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Let A1 and A2 be expansive dilations, respectively, on Rn and Rm. Let !A ≡ (A1, A2) and Ap( !A ) be the
class of product Muckenhoupt weights on Rn × Rm for p ∈ (1, ∞]. When p ∈ (1, ∞) and w ∈ Ap( !A ),
the authors characterize the weighted Lebesgue space Lp

w(Rn × Rm) via the anisotropic Lusin-area function
associated with !A. When p ∈ (0, 1], w ∈ A∞( !A ), the authors introduce the weighted anisotropic product
Hardy space Hp

w(Rn×Rm; !A ) via the anisotropic Lusin-area function and establish its atomic decomposition.
Moreover, the authors prove that finite atomic norm on a dense subspace of Hp

w(Rn×Rm; !A ) is equivalent with
the standard infinite atomic decomposition norm. As an application, the authors prove that if T is a sublinear
operator and maps all atoms into uniformly bounded elements of a quasi-Banach space B, then T uniquely
extends to a bounded sublinear operator from Hp

w(Rn × Rm; !A ) to B. The results of this paper improve the
existing results for weighted product Hardy spaces and are new even in the unweighted anisotropic setting.
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1 Introduction

The theory of Hardy spaces plays an important role in various fields of analysis and partial differential equations;
see, for example, [17, 22, 32, 43, 54–56]. One of the most important applications of Hardy spaces is that they are
good substitutes of Lebesgue spaces when p ∈ (0, 1]. For example, when p ∈ (0, 1], it is well-known that Riesz
transforms are not bounded on Lp(Rn), however, they are bounded on Hardy spaces Hp(Rn). There were several
efforts of extending classical function spaces and related operators arising in harmonic analysis from Euclidean
spaces to other domains and anisotropic settings; see [3, 9, 10, 28, 52, 59–61]. Fabes and Rivière [20, 21, 47]
initiated the study of singular integrals with mixed homogeneity, and Calderón and Torchinsky [8–10] the study
of Hardy spaces associated with anisotropic dilations. Recently, a theory of anisotropic Hardy spaces and their
weighted theory were developed in [3,6]. Another direction is the development of the theory of Hardy spaces on
product domains initiated by Gundy and Stein [35]. In particular, Chang and Fefferman [12, 13] characterized
the classical product Hardy spaces via atoms. Fefferman [26], Krug [38] and Zhu [66] established the weighted
theory of the classical product Hardy spaces, and Sato [49, 50] established parabolic Hardy spaces on product
domains. It was also proved that the classical product Hardy spaces are good substitutes of product Lebesgue
spaces when p ∈ (0, 1]; see, for example, [23, 25, 26, 50, 53]. Recently, the boundedness of singular integrals on
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product Lebesgue spaces was further proved to be useful in solving problems from the several complex variables
by Nagel and Stein [44].

On the other hand, to establish the boundedness of operators on Hardy spaces, one usually appeals to the
atomic decomposition characterization, see [8, 14, 16, 25, 28, 41, 58], which means that a function or distribution
in Hardy spaces can be represented as a linear combination of functions of an elementary form, namely, atoms.
Then, the boundedness of operators on Hardy spaces can be deduced from their behavior on atoms or molecules
in principle. However, caution needs to be taken due to an example constructed in [4, Theorem 2]. There
exists a linear functional defined on a dense subspace of H1(Rn), which maps all (1, ∞, 0)-atoms into bounded
scalars, but yet it does not extend to a bounded linear functional on the whole H1(Rn). This implies that the
uniform boundedness of a linear operator T on atoms does not automatically guarantee the boundedness of T
from H1(Rn) to a Banach space B.

Recently, there was a flurry of activity addressing the problem of boundedness of operators on Hp(Rn) via
atomic decompositions in addition to older contributions; see [30, 41, 42, 58, 62] and the references therein. Let
p ∈ (0, 1], q ∈ [1, ∞] ∩ (p, ∞] and s be an integer no less than $n(1/p − 1)&, where and in what follows, $·&
denotes the floor function. Using the Lusin-area function characterization of classical Hardy spaces, it was proved
in [64] that if a sublinear operator T maps all smooth (p, 2, s)-atoms into uniformly bounded elements of a quasi-
Banach space B, then T uniquely extends to a bounded sublinear operator from Hp(Rn) to B. This result was
generalized to the classical product Hardy spaces in [11]. At the same time, Meda, Sjögren, and Vallarino [40]
independently obtained a related result using the grand maximal function characterization of Hp(Rn). Precisely,
they proved that the norm of Hp(Rn) can be reached on some dense subspaces of Hp(Rn) via finite combinations
of (p, q, s)-atoms when q < ∞ and continuous (p, ∞, s)-atoms. Their result immediately implies that if T is
a linear operator and maps all (p, q, s)-atoms with q < ∞ or all continuous (p, ∞, s)-atoms into uniformly
bounded elements of a Banach space B, then T uniquely extends to a bounded linear operator from Hp(Rn) to
B. This result was further generalized to the weighted anisotropic Hardy spaces in [6] and the Hardy spaces on
spaces of homogeneous type enjoying the reverse doubling property in [33] when p ≤ 1 and near to 1. Very
recently, Ricci and Verdera [46] showed that if p ∈ (0, 1), then the uniform boundedness of a linear operator T
on all (p, ∞, s)-atoms does guarantee the boundedness of T from Hp(Rn) to a Banach space B.

In this paper, we always let A1 and A2 be expansive dilations, respectively, on Rn and Rm. Let !A ≡
(A1, A2) and Ap( !A ) be the class of product Muckenhoupt weights on Rn × Rm for p ∈ (1, ∞]. When
p ∈ (1, ∞) and w ∈ Ap( !A ), we characterize the anisotropic weighted Lebesgue space Lp

w(Rn × Rm) via
the anisotropic Lusin-area function associated with expansive dilations. For p ∈ (0, 1] and w ∈ A∞( !A ) and ad-
missible triplet (p, q, !s )w (see Definition 4.2 below), we introduce the weighted anisotropic product Hardy space
Hp

w(Rn × Rm; !A ), the atomic one Hp, q, !s
w (Rn × Rm; !A ) and the finite atomic one Hp, q, !s

w, fin (Rn × Rm; !A ), re-
spectively, via the anisotropic Lusin-area function, (p, q, !s )w-atoms and finite linear combinations of (p, q, !s )∗w-
atoms. We then prove that Hp

w(Rn × Rm; !A ) coincides with Hp, q, !s
w (Rn × Rm; !A ), that Hp, q, !s

w,fin (Rn × Rm; !A )
is dense in Hp

w(Rn × Rm; !A ) and that both the quasi-norms ‖ · ‖Hp
w(Rn×Rm; !A ) and ‖ · ‖Hp, q, !s

w, fin (Rn×Rm; !A ) with

!s being sufficiently large are equivalent on Hp, q, !s
w,fin (Rn × Rm; !A ). As an application, we prove that if T is a

sublinear operator and maps all (p, q, !s )∗w-atoms into uniformly bounded elements of a quasi-Banach space B,
then T uniquely extends to a bounded sublinear operator from Hp

w(Rn × Rm; !A ) to B.
We point out that the setting in this paper includes the classical isotropic product Hardy space theory of Gundy

and Stein [35] and Chang and Fefferman [12, 13], the parabolic product Hardy space theory of Sato [49, 50] and
the weighted product Hardy space theory of Fefferman [26], Krug [38] and Zhu [66]. Most results of this paper
are new even in the unweighted setting. They also improve the corresponding results on the isotropic weighted
product Hardy spaces in [26], [38] and [66]. The paper is organized as follows.

