, by Lemma 2.3(iv) and (2.1), we obtain

_ (2) (i)
R} =2r, + By (4R 1)tui+20: © TRi = TP+ TP+ By 4y 1) 1ui 20,

+BY

(l)
Cxp + B,y 0 (E(P)—1) 4 +204

P;)+u;
Czxp, + B( )( o
=P/,

P;)—1)+u;+30;

From this and (4.7), we obtain suppap C P”" = P}’ x PJ.
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Step 3. Prove ||ax || g (rn xrm) S < [w(S)]/9-1/P,
To this end, we need the following key lemma which will be shown in Steps 6-8 bellow.

Lemma 4.7 Let 6, 1) be as in Proposition 2.16, G any set of dyadic rectangles in R" x R™, and er as in
(4.6) for any R € G. Then, there exists a positive constant C such that for all x € R™ x R™,
<O Mlerxr) (@), (4.10)

§9 <Z eR> (x)
Reg RegG

1/2
. 2 (tl)do(tg)
cp = {//R+ [Ve,, 00 * f(y)|7d btlbm } :

Assuming Lemma 4.7 for the moment, since ¢ > ¢,,, we have w € A4(A ) By this, Theorem 3.4, Lemma 4.7
with G = Ry, and Proposition 2.10(ii), we have

k]l Lo, @n xmmy S A5t ||So < Z €R>

where

RER L?u (Rn XRm)
1/2
S )‘1:1 { Z [MS(CRXR)]2}
ReR

L%, (Rn xR™)
1/2

Z CRXR

ReER

L%, (R7 xR™)
Since forall R € Ry, [RN Q41| < |R|/2and R C Qy by Lemma 2.3(iv) and (4.5), then for all - € R, we have

1 R — |R|/2
M (XRn(ﬁk\QkJrl)) () 2 @ /};XRﬂ(ﬁk\Qk+l)(y) dy 2 IR| 2 Xr(7).

From this and Proposition 2.10(ii), it follows that

9y 1/2
lasll g, @ wrmy S Ag { Z [MS(CRXRﬂ(ﬁk\QkJrl))} }

ReRy,

LY (R xR™)
4.11)

1/2
-1 2
§ )‘k < E cRXRﬂ(lek\QkJrﬂ)

RERy, LY, (R" xR™)

Moreover, fix © € R™ x R™. If R € Ry, and z € R, then for any (y, t) € R, by Lemma 2.3(iv) and (2.1),

T € B, (l C Bt(ii)7 which together with Remark 3.5 and the disjointness of R implies that

il(Ri)+ui+o;

2
Z CRXRN(\Qu41) ()

ReERy
dO’(tl) dO’(tg)
Voo * FW)P dy — 70— X (o T
-3 [, e 10y T ) i
< [Su(N)(@) Xe\ 01 (7)
N 22kXQk\Qk+1(I)-

Notice that w(ﬁk) w(Q) by w € Ay(A ) and Proposition 2.10(ii). From these estimates, we deduce
_ - EESE! -
k] £a, o xcmy S 27 F[w ()] /P28 [w ()] 1< (@) /e, (4.13)
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Step 4. Prove } pc,,(@,) ||ap||%%(RnXRm) < [w()]1—9/P.
Similarly to the proof of (4.13), by Theorem 3.4, Lemma4.7 with G = {R € Ry, : R* = P}, the monotonicity
of £9/2 with ¢ > 2, (4.12) and w (%) < w(€,), we have

q
Z ||aP||LZ,(]R"><]Rm)

Pem(Q4)

SN §e< > 6R>

ReRy, R*=P

q

LY, (R xR™)

2 4.14)
S )\’:q Z { Z C%XRm(ﬁk\QkJrl)} '

Pem(Sy,) RERy, R*=P

LY, (R xR™)
ol = q

SEYal CACICRPN .

< gk [w(Qk)]_q/pw(ﬁk)Zq(kH)

S [w(Qp)] 7.
Step 5. Show the vanishing moments of a p.
By (4.12) and w () < w(€2), we have

do(tr) do(ts) | "
At // . 2 dy = T2 d
k R R { URERk R, |f ¢t1,t2(y)| XRO(Qk\Qk+1)(z) Yy btllbt22 ’LU(.T) €z
1/2(|4
3 (4.15)
=1 < Z C?%XRm(ﬁk\QkH))
ReRy,

LY (R xR™)
< [w(Qk)]l_q/p < 00.

Take any N € Nand let Ry, v = {R € Ry, : [{(R;)| > N, i = 1, 2}. Replacing aj, by A\ ' Y ReRy x CR
similarly to the estimate of (4.11), we obtain '

q

)\Zl Z €R

RERe, v || Lg, (R xRm)

1/2]|9
- 2
S /\kq ( Z CRXRﬂ(ﬁk\Qkﬂ))

RERw, v L%, (R? xR™)

do(t) do(t) |
_ 2 o(l1 g(lo
~ )\kq/Ranm{//U |f Y42 (D X p@\ @i 1) (F) dyw} w(z) dz.

Rewr, y T+

Then by (4.15) and Lebesgue dominated convergence theorem, we have
EYRD DR

RERL, N
as N — oo, which implies that ap = A;* > ReRr,. R-—p €R converges in L (R™ x R™), and thus for al-
most everywhere o € R™, ap(-, x3) € LZ} ( (R™). Moreover, recall that 6 has vanishing moments s; >

— 0,
LY (R? xR™)

T2)

[ (qw/p — I)Cfl_J in the first variable and so is eg. Let hi(z1) = z{xpy(x1) with [a] < sy and ¢ € Ry
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such that ¢* + (§)~ = 1. Obviously, h; € Lw i/a( )(
(Li—a/q(,712)(Rn)) =L} . (R")and supper(-, x2) C Py, we have

R™). Then by the fact that suppap(-, z2) C Py,

/ ap(x1, v2)a] doy = (ap(:, 2), h1)
Rn

= Y ler( @), )

R*=P, RERy

/ er(z1, x2)a]t day
Rn

R*=P, RERy,
=0.

Thus, ap has vanishing moments up to order s; in the first variable. By symmetry, ap has vanishing moments
up to order sy in the second variable.

Combining Steps 3 through 5 shows that ay, is a fixed multiple of a (p, ¢, §).-atom associated with Q. To
finish the proof of Lemma 4.6, we still need to show Lemma 4.7.

Step 6. Proof of Lemma 4.7.
For P € R, let P4 be as in (4.1). For all z € R™ x R™, by Remark 3.5, we have

(o]
_ //w bi, 1, # <Z eR> )

Reg

2
do(ty)do(t
Z // l |6R*9t1,tz(y)|‘| dy%gh).
Py | Reg e

PeR, PLNI'(z)#0

O’(tl) dO’(tQ)

2
d
dy s (4.16)

IN

For any (y, t) € Py with P NT'(x) # 0, we will prove in Step 7 that if P’ N R’ = 0, er * 1, ¢,(y) =0, or
else,

2
|6R * 9t17t2 (y)| S CRM.;(XR)(CE) H b’ESi“rl)vi‘Z(Ri)_Z(Pi)Ki,— ) (417)
i=1
For any P € R, we will show in Step 8 that
2
Z HbESi"!‘l)'Ui|e(Ri)_Z(Pi)‘<i,— <1. (4.18)

RER, R'NP'#£0i=1

Assuming that (4.17) and (4.18) for the moment, for any (y, t) € P, and Py N T(x) # 0, by (4.17), the
Cauchy-Schwarz inequality and (4.18), we obtain

2 9 2
<Z |6R * 9t1,t2 (y)|> S { Z CRM H Sl+l)v1|é(R) (PG, - }

Reg REG, R'NP'#£0 i=1
2

< Z 2IM 2 M H b(sl+1)v1\2 (Ri)—L(P;)|Ci, -
REG, R'NP'#) =1

From this, (4.16) and (4.18), it follows that
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()]

< ¥ //P S A M, () ()]

Reg 3
Py (z)#0 WS, i

pls DU ER)—EPOIG — do(ty) do(t2)

2
t11t2
= bl b2

1

2
84 1 Vi £ 1%1 —£ Pi i, —
< Z C%[Ms(XR)(«T)]Q Z Hbg +1)vi [€(Rq)—£(Pi)|¢

Reg R,ﬁgfﬁ i=1
SN RIM(xr) (@),
Reg

which yields (4.10). To finish the proof of Lemma 4.7, we still need to show (4.17) and (4.18).

Step 7. Show (4.17).
Consider first the trivial case when R’ N P’ = (). In this case we claim that for (y, (¢1, t2)) € Py, we have
er * 04, ¢, (y) = 0. By (4.9), we have

er* 04y 1, (Y1, Y2) = // er(z1, 22)0¢,, ¢, (Y1 — 21, Y2 — 22) dz1 dza.
Recall that
O, 12 (41 — 21, Y2 — 22) = by by 2O (AT (g1 — 21))0 (A5 ™2 (y2 — 22)),

and supp 6 C Béi) for ¢ = 1, 2. Moreover, since (y, (t1, t2)) € Py, by (4.1), (4.2) and Lemma 2.3(iv), we
obtainy; € P; C xp, +B£?Z(Pi)+ui andt; < v;(¢(P;)—1)+wu;+o; fori = 1, 2. Therefore, if (y, (t1, t2)) € Py
and 04, +,(y1 — 21, y2 — z2) # 0, then by (2.1), we have

(1) (@) (i) @ B
i € yi+ By Cap+ Byypu, T Buler)-ntuitor © TP Buler) - 1puitas, = D
Thus, for all (y, (¢1, t2)) € Py, we have
er* 0 4,(y) = / er(2)0i, 1, (y — 2) dz, (4.19)
R'NP

and if P’N R’ = (), we obtain e * 0, +,(y) = 0.
We now consider the non-trivial case R’ N P’ # (). We shall establish (4.17) by considering the following four

subcases.
Case I. {(Ry) > £(Py) and £(R3) > ¢(Py). Leti = 1, 2. We first observe that for any (y, (¢1, t2)) € P and

zi € Rl =xp, + B ' ,by t; > vil(P;) + u; + o;, we have

(@)
V4 [@(Rl)—l]—&-ul +20;

p— _ti —ti (71) _ti (7’) D
zi=A "z € AV agR, + B, eri) ~1)+uwit20i—t; © Ai TR+ By jur)—1-0(P))40; = Bi-

Let R = Ry x Ry. Then for any 2/ € R;, since —v;, o; > 0 and v;[¢((R;) — ¢(P;)] < 0, by (2.5) and (2.4), we
obtain

— A7 AV (2 — A Ygp,)]| S by RPN (4.20)

/ —t;
|z; — A Mxp,

On the other hand, by the Cauchy-Schwarz inequality, § € S(R™ x R™) and Lemma 2.3(iv), we have
en@)P < ch [ 161 =y, w2 = ) PO din (i) dots)
Ry

Sen > > R by (421

tlwvli(R1)+u1 t2~v22(R2)+u2
< ¢
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Let

[ 1 a; (i o
Pullza) = D 00 (wi) (2 — wi)
lag|<si  ©

be the Taylor polynomial of () about w; € R™ of degree s;. For any (y, (t1, t2)) € Py, since egr €
Say. 5 (R* x R™), 0 = 1P and ) € S,,(R™) fori = 1, 2, by (4.9), Taylor’s remainder theorem, (4.20)
and (4.21), we obtain

ler * 01,1, (y)]

= [eR (A’ilzl, A?zz) ﬁﬁ(i) (Ai_tiyi - zl) dz

R izl | |
= | fpentatan a2 11 (9(” e I Cr ) “ )
< /Rlng ’eR(A’ilzh A?zz)‘ f[l ’A;tixm — 2z sitt dz1dzs

2
/S CR H bgi[Z(Ri)_l(Pi)]bl(.sr‘rl)vi[é(Ri)_é(Pi)]Ci, .

i=1

Observing that since £(P;) < ¢(R;) and P/ N R, # () fori = 1, 2, by (2.1) and Lemma 2.3(iv), it is easy to
see

— (®)
R; c Pi”/ =xp, + BUi(Z(Pi)—1)+ui+40'i’ 4.23)

and hence R’ C P"’. Moreover, for any x € R™ x R™ and T'(z) N Py # 0, by (2.1) and Lemma 2.3(iv), we
obtain

zeP. (4.24)

By Lemma 2.3(iv), we have that b"*“‘"") ~ |R/| and b"*“‘"*) ~ | P|. By this, (4.23), (4.24), Lemma 2.3(iv)

and Remark 2.8, we have that for any z € R” x R™ and T'(z) N Py # 0,

2
o0 = P < Mi(xa) (@) S Ma(xr)(@). (4.25)
i=1

Combining this and (4.22) yields (4.17).