In Section 2, we recall some notation and definitions concerning expansive dilations, Muckenhoupt weights
and maximal functions, whose basic properties are also presented. Moreover, we establish discrete Calderón
reproducing formulae (see Proposition 2.16 below) associated to the product expansive dilations for distributions
vanishing weakly at infinity, which were introduced by Folland and Stein [28] on homogeneous groups. These
Calderón reproducing formulae are crucial tools for this paper. Another key tool used in this paper are the dyadic
cubes of Christ [15], which substitute the role played by dilated balls and cubes in [3–5], and are used in deriving
the atomic decomposition of product Hardy spaces via the Lusin-area function. Here we point out that a subtle
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relation between the dyadic cubes of Christ [15] and dilated balls associated to expansive dilations is established
in Lemma 2.3(iv) according to the levels of dyadic cubes. This relation and the concept of the level of dyadic
cubes play an important role in the whole paper, especially in the choice of dyadic rectangles of Rn × Rm; see
(4.1) and (5.4) below.

In Section 3, for p ∈ (1, ∞) and w ∈ Ap( !A ) (resp. w ∈ Ap(A)), with the aid of the theory of one-
parameter vector-valued Calderón-Zygmund operators, we characterize the anisotropic weighted Lebesgue space
Lp

w(Rn × Rm) (resp. Lp
w(Rn)) via the anisotropic Lusin-area function associated with expansive dilations !A

(resp. A); see Theorem 3.2 and Theorem 3.4 below.

In Section 4, let p ∈ (0, 1], w ∈ A∞( !A ) and (p, q, !s )w be admissible. We introduce the Hardy space
Hp

w(Rn × Rm; !A ) and the atomic one Hp, q, !s
w (Rn × Rm; !A ), respectively, via the Lusin-area function and

(p, q, !s )w-atoms. Using some ideas from [12, 13, 26, 66] and the Calderón reproducing formulae established
in Proposition 2.16, we prove that Hp

w(Rn × Rm; !A ) coincides with Hp, q, !s
w (Rn × Rm; !A ); see Theorem 4.5

below. We point out that since we are working on weighted anisotropic product Hardy spaces, when we de-
compose a distribution into a sum of atoms, the dual method for estimating norms of atoms in [12] does not
work any more in the current setting. Instead, we invoke a method from Fefferman [26] with more subtle esti-
mates involving rescaling techniques specific to the anisotropic setting. We also notice that a variant of Journé’s
covering lemma for expansive dilations established in Lemma 4.9 is crucial to the proof of the imbedding of
Hp, q, !s

w (Rn × Rm; !A ) into Hp
w(Rn × Rm; !A ). In fact, Lemma 4.9 plays an important role in obtaining the

boundedness of operators on Hp
w(Rn × Rm; !A ). In particular, using Lemma 4.9, we obtain the boundedness of

the anisotropic grand maximal function from Hp
w(Rn × Rm; !A ) to Lp

w(Rn × Rm); see Proposition 4.11 below.

In Section 5, we introduce Hp, q, !s
w,fin (Rn × Rm; !A) to be the set of all finite combinations of (p, q, !s )∗w-atoms.

Via the Lusin-area function together with the Calderón reproducing formula and by using ideas from [40], we
prove that Hp, q, !s

w,fin (Rn × Rm; !A) is dense in Hp
w(Rn × Rm; !A ) and that the quasi-norm ‖ · ‖Hp

w(Rn×Rm; !A ) is

equivalent to ‖ · ‖Hp, q, !s
w, fin (Rn×Rm; !A ) on Hp, q, !s

w, fin (Rn × Rm; !A ) with !s being sufficiently large; see Theorem 5.2

below. In fact, by a careful choice of dyadic rectangles in Rn × Rm (see (5.4) below), we first construct some
finite (p, q, !s )∗w-atoms and then by a subtle size estimate on the complement of the union of chosen rectangles,
we prove that the difference between the original function and the linear combination of these finite (p, q, !s )∗w-
atoms is still a (p, q, !s )∗w-atom multiplied by a small constant. We should point out that while the main idea
comes from [40], Meda, Sjögren, and Vallarino used the grand maximal function characterization of the classical
Hardy space Hp(Rn) to obtain the desired estimates instead. See also [6] for the weighted anisotropic Hardy
space Hp

w(Rn; A). It is not clear if their approach [40] also works here, since so far, it is not known whether
Hp

w(Rn × Rm; !A ) can be characterized via the grand maximal function. Moreover, comparing with the non-
product case (see [6,33,40]), our results require additional assumptions (5.1) and (5.2) on vanishing moments of
atoms.

In Section 6, we present applications of Theorem 5.2. If T is a sublinear operator defined on
Hp, q, !s

w, fin (Rn ×Rm; !A ) and maps all (p, q, !s )∗w-atoms into uniformly bounded elements of a quasi-Banach space

B, then T uniquely extends to a bounded sublinear operator from Hp
w(Rn × Rm; !A ) to B; see Theorem 6.2

bellow. This result is an extension of [11, Theorem 1.1]. Using Theorem 6.2 and Journé’s covering lemma, we
establish a criteria on the boundedness of certain sublinear operators via their behavior on rectangular atoms,
which extends and complements a result of Fefferman [25, Theorem 1].

We mention that there exist many predictable applications of our results in the study of boundedness of sub-
linear operators on the weighted product Hardy spaces. For example, in [39], we establish the boundedness on
these weighted product Hardy spaces of singular integrals appearing in the work of Nagel and Stein [44].

We finally make some conventions. Throughout this paper, we always use C to denote a positive constant
which is independent of the main parameters involved but whose value may differ from line to line. Constants
with subscripts do not change through the whole paper. Denote by N the set {1, 2, . . .} and by Z+ the set N∪{0}.
We use f ! g or g " f to denote f ≤ Cg, and if f ! g ! f , we then write f ∼ g. Denote by Mn(R) the set of
all real n× n matrices.
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2 Preliminaries

We begin with the following notation and properties concerning expansive dilations.

Definition 2.1 A ∈ Mn(R) is said to be an expansive dilation, shortly a dilation, if minλ∈σ(A) |λ| > 1, where
σ(A) is the set of all eigenvalues of A.

If A is diagonalizable over C, we take λ− ≡ min{|λ|, λ ∈ σ(A)} and λ+ ≡ max{|λ|, λ ∈ σ(A)}.
Otherwise, let λ− and λ+ be two positive numbers such that

1 < λ− < min{|λ|, λ ∈ σ(A)} ≤ max{|λ|, λ ∈ σ(A)} < λ+.

Throughout the whole paper, for a fixed dilation A, we always let b ≡ | detA|.
It was proved in [3, Lemma 2.2] that for a given dilation A, there exist an open and symmetric convex ellipsoid

∆ and r ∈ (1, ∞) such that ∆ ⊂ r∆ ⊂ A∆, and one can additionally assume that |∆| = 1, where |∆| denotes
the n-dimensional Lebesgue measure of the set ∆. Throughout the whole paper, we set Bk ≡ Ak∆ for k ∈ Z
and let σ be the minimum integer such that 2B0 ⊂ AσB0. Then Bk is open, Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk.
Obviously, σ ≥ 1. For any subset E of Rn, let E! ≡ Rn \ E. Then it is easy to prove (see [3, p. 8]) that for all
k, $ ∈ Z, we have

Bk + B$ ⊂ Bmax(k, $)+σ, (2.1)

Bk + (Bk+σ)! ⊂ (Bk)!, (2.2)

where E + F denotes the algebraic sums {x + y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn (see [3, p. 8]).
Recall that the homogeneous quasi-norm associated with A was introduced in [3, Definition 2.3] as follows.

Definition 2.2 A homogeneous quasi-norm associated with an expansive dilation A is a measurable mapping
ρ : Rn → [0,∞) satisfying that

(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(Ax) = bρ(x) for all x ∈ Rn;

(iii) ρ(x + y) ≤ H [ρ(x) + ρ(y)] for all x, y ∈ Rn, where H is a constant no less than 1.

In the standard dyadic case A = 2In×n, ρ(x) = |x|n is an example of homogeneous quasi-norms associated
with A, where and in what follows, In×n always denotes the n× n unit matrix and | · | is the Euclidean norm in
Rn.

Define the step homogeneous quasi-norm ρ associated with A and ∆ by setting, for all x ∈ Rn, ρ(x) = bk

if x ∈ Bk+1 \ Bk or else 0 if x = 0. It was proved that all homogeneous quasi-norms associated with a given
dilation A are equivalent (see [3, Lemma 2.4]). Therefore, for a given expansive dilation A, in what follows, for
convenience, we always use the step homogeneous quasi-norm ρ.

For the step homogeneous quasi-norm ρ, from (2.1) and (2.2), it follows that for all x, y ∈ Rn, ρ(x + y) ≤
bσ max {ρ(x), ρ(y)} ≤ bσ[ρ(x) + ρ(y)]; see [3, p. 8].

The following inequalities concerning A, ρ and the Euclidean norm | · | established in [3, Section 2] are used
in the whole paper: There exists a positive constant C such that

C−1[ρ(x)]ζ− ≤ |x| ≤ C[ρ(x)]ζ+ for all ρ(x) ≥ 1, and (2.3)

C−1[ρ(x)]ζ+ ≤ |x| ≤ C[ρ(x)]ζ− for all ρ(x) ≤ 1, (2.4)

where and in what follows ζ+ ≡ ln(λ+)/ ln b and ζ− ≡ ln(λ−)/ ln b, and that

C−1bjζ− |x| ≤ |Ajx| ≤ Cbjζ+ |x| for all j ≥ 0, and (2.5)

C−1bjζ+ |x| ≤ |Ajx| ≤ Cbjζ− |x| for all j ≤ 0. (2.6)

Moreover, (Rn, ρ, dx) is a space of homogeneous type in the sense of Coifman and Weiss [18], where dx is
the n-dimensional Lebesgue measure. On such homogeneous spaces, Christ [15] provided an analogue of the
grid of Euclidean dyadic cubes as follows.
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Lemma 2.3 Let A be a dilation. There exists a collection Q ≡ {Qk
α ⊂ Rn : k ∈ Z, α ∈ Ik} of open subsets,

where Ik is certain index set, such that
(i)
∣∣Rn \ ∪αQk

α

∣∣ = 0 for each fixed k and Qk
α ∩Qk

β = ∅ if α 1= β;
(ii) for any α, β, k, $ with $ ≥ k, either Qk

α ∩Q$β = ∅ or Q$α ⊂ Qk
β;

(iii) for each ($, β) and each k < $ there exists a unique α such that Q$β ⊂ Qk
α;

(iv) there exist certain negative integer v and positive integer u such that for all Qk
α with k ∈ Z and α ∈ Ik ,

there exists xQk
α
∈ Qk

α satisfying that for any x ∈ Qk
α, xQk

α
+ Bvk−u ⊂ Qk

α ⊂ x + Bvk+u.

In what follows, for convenience, we call k the level of the dyadic cube Qk
α with k ∈ Z and α ∈ Ik and denote

it by $
(
Qk
α

)
. Lemma 2.3 can be proved by a slight modification of the proof of [15, Theorem 11]. In fact, we only

need to choose δ in the proof of [15, Theorem 11] to be bv with v being negative integer. We omit the details.
From now on, we call

{
Qk
α

}
k∈Z, α∈Ik

in Lemma 2.3 dyadic cubes.
For any locally integrable function f , the Hardy-Littlewood maximal function M(f) of f is defined by

M(f)(x) ≡ sup
k∈Z

sup
x∈y+Bk

1
|Bk|

∫

y+Bk

|f(z)| dz, x ∈ Rn.

It was proved in [3, Theorem 3.6] that M is bounded on Lp(Rn) with p ∈ (1, ∞] and bounded from L1(Rn) to
L1,∞(Rn).

We now recall the weight class of Muckenhoupt associated with A introduced in [5].

Definition 2.4 Let p ∈ [1, ∞), A a dilation and w a nonnegative measurable function on Rn. The function w
is said to belong to the weight class of Muckenhoupt Ap(A) ≡ Ap(Rn; A), if there exists a positive constant C
such that when p > 1

sup
x∈Rn

sup
k∈Z

{
1

|Bk|

∫

x+Bk

w(y) dy

}{
1

|Bk|

∫

x+Bk

[w(y)]−1/(p−1) dy

}p−1

≤ C,

and when p = 1

sup
x∈Rn

sup
k∈Z

{
1

|Bk|

∫

x+Bk

w(y) dy

}{
esssup
y∈x+Bk

[w(y)]−1

}
≤ C;

and, the minimal constant C as above is denoted by Cp, A, n(w).
Define A∞(A) ≡

⋃
1≤p<∞ Ap(A).

It is easy to see that if 1 ≤ p ≤ q ≤ ∞, then Ap(A) ⊂ Aq(A).
In what follows, for any nonnegative local integrable function w and any Lebesgue measurable set E, let

w(E) ≡
∫

E w(x) dx. For p ∈ (0, ∞), denote by Lp
w(Rn) the set of all measurable functions f such that

‖f‖Lp
w(Rn) ≡

{∫

Rn

|f(x)|pw(x) dx

}1/p

< ∞,

and L∞
w (Rn) ≡ L∞(Rn). The space L1,∞

w (Rn) denotes the set of all measurable functions f such that

‖f‖L1,∞
w (Rn) ≡ sup

λ>0
λw({x ∈ Rn : |f(x)| > λ}) < ∞.

Moreover, we have the following conclusions.

Proposition 2.5 (i) If p ∈ [1, ∞) and w ∈ Ap(A), then there exists a positive constant C such that for all
x ∈ Rn and k, m ∈ Z with k ≤ m,

C−1b(m−k)/p ≤ w(x + Bm)
w(x + Bk)

≤ Cb(m−k)p;

(ii) If p ∈ (1, ∞), then the Hardy-Littlewood maximal operator M is bounded on Lp
w(Rn) if and only if

w ∈ Ap(A); if p = 1, then M is bounded from L1
w(Rn) to L1,∞

w (Rn) if and only if w ∈ A1(A).
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Proposition 2.5(i) is just [6, Proposition 2.1(i)]. The proof of Proposition 2.5(ii) is also standard; see [30,32,57]
for more details.

Let S(Rn) be the space of Schwartz functions on Rn as in [3, p. 11], namely, the space of all smooth functions
ϕ satisfying that for all α ∈ (Z+)n and m ∈ Z+, ‖ϕ‖α, m ≡ supx∈Rn [ρ(x)]m|∂αϕ(x)| < ∞, where and in
what follows, α = (α1, . . . , αn) and ∂α = ( ∂

∂x1
)α1 . . . ( ∂

∂xn
)αn . It is easy to see that S(Rn) forms a locally

convex complete metric space endowed with the seminorms {‖ · ‖α, m}α∈(Z+)n, m∈Z+ . From (2.3) and (2.4), it
follows that S(Rn) coincides with the classical space of Schwartz functions; see [3, p. 11]. Moreover, we denote
by Ss(Rn) the set of all ψ ∈ S(Rn) satisfying that

∫
Rn ψ(x)xγ dx = 0 for all γ ∈ (Z+)n with |γ| ≤ s. Let

S∞(Rn) =
⋂

s∈N Ss(Rn).
The following lemma is a slight improvement of [6, Lemma 2.2]. We omit the details.
Lemma 2.6 Let p ∈ [1, ∞] and w ∈ Ap(A). Then
(i) if 1/p + 1/p′ = 1, then S(Rn) ⊂ Lp′

w−1/(p−1)(Rn);
(ii) Lp

w(Rn) ⊂ S′(Rn) and the inclusion is continuous.