Case II. £(R1) < £(Py) and {(R3) < {(P). In this case, for any z; € P/ = zp, + Bf}z) we

i[0(Pi)—1]+ui+20;°
have

Zz/ = Ai—m@(Ri)—uizi c Ai—wé(Ri)—uixPi + Bf)l:) = é (4.26)

[€(Pi)—1—€(Ri)]+20;

Let P = P, x P,. For any z| € P, since 0(P;) > ((R;) and —v;,0; > 0, by (2.5) and (2.4), similarly to the
estimate of (4.20), we obtain

Zzl . A;vie(Ri)_ui«TPi < b;)i[f(Pi)—f(Ri)]Ci,—. (4.27)

Leter(z) = eg (A’l“z(Rl)Jr“lzl, A;Zf(RZH“QzQ). Forany z € R" x R™ and (a1, ag) € (Zy)™ x (Zy)"2,
we have

|07 05%€Rr(2)| S cr. (4.28)

~
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Indeed, for any v; > v;4(R;) + u; + 0; and z; € R™, an application of chain rule yields
‘ 9% [0(2) (A?if(Ri)-‘rui—’Yi')} H <1

Hence (4.28) follows by the Cauchy-Schwarz inequality, (4.2) and Lemma 2.3(iv), similarly to the estimate of
(4.21),

0052 ER(2) = ’/ ooz (020, (A7 gy g )] (21, 20)
+

X (Yoy, 72 * F)(y) dy do(y1) do(v2)

<k // by by " dyr dyz do (1) do(7y2)
Ry

C

N
LY

Without loss of generality we can assume that

bgsl—&—l)vl(@(Pl)—f(Rﬂ)Cl, - < ng2+1)U2(Z(P2)—Z(R2))C2, - (4.29)

since the other case is dealt in the same way. Let

dxre ,
P, (21, 22) = Z 07 ér(wi, 22)

o] <s3

—_ a1
041! (Zl wl)

be the Taylor polynomial of ég(-, z2) in the first variable about wq € R™ and degree s3. For any (y, (t1, t2)) €
I'(z)N Py, by (4.19) and (4.26), the change of variables, and our hypothesis that each 6 has vanishing moments
up to degree s3 = 2max(sy, s2) + 1, we have

/13 {gR(Zh 22) = Pyoven -, (217Z2)}

2
x H 915:) (yz - A?ie(Ri)J’_"i Zz) b;’iz(Ri)"rui dz
=1

|6R * 9t17t2(y)| =

s3+1 2

I

2
< cRbgss-*-l)vl[Z(Pl)—f(Rl)]CL - H b;’i[e(Pi)_e(Ri)]bi_ti""vie(Ri)

~

by ) 4z

i

SCR/~ ’Zl — AT g
P

o9 (- )

=1

2
<cp H b§51+1)vi(Z(Pi)_Z(Ri))Ci, -
i=1

Indeed, the first estimate is a consequence of Taylor’s remainder theorem and (4.28), the second follows from
(4.27), and the last follows from (4.29) and b’ ~ b""“") fori =1, 2.

Since ((R1) < £(Py) and £(R2) < £(P,), by (4.23) and symmetry, we obtain P’ C R"’. From this, (4.24),
Remark 2.8 and Lemma 2.3(iv), it follows that for x € P', 1 = M,(xr)(xz) S Ms(xr)(x); see also (4.25).
Then, combining this and (4.29) yields (4.17).

Case III. {(Ry1) > £(Py) and £(R2) < £(P2). In this case define

eg)(zh ZQ) =ep (ZL A;zZ(Rz)-s-uQZQ) .

www.mn-journal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



416 Bownik, Baode Li, Dachun Yang, and Yuan Zhou: Weighted anisotropic product Hardy spaces

For any z € R™ x R™ and oy € (Z4)"2, similarly to the estimate of (4.28), we obtain
057 (z1,22)| S e, (4.30)

D — A—t (1)
Let Ry = A "ap, + Bvl[e(Rl)—1]+u1+2a1—t1

be the Taylor polynomial of #(!) about w; € R™ of degree s1, and let

and P, = AQ_UQZ(RZ)_M2 Tp . Let 731(1,11)

(2)
y 1 B@Q [6(P2)—1—¢(R2)]+202

022 eg) (21, w2)

Pu, (21, 22) = (22 — wa)™

012!
|az|<s2

be the Taylor polynomial of eg) (21, -) in the second variable about we € R™2 of degree so. Forany (y, (t1, t2)) €
I'(z) N Py, by (4.19), the change of variables, and vanishing moment conditions, we have

€R * 02517 ta (y)
= /, - eg) (Ailzh Z2)9(1)(A1_tlyl - Zl)og) <y2 - A;}QZ(RZHMZQ) bgﬂ(RQHuQ dz
Rl ><P2

vol(R2)+u 2) (4t t
= b22 (Rz)+uz o eg% (All 21, 22) — ’PAquZ(RQ)—uQ (All 21, ZQ)
Rl ><P2 2 TPy

% (9(1)(A1—t1y1 — zl) — ,P,(:I’)tl —AT g, (Aftlyl - Zl))

X Gg) <y2 — ASﬂ(RzH—uzZQ) le ng.

Y

The last equation is a consequence of Fubini’s theorem with the inside integration over the zo variable. Conse-
quently, Taylor’s remainder theorem, (4.20) for ¢ = 1, and (4.27) for ¢ = 2 yields

2
|eR " 9t1, L (y)| /S CRbil)l(f(R1)—f(P1))bS2[5(P2)—f(Rz)]b2—t2+U22(R2) H b§81+1)viW(Pi)—e(Ri)\Ci, -

, =t (4.31)
< CRblln[Z(Rl)—Z(Pl)] H bz(_si-‘rl)vi|5(Pi)—e(Ri)\Ci, -

=1

Moreover, observing that £(R;) > ¢(P;) and £(Rz2) < ¢(Pz), by (4.23) and symmetry, we obtain that R} C
P} and P, C RY. From this, 5" ~ |R!|, 5“) ~ |P/”|, (4.24), Remark 2.8 and Lemma 2.3(iv), it
follows that

pulero—er) 1Bl R 0P[R0 By JRY 0P[Ry O B
1 N
IV ] T
R/// m P///
~ % S Ms(xr) (@) S Ms(xr)(2);

see also (4.25). Combining this and (4.31) yields (4.17).
Case I'V. Finally, the case ¢/(R;) < ¢(Py) and ¢(Rg) > ¢(P2) follows from Case III by the symmetry. This
completes the proof of the crucial estimate (4.17).

Step 8. Verify (4.18).
Let §F be the cardinality of the set E. Fori = 1, 2, by (4.23) and Lemma 2.3, we have

. P —valkes— (P
t{R; € QY RiN P #0, |Ri| < |P|, ((R;) = ki } < —'l}_g” ~ by Vil

and
1{R; € QU : RiN P #0, |R;| > |P|, £(R:) = ki} = 1.
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Then by this and (s; + 1)¢;,— — 1 > 0, we obtain

Z Hb(sz+1)v1\2 (Ri)—€(P:)|Ci,

R'NP/#£0 i=1 i

T R RIG -

::]w

1 k;€Z (R;)=k;
RiNP!#0

2
H bvl Sv,"l‘l)cz - 1”]‘3 _E(Pl)l

S i
i=1k;€EZ
SL
which shows (4.18) and hence, completes the proof of Lemma 4.6. O

We now prove the converse of Lemma 4.6.

Lemma 4.8 Let the assumptions be as in Theorem 4.5. Then there exists a positive constant C' such that for
all f € HE@S(R™ x R™; A) N Sh, ,(R™ x R™), 0t gnygm, ) < Ol p @n xrm; 1)

To prove Lemma 4.8, we need a variant of the Journé’s covering lemma established in [37,45]; see also [7] for
some different variants. We first recall some notation and definitions. Let 2 C R™ x R™ be an open set. Denote
by m;(2) the family of all dyadic rectangles R C 2 which are maximal in the R™¢ “direction”, where ¢ = 1, 2.
Recall that ny = nand ng = m. Letng € (0, 1). For R = Ry x Ra € m1(Q), let R2 = Ro(R1) be the “longest”
dyadic cube containing Ry such that |(Ry x Rz) N Q| > no|R1 x Ra|; and for R = Ry X Ry € ma(Q2), let
]:21 = 1:31 (R2) be the “longest” dyadic cube containing R; such that

|(Ry x Ry) N QY > 1o|Ry x Ral. (4.32)
For R; € Q) and j; € N, we denote by (R;);, the unique dyadic cube in Q) containing R; with (((R;);,) =
((R;) — ji- Obviously, (R;)o = R;. Also, let h : [0,00) — [0,00) be an increasing function such that
32720 3h(Cob}) < oo, where Cop = max {b7** ™", 03"~ '} and 6y = max{b}*, b5*}.
The following result is a variant of the well-known Journé’s covering lemma in [45] and is adapted to expansive
dilations.

Lemma 4.9 Let A; be a dilation on R™ fori = 1,2, w € Ax(A) and q, be as in (2.7). Let 19 € (0,1).
Then there exists a positive constant C, only dependzng onn, m, Ny and C’q I n.mw) with q € (qu,00), such
that for all open sets Q@ C R™ x R™ with w() < oo,

> w(R)h <|R2|> < Cw(Q) (4.33)
R=R1xR26m1 () | R
and
> w(R)h <|R1|> < Cw(1). (4.34)
R=R1xR2€m2 () | R

Proof. Since the proofs for (4.33) and (4.34) are similar, we only show (4.34).
Let Ry € QW) such that Ry X Ry € ma () for certain Ry. Notice that for any given R; € OW | there may
exist more than one P € 0@ guch that Ry X Py € ma(Q). Based on this, for any j; € N, we define

AR17j1 = {PQ S Q(Q) Ry x Py e mg(Q), ﬁl = ﬁl(PQ) = (Rl)j1—1}- (4.35)
If Ag, ;, # 0, foreach Ry € Ag, ;,, then by Lemma 2.3(iv), we have

(1) (1)
TR, + Bvlz(Rl)_u1 C Ry Czp, + Bule(R1)+u1
(1) (1) ..
and Th +B L (By)—un C R1 Cxp + B (B4 . From this, it follows that
|R1|

by2uptt Ol < | < 2=, (4.36)
1
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Let C = b*1~1. By (4.36) and the disjointness of {Ry : Ry X Ry € my(€2)}, we have

| R
R=R; XRZQETTLQ(Q) |R1|
-y S Y w(B xR <:g:>

{R1: RiXRa€m2(Q)} j1EN, AR, j; #0 R2€AR,, j,

<> n(Gop) 3 w|Rix |J R
j1EN {R1: RixR2€m2(Q), ARy, j; 70} R2€ARy, j

Set Er, = Ug, xp,cq R2. Forany ji1 € N and any given R, € QW satisfying AR, j, # 0, if x2 €
UR?eARw_1 Rs, then there exists a dyadic cube Ry € Q) such that Ry x Ry € ma(Q), z2 € Rs and ]§1 =
(R1)j,—1 by (4.35). By (4.32) and the maximality of R, we have |((R1)ji—1 % R2) NQ| > o] (R1)j,—1 X Ra|
and |((R1);, x R2) N Q| < no|(R1);, x Rz, which implies that | ((R1);, X R2) N ((R1);, x Eryy,, )| <
10| (R1)j, X Ry, namely, |(R1)j, x (R2 N E(r,),, )| < mo|(R1)j, x Ra|. Therefore, |Ry N Er,),, | < 10| Ral,
Ry N (E(Rl)h)c‘ > (1 —n9)|Rz|, where (E(Rl)jl)c = (R™\ E(Rl)jl). From this and Ry C EpR,,
it follows that for x5 € Rs, M® (XER1\E(R1)j1 )(562) > 1 — ng, where M@ is the Hardy-Littlewood maximal
operator with respect to the second variable, namely, on R™. Thus, for any j; € N, we obtain

and hence,

U Rck= {172 ER™: My (XERl\E(Rnh) (z2) > 1— no}- (4.37)
Ro€ARy, jy

Since w € Auo(A) implies that there exists ¢ € (1, 00) such that w € Aq(ff ). Then by Definition 2.9, for
almost all z; € R™, we obtain that w(z1, -) € A,(A2) and the weighted constants are uniformly bounded. By
this, (4.37) and Proposition 2.5(ii), we have

w (Rl x (URzeAnl,h Rg)) < w(Ry x K) S w(Ry x (Eg, \ E(ry),,))- 4.38)
Fori =1, ..., ji, by the disjointness of sets { (R1)i—1 X (E(r,), , \ E(ry),) CQ: R1 € QW}, we have

Z w ((Rl)i—l X (E(Rl)i—1 \E(Rl)i)) < w(§).
{R1: R1 xRa€mM2(Q), ARy, j; 0}

By this, Ry C (Ry);—1 fori € N and (4.38), we obtain

> (Q)w(R)h<%>

R=R1XRxEms

< > h(ch ) > w(Ry % (Er, \ E(ry),, )

j1EN {Ry: RiXxRy€m2(Q), AR, j, 20}

J1

< Z h(Cbll)ljl) Z Zw((Rl)i—l X (E(R1)i—1 \E(Rl)i))

j1€N {R1: RixR2€m2(Q), ARy, j, #0} =1
Sw(@) Y ah(Ch)

j1eEN
S w(9),
which completes the proof of Lemma 4.9. O
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Proof of Lemma 4.8. We prove Lemma 4.8 by the following 7 steps.