Lemma 2.7 M(χBk)(x) ∼ bk

bk+ρ(x) for all k ∈ Z and x ∈ Rn.

P r o o f. Let σ be as in (2.1). If x ∈ Bk+σ , then

M(χBk)(x) ≥ |Bk|
|Bk+σ |

" 1 " M(χBk)(x),

which together with ρ(x) ! bk yields the desired estimate in this case.
Assume now that x 1∈ Bk+σ . Then ρ(x) " bk. For any y + B$ such that x ∈ y + B$ and (y + B$) ∩Bk 1= ∅,

assume that z0 ∈ (y +B$)∩Bk . By (2.1), we have x ∈ z0 +(y− z0)+B$ ⊂ Bk +B$+B$ ⊂ Bmax($+σ, k)+σ.
From this and x 1∈ Bk+σ , it follows that $ + σ > k and further x ∈ B$+2σ, which implies that ρ(x) ! b$.
Moreover, by the definition of step homogeneous quasi-norm ρ, there exists s ∈ Z such that x ∈ Bs \Bs−1, thus
we obtain Bs ⊂ B$+2σ and ρ(x) = |Bs|. From this, ρ(x) ! b$ and Bk ⊂ Bs, it follows that

M(χBk)(x) = sup
y∈Rn

#+σ>k

sup
x∈y+B#

b−$
∫

y+B#

χBk(z) dz ! |Bk|
ρ(x)

∼ |Bk|
|Bs|

! M(χBk)(x),

which together with ρ(x) " bk gives the desired estimate. This finishes the proof of the Lemma 2.7.

Let m, n ∈ N. In what follows, for convenience, we often let n1 ≡ n and n2 ≡ m. For i = 1, 2, let
Ai ∈ Mni(R) be a dilation and bi, B(i)

ki
, ρi, ui and vi associated with Ai as above.

For any locally integrable function f on Rn × Rm, the strong maximal function Ms(f) is defined by setting,
for all x ∈ Rn × Rm,

Ms(f)(x) ≡ sup
k1, k2∈Z

sup
x∈y+B(1)

k1
×B(2)

k2

1
bk1
1 bk2

2

∫

y+B(1)
k1

×B(2)
k2

|f(z)| dz.

Obviously, Ms(f)(x) ≤ M(1)[M(2)(f)](x) for all x ∈ Rn × Rm and Ms is bounded on Lp(Rn × Rm) for
p ∈ (1, ∞], where M(i) denotes the Hardy-Littlewood maximal operator on Rni .

Remark 2.8 By a slight modification of the proof of Lemma 2.7, we also obtain that for all k1, k2 ∈ Z and

x ∈ Rn1 × Rn2 , Ms

(
χ

B(1)
k1

×B(2)
k2

)
(x) ∼

∏2
i=1

b
ki
i

b
ki
i +ρi(xi)

. We omit the details here.

Now we introduce the weight class of Muckenhoupt on Rn × Rm associated with A1 and A2, which coincides
with the isotropic product weights as in [25] and [51] when A1 = 2In×n and A2 = 2Im×m. Among several
equivalent ways of introducing product weights [30, Theorem VI.6.2] we adopt the following definition.

Definition 2.9 For i = 1, 2, let Ai be a dilation on Rni and !A = (A1, A2). Let p ∈ (1, ∞) and w be a
nonnegative measurable function on Rn × Rm. The function w is said to be in the weight class of Muckenhoupt
Ap( !A ) ≡ Ap(Rn × Rm, !A ), if w(x1, ·) ∈ Ap(A2) for almost everywhere x1 ∈ Rn and

esssup
x1∈Rn

Cp, A2, m(w(x1, ·)) < ∞,

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



398 Bownik, Baode Li, Dachun Yang, and Yuan Zhou: Weighted anisotropic product Hardy spaces

and w(·, x2) ∈ Ap(A1) for almost everywhere x2 ∈ Rm and esssup x2∈RmCp, A1, n(w(·, x2)) < ∞. In what
follows, let

Cq, !A, n, m(w) ≡ max
{

esssup
x1∈Rn

Cp, A2, m(w(x1, ·)), esssup
x2∈Rm

Cp, A1, n(w(·, x2))
}

.

Define A∞( !A ) ≡
⋃

1<p<∞ Ap( !A ).

For any w ∈ A∞( !A ), define the critical index of w by

qw ≡ inf{q ∈ (1, ∞) : w ∈ Aq( !A )}. (2.7)

Obviously, qw ∈ [1, ∞). If qw ∈ (1, ∞), then w 1∈ Aqw , and if qw = 1, Johnson and Neugebauer [36, p. 254]
gave an example of w 1∈ A1(2In×n) such that qw = 1. It is easy to see that if 1 < p ≤ q ≤ ∞, then
Ap( !A ) ⊂ Aq( !A ). If w ∈ Ap( !A ) with p ∈ (1, ∞), then there exists an ε ∈ (0, p− 1] such that w ∈ Ap−ε( !A )
by the reverse Hölder inequality.

Throughout the whole paper, for any measurable set E ⊂ Rn × Rm and p ∈ R, we always set wp(E) ≡∫
E [w(x)]p dx. Moreover, by the definition of Ap( !A ) and Proposition 2.5, we have the following proposition. We

omit the details.

Proposition 2.10 Let !A be as in Definition 2.9.
(i) If p ∈ (1,∞] and w ∈ Ap( !A ), there exists a positive constant C such that for all x ∈ Rn × Rm and

ki, $i ∈ Z with ki ≤ $i,

C−1b($1−k1)/p
1 b($2−k2)/p

2 ≤
w
(
x + B(1)

$1
×B(2)

$2

)

w
(
x + B(1)

k1
×B(2)

k2

) ≤ Cb($1−k1)p
1 b($2−k2)p

2 ;

(ii) If p ∈ (1, ∞), w ∈ Ap( !A ) and q ∈ (1, ∞], then the strong maximal operator Ms is bounded on
Lp

w(Rn × Rm) and moreover, there exists a positive constant C such that for all {fj}j∈N ⊂ Lp
w(Rn × Rm),

∥∥∥∥∥∥∥





∑

j∈N
[Ms(fj)]q






1/q
∥∥∥∥∥∥∥

Lp
w(Rn×Rm)

≤ C

∥∥∥∥∥∥∥





∑

j∈N
|fj |q






1/q
∥∥∥∥∥∥∥

Lp
w(Rn×Rm)

.

In fact, the vector-valued inequality (ii) can be obtained simply by iterating the corresponding vector-valued
inequality for the Hardy-Littlewood maximal function in [1].

For s1, s2 ∈ Z+, let Ss1, s2(Rn × Rm) be the collection of all functions ψ ∈ S(Rn × Rm) satisfying that∫
Rn ψ(x1, x2)xγ1 dx1 = 0 for all γ ∈ (Z+)n, |γ| ≤ s1 and x2 ∈ Rm, and

∫
Rm ψ(x1, x2)xβ2 dx2 = 0 for all

β ∈ (Z+)m, |β| ≤ s2 and x1 ∈ Rn. Let S∞(Rn × Rm) =
⋂

s1,s2∈N Ss1,s2(Rn × Rm).
Throughout the whole paper, for a dilation A, we always let A∗ be its transpose. For functions ϕ on Rn, ψ on

Rn × Rm and k, k1, k2 ∈ Z, let ϕk(x) ≡ b−kϕ(A−kx) for all x ∈ Rn and

ψk1, k2(x) ≡ b−k1
1 b−k2

2 ψ
(
A−k1

1 x1, A−k2
2 x2

)

for all x = (x1, x2) ∈ Rn × Rm.

Proposition 2.11 (i) Let ϕ ∈ S(Rn) and
∫

Rn ϕ(x) dx = 1. For any f ∈ S(Rn) (or f ∈ S′(Rn)), f ∗ϕk → f
in S(Rn) (or S′(Rn)) as k → −∞.

(ii) Let ϕ ∈ S(Rn × Rm) and
∫

Rn×Rm ϕ(x) dx = 1. For any f ∈ S(Rn × Rm) (or f ∈ S′(Rn × Rm)),
f ∗ ϕk1, k2 → f in S(Rn × Rm) (or S′(Rn × Rm)) as k1, k2 → −∞.

In fact, Proposition 2.11(i) is just [3, Lemma 3.8]. The proof of Proposition 2.11(ii) is similar to that of (i).
We omit the details.

We recall from [28] that f ∈ S′(Rn) is said to vanish weakly at infinity if for any ϕ ∈ S(Rn), f ∗ ϕk → 0
in S′(Rn) as k → ∞. Denote by S′

∞, w(Rn) the collection of all f ∈ S′(Rn) vanishing weakly at infinity. As
pointed out in [28], if f ∈ Lp(Rn) with p ∈ [1, ∞), then f ∈ S′

∞, w(Rn). Similarly, f ∈ S′(Rn × Rm) is
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said to vanish weakly at infinity if for any ϕ(1) ∈ S(Rm) and ϕ(2) ∈ S(Rn), f ∗ ϕk1, k2 → 0 in S′(Rn × Rm)
as k1, k2 → ∞, where ϕ(x) ≡ ϕ(1)(x1)ϕ(2)(x2) for all x = (x1, x2) ∈ Rn × Rm. We also denote by
S′
∞, w(Rn × Rm) the set of all f ∈ S′(Rn × Rm) vanishing weakly at infinity.

Now we establish the following Calderón reproducing formulae.

Lemma 2.12 Let A be a dilation on Rn and A∗ its transpose. Let ϕ ∈ S(Rn) such that supp ϕ̂ is compact
and bounded away from the origin and for all ξ ∈ Rn \ {0},

∑

j∈Z
ϕ̂
(
(A∗)jξ

)
= 1. (2.8)

Then for any f ∈ L2(Rn), f =
∑

j∈Z f ∗ ϕj in L2(Rn). The same holds in S(Rn) or S′(Rn), respectively, for
f ∈ S∞(Rn) or f ∈ S′

∞, w(Rn).

P r o o f. We first prove the lemma for f ∈ L2(Rn). Define F (ξ) ≡
∑

j∈Z |ϕ̂((A∗)jξ)| for all ξ ∈ Rn.
Obviously, F (ξ) = F (A∗ξ) for all ξ ∈ Rn, which implies that to show F ∈ L∞(Rn), it suffices to consider the
values of F on B∗

1 \ B∗
0 , where B∗

0 is the unit ball associated with the dilation A∗. Let ρ∗ be the homogeneous
quasi-norm associated with A∗. Since ϕ̂ ∈ S(Rn) and ϕ̂(0) = 0, we know that |ϕ̂(ξ)| ! ρ∗(ξ)−1 for all
ξ ∈ Rn \ B∗

0 and |ϕ̂(ξ)| ! |ξ| for ξ ∈ B∗
1 . Thus by (2.6), b > 1 and ζ− > 0, for any ξ ∈ B∗

1 \ B∗
0 , we have

F (ξ) !
∑

j≥0

ρ∗
(
(A∗)jξ

)−1 +
∑

j<0

∣∣(A∗)jξ
∣∣ !
∑

j≥0

b−j +
∑

j<0

bjζ− ! 1. (2.9)

Thus, F ∈ L∞(Rn). By this, the Lebesgue dominated convergence theorem and (2.8), for f ∈ L2(Rn), we have
f̂ =

∑
j∈Z ϕ̂((A∗)j ·)f̂ in L2(Rn), and thus f =

∑
j∈Z ϕj ∗ f in L2(Rn).

Now let us prove the lemma for f ∈ S∞(Rn) (or f ∈ S′
∞, w(Rn)). Set φ ≡

∑∞
j=0 ϕj . Since ϕ ∈ S(Rn) and

ϕj(x) = b−jϕ(A−jx), then φ is well-defined pointwise on Rn. We claim that φ ∈ S(Rn) and
∫

Rn φ(x) dx = 1.
Assuming the claim for the moment, by Proposition 2.11, we have f ∗ φ−N → f in S(Rn) (or S′(Rn)) as
N → ∞. On the other hand, by Hölder’s inequality, for f ∈ S∞(Rn) (or by f ∈ S′

∞, w(Rn)), we obtain that
f ∗ φN → 0 in S(Rn) (or S′(Rn)) as N → ∞. Therefore, for f ∈ S∞(Rn) (or f ∈ S′

∞, w(Rn)), we have
f ∗ φ−N − f ∗ φN → f in S(Rn) (or S′(Rn)) as N → ∞. Moreover, observing that φk =

∑∞
j=0(ϕj)k =

∑∞
j=k ϕj , and thus

∑N
j=−N ϕj = φ−N − φN+1, we obtain the lemma for f ∈ S∞(Rn) (or f ∈ S′

∞, w(Rn)).
Let us now prove the above claim. Let G(ξ) ≡

∑∞
j=0 ϕ̂((A∗)jξ) for all ξ ∈ Rn. Then it suffices to prove that

G ∈ S(Rn), φ = F−1G and
∫

Rn φ(x) dx = 1, where F−1 denotes the inverse Fourier transform.
Since supp ϕ̂ is compact, we may assume that supp ϕ̂ ⊂ B∗

k0
for certain k0 ∈ Z. Then for any j ∈ Z+, we

have supp ϕ̂((A∗)j ·) ⊂ B∗
k0−j ⊂ B∗

k0
, which implies that supp G ⊂ B∗

k0
. To prove G ∈ C∞(Rn), for any

α ∈ (Z+)n and ξ ∈ Rn, set Fα(ξ) ≡
∑

j∈Z |∂α[ϕ̂((A∗)jξ)]|. Let us now show Fα ∈ L∞(Rn). Notice that for
all ξ ∈ Rn,

Fα(A∗ξ)=
∑

j∈Z

∣∣∂α
[
ϕ̂
(
(A∗)j+1ξ

)]∣∣ =
∑

j∈Z
|∂α[ϕ̂((A∗)jξ)]| = Fα(ξ),

which implies that to verify Fα ∈ L∞(Rn), we only need to consider the values of Fα on B∗
1 \ B∗

0 . By (2.19)
in [5], ϕ ∈ S(Rn) and ρ∗(ξ) ∼ 1, we have

|∂αϕ̂((A∗)jξ)| ! bj|α|ζ+ |(∂αϕ̂)((A∗)jξ)| ! bj|α|ζ+ 1
ρ∗((A∗)jξ)(1+|α|ζ+)

! b−j

when j > 0, and |∂αϕ̂((A∗)jξ)| ! bj|α|ζ− when j ≤ 0. From this, b > 1 and ζ− > 0, by (2.6), it fol-
lows that Fα(ξ) ! ∑

j≤0 bj|α|ζ− +
∑

j>0 b−j ! 1, and hence Fα ∈ L∞(Rn). Notice that ∂αG(ξ) =∑∞
j=0 ∂

α[ϕ̂((A∗)jξ)] for all ξ ∈ Rn. Thus, G ∈ C∞(Rn). From this and supp G ⊂ B∗
k0

, we deduce
G ∈ S(Rn).
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Moreover, by the proof of supp G ⊂ B∗
k0

, it is easy to see that supp
(∑∞

j=0 |ϕ̂((A∗)j ·)|
)
⊂ B∗

k0
, which

together with Hölder’s inequality and Minkowski’s inequality implies that

∫

Rn

∞∑

j=0

|ϕ̂((A∗)jξ)| dξ ! |B∗
k0
|1/2






∫

Rn




∞∑

j=0

|ϕ̂((A∗)jξ)|




2

dξ






1/2

! bk0/2
∞∑

j=0

(∫

Rn

|ϕ̂((A∗)jξ)|2 dξ

)1/2

! bk0/2
∞∑

j=0

b−j/2

! 1.