Step 1. Reduce to the uniform estimates on atoms.
Let ¢ be as in Proposition 2.16. It suffices to prove that for all (p, ¢, §),,-atoms a,

1Sy (@)l L2, (e xemy S 1. (4.39)

In fact, for any f € HP ¢ 5(R™ x R™; A), there exist {\r}ren C C and (p, ¢, )y-atoms {ax}ren such
that f = 3, .y Akag in S’(R" x R™)and D, o [P S ||f||Hp @3 R xR £) By this, 1 € S(R™ x R™),

Minkowski’s inequality, Fatou’s lemma, and the monotonicity of the #”-norm with p € (0, 1] and (4.39), we have

||Sw<f>||Lﬂ(Ranm)s%msaa)n p @ sy S 11 0.2 g, 1)

Let us now show (4.39) by Step 2 through Step 7.

Step 2. Estimate §¢ (a) on a “finite” expansion of the support of a.

Assume that a is a (p, g, §),-atom associated with an open set €2 satisfying w({2) < oo as in Definition 4.2.
Let Q be as in (4.3) and 79 = b¥ ~°716327°72, Obviously, 779 € (0,1). For each R = Ry x Ry € m(Q), let
Ry be the “longest” dyadic cube containing Ry such that |(R1 X Ra) N Q| > 770|R1 X Ry|. For Q, we define
Q= {z eR" xR™: M, (XQ)( ) > by 2“1b_2u2770} Similarly, we define €2 and "’ by replacing € in the
definition of €', respectively, by Q) and Q. Obviously, (R1 X Rg) c Q. For any given Ry x Ry € my (Q’ )
and El D Ry, let §2 be the “longest” dyadic cube containing Ry such that ‘ (El X ﬁg) N ﬁ” > 10 ’ﬁl X }A%g‘

Set R* = Rt x Ry = (le +BY ) (a:R2 + B

1(6(R1)—1)+u1+501 o (E(Ra)— 1)+u2+002) . Then we have

wl | R| Sw@). (4.40)
Rem(Q)
= (pa & R (2) )
In fact, to prove (4.40), let R* = (:ch + Bvle(Rl)—u ) X (:ch + sze(Rz)_u By Lemma 2.3(iv) and (2.1),

R! C (R1 X Rg) C R* and R C Q" which is deduced from the fact that Ry x RQ C Q and R1 C R;. For any
R € m(Q) and © € R*,

1 R!
M (xg) () = ‘—/ Xoy (y) dy > 7 _ by 2*1by 2 g,
|R*[ J g~ | R¥|

which implies that (., @ R* C Q. From this, w € A (A 1) and the boundedness of M, on LY (R™ x R™)
(see Proposition 2.10(ii)), it follows that

w U R | <w(Q") Sw(Q).
Rem(Q)
Thus, (4.40) holds.

Then for w € A (A), p € (0, 1] and g € [2, 00) N (qu, o), by Holder’s inequality, Theorem 3.4, (4.40)
and Definition 4.2(II), we obtain

1-p/q
/ / [Se@@Puw@)de < jw| | B 150 (@) 154 (o sy
e frem(@ (4.41)
S [ @) |all g o oy
<1
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Step 3. Estimate §¢ (a) on the complement of a “finite” expansion of the support of a.

P ¢ B — ) - - ;
Set Ry = zg, + Bvl(Z(Iﬂzl)_l)JrulJn,w1 and Ry =z, + sz(e(Rz)—1)+u2+5ag' Then by a = EREm(Q) ap in
S’(R™ x R™) as in Definition 4.2 and the monotonicity of the ¢?-norm with p € (0, 1], we obtain

//( " 1Sy (a) (2)]Pw () da

UREm(ﬁ)

*)G
Sy(ag)(@)]Pw(z) dx
R;@//ﬁ)g[w( R @) w(z)

<
(4.42)
< S Mot ot It S St a
_ (RI)GXRQ (RI)Ux(RQ)C R1><(R§)C (R1)G><(R§)C
Rem(Q2)
= Y (Ki+Kz+Ks+Ky).
REm(SNl)

Step 4. Pointwise estimate of Sy, (ar) on (R1)® x Rx.
B = _ (1) = .
Lety1(R) = {(R1) — €(R1), B} , = 2R, + Bvl(l(ﬁl)—l—k1)+gl+5a1 for_kl € N, and RL_O = R;. We will
prove in this step that for all ky € Z and © = (21, 22) with z; € Ry ki1 \ R}, and 22 € Ry,

§¢(aR)($) < b[lkl—'Yl(R)]Ul(Sl-‘rl)Cl, 7b1—v1(€(R1)—k1) ” S¢<2> (ar(z1, -))(x2) dz1, (4.43)
1
where Sw@) is the Lusin-area function with respect to the second variable and s; as in Definition 4.2.
Let L(R1) = v1[¢(R1) — 1] 4+ u1 + 301. We now estimate ar *1;, j, ( — y) by considering two cases, where
zisasin (4.43), ji, j2 € Zandy € BY) x B{Y.

Casel. j1 > L(R;). Forany z; € R} = xp, + B(Ll()Rl), we have
A=A € ATRY = AT g, + By, = RY.
Then, by j1 > L(R;) and (2.4), we have
|Zi —Al_jIJCR1| < b[lL(Rl)_jl]Cl,—. (4.44)

Let

1
Pu, (21) = Z a—l,aallb(l)(wl)(zl —wy)™
loa|<s1

be the Taylor polynomial of )(!) about w; € R™ of degree s;. Since suppar C R” and ap has vanishing
moments up to order s; for the first variable, by Taylor’s remainder theorem, we have

lar * V), (T — y)|

- ‘ /,, (aR *o 77/1522)(172 - yz)) (21)b7 M) (Al—jl (v1 —y1 — zl)) dz

= ’/m (aR s 13 (29 — y2)) (A{lzl) [w(l) - PA;n(zl_yl_le)} (Al_jl (1 —y1) — Zl) dz

i —j +1
S'D _ (aR *o 1/1522)(‘@2 _y2)> (A{lzl)‘ ’(Al Jlle —21)‘51 le,
Ry
where
D= sup ~ sup Galw(l) (Al_jl (x1 —y1) — fl) ’ .
lonl=s1+1e €A N an, +B{n )
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. —j —j 1
Since A;'xy — A] xR, & BEA()I%I)“F'UI['YI(R)—kl]JFQUl—jl , by (2.2), we know

J (1)
Allzl o 51 € BL(Rl)+v1[’Yl(R)—k1]+Ul—j1'

Thus, if j1 < L(Ry) + v1[n(R) — k1), by A7y € BSY and (2.2), we have A77' (2, — y1) — & ¢

1 . . n .
By pyson by (R)—ks] - This together with (1) € S(R™) and (2.3) yields that
s -N
D< sup [1—0—01(14131(171 - 1) —51)] '
» .
€1€A N ap, +BY ) (4.45)

< [ ppm O] M

for any given N7 > 0. The same estimate also holds trivially for j; > L(R1) + vi[y1(R) — k1] since D < 1.
Combining (4.44) through (4.45) yields

a9 $161) [ (a2 v (@2 = ) ()] do, (4.46)

17
Rl

) = bl—jl [1 + bf(Rl)""Ul('Yl(R)_kl)_jljl - bgsl_ﬁ_l)[l/(Rl)_jl]Cl,f

where I(j; . Observe also that by choosing

N; > s1 + 2, which implies that Ny > (s1 + 1)1, — + 1, we have

Z I(j1)2 < b1—2v1(€(R1)—k1)b§[k1—’71(3)]vl(51+1)Cl, -, (4.47)
J1>L(R1)

Case II. j1 < L(R;y). In this case, for 1 — zg, ¢ B(Ll()Rl)_s_vl(m(l,;z)_le_%1 and z; — xR, € Bél()Rl), since

—v1, =71(R), ki > 0and ji < L(Ry), by (2.2), we obtain A7% (21— 21) & B Vg o (1 (R)— 401 gy - FFOM

this, Al_jlyl S Bél) and (2.2), we deduce Al_j1 (t1—y1—21) ¢ B(Ll()Rl)Jrvl(m(R)—kl)—jl’ and hence,

(AT (@1 — g1 — 21)) > by TR (4.48)

Choosing N1 > s1 + 2, we have blbgsﬁlm’ < bjlvl. Since suppar C R” and ¢y € S(R™), by (4.48), we
have

|aR * 7/}]'17]'2(55 - y)|

/ (aR *9 lﬁ](-?(lb - y2)) (Zl)bf‘jl¢§l) (Al_jl (xr —y1 — 21)) dz
Ry

) ) (4.49)
S bl—hbl—Nl[L(R1)+v1(71(R)—k1)—]1] / (aR %o %@(962 _ y2)> (21)‘ dz,
Ry
S 1(5h) /R“ ‘(aR *2 wj(-f)(@ - y2)> (21)‘ dz1,
1
where I(j;) = by V1) =Ry DT 00 (R) =k =n](s11)C, = gpgerve also that we have
Z [I(jl)]g < b1—2v1(€(,§1)—k1)b?[kl—’Yl(R)]Ul(31+1)<1, - (4.50)

J1<L(Ri1)

Therefore, (4.43) follows by (4.46), (4.47), (4.49), (4.50), and Minkowski’s inequality
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Sy(ar)()
5 1/2
< <Z[I ) Z pod2 /(2) [/ (aR %9 d)h (22 —yg)) (zl)’ dZI] dyo
j1€EZ j2€7 B; RY
< bl—m(f(él)—k1)b[1k1—’Yl(R)]Ul(51+1)C1, - Sw(z) (aR(zl ))(332) dzy.