Then by Fubini’s theorem, we obtain F−1G =
∑

j∈Z F−1[ϕ̂((A∗)j ·)] = φ and hence, φ ∈ S(Rn).
Let e1 ≡ (1, 0, . . . , 0). Since ϕ̂ ∈ S(Rn), by (2.8), we obtain

∫

Rn

φ(x) dx = φ̂(0) = lim
k→−∞

φ̂
(
(A∗)ke1

)
= lim

k→−∞

∞∑

j=0

ϕ̂
(
(A∗)j+ke1

)
=
∑

j∈Z
ϕ̂
(
(A∗)je1

)
= 1,

which completes the proof of our claim and hence the proof of Lemma 2.12.

Remark 2.13 From the proof of Lemma 2.12, it is easy to see that if ϕ ∈ S(Rn) and ϕ̂(0) = 0, then
F (ξ) ≡

∑
j∈Z |ϕ̂((A∗)jξ)| for all ξ ∈ Rn is bounded on Rn.

Using Lemma 2.12, we have the following Calderón reproducing formulae.
Proposition 2.14 Let s ∈ Z+ and A be a dilation on Rn. Then there exist θ, ψ ∈ S(Rn) such that

(i) supp θ ⊂ B0,
∫

Rn xγθ(x) dx = 0 for all γ ∈ (Z+)n with |γ| ≤ s, θ̂(ξ) ≥ C > 0 for ξ in certain
annulus, where C is a positive constant;

(ii) supp ψ̂ is compact and bounded away from the origin;
(iii)
∑

j∈Z ψ̂((A∗)jξ)θ̂((A∗)jξ) = 1 for all ξ ∈ Rn \ {0}.
Moreover, for all f ∈ L2(Rn), f =

∑
j∈Z f ∗ ψj ∗ θj in L2(Rn). The same holds in S(Rn) or S′(Rn),

respectively, for any f ∈ S∞(Rn) or f ∈ S′
∞, w(Rn).

We point out that the existences of such θ and ψ in Proposition 2.14 were proved in Theorem 5.8 of [5]. The
conclusions of Proposition 2.14 then just follow from Lemma 2.12 by taking ϕ = θ ∗ψ. Moreover, we also need
the following variant on Rn × Rm of Lemma 2.12.

Lemma 2.15 Let i = 1, 2, Ai be a dilation on Rni and ϕ(i) ∈ S(Rni ) such that supp ϕ̂(i) is compact and
bounded away from the origin and for all ξi ∈ Rni \ {0}, (2.8) holds with A replaced by Ai, ϕ by ϕ(i) and
ξ by ξi. Set ϕ(x) ≡ ϕ(1)(x1)ϕ(2)(x2) for all x = (x1, x2) ∈ Rn × Rm. Then for any f ∈ L2(Rn × Rm),
f =

∑
j1, j2∈Z f ∗ ϕj1, j2 in L2(Rn × Rm). The same holds in S(Rn × Rm) or S′(Rn × Rm), respectively, for

any f ∈ S∞(Rn × Rm) or f ∈ S′
∞, w(Rn × Rm).

P r o o f. We first prove the lemma for f ∈ L2(Rn × Rm). For ϕ = ϕ(1)ϕ(2), by (2.9), we obtain that for all
ξ = (ξ1, ξ2) ∈ Rn × Rm,

F (ξ) ≡
∑

j1, j2∈Z
ϕ̂((A∗

1)
j1ξ1, (A∗

2)
j2ξ2) =

∑

j1∈Z
ϕ̂(1)((A∗

1)
j1ξ1)

∑

j2∈Z
ϕ̂(2)((A∗

2)
j2ξ2)

is bounded on Rn × Rm. Then from this and the fact that
∑

j1, j2∈Z ϕ̂((A∗
1)j1ξ1, (A∗

2)j2ξ2) = 1 for any ξ ∈
(Rn × Rm) \ {(0, 0)}, similarly to Lemma 2.12, we deduce the desired formula for f ∈ L2(Rn × Rm).

For f ∈ S∞(Rn × Rm) or f ∈ S′
∞, w(Rn × Rm), observing that in the proof of Lemma 2.12, we have shown

that φ(i) ≡
∑∞

ji=0 ϕj ∈ S(Rni) and
∫

Rni
φ(xi) dxi = 1 for i = 1, 2, which implies that φ ≡ φ(1)φ(2) ∈

S(Rn × Rm) and
∫

Rn×Rm φ(x) dx = 1. Then, similarly to the proof of Lemma 2.12, we obtain the desired
formulae, which completes the proof of Lemma 2.15.
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By Lemma 2.15, we have the following proposition.

Proposition 2.16 Let si ∈ Z+ and Ai be a dilation on Rni for i = 1, 2. Suppose that θ(i), ψ(i) ∈ S(Rni)
satisfy the conditions (i) through (iii) of Proposition 2.14 on Rni . Set θ(ξ) ≡ θ(1)(ξ1)θ(2)(ξ2) and ψ(ξ) ≡
ψ(1)(ξ1)ψ(2)(ξ2) for all ξ = (ξ1, ξ2) ∈ Rn × Rm. Then for any f ∈ L2(Rn × Rm),

f =
∑

j1, j2∈Z
f ∗ ψj1, j2 ∗ θj1, j2

in L2(Rn × Rm). The same holds in S(Rn × Rm) or S′(Rn × Rm), respectively, for any f ∈ S∞(Rn × Rm)
or f ∈ S′

∞, w(Rn × Rm).

3 A weighted anisotropic Littlewood-Paley theory

We begin with the one parameter Lusin-area function.

Definition 3.1 Let A be a dilation on Rn. Suppose ϕ ∈ S(Rn) such that ϕ̂(0) = 0. For all f ∈ S′(Rn) and
x ∈ Rn, define the anisotropic Lusin-area function of f by

Sϕ(f)(x) ≡
{
∑

k∈Z
b−k

∫

Bk

|f ∗ ϕk(x − y)|2 dy

}1/2

.

By the Plancherel formula and Remark 2.13, we have

‖Sϕ(f)‖2
L2(Rn) =

∑

k∈Z
b−k

∫

Bk

∫

Rn

|f ∗ ϕk(x− y)|2 dx dy

=
∑

k∈Z

∫

Rn

∣∣f̂(ξ)
∣∣2|ϕ̂k(ξ)|2 dξ

!
∥∥f̂
∥∥2

L2(Rn)

! ‖f‖2
L2(Rn),

(3.1)

which implies that Sϕ is bounded on L2(Rn). Moreover, we have the following theorem.

Theorem 3.2 Let A be a dilation on Rn, p ∈ (1, ∞), w ∈ Ap(A), and θ, ψ be as in Proposition 2.14.
Suppose ϕ ≡ θ or ψ. Then f ∈ Lp

w(Rn) if and only if f ∈ S′
∞, w(Rn) and Sϕ(f) ∈ Lp

w(Rn). Moreover, for all
f ∈ Lp

w(Rn), ‖f‖Lp
w(Rn) ∼ ‖Sϕ(f)‖Lp

w(Rn).

The proof of Theorem 3.2 will be given later. Similarly, we can introduce the product Lusin-area function as
follows.

Definition 3.3 Let Ai be a dilation on Rni and ϕ(i) ∈ S(Rni) with ϕ̂(i)(0) = 0 for i = 1, 2. Set ϕ(x) ≡
ϕ(1)(x1)ϕ(2)(x2) for all x = (x1, x2) ∈ Rn × Rm. For all f ∈ S′(Rn × Rm) and x ∈ Rn × Rm, define the
anisotropic product Lusin-area function of f by

!Sϕ(f)(x) ≡





∑

k1, k2∈Z
b−k1
1 b−k2

2

∫

B(1)
k1

×B(2)
k2

|ϕk1, k2 ∗ f(x− y)|2 dy






1/2

.

Then by the Plancherel formula and Remark 2.13, similarly to (3.1), we know that !Sϕ is bounded on
L2(Rn × Rm). Moreover, we have the following product version of Theorem 3.2 which will be proved later.

Theorem 3.4 Let Ai be a dilation on Rni for i = 1, 2, p ∈ (1, ∞), w ∈ Ap( !A ) and θ, ψ be as in Proposition
2.16. Suppose ϕ ≡ θ or ψ. Then f ∈ Lp

w(Rn × Rm) if and only if f ∈ S′
∞, w(Rn × Rm) and !Sϕ(f) ∈

Lp
w(Rn × Rm). Moreover, for all f ∈ Lp

w(Rn × Rm), ‖f‖Lp
w(Rn×Rm) ∼ ‖!Sϕ(f)‖Lp

w(Rn×Rm).
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Remark 3.5 For convenience, we can also rewrite !Sϕ(f) as

!Sϕ(f)(x) =

{∫∫

Γ(x)
|ϕt1, t2 ∗ f(y)|2 dy

dσ(t1) dσ(t2)
bt1
1 bt2

2

}1/2

,

where Γ(x) ≡
{
(y, t) : y ∈ x + B(1)

t1 ×B(2)
t2 , t = (t1, t2) ∈ R2

}
and σ is the integer counting measure on R,

i. e., for all E ⊂ R, σ(E) is the number of integers contained in E.
Theorems 3.2 and 3.4 will be proved by viewing the Lusin-area function as the vector-valued Calderón-

Zygmund operator and applying a duality argument. In fact, we will verify that the kernel of Lusin-area function
satisfies the standard conditions of vector-valued Calderón-Zygmund operators, and then we will apply a well-
known result on the boundedness of vector-valued Calderón-Zygmund operators in Lp

w(Rn) with p ∈ (1, ∞);
see Proposition 3.6.

To this end, we first recall the theory of vector-valued Calderón-Zygmund operators. Let B be a complex
Banach space with norm ‖ · ‖B and B∗ its dual space with norm ‖ · ‖B∗ . A function f : Rn → B is called
B-measurable, if there exists a measurable subset Ω of Rn such that |Rn \ Ω| = 0, the values of f on Ω are
contained in some separable subspace B0 of B, and for every u∗ ∈ B∗, the complex valued map x → 〈u∗, f(x)〉
is measurable. From this definition and theorem in [65, p.131], it follows that the function x → ‖f(x)‖B on Rn

is measurable. For Banach spaces B1, B2, denote by L(B1, B2) the space of all the bounded linear operators
from B1 to B2.

For all p ∈ (0, ∞], denote by Lp(Rn, B) the space of all B-measurable functions f on Rn satisfying

‖f‖Lp(Rn,B) ≡
{∫

Rn

‖f(x)‖p
B dx

}1/p

< ∞

with a usual modification made when p = ∞. Denote by L∞
c (Rn, B) the space of f ∈ L∞(Rn, B) with compact

support.
The proof of the following proposition is presented in Appendix at the end of this paper.
Proposition 3.6 Let A be a dilation on Rn, and B1 and B2 be Banach spaces. Assume that T is a linear

operator bounded from L2(Rn, B1) to L2(Rn, B2). Moreover, assume that there exists a continuous vector-
valued function K: Rn \ {0} → L(B1, B2) such that for all f ∈ L∞

c (Rn, B1) and x 1∈ supp f ,

T (f)(x) =
∫

Rn

K(x − y)f(y) dy.

If there exist positive constants C and ε such that for all y ∈ Rn \ {0},

‖K(y)‖L(B1,B2) ≤
C

ρ(y)
, (3.2)

and for all x, y ∈ Rn \ {0} with ρ(x− y) ≤ b−2σρ(y),

‖K(y)−K(x)‖L(B1,B2) ≤ C
ρ(x− y)ε

ρ(y)1+ε
, (3.3)

then for all p ∈ (1, ∞) and w ∈ Ap(A), T is bounded from Lp
w(Rn, B1) to Lp

w(Rn, B2).
Now we turn to the proofs of Theorems 3.2 and 3.4.

P r o o f o f T h e o r e m 3.2. Let f ∈ Lp
w(Rn). By Lemma 2.6, f ∈ S′(Rn). To show that f vanishes weakly

at infinity, for any ϕ ∈ S(Rn) and k ∈ Z+, by Hölder’s inequality, we obtain

|〈f, ϕk〉| ≤ ‖f‖Lp
w(Rn)‖ϕk‖Lp′

w−1/(p−1)(Rn)
.

Moreover, by the definition of Ap(A) and Proposition 2.5(i), we have that for j ∈ Z+,

w−1/(p−1)(Bj) =
∫

Bj

[w(x)]−1/(p−1) dx ! [w(Bj)]−1/(p−1)|Bj |p
′ ! bj[p′−1/(p(p−1))].
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From this and ϕ ∈ S(Rn), it follows that
∫

Rn

|ϕk(x)|p
′
[w(x)]−1/(p−1) dx

! b−kp′
w−1/(p−1)(Bk) + b−kp′

∞∑

j=k

∫

Bj+1\Bj

[b−kρ(x)]−p′
[w(x)]−1/(p−1) dx

!
∞∑

j=k

b−jp′
w−1/(p−1)(Bj)

!
∞∑

j=k

b−j/[p(p−1)]

! b−k/[p(p−1)],

which implies that f vanishes weakly at infinity and hence, f ∈ S′
∞, w(Rn).

We now prove the boundedness of Sϕ on Lp
w(Rn) with p ∈ (1, ∞). Let

H ≡ {F = {fk}k∈Z : fk is a measurable function on Bk for any k ∈ Z and ‖F‖H < ∞},

where ‖F‖H ≡
{∑

k∈Z b−k
∫

Bk
|fk(y)|2 dy

}1/2
. Obviously, H is a Hilbert space. For all x ∈ Rn \ {0},

set K(x) ≡ {ϕk(x − z) : k ∈ Z, z ∈ Bk} ∈ L(C, H), and for all f ∈ L∞
c (Rn) and x 1∈ supp f , define

T : L∞
c (Rn) → H by

T (f)(x) ≡
∫

Rn

K(x − y)f(y) dy = {ϕk ∗ f(x− z) : z ∈ Bk, k ∈ Z}.