R}
Step 5. Estimate for K.
Since 51 > |(quw/p —1)(1, L |, there exists 7 € (qu,, ¢] such that p(s; +1)¢;,— +p—r > Oandw € A, (A).
Recall that M) denotes the Hardy-Littlewood maximal operator on R™. Then, by (4.43), suppar C R”,
w € A.(A), the L7, (R™)-boundedness of M), Theorem 3.2 and Holder’s inequality, we obtain

b—[kl—wl(R)]m(sﬁl)cl,f/
1
R*

ok Mk
<b v (U(R1)—k1) /
R*

R /R2 [ ” Sy (ar (21, .))(zz)dzl} Tw((g) d:c}
< { /R *

1, k1+1\R){, kq

- {/" Ry (Sype (ar(@, ) (z2))" w(z) d:c}l/T

1/r
< { [ lan@)lrute) dz}
N ||aR||L?U(Ranm)[w(R)]l/T_l/q-

From this, v; < 0, p(s1 +1)¢1, - +p—r > Oandw € A,(A), Holder’s inequality and Lemma 2.3(iv), it follows
that

1/r
/ [Sy(ar) (@) w(z) d:c]
Rs

1/r

1/r
/R 2 [Mu) (S (ar) (22)) (zl)]rw(z) dm}

K= [ [ Butan@pru iz
k1=0 Ry k1+1\R1 ky V12
00 p/T
= _ —p/r N ,

<3 [0 (B x Ro)] [ / [ Bulan@)ru() ds

k1=0 ' Rf,k1+1\RI,k1 Ry (451)
< i bi)l(’yl(R)_kl)(r_p)[w(R)]l p/’rbp[kl Y1 (R)]v1 (s14+1)¢q, —HaRHL (xR )[ (R)]p/r—p/q
~ q nxRM

k1=0

S w(R)]l_p/qHaRH’igu prn B —p=p(s141)G, -],

(RnxR™)~1
Step 6. Estimate for . &) (K1 + Kz2).
Observe that the integral in Ky is on the domain (R;)® x (R)C and the integral in K, is on the domain

(Rl)c x Rj. Thus, applying the ideas used in the estimate of K; on the first variable to both variables of Ko, we
also have

Ky < [w(R) p/q”aR”Lq RnXRm)bi)lw(R)[T—p—p(81+1)C1,7]_
Take hi(t) = t* fort € (0,1) and ay = p + p(s1 + 1)¢,— — r. Then, by a1 > 0, we obtain that
>is0 jh1(t7)7/(3=P) < 0. By Lemma 2.3(iv), we have
bvlj171(R)[r—p—p(S1+1)<1,,] N h1(|R1|>,
| 11|
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From this, Definition 4.2(II), Holder’s inequality, Lemma 4.9 and Proposition 2.10(ii) withw € A, (ff ), it follows
that

IRE SERS A i €0y

Rem(S) Rem(Q) |
p/q _a \ 1-p/q
|R1| q—p
S Z ||aR||%Z}(RnXRm) Z w(R)hy <ﬁ
Rem(®) Rem() !
< L (@) 109/ [ (§3)] 7
<1

Step 7. Estimate for ZRem(ﬁ) (Ks + Ky).
To estimate K3 and K4, notice that ifIZ-(l) X Ry € m(ﬁ) fori = 1, 2, then either Il(l) = 12(2) or Il(l)ﬂlg(l) =

(). Recall that for any Ry x Ry € m(ﬁ), then 1/%2 = ﬁg(ﬁl), where By x Ry € m; (ﬁ’) and B, O R;. Thus,
we have

|Ro|\ ™7 |Ra| T
S w(R)h (R < ¥ > wlrn(
Rem(Q) | R RiXRy€m, () B=R1xRzem(Q) | 2|
RqCRy

< ¥ (Rlng)h2(|R2|> p7

RlxRQEml(ﬁ/) | 2|

where ho(t) = t* fort € (0, 1) and as = p + p(s2 + 1)¢2, - — r. From this, Lemma 4.9 and an argument
similar to the estimate for ZRem(ﬁ) (K1 + K3), we deduce ZRem(ﬁ) (K3 + K4) < 1. This together with (4.41)
implies (4.39) and thus completes the proof of Lemma 4.8. O

Lemma 4.10 Let the assumptions be as in Theorem 4.5. Then HP: ¢ ¥(R™ x R™; A) C Sio w(R™ x R™).
To prove Lemma 4.10, fori = 1, 2and N; € Z, we let N = (Ny, Na). Set

ni\ — I ni\ . ) _ o (T X . i
Iy, (R™) = {w € SR™) : ¢ ”«fﬂwxwl‘):mf&& \ﬂlgpmw oD (@) |1+ pia))Y §1}7

and denote by .7 (R” x R™) the collection of all ¢ such that o(z) = ™) (21)p?) (29) forall z = (1, 22) €
R” x R™ and all o) € .Zy, (R™).
Forany f € S'(R" x R™) and 2 € R™ x R™, we define the grand maximal function M g(f)(x) of f by

Mz () = sup sup | f * ok, &, ()]

PE€SL g (R XR™) k1, k2 €Z

Notice that if N1, No > 2, then for all locally integrable functions f and z € R™ x R™, Mg(f)(z) <

M (f)(x). Thusif w € A,(A) with p € (1, o), then M is bounded on LE (R™ x R™). Moreover, we
have the following proposition.

Proposition4.11 Let the assumptions be as in Theorem 4.5. If N; > s;+2 fori = 1, 2, then M  is bounded
from HP- 93 (]R" x R™; A) to LP (R™ x R™).

Then Lemma 4.10 follows from Proposition 4.11.

Proof of Lemma 4.10. Fix ¢ € S(R" x R™). Let p,(z) = p(x +y) forallz € R" x R™ and y €

Bél) X B((J2). Notice that there exists a positive constant C', depending on ¢, such that Cp, € #3(R™ x R™)
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forall y € Bél) X B(g?). If a is (p, g, §)w-atom, then for ji, jo € Nand w € A,(A4 1), by Proposition 4.11 and

Proposition 2.10(i), we have

lax g p@)PS  inf [Mg(a)(z -yl

BB
5
v (@) ()]Pw(y) dy
w(z + B(l) X B(Q)) a+B{) x B
711 _J2
< Cpwby® by 7,

where C; ., is a positive constant independent of j; and jo, and the atom a. If f = >~ _; Arax in S'(R™ x R™),
where ay, is (p, q, 5)y-atomand ), ., [Ax [P < oo, then

1 0@ < Cavuby® 2:|/\k|p—>O
kEZ
as j1, j2 — oo, which completes the proof of Lemma 4.10. O

Finally we prove Proposition 4.11.

Proof of Proposition 4.11. The proof of Proposition 4.11 is similar to that of Lemma 4.8. By a reason
similar to that used in Step 1 of the proof of Lemma 4.8, it suffices to show that [| M g(a)l| .z, &n xrm) S 1 for
all (p, ¢, §)-atoms a.

Assuming that a = ZRem(ﬁ) ar is a (p, g, §)w-atom associated with open set 2 with w(2) < oo as in
Definition 4.2. Let all the notation be as in the proof of Lemma 4.8. Similarly to the proof of (4.41), using the
L%, (R™ x R™)-boundedness of M  (see Proposition 2.10(ii)), we have

[ Mz@@re@ds <1,
UREWl(ﬁ) R*
And similarly to the proof of (4.42), we write

//( Mg (a)(@)]Pw(z) de

UREW‘L(Q) R

V/R 18 xRz //R*>°X(R2)° +//R1X<R;)C +//<R1)GX<R;)J Malan)@ifu(e) dr

= Z (T +Jo+ J5 + Ja).
Rem(Q)

Forany ¢ € S5(R" x R™), 21 € R}, . \ R} ,, with ki € Zy, 22 € Ryandy € B x B with
1, J2 € Z, 51m11arly to the proofs of Case I and Case 1 in the proof of Lemma 4.8, we have that

(D if j» > L(R1), then |ag * v, j,(x — y)| has the same upper estimate as in (4.46) and
sup by J (1 + bL(Rl)"rUl(’Yl(R) k1)— 71) b§51+1)[L(R1)_j1]<1,—
J1>L(R1)

< b1—v1(€(1§1)—k1)b[17€1—71(R)]v1(51+1)C1, -

Here, unlike the calculation of (4.47), we only need Ny > s; + 2;
() if j1 < L(R1), then |ag * v, j,| has the same upper estimate as in (4.49) and

sup bl—vl(l(ﬁl)—lﬂ)bl—[L(R1)+v1(vl(R)—k1)—j1](51+1)C1, -
J1<L(R1)

< b1—v1(€(1§1)—k1)b[17€1—71(R)]v1(51+1)C1, -
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Then similarly to the estimate of (4.43), by N1 > s1 + 2, we have

MN(GR)(I') SJbl—m(@(R1)—k1)b[1k1—71(R)]v1(s1+1)<1,* R”MN2<aR(Zl7 ))((EQ)le,
where
Mg @)= sup sup |(f xg) (a2)].

w<2>65”1v2 (Rn2) ko €Z

Observing that for s € (1, 0o0) and v € A,(Az), M% is bounded on L$ (R™). Then similarly to the estimate of
(4.51), we obtain

bvﬂl(R)[T p—p(s1+1)C1, —]

Jl rg [w(R)]l p/q”a’RHLq (R™ xR™) 1

Also, similarly to the proof in Step 6 of the proof of Lemma 4.8, we have
Jo S (R aglly g by TITEIE

and ZRem(())(Jl + J2) < 1. Finally, similarly to the proof in Step 7 of the proof of Lemma 4.8, we obtain
ZRem(ﬁ) (Js 4+ J4) < 1, which completes the proof of Proposition 4.11. O

Remark 4.12 Let w € A (A) and (p, ¢, 5) be an admissible triplet. By Proposition 4.11 and Theo-

rem 4.11, for N; > s; + 2 with i = 1, 2, we obtain the boundedness of M ; from HE (R" x R™; ff) to
LP (R™ x R™).

5 Weighted finite atomic Hardy spaces

In this section we establish finite atomic decomposition of the anisotropic product Hardy spaces.

Definition 5.1 Letw € A (A ) qw be asin (2.7) and (p, ¢, §),, be an admissible triplet as in Definition 4.2.
Let a be a (p, g, §).,-atom associated with an open set Q). We say a is a (p, ¢, §) -atom if a € S(R™ x R™),
Q) is bounded, and there exist only finitely many R € m(ﬁ) such that ar # 0.

The weighted finite Hardy space H” ’%S(R” x R™; A) is defined to be the space of all functions f =

ijl Ajaj, where k € N, {a;}f_, are (p, q, §);,-atoms and {\;}5_; C C. The norm of f is defined by

1/p
Nl oo S (rn i, 4) = inf { (Z?:l BY |1’) } , where the infimum is taken over all the above finite decom-
w, fin ) -
positions of f.
The main result of this section is as follows.

Theorem 5.2 Let w € A (/Y), Gw be as in 2.7), (p, q, §)w be an admissible triplet as in Definition 4.2.
Then,

) Hp’%S(R” x R™; A) is dense in HP,(R™ x R™; A).

(ii) Moreover, if § = (s1, $2) satisfies

51> [(qu/p) = 1+ (qu/p)(v2/v1)(logy, b2)|¢1 L — 1 and (5.1)
s2 > [(quw/p) — 1+ (qu/p)(v1/v2) (logy, b1)1¢5 1 — 1, (52)

then Hf”Hﬁvg{f(Ranm;A‘) ~ ||f||H5(Ranm;A')f0r all f € Hﬁ; ?—fn (R™ x R™; [f)

Remark 5.3 Notice that comparing with the non-product case (see [6,33,40]), we need additional assumptions
(5.1) and (5.2) on vanishing moments of atoms in Theorem 5.2(ii). This is due to the fact that the product Hardy
space is not just a product of one-parameter Hardy spaces.

To prove Theorem 5.2, we need the following auxiliary lemma, which generalizes Lemma 2 and Lemma 4 in
Appendix (IIT) of [29]. Lemma 5.4 below can be also deduced with some effort from [5, Lemma 6.3].
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Lemma 5.4 Let A be a dilation on R™, s € Z, and M € [0, o0).

(i) If g € S(R™) and ¢ € Ss(R™), then there exists a positive constant C such that for all k € 7.\ N and all
x € R, |(g* ¥n) ()| < COFETDE 14 pa)] =M.

(ii) If g € S<(R™) and v € S(R™), then there exists a positive constant C' such that for all k € 7 and all
z € R", [(g ¢p) ()| < CMETDEHUL 4 5k p(a)] =M.

Proof. To prove (i), let k € Z \ N. Since ¢ € S;(R™), for all z € R™, we have

0%g(x) a
% = —y) — E — d
g+ $)(@) Vp@)sm)/(zbf’)+/p<y>>p<w>/<2ba>]wk(y) 5(z=9) ol U

lof<s

= 11 +12

For Iy, since g € S(R™), by Taylor’s remainder theorem, we have

1
gz —y) = Y —0%g@)(=y)*| Syl sup 0%g(x — 2)|
laj<s & lal=s+1, p(z)<p(x)/(2b%)

Syl sup [T+ p(x—2)] 7M.
p(2)<p(x)/(207)

This together with p(x — z) > p(x) /b — p(z) > p(x)/(2b7), (2.3), (2.4), k < 0 and ¢ € S;(R™), yields

L] <[+ p(z)] {/( )<1p(y)(5+”cIwk(y)ldw/(

< ph(s+1)¢- [1 _|_p(x)]—M {/

S P14 p(a)] M,

p(y) T [y (y)| dy}

y)>1

o) 4 )05 ] o)l

n

For I, if p(x) > 1, since g € S(R™) and k < 0, by Taylor’s remainder theorem, (2.3) and (2.4), we have

Lisf I sup (0% e (o) dy
o(y)>p(x)/(2b7) la=s+1

</ o)V ()l dy + () HO%* i ()] dy
p(x)/(2b7)<p(y)<1 p(x)/(267)<p(y), p(y)>1

< p+C / p(y) e +p(y)(s“)<*} [¥(y)| dy
p(y)>b—kp(x)/(2b)

< pr(s+1)¢- p(x)—M_

By this and p(z) > 1, we have |To| < bF(+D¢-[1 + p(x)]~™. For p(z) < 1, similarly to the above estimate, we
obtain |Tp| < bFEFTDC < pF(s+1C-[1 4 p(x)] =M. Combining above estimates for I; and I, completes the proof
Lemma 5.4(1).

To prove (ii), we observe the identity g * ¢, = (g—g * ). Thus, if k € Z,, then (i) with the roles of g and
1) exchanged yields

—k(s+1)¢_ - -M, _
g% (@) = (g * ©)i(@)] S b~V 14 p(A7 )| p7",
which completes the proof of Lemma 5.4. O

By Lemma 5.4 and an argument similar to the proof of [11, Lemma 2.2], we have the following estimates. We
leave the details to the reader.
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Lemma 5.5 Fori = 1, 2, let A; be a dilation on R™, let s; € Z, and let M; € [0, c0). Suppose that

f € Ss, s (R xR™), oM ¢ Ss, (R™), ©? € Ss, (R™) and 4, 1, (z) = wgi)(ccl)(pg)(zg)for allti,to € Z

and x = (x1, x2) € R™ x R™. Then there exists C > 0 such that (¢, 1, * f)(2)|/C is bounded for all
xz € R” x R™ by:

2
Hbzi(sl--‘rl)@',—[l_|_pi(xi)]—Mi it ts <0,

=1
bt1(51+1)gl'7b;t2[(s2+1)<2'7+1][ 1+p1 (wl)]_Ml [1 + b;tng(xg)] — M if t1<0, t2>0,

py Gyt e -y gt ()] T L 4 pal)] M i 0 20, £ <0,

2
H 1+b ti pz (EZ)} _Mibi—ti[(si"!‘l)cl',—"rl] lf‘ t17 t2 Z 0.
i=1

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2. We first show (i). Let the notation be as in the proof of the Lemma 4.6. For
f € HE(R™ x R™; A), by (4.8), we have

F=>"Mae=> M > ar=3 M Y S Alen (5.3)

kEZ keZ Pem(Q) kEZ Pem(Qy) RERk, R*=P

in S'(R" xR™). For N, L € Nand k € Z,let R, = {R € Ry : [l(R;)| < L, i =1, 2} and fn,1 =
ZWSN )\kak7L, where ag, L = ZPEm(SN)k) ap,L,ap, [ = ZRER;C,L,R*:P )\lzleR if{R S Rk7L - Rf = P} #
() and otherwise ap, , = 0.

On the other hand, notice that 2, is a bounded set. In fact, let M; > 0 satisfying that (s; + 1)(;,— — M; > 0.

Observing that 1 + p;(z;) < bl 4+ pi(x;) ~ bf + pi(y;) fory; € x; + Bt(:) and t; € Z4, by Lemma 5.5, we have

[Sw(f)(ffh T3) ]2
2t1(31+1)<1 7b2t2(32+1)<2 —

by - 0y ’
{/ / /1€w1+B< D /2€w2+B() 1+p1(y1)]2]‘/11[ + |p2(y2)]21\/[2
—2t1(81+1)C1,7—2t1b2t2(52+1)C2,7
- 2
0 JoooJycnr+BD Jyseaarn® (1407 pr(yn)]P[1 + |pa(yo)|?M2
N /0 /oo / / b2t1(31+1)<1'7b2_2t2(32+1)<2’7_2t2
—ooJo Jyear+B? JyperatB® [L+ pr(yn)]2M[1 4 by " pa(y2)] 22
+/OO /OO/ / _2t1(51+1)<'1w*_2t1b_2t2(52+1)C21*_2t2 d d do'(tl) do‘(tQ)
Y1 ay2
o Jo Jyeo+B® Jyperarn® (1407 p1(yn)PM[1 4 by " pa(ys2)|2Me bt by

§[1+Pl(171)] 2M1[1—|—p2(17 ] —2M>

Thus for any &k € Z, ()i, is a bounded set in R™ x R™ and so is (NZk.
Therefore, forany N € Nandk = —N, ..., N, ax, 1 isa(p, g, §)} -atom associated with the bounded open

set Q0 and thus fy, € H? %’f(R” x R™; f_f)
Observe that for any € > 0, there exists an integer N, > 0 such that (Z\kb ~. 1 2e[?) P < ¢. Moreover, for
k= —N,, ..., N, similarly to the estimate for (4.11), we have
1/2

-1 2
|ar — ak,L”Lgu(Ranm) S E E CRXRN(Su\Qy1) )
Pem(Qy,) HERk L
Rr=p LY (R xR™)
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which together with (4.12) implies that ||ax — ax, ||} 4 ®" — 0 as L — oo. Similarly to the estimate of

xR™)
(4.14), we also have ZPEm@k) llap —ap, L”ng,(Ranm) — 0 as L — oo. Thus there exists an integer L. > 0
/ .
such that w(ak —ag, r.)isa (p, ¢, s)w-atom. Therefore,
o LellHE (RrxRm; 4)
1/p
SO P+ DY Awlar —an, 1)
|k|>Ne k| <N HE (RmxR™; A)
r 1/p
S+ Ifllnpoem 1) | 2 1ot = 002l s )
[k|<N.
<€ (1 + ||f||Hﬁ(R"XRm;A)) ’
which gives (i).

Now we prove (ii). From Definition 5.1 and Theorem 4.5, we automatically deduce || f| ;» (R7 xR™; ) <

HfHHﬁ‘,%;f(R"xRM; )~ Thus, to show (ii), it suffices to prove that for all f € HY 4 S(R™ x R™; A),

1F ez, a5 g e 2y S I W g e -

Let f € H)Y (R” x R™: A). Since f € S(R™ x R™), by Lemma 2.15, we know that (5.3) also holds
in LI(R™ x Rm) and hence, pointwise. Assume that supp f C B}(lll) X B}(i) for certain hy, hy € Z. By

homogeneity, we further assume that || f| ;o gn g, 1) = 115l LE,(Rn xrm) = 1, Where 1 is as in Proposition
2.16.

Let ¢ = 1, 2. For certain given N € N which will be determined later, set D; = —v; N + u; + o0;; then we
choose certain My € N, depending on N, such that d; = v;(MoN — 1) + u; + o; satisfies d;(s; + 1)¢;, - <
—D;[1+ (s; +1)¢;, —]. We first assume that NV is large enough such that D; > h;. Then, by the definition of R
in (4.1), we know that there exist finite dyadic rectangles R, whose collection is denoted by RN such that

Ry {BY,,, x BY),,, x[di, D) x [d2, D2)} #0. (5.4)

From now on, we adopt the notation in the proof of Lemma 4.6 again. Observe that for each R € RY, there
exists a unique k € Z such that R € Ry, and we denote by Jy the set of all such k’s.

Letap ny = )\,:1 ZReRmRN,R*:P erif {R € Ry NRY : R* = P} # () and otherwise ap, y = 0. Let
ap,N = ZPEm(ﬁk) ap, n. Then similarly to the proof of Lemma 4.6, we know that @, v is a (p, g, §),-atom
which is a finite linear combination of particles ap, . Obviously, ap, n is also a finite linear combination of
er and hence is smooth. This further implies that a; n is a (p, ¢, §)% -atom. Let fy = EkeJN Arar, N and
gn = f — fn. Then fy € Hg;{{s(R” x R™; ) and ”fN”HP 0 5 (@ cm; ) = EkeZ el <

So itremains to prove gy € H, 47 “(R™ x R™; A)and ||gN|| < 1. In fact, we will prove that

HP q (R" X]Rnl A)
there exists a positive constant C, independent of f and N, such that CgN is a (p, g, s)i -atom, which implies
||gN||HP a S(RnXRm Ay ~
Obv10usly, gn € Ss, s, (R™ x R™). Noticing that if R € RY, then by (5.4), {(R;) € (—N, MyN). By this,
(2.1) and Lemma 2.3(iv), we further obtain
_ (1) (2)
R; =R, + Bvi(f(Ri)—l)+ui+2¢7i Czgr, + BD-—HL;’

which together with R C R’ and (5.4) yields that (zg, + BY) . )N BY),  # 0. Then by (4.9) and (2.1), we
obtain

supp fv ¢ | J R'C (B([)11)+301 x B§322)+302)-
RERN
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From this, supp f C B,(ll) X B,(i) and D; > h,, it follows that supp gy C (B(l) x B

1 D1+301 D2+302 |°
We now claim that there exists an Ny € N, depending on f, w, m, n, A; and As, such that for all N > N,

1/q—1/p
lgn L, (rn xrm) < {w (Bgf X ng)} . (5.5)

Now we prove that there exists a positive constant C, independent of f and N, such that C gn isa (p, q, §)k-
atom.

In fact, by Lemma 2.3(i), there exist certain P; € 0 and 24,0 € R™ satisfying that z; o € P; N Bgz Yo and
vil(P;) +u; < D;+o0; < v [6(P;) — 1] 4 w;. For this P, let P” be as in Definition 4.2(I). Then P = P; x Py C
Bg3+301 X Bg2)+302 C P”. To see this, for any z; € P;, since z; o € P;N Bgz_wi and v 0(P;) +u; < D; + oy,
using Lemma 2.3(iv) and (2.1), we obtain
(1)

(®) (@)
vié(Pi)—&-ui - xi70 + B + B

¥ €zp, + B vil(P;)+u; vil(P;)+u;

c Bgz-‘rﬂi + Bgz-i-di + Bgz-l-di c Bgz+3di7

which implies that P C Bgl)+3al X Bg3+302. For any z; € Bgz%m, since D; + 0; < v;[0(P;) — 1] + u; and

20 € PN Bngrgi, by Lemma 2.3(iv) and (2.1), we have

(i) (i) (i) (i)
Ti =P, € Bp i35, T 20,0 + By 1, © Bufep) 14w +20: T Boilep) 11440

(1)
C By e(P) 1]+ ui+30:

which implies that By, x BY) ., P".

Let Q = B(Dll) 130, X ng) 430, and Q be as in (4.3). Obviously, 2 is an open bounded set. Noticing that
P C Q, then we have P C (). Thus, there exists a dyadic rectangle P* € m(Q) such that P C P*. Moreover,
since P C P*, similarly to the proof of Q C P”, we have that  C (P*)”. For R € m(ﬁ), letag = gy if
R=Prandar =0if R € m(Q) and R # P*. By the vanishing moment satisfied by g and (5.5) together

with Proposition 2.10(i), we know that 5‘91\7 is a (p, q, s)i -atom associated with €2 for certain positive constant
C independent of f and N.
Finally, we establish the estimate (5.5). Since f € S(R™ x R™), by (4.4), (5.3) and

{ngm x B2 x[di, D1) x [da, DQ)}\< U R+>| —0,

ReRN

together with the observation that for two different rectangles R and S, then R, NS, = (), we have that for all
zeBY . xBY
D1+301 D>+302°

ZeR(x)— Z er(x)

ReR ReRN

[d], D])GXR R? xR™ RX[dz, Dz)c R™ xR™
+/d D d D /R B +/d D d D /Bl R™
[ 1, 1)><[ 2, 2) "X( = ) [ 1 I)X[ 2, 2) ( &) ) X

Da+og Di+oy

X[0t,, 1, (@ — y) (W, 1, * f)(Y)| dy do(tr) do(t2)
=h+J+Js+Ja

Recall that § = 09 ¢ S, , (R" x R™) with supp () C Bél) and supp 02 C Bé2). Notice that if
i —yi € Bt(:), then for all t; € Z, we have

lgn ()| =

L4 b; " p(xi) ~ 14 b p(ys). (5.6)
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Let M; > 1fori = 1, 2. Since f, ¥ = MWy 9 =092 ¢ S, ,(R* x R™), by Lemma 5.5 and (5.6) ,

we have
00 bl—tl[(51+1)C1,—+1] 0 bil(sl'i‘l)chf
Jo < / do(t —|—/ ————do(t
Sy e T e 0

do bt2(32+1)42,7 0o b—t2[(52+1)42,7+1]
X </ -2 do(tsa) +/ 2 do(t2)>
2

—o [1 4 p2(z2)]M2 Dy [14 05" pa(29)]M
< bgz<52+1><2,— 4 b2—Dz[(52+1)c2,7+1]

~

< b2—D2[1+(52+1)C2,—].

~

The last inequality is a consequence of our stipulation that da(s2 + 1){2, - < —Da[1 + (s2 + 1)(2,—]. More-
over, by the assumptions (5.1), (5.2) and that (p, ¢, §),, is an admissible triplet, there exists £ > 0 such that
(si +1)G, - +1—(qw+k)/p>0fori=1, 2, and

b41< = bll’l[(sl'i‘l)gl,—+1_(Qw+"”~)/P]b2—v2(‘Iw+"”~)/P < 1 (57)

b; = bl_vl(qw+ﬁ)/pbs2[(52+1)<2,f+1_(qw+")/p] < 1. (58)

Thus, by (5.8), supp gy C Bgl)+3a1 X Bg2)+3g2 and Proposition 2.10(i) with w € A, 1, (A ), if we choose N

large enough, we further obtain
192l gy < € [w (BE) x
<C [w (
1/q-1/p
<o (sl < 02)]
where C'is a positive constant, which is the desired estimate.

C
For J4, observe that if y; € (BSBJFU) ,t1 < Dqand Qt(})(zl —y1) # 0, then by (2.2), we have

C
mey+ B < (BY)) (5.9)

and thus p; (z1) > bP". Let My € (1, (s1 + 1)¢1,— + 1) and My > 1. Then by (5.9) and an argument similar to
the estimate of Jo, we have

Dy b_tl[(51+1)C1,—+1] 0 bt1(81+1)C1,7
Jg/ L dot—&—/l—dat}
=l L1 o ™ Y L T penps )

0 b?(sz-‘rl)(zf Do b2—t2[(52+1)C2,,+1]
X —=  _ do(t —|—/ — do(t }
LLH+WWM% N A T E A

S bl—Dl [(s14+1)¢1,— +1] .

Moreover, by (5.7), Proposition (2.10)(i) with w € Aqwﬂi(/T ) and an argument similar to the estimate of
[lJ2]l L9, (mn x ) if We choose N large enough, we then have

1/q=1/p
allzg nseemy < [w (BY) x BE)]

1

By symmetry, we have similar estimates for ||J1|| g &n xrm) and [|J3]|Lg rn xrm), Which gives (5.5) and
hence completes the proof of Theorem 5.2. O
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6 Applications

We first recall that a quasi-Banach space B is a vector space endowed with a quasi-norm || - ||z which is non-
negative, non-degenerate (i.e., ||f||g = 0 if and only if f = 0), homogeneous, and obeys the quasi-triangle
inequality, i. e., there exists a positive constant K no less than 1 such that forall f, g € B, || f+glls < K(||f|lz+
lglis)-

Recall that the following notion of «y-quasi-Banach spaces was first introduced in [64].

Definition 6.1 Let v € (0, 1]. A quasi-Banach space B, with the quasi-norm || - ||, is called a y-quasi-
Banach space it ||f + gll. < If I3, + gll3. forall £, g € B,

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces ¢7, LY (R" x R™)
and H(R™ x R™; A ) with v € (0, 1) are typical y-quasi-Banach spaces. Moreover, according to the Aoki-
Rolewicz theorem (see [2], [31, p. 66] or [48]), any quasi-Banach space is essentially a y-quasi-Banach space,
where v = [log, (2K)] 1.

For any given y-quasi-Banach space B, with v € (0, 1] and a linear space ), an operator 7" from ) to B, is
called B, -sublinear if for all f, g € Y and A, v € C, we have

1T +vg)ls, < (APITIE, + WP IT@I3,)

and [|T(f) —T'(9)lls, < |T(f — 9)| 5, The notion of B, -sublinear operators was first introduced in [63].
We remark that if 7 is linear, then T is B.,-sublinear. Moreover, if B, is a space of functions, 7" is sublinear in
the classical sense and T'(f) > 0 for all f € ), then T is also 3,-sublinear.

—

Theorem 6.2 Let w € Ay (A), qu as in (2.7) and (p, q, § ). an admissible triplet. Let y € [p, 1| and B., be

4,5

a ~y-quasi-Banach space. Suppose that T : H? % °(R™ x R™; ff) — B, is a By-sublinear operator such that

sup{||T'(a)|/s, : aisany (p, q, §);,-atom} < cc. 6.1)
Then there exists a unique bounded B.,-sublinear operator T from HE (R™ x R™; A ) to B., which extends T.

Proof. Without loss of generality, we may also assume that § satisfies (5.1) and (5.2). For every f €
Hy & (R™ x R™; A), by Theorem 5.2(ii), there exist {\;}_; C Cand (p, g, 5);,-atoms {a;}5_; such that
‘ S ‘
f=2>-1Aja; pointwise and 3, [\; [P ||f||§’{5(Ranm; iy Then by (6.1), we have
1/p

¢
IT(Ns, S DN | S UF L g s, 9
j=1

Since Hf;qﬁng (R™ x R™; A) is dense in H?(R™ x R™; A) by Theorem 5.2(i), a density argument gives the
desired result. This finishes the proof of Theorem 6.2. O

Remark 6.3 If T' is a bounded B, -sublinear operator from HZ (R™ x R"™; A ) to B, then it is clear that for
all admissible triplet (p, g, §).,, T maps all (p, ¢, §)% -atoms into uniformly bounded elements of 53.. Thus the
condition (6.1) of Theorem 6.2 is also necessary.

Motivated by Theorem 1 in [25], we introduce the rectangular atoms in the current setting and then derive the
boundedness of sublinear operators from their behavior on rectangular atoms.

—

Definition 6.4 Letw € A, (A4) and ¢, be asin (2.7) and (p, ¢, §),, be an admissible triplet as in Definition
4.2. For R € R, a function ap, is said to be a rectangular (p, q, §)y-atom if
(i) ar is supported on R” = R x RY, where R = zp, + Bf)z)(e(Ri)_l)JruiJr?m, 1=1, 2;
(ii) [pn ar(z1, T2)2§ dry = 0 forall || < s; and almost all z; € R™, and
me ar(x1, zz)zg dxo = 0 for all | 8] < s3 and almost all z; € R™;

(iii) [|al| g, (rn xRm) S [w(R)|Ya—1/p.
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Leti =1, 2. Forany R; € 0 and k € Zi,set Ry = xR, + B’L()i)(z(Ri)—l)+ui+50’i+k'

The following corollary is very useful in the study of boundedness of operators in H? (R™ x R™; A ).

—

Corollary 6.5 Let w € Ay (A), qu as in (2.7) and (p, q1, §)w an admissible triplet. Let T be a bounded
sublinear operator from LI (R™ x R™) to L1 (R™ x R™), where qo € [q1, 00). Let ¢ € [p, 2) be such that
1/q —1/p = 1/q0 — 1/q1. If there exist positive constants C, € such that for all k € Z, and all rectangular

(p, q1, §)w-atoms ap,

/(R e IT(ar) (@) w(z) de < Cmin {b7*, b7}, 6.2)
1,k 2, k

then T uniquely extends to a bounded operator from HE,(R™ x R™; A) 10 L (R™ x R™).

Proof. Let all the notation be as in the proof of Lemma 4.8. To show Corollary 6.5, by Theorem 6.2, we
only need to show that for all (p, q1, §)% -atoms a = ZRem(ﬁ) ar, |Tall Lg,@nxrmy S 1.

Recall that g = b;’l_S‘” b;2_5"2. Foreach R = R; X Ry € m(ﬁ), let ]§1 = ]§1 (R2) being the “longest”
dyadic cube containing [?; such that |(]§1 X Rg) N §~2| > 770|1§1 X R2|. Let

ﬁ/ = {(E ceR” x R™ : Ms(XQ)(«T) > b1_2u1b2_2u2770} .

For any given él X Ry € m(ﬁ’) and él D Ry, let ]?g = ]?g (ﬁl) being the “longest” dyadic cube containing
Ry such that |(1§1 X 1%2) N ﬁ’| > 770|]§1 X }§2|

Let ’yl(R) =M (R, Q) = E(Rl) —E(Rl) and Y2 (Rl X RQ) = Y2 (Rl X Rg, Q/) = E(Rg) —E(Rg) Then by
Lemma 4.9, for any § > 0, we obtain

o P u(R) S w(®) (6.3)
Rem(Q)
and
ST bR (R) S w(€). (6.4)
Rem:1 ()
Set
D* — D%, P* — (1) (2)
R =Fx Ry = (le + BU1<Z<R1>—1)+u1+sa1> x (sz + sz<e<éz)—1>+u2+5az) '

By the argument for (4.40) and the L% (R™ x R™)-boundedness of M (see Proposition 2.10(ii)), we have

U R cQ” and w(Q”) Sw(®). (6.5)
Rem(Q)

From this, 1/¢ — 1/p = 1/qo — 1/¢1 and the size condition of a, together with Holder’s inequality and the
boundedness of T" from L% (R™ x R™) to L% (R™ x R™), we deduce that

{/N |T(a)(w)|qw(x)dx}l/q§{/N |T(a)(x)|q°w(x)dw}l/qow@///)l/q—l/qo

QI QI

S ||a’||L1qvl(RnXRm)w(Q)l/P—l/ql

<1

It remains to prove that [ ¢ |T(a)(z)|?dz < 1. Without loss of generality, we may assume that ¢ < 1.

The proof of the case ¢ € (1, 2) is similar and we omit the details. Since ¢ < 1 and a = ZREm@) ar, by (6.5),
we obtain
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< > [/ ) +/ ) }|T(aR)(x)|qw(x)dx
(R\Rj)xR™  JRmx (R™\Rj)

Rem(Q)
= El —|— E2.

Since ag[w(R)|Y 2 ~1P|ag|| is a rectangular (p, q1, §).-atom, by (6.2), we have

-1

LI (R™ xR™)
_ € R

S TOR00) S ] g 0RO/

From this, 1/q1 — 1/p = 1/qo — 1/¢, Holder’s inequality, the size condition of a and (6.3), it follows that

o/ a 1—q/q1
21 (a0—9) Li(qm
Els Z ”aR”quZ}(R"me) Z [M(R)]QO(M*Q) bl a1
Rem(Q) Rem(Q)
1-q/@m
< [w(Q)]Q(l/‘h—1/P)[w(Q)]Q(1/Q1—1/q0) Z w(R)bgleyl(R)/(ql_q)
REm(SNl)
<1.
Similarly, by (6.4), we obtain E5 < 1. This finishes the proof of Corollary 6.5. O

Appendix

In this appendix, we give the proof of Proposition 3.6 by establishing a more general version, namely, Theorem
A.3 below. Let BB be a Banach space and L°(R"™, B) the set of f € L>°(R™, 1) with compact support. Through
the whole appendix, we use B; and 55 to denote two Banach spaces.

Definition A.1 An operator 7 is called a Calderén-Zygmund operator if 7 is bounded from L"(R™, ;) to
L™(R™, Bg) for certain fixed r € (1, o), and 7 has a distributional £(B1, Bz)-valued kernel K such that for all
feLX(R™ By)and x ¢ supp f,

T(f)(z) = - K(z, y)f(y) dy,

where C is a standard kernel in the following sense: there exist positive constants C' and e such that for all
z, y, z € R" satisfying p(z — y) < b2 p(x — y),

1K@, )L, 8,) < C/plx —y) (A1)
and

€

p(z —y)

ey A

IK(y, ) = K(z, 2)| L8, 82) + IK(2, y) = K(z, 2)l|lLs,,82) < C
Let L1 °°(R™, B) be the set of all 3-measurable functions f on R™ such that

1fllzr @, 5) = supal{z € R™ - [[flls > a}| < oo
[0}

Then by [34, Theorem 1.1], we have the following result.
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Lemma A.2 Let p € (1, 00). Suppose that T is a Calderén-Zygmund operator. Then T is bounded from
LP(R", By) to LP(R™, By) and bounded from L*(R™, By) to L' (R", By)

The following theorem is the main result of this appendix, which is a weighted version of Lemma A.2. This
theorem extends [19, Theorems 7.11 and 7.12] to the weighted anisotropic settings and also has an independent
interest.

Theorem A.3 Suppose that T is Calderén-Zygmund operator. If p € (1, 00) and w € Ap(A), then T
is bounded from LP (R™, By) to L2 (R", By), and if w € Ay(A), then T is bounded from L. (R"™, By) to
LL > (R", By).

The proof of Theorem A.3 follows from the procedure in [19]. Here we present some details for the conve-
nience of readers.

To this end, we first introduce the dyadic maximal function in this setting. For any given B-measurable func-
tion f € L} . (R", B) and z € R", we define the dyadic maximal function by My(f)(z) = supsez Ex(f) (),
where

IAGOEDS <|?12| /Q IIf(y)IIde> e

QEQy

and Q) = {QF : « € I} denotes the set of dyadic cubes as in Lemma 2.3.

In fact, Ex(f) is a discrete analog of an approximation of the identity. The following Proposition A.4 makes
this precise, whose proof is similar to that of [19, Theorem 2.10] and we omit the details.

Proposition A.4 (i) Let p € (1, 00]. The dyadic maximal function My is bounded from L'(R", B) to
LY % (R™) and bounded from LP(R", B) to LP(R").

(i) If f € L} . (R™, B), then limy o0 Ex(f)(z) = || f(2)|5 and || f(z)||p < Ma(f)(x) almost everywhere.

loc
The following proposition provides the Calderén-Zygmund decomposition in our setting with a non-typical
assumption on f instead of the usual f € L!. This adds an extra layer of difficulty to the standard arguments as

in [19, Theorem 2.11].

Proposition A.5 Given a B-measurable function f € L (R", B) for certain p € [1, 00) and w € A,(A),
and a positive number ), then exists a sequence {Q;}; C Q of disjoint dyadic cubes such that

(I)U; Q; = {z € R" : My(f)(z) > A},
(ii) || f(z)||B < A for almost every x & U;Q;;
(iii) A < IQ_lj\ fQj | f(z)||gdx < CX where C > 1 is a constant independent of f and \;

(iv) for any Q € {Q;};, there exists a unique Q € Q such that
~ ~ 1
QcQ 1=t -1 ad o [ 1@l <

Proof. Letp € [1, o), w € A,(A) and f € LE(R"). It is easy to see that f € L} _(R", B). In fact, if

loc
p > 1,byw € A,(A), we have w™/? = w'~?" € A, (A), which implies that w=?"/? ¢ L} _(R™), where
p’ € (1,00) satisfying 1/p’ + 1/p = 1. Then for any k € Z and By, by Holder’s inequality, we have

, 1/p’
/ 1£ @)l do < | £ll5 .5 { / ()] 7/ dx} < oo,
By, B

If p = 1, observing that supz \_Jé’l [ w(@) desupg[w(z)]~! < 1, we have

[ 1r@lsdo < swlu@) ! [ f@)]su() do < .
By By,

By

Moreover, we claim that for almost all y € R™, we have Ex(f)(y) — 0, as k — —o0. To see this, notice that
for almost all y € R™, by Lemma 2.1(i), there exists a unique dyadic cube Q) , € Qy, for each k € Z such that

y e Qk,y‘
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Then for sufficient small k& € Z, by Qo, ; C Q. y, Proposition 2.1(i), Lemma 2.1(iii) and (iv), we have

w(Ql@y) > w(ka,y +ka—u) > |ka—u|1/p > bvk/p.
w(Qo,y) ~ w(zq,, +Bu) "~ |ButP

From this, Holder’s inequality, w € A,(A) and v < 0, it follows that

1/p'
BNW < If e 5T { /Q o dz}

S e @ [w(Qur, )] TP — 0 as k — —oc.

Thus, the claim holds.
For each k € Z, set

k,y

Q. ={z eR": Ex(f)(x) > A, andfor all j < k, E;(f)(z) < A}.
Then we have

{17 cR": Md(f)(.i?) > )\} = UQk
k

Indeed, obviously, we have

Uk c{z e R": Mu(f)(2) > A}
k

On the other hand, for almost all y € R™ such that My(f)(y) > A, since Ex(f)(y) — 0as k — —oo, there
exists a minimal kg € Z such that Ey, (f)(y) > A and for any j < ko, E;(f)(y) < A. Thus, we obtain y € Q.
Moreover, observe that 2 can be covered by disjoint dyadic cubes for each k € Z. In fact, if Q N Q. # 0,
then @ C U by the definition of Ejf. Also notice that {2} are disjoint with each other. By this and
{x e R": My(f)(z) > A} = U, O, we get ().
By the definition of €, and |J, Q. = Uj Q;, we obtain that (ii), (iv) and the first inequality of (iii) hold.

Furthermore, for any Q) € {Q, };, by (iv) and Lemma 2.1(iv), there exists a unique dyadic cube @ D @ such that

Q) = Q) — 1 and

1 |Q| 1
AT C
_|Q| / ||f(:E)||B dx < |Q| | | /N || f(x)Hde < O\,

where C' > 1 is a constant independent of f and A. Thus, the second inequality of (iii) holds. This finishes the
proof of Proposition A.5. O

For any f € L} . (R", B) and E C R™, set fg = ‘—I{;‘ J f(x) dz, and define the sharp maximal function

associated with dilation A by setting, for all z € R",

Mif(z)= sup  sup b /+B 1£(2) = fyema s d=.
Yy k

kE€Z,yeER™ x€y+ By

Then by a similar argument to that used in [19, Proposition 6.4], we have the following result. We omit the
details.

Proposition A.6 Forany f € L} _(R", B) and all x € R™, M f(z) < M(||f||5)(z), and

loc

1/\/lﬁf(:t) < sup sup inf b_k/ If(z) —allgdz < /\/luf(ac)
2 y+DBy

kEZ, yeR" zEy+ By “EB
Based on this, we have the following conclusion.
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Lemma A.7 If po, p € [1, ), po < p, w € Ap(A) and f € L} . (R", B) such that My(f) € L2 (R™),
then there exists a positive constant C, independent of f, such that

| M @ru@de <0 [ M@ ue) d.

R~

The proof of Lemma A.7 needs the following generalized “good-\" inequality, which is an extension of [19,
Lemma 7.10].

Lemma A.8 Let pg € [1, 00) and w € Ay, (A). Then there exists a positive constant Cy such that for all
f e LPo(R™ B),v>0and A >0,

w({z € R": Ma(f)(x) > 2X, MF(f)(2) < 9A}) < Coy/Pw({z € R : Ma(f)(z) > A}).

Proof. Fix A, v > 0. Since f € LPo(R™, B), by Proposition A.5 the set {z € R™ : My(f)(x) > A} can be
written as the union of disjoint dilated cubes. To show Lemma A.8, it suffices to prove that if @) is one of such
cubes, then w(E) < vY/Pw(Q), where E = {x € Q : Ma(f)(z) > 2\, M*(f)(x) < yA}. By Lemma 2.3 and
Proposition 2.5(i), we have

wiB) BB
w(‘rQ +Bv£(Q)—u) ~ |$Q +Bv€(Q)—u|1/p ~ |Q|1/p’

<

where u and v are the same as in Lemma 2.3(iv). Therefore, to finish the proof of Lemma A.8, we only need to
prove |E| < ~|Q|. By Proposition A.5(iv), there exists Q € Q such that £(Q) = £(Q) — 1, Q C Q and

1
5 /Q 17 (@)lls dw < A (A3)

Furthermore, if + € @ and My(f)(x) > 2, then there exist certain kg € Z and Qy, € Qp, such that

Ei, (f)(x) > 2\, namely, m ka lf W) llgdz > 2X, Proposition A.5(iv) further implies that Qx, C Q.
0 °0

Therefore, for such x, we have

1
Malfxa)(®) 2 P (1x@)@) = gy | Fxatllsdy > 22
0 ko
from which and (A.3), it follows that

Ma(f - fQ>XQ><> MalFxa)(e) — Malfgxa)(@
d
Malfx)e) ~ = [ 1 )lsdy

>,

where we used the fact that

Lo

for all measurable sets 2 and integrable functions f on €2; see [31, 65]. Therefore, £ C {17 e R :
Md((f - f@)XQ)(JC) > /\}-
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Moreover, by ¢ (@) = /¢(Q) — 1, Proposition A.4(i) and Lemma 2.1, we have

o e R™: Ma((f = f5)xa) (@) > A}

X / £ @) = fa 5 d
<1 1
X / et e+ A i - Fea By ls (A.5)
Q1 /
N-________ — Jz5 ~ d
A pob(Q)+u 26+ B sa Hf(z) f 0T Bue(@)+u HB T
< 1@l

S5 ;relg/\/l”(f)(z)-

If the set E is empty, there is nothing to prove. Otherwise, there exists certain x € @ such that M¥(f)(z) < YA,
which together with (A.5) further implies that | E| < ~|Q|. This finishes the proof of Lemma A.8. O

Proof of Lemma A.7. For N > 0, let
N
Iy = / pNPrw({z € R™ - My(f)(z) > A}) dA
0
The assumptions that py < p and My(f) € LEo(R™) imply that Iy < co. Then, by Lemma A.8,
N/2
In= 2p/ pNPrw({z € R™ - My(f)(x) > 2)\}) dX
0
N/2
<2 [ p (s € R Maf)(a) > 20, MAP)@) < 9A)
0
+w({z e R : M*(f)(z) > YAB)] dA
2p N’Y/Q
< Co2PyPIy + %/ pNPrw({x € R™ : MF(f)(x) > A}) dX
0

Choose v such that Cy2Py'/? = 1/2. Thus, we obtain

op+1l Nv/2
Iy < " / pNPLw({x € R™ : MP(f)(x) > A}) dX
0

which implies the desired conclusion of the lemma. This finishes the proof of Lemma A.7. O

Lemma A.9 [f T is a Calderén-Zygmund operator as in Definition A.1, then for each s € (1, c0), there
exists a positive constant C such that for all f € L°(R™, B1) and x € R™,

MIT(F)(x) < Cs[M (|| f ) ()],
where M is the Hardy-Littlewood maximal operator.

Proof. Fix s € (1, o). For any given x € R", pick y € R™ and k € Z such that z € y+ By,. By Proposition
A.6, to complete the proof of Lemma A.9, it suffices to find an element a € Bj such that

b_k/ 1T (f)(z) = alls, dz S [M(||f]I,) ()],
y+B

Decompose f as f = fi1 + fo, where fi = fXy4By 0, Now let a = T(f2)(z). By Definition A.1 and
f € Le°(R™, By), we have that a € By and
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—k
b / |, 1T~ als, d-

<ot [ TG @l 5 [T s iz
v+ By Y+ By
=1+1L

By Holder’s inequality and the boundedness of 7 from L°(R", B;) to L°(R", Bs) (see Lemma A.2), we then
have

1/s
1< {b—k /+B 1T, dz}
Yy k

1/s
S {b [ el dz}
Y+ Bri2o

S M1 @),

Moreover,if t—y € By, y—2z € Byanda—y € B,E+26, by (2.1) and (2.2), we obtain p(z—x) < b7 p(z—a)
and p(z — ) > b+, From this, (A.2) and Holder’s inequality, it follows that

me bk / / 1Kz, @) — K@, )|y, 501 £ (@) |15, da dz
y+ By "\ (y+Bgk+t20)

-t oz =)
S ’ /y-‘er /p(;p_a)Zbk+g [p(z _ a)]l.ﬂ,.é Hf(a)”Bl dadz

< b—k/ bkeZ/ b= (+)A+9| £(0) 5. da
Y+ By =0 bh+totitl <p(z—a)<bk+20+i

S e (@5, do

=0 Y+Bri2otjt1
S MIF1IE) )]

Combining the estimates of I and II yields the desired result and thus finishes the proof Lemma A.9. O

Proof of Theorem A.3. We first prove that 7 is bounded from L2 (R", B) to L? (R™, By) when p €
(1, 00) and w € A,(A). By [57, Lemma 8, p. 5], there exists 7 € (1, p) such that w € A,/,.(A). Since
L°(R™, By) is dense in LE (R™, By) (see [34, Remark 2.2]), then we only need to prove the conclusions of
Theorem A.3 by assuming that f € L°(R™, By). Observe that if 7(f) € LP (R™, Bs), then by Proposition
A.4(ii), Lemma A.7, Lemma A.9 and Proposition 2.5(ii), we have

[T @I u@ d < [ MAT() )P () do
R” n
S [ IMHT(U) @) ) de
S [ M) )P () do
< [ 1@l () de

Now we turn to prove 7 (f) € L2 (R™, Bg). Since f € L°(R™, By), we assume that supp f C By, for
certain kg € Z. Write

1T (NTe g ) = {/B +/BC }||T(f)(x)||§;2w(z) de =T+1L
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By [57, p. 7], there exists 5 € (1, oo) such that w satisfies the reverse Holder’s inequality, which implies that
w € LT (R™). This combined with Holder’s inequality and Lemma A.2 yields that T < co.

loc
For z € (Byy4o)t and y € By, we have z — y € B,EO and p(x) < p(x —y) + p(y) < p(xz — y). By this,
f € Le°(R™, By), (A.4) and (A.1), we have

1

IT(H)@)lss < / 17 )l 1K ) 25,50y dy < / — Ly <)
R™ By p(r —y)
Therefore,
ngy | p@) Pw@)ds S S bPw(Byyjin),
j=ko Y Bo+i+1\Bo+; i=ko

By w € A, /,(A) and Proposition 2.5(i), we have w(By4j+1) < bP/*w(By, ), which together with s € (1, o)
implies that IT is finite. Thus, T'(f) € LE(R™, By), which completes the proof of the boundedness of T" from
LP (R™, By) to LP (By).

Finally, we prove that 7 is bounded from L1 (R™, B;) to L1 *°(R", Bs). Fix A > 0 and f € L2 (R", By).
By Proposition A.5, there exists a sequence {Q), }, of disjoint dilated cubes such that the conclusions (i)-(iv) of
Proposition A.5 hold. Then we write f = g + b, where

f(lz), zeR"\U; @,
g(x) = 4
|Q]| Q] f( )dy, er]’

and b(x) =3, b;(z) with

bj(z) = {f(z) - |Q—17|/Q_f(y) dy} XQ; (7).

Thus by Proposition A.5 and (A.4), we obtain

llg(x)|lg, < A for almost all x € R", suppb C UQj and b(x)dx = 0. (A.6)
7 Qj

So the estimate of w({z € R™ : |7 (f)(z)||B, > 2A}) is reduced to those of w({z € R™ : ||7 (g)(z)||5, > A})

and w({zx € R : |7 (b)(z)||B, > A}). Notice that w € A;(A) implies w € A3 (A) and thus, 7 is bounded from
L2 (R™, By) to L2 (R™, By) as already proved above in this proof. Then by (A.6), we have

w({e € R IT(@@)s > W< 55 [ IT@ @Il de

1
S5 [ lo@l w0 do
Rn
1
SYRCIrRrers
To obtain a desired estimate for 7 (g), we still need to show that
[ la@ls,wta)de < [ @), wie) de

Notice that for all z € R™ \ |J; @, we have g(x) = f(z). On each Q;, by (A.4) and w € A;(A), we have

/ (@) 13y w(z) der < / L @), dy () de < / 1£ () l,20(y) dy.

; o, 151 Jo,
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Since {Q;}; are disjoint, we further have

wile B T@)s > A % [ 15000 dy

which completes the estimate for 7 (g).
On the other hand, set QF = xq; + Byi(Q;)+ut20+ Where u, zq, v and £(Q;) are as in Lemma 2.3. Then we
obtain

w({z € R" : |T(b)(2)]|, > A}) < w(U%) +w<{x ER”\UQ 17(0) (@)l 5, > /\}>

Since w € A; (A), by Proposition 2.5, Lemma 2.3, Proposition A.6(iv) and the definition of .4; (A4), we have

Q; Z|Q] o NAZ/ 175, w(w) dy < 51 e 50
j

Moreover, from the fact that b; has zero average on (), and (A.4), it follows that

w( SEAVERCCCES
<

— T(bj)(x)| B, w(x)dx
_A;/”\Uj%n (53) (@), ()

P
AZ "U, @
AZ/ / \U, Q2 1Kz, y) = K2, 2,)l| L1, 82) w(z) dz [|b; (y)l] 5, dy-

(A7)

/ K (2, y) — K(z, zq,)lb; () dy| w(z) dz

J

| /\

Observe that x — zg, € BEE(Qj)+u+2a and y — zq; € Byy(q;)+u imply that ply —xq,) < b3 p(a — zq,)-
Then by (A.2), for all y € Q;, we have

Lo K ) = Ko 0, s, ) wla) do
R7\U ., Q%

s[o R
R™\U, Q3 p(x — sz)

> 1

< E —ke

~ b prl(Qj)+ut20+k+1 ’LU(.T) dx
k=0 BUZ(QJ)+u+2U+k+1

S M(w)(y).

From this, w € A;(A),

[ s v s = [ s vy < [ (15wls, + o) wimdy

J J

and (A.7), it follows that

o e RNUQGITO@Ne > A0 | £33 [ Il M)y <
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A

%Z [, 5@l + lowls,) wiw) o

A

%Z [, 1@, wiay

5 L 1wl v

N

This finishes the proof of Theorem A.3. O

Acknowledgements Marcin Bownik was partially supported by the NSF grant DMS-0653881 and Dachun Yang was sup-
ported by the National Natural Science Foundation (Grant No. 10871025) of China.

References

(1]

(2]
(3]

(4]
(5]
(6]
(7]

(8]
(9]

(10]
(11]
[12]
(13]
(14]
[15]

(16]
(17]

(18]
(19]

(20]
(21]

(22]
(23]
(24]

[25]

K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia
Math. 69, 19-31 (1980/81).

T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18, 588-594 (1942).

M. Bownik, Anisotropic Hardy Spaces and Wavelets, Memoirs of the American Mathematical Society Vol. 164 (Amer.
Math. Soc., Providence, RI, 2003).

M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc. 133, 3535—
3542 (2005).

M. Bownik and K.-P. Ho, Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces, Trans. Amer.
Math. Soc. 358, 1469-1510 (2006).

M. Bownik, B. Li, D. Yang, and Y. Zhou, Weighted anisotropic Hardy spaces and their applications in boundedness of
sublinear operators, Indiana Univ. Math. J. §7, 3065-3100 (2008).

C. Cabrelli, M. T. Lacey, U. Molter, and J. Pipher, Variations on the theme of Journé’s lemma, Houston J. Math. 32,
833-861 (2006).

A.-P. Calderén, An atomic decomposition of distributions in parabolic H? spaces, Adv. Math. 25, 216-225 (1977).
A.-P. Calderén and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. Math. 16, 1-64
(1975).

A.-P. Calderén and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Adv. Math. 24, 101—
171 (1977).

D.-C. Chang, D. Yang, and Y. Zhou, Boundedness of sublinear operators on product Hardy spaces and its application,
J. Math. Soc. Japan 62, 321-353 (2010).

S.-Y. A. Chang and R. Fefferman, A continuous version of duality of H' with BM O on the bidisc, Ann. of Math. (2)
112, 179-201 (1980).

S.-Y. A. Chang and R. Fefferman, The Calderén-Zygmund decomposition on product domains, Amer. J. Math. 104,
455468 (1982).

S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H”-theory on product domains,
Bull. Amer. Math. Soc. (N.S.) 12, 1-43 (1985).

M. Christ, A T'(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61, 601-628
(1990).

R. R. Coifman, A real variable characterization of H?, Studia Math. 51, 269-274 (1974).

R. R. Coifman, P.-L. Lions, Y. Meyer, and P. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures
Appl. (9) 72, 247-286 (1993).

R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogenes, Lecture Notes
in Mathematics Vol. 242 (Springer, Berlin, 1971).

J. Duoandikoetxea, Fourier Analysis (American Mathematical Society, Providence, R.1., 2001).

E. B. Fabes and N. M. Riviere, Singular intervals with mixed homogeneity, Studia Math. 27, 19-38 (1966).

E. B. Fabes and N. M. Riviere, Symbolic calculus of kernels with mixed homogeneity, in: Singular Integrals, edited by
A. P. Caldern, Proceedings of Symposia in Pure Mathematics Vol. 10 (Amer. Math. Soc., Providence, R.I., 1967) pp.
106-127.

C. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129, 137-193 (1972).

R. Fefferman, Singular integrals on product H” spaces, Rev. Mat. Iberoamericana 1, 25-31 (1985).

R. Fefferman, Calderén-Zygmund theory for product domains: H? spaces, Proc. Nat. Acad. Sci. U.S.A. 83, 840-843
(1986).

R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126, 109-130 (1987).

www.mn-journal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



442

Bownik, Baode Li, Dachun Yang, and Yuan Zhou: Weighted anisotropic product Hardy spaces

[26]
[27]
(28]
(29]
(30]
(31]
(32]
(33]
(34]
[35]
(36]
(37]
(38]

(39]
(40]

(41]
(42]

[43]
[44]
[45]
[46]
(47]
(48]

[49]
(50]

[51]
(52]

[53]
[54]

[55]
[56]

[57]
(58]

[59]
(60]
[61]
[62]
[63]

[64]

[65]
[66]

R. Fefferman, A, weights and singular integrals, Amer. J. Math. 110, 975-987 (1988).

R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45, 117-143 (1982).

G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Group, Mathematical Notes Vol. 28 (Princeton University
Press, Princeton, N.J., 1982).

M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional
Conference Series in Mathematics Vol. 79 (Amer. Math. Soc., Providence, R. 1., 1991).

J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics (North-Holland, Amster-
dam, 1985).

L. Grafakos, Classical Fourier Analysis, Second Edition, Graduate Texts in Mathematics Vol. 249 (Springer, New York,
2008).

L. Grafakos, Modern Fourier Analysis, Second Edition, Graduate Texts in Mathematics Vol. 250 (Springer, New York,
2008).

L. Grafakos, L. Liu, and D. Yang, Maximal function characterizations of Hardy spaces on RD-spaces and their applica-
tions, Sci. China Ser. A 51, 2253-2284 (2008).

L. Grafakos, L. Liu, and D. Yang, Vector-valued singular integular integrals and maximal functions on spaces of homo-
geneous type, Math. Scand. 104, 296-310 (2009).

R. F. Gundy and E. M. Stein, H? theory for the poly-disc, Proc. Nat. Acad. Sci. 76, 1026-1029 (1979).

R. Johnson and C. J. Neugebauer, Homeomorphisms preserving A,, Rev. Math. Iberoamericana 3, 249-273 (1987).
J.-L. Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc. 96, 593-598 (1986).

D. Krug, A weighted version of the atomic decomposition for H? (bi-halfspace), Indiana Univ. Math. J. 37, 277-300
(1988).

B. Li, M. Bownik, D. Yang, and Y. Zhou, Anisotropic singular integrals in product spaces, arXiv: 0903.4720.

S. Meda, P. Sjogren, and M. Vallarino, On the H L_L! boundedness of operators, Proc. Amer. Math. Soc. 136, 2921-2931
(2008).

Y. Meyer and R. R. Coifman, Wavelets. Calderén-Zygmund and Multilinear Operators (Cambridge University Press,
Cambridge, 1997).

Y. Meyer, M. H. Taibleson, and G. Weiss, Some functional analytic properties of the spaces B, generated by blocks,
Indiana Univ. Math. J. 34, 493-515 (1985).

S. Miiller, Hardy space methods for nonlinear partial differential equations, Tatra Mt. Math. Publ. 4, 159-168 (1994).
A. Nagel and E. M. Stein, The J5-complex on decoupled boundaries in C™, Ann. of Math. (2) 164, 649-713 (2006).

J. Pipher, Journé’s covering Lemma and its extension to higher dimensions, Duke Math. J. 53, 683-690 (1986).

F. Ricci and J. Verdera, Duality in spaces of finite linear combinations of atoms, Trans. Amer. Math. Soc., to appear.

N. M. Riviere, Singular integrals and multiplier operators, Ark. Mat. 9, 243-278 (1971).

S. Rolewicz, Metric Linear Spaces, Second edition (PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing
Co., Dordrecht, 1984).

S. Sato, Lusin functions on product spaces, Tohoku Math. J. (2) 39, 41-59 (1987).

S. Sato, An atomic decomposition for parabolic H? spaces on product domains, Proc. Amer. Math. Soc. 104, 185-192
(1988).

S. Sato, Weighted inequalities on product domains, Studia Math. 92, 59-72 (1989).

H.-J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces (John Wiley & Sons Ltd., Chichester,
1987).

A. Seeger and T. Tao, Sharp Lorentz space estimates for rough operators, Math. Ann. 320, 381415 (2001).

S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Miiller, Comm. Partial Differential
Equations 19, 277-319 (1994).

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Univ.
Press, Princeton, N.J., 1993).

E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H”-spaces, Acta
Math. 103, 25-62 (1960).

J.-O. Stromberg and A. Torchinsky, Weighted Hardy Spaces (Springer-Verlag, Berlin, 1989).

M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces. Representation theorems for
Hardy spaces, Astérisque 77, 67-149 (1980).

H. Triebel, Theory of Function Spaces (Birkhéuser Verlag, Basel, 1983).

H. Triebel, Theory of Function Spaces II (Birkhduser Verlag, Basel, 1992).

H. Triebel, Theory of Function Spaces III (Birkhéduser Verlag, Basel, 2006).

K. Yabuta, A remark on the (H 17 Ll) boundedness, Bull. Fac. Sci. Ibaraki Univ. Ser. A 25, 19-21 (1993).

D. Yang and Y. Zhou, Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms, J. Math. Anal.
Appl. 339, 622-635 (2008).

D. Yang and Y. Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29,
207-218 (2009).

K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1995).

X. Zhu, Atomic decomposition for weighted H” spaces on product domains, Sci. China Ser. A 35, 158-168 (1992).

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Www.mn-joumal.com