Then ‖T (f)(x)‖H = Sϕ(f)(x) for all x ∈ Rn. From this and (3.1), it follows that T is bounded from L2(Rn)
to L2(Rn, H). To obtain the boundedness of Sϕ on Lp

w(Rn), it suffices to prove K satisfies (3.2) and (3.3).
To see (3.2), for z ∈ Bk and y ∈ Rn \ {0}, let j0 ∈ Z such that ρ(y) = bj0 . By Definition 2.2(iii),

ρ(y) ≤ bσ[ρ(z) + ρ(y − z)] ≤ bσ[bk + ρ(y − z)], which implies that bj0−k ! 1 + b−kρ(y − z). Then for all
y ∈ Rn \ {0}, we obtain

‖K(y)‖2
L(C,H) = ‖{ϕk(y − ·)}k∈Z‖2

H

=
∑

k∈Z
b−k

∫

Bk

|ϕk(y − z)|2 dz

!
∑

k∈Z
b−k

∫

Bk

b−2k

[1 + b−kρ(y − z)]4
dz

!
∑

k≤j0

b−2kb−4(j0−k) +
∑

k>j0

b−2k

! b−2j0

∼ [ρ(y)]−2,

which gives (3.2).
To show (3.3), let y, x ∈ Rn with y 1= 0 and ρ(x − y) ≤ b−2σρ(y). Without loss of generality, we may

assume that ρ(x− y) = bj0 and ρ(y) = bj0+j1+2σ for certain j0 ∈ Z and j1 ∈ Z+. Write

‖K(x)−K(y)‖2
L(C,H)

= ‖{ϕk(y − ·)− ϕk(x− ·)}k∈Z‖2
H

=
∑

k∈Z
b−3k

∫

Bk

∣∣ϕ
(
A−k(y − z)

)
− ϕ
(
A−k(x − z)

)∣∣2 dz ≤
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≤
∑

k∈Z
b−3k

∫

Bk

sup
ξ∈Bj0

∣∣∇ϕ
(
A−k(y − z − ξ)

)∣∣2∣∣A−k(x− y)
∣∣2 dz

!
[
∑

k<j0

+
∑

j0≤k≤j0+j1

+
∑

j0+j1<k

]
b−3k

∫

Bk

sup
ξ∈Bj0

[
1+ρ

(
A−k(y − z − ξ)

)]−4∣∣A−k(x− y)
∣∣2 dz

≡ I1 + I2 + I3.

To estimate I1, since ρ(A−k(x− y)) = bj0−k > 1 for k < j0, by (2.3), we obtain

|A−k(x− y)| ! [ρ(A−k(x− y))]ζ+ = bζ+(j0−k). (3.4)

Observe that for y ∈ B!
j0+j1+2σ, z ∈ Bk, j1 ≥ 0, j0 > k and ξ ∈ Bj0 , by (2.1) and (2.2), we have A−k(y− z−

ξ) ∈ B!
j0−k+j1+2σ + B0 + Bj0−k ⊂ B!

j0−k+j1+σ, which implies that ρ(A−k(y − z − ξ)) ≥ bj0−k+j1+σ . From
this, (3.4), ζ+ < 1, ρ(x− y) = bj0 and ρ(y) = bj0+j1+2σ , it follows that

I1 !
∑

k<j0

b−2kb−4(j0−k+j1)b2ζ+(j0−k) ! b−2j0−4j1 ! [ρ(y − x)]2

[ρ(y)]4
.

To estimate I2, since ρ(A−k(y − x)) = bj0−k ≤ 1 for k ≥ j0, by (2.4), we obtain

|A−k(x− y)| ! [ρ(A−k(x− y))]ζ− ∼ bζ−(j0−k). (3.5)

Moreover, observe that for j0 ≤ k ≤ j0 + j1, y ∈ B!
j0+j1+2σ, z ∈ Bk, ξ ∈ Bj0 and j1 ≥ 0, by (2.1) and (2.2),

we still have that ρ(A−k(y − z − ξ)) ≥ bj0−k+j1+σ. From this, (3.5), ρ(x − y) = bj0 and ρ(y) = bj0+j1+2σ , it
follows that

I2 !
∑

j0≤k≤j0+j1

b−2kb−4(j0−k+j1)b2ζ−(j0−k) ! b−2(j0+j1)b−2ζ−j1 ! [ρ(y − x)]2ζ−

[ρ(y)]2(1+ζ−)
.

To estimate I3, by (3.5), ρ(x− y) = bj0 , ρ(y) = bj0+j1+2σ and j1 ≥ 0, we have

I3 !
∑

k>j0+j1

b−2kb2(j0−k)ζ− ! b−2(j0+j)b−2j1ζ− ! [ρ(y − x)]2ζ−

[ρ(y)]2(1+ζ−)
.

Combining the estimates of I1, I2 and I3 finishes the proof of (3.3). Thus, by Proposition 3.6, we obtain the
boundedness of Sϕ on Lp

w(Rn) for p ∈ (1, ∞).
Conversely, let f ∈ S′

∞, w(Rn) and Sψ(f) ∈ Lp
w(Rn) with p ∈ (1, ∞). Set θ̃(x) ≡ θ(−x) for all x ∈ Rn.

For any h ∈ S(Rn) with ‖h‖
Lp′

w−p′/p
(Rn)

≤ 1, by Proposition 2.14, the boundedness of Sθ̃ on Lp
w(Rn) with

p ∈ (1, ∞) and Hölder’s inequality, we have

|〈f, h〉| =

∣∣∣∣∣
∑

k∈Z

∫

Rn

f ∗ ψk ∗ θk(x)h(x) dx

∣∣∣∣∣

=

∣∣∣∣∣
∑

k∈Z

∫

Rn

f ∗ ψk(x)h ∗ θ̃k(x) dx

∣∣∣∣∣

=

∣∣∣∣∣
∑

k∈Z
b−k

∫

Rn

∫

x+Bk

f ∗ ψk(x)h ∗ θ̃k(x) dy dx

∣∣∣∣∣

=

∣∣∣∣∣

∫

Rn

∑

k∈Z
b−k

∫

y+Bk

f ∗ ψk(x)h ∗ θ̃k(x) dx dy

∣∣∣∣∣

≤
∫

Rn

{
∑

k∈Z
b−k

∫

y+Bk

|f ∗ ψk(x)|2 dx

}1/2{∑

k∈Z
b−k

∫

y+Bk

|h ∗ θ̃k(x)|2 dx

}1/2

dy ≤
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≤ ‖Sψ(f)‖Lp
w(Rn)‖Sθ̃(h)‖

Lp′

w−p′/p
(Rn)

! ‖Sψ(f)‖Lp
w(Rn)‖h‖Lp′

w−p′/p
(Rn)

! ‖Sψ(f)‖Lp
w(Rn),

which together with the density of S(Rn) in Lp′

w−p′/p(Rn) and
(
Lp′

w−p′/p(Rn)
)∗

= Lp
w(Rn) implies that f ∈

Lp
w(Rn) and ‖f‖Lp

w(Rn) ! ‖Sψ(f)‖Lp
w

. Similarly, for f ∈ S′
∞, w(Rn) and Sθ(f) ∈ Lp

w(Rn), we have f ∈
Lp

w(Rn) and ‖f‖Lp
w(Rn) ! ‖Sθ(f)‖Lp

w
. This finishes the proof of Theorem 3.2.

P r o o f o f T h e o r e m 3.4. We shall only prove that !Sϕ is bounded on Lp
w(Rn × Rm). This is because the

proofs of the other conclusions are similar to those of Theorem 3.2.
Let Hi be the space H as in the proof of Theorem 3.2 with Bk and b replaced, respectively, by B(i)

k and bi

with i = 1, 2. Let H1⊗H2 be the set of all sequences F = {fk1, k2}k1, k2∈Z such that each fk1,k2 is measurable
on B(1)

k1
×B(2)

k2
and

‖F‖H1⊗H2 ≡
{
∑

k1∈Z

∑

k2∈Z
b−k1
1 b−k2

2

∫

B(2)
k2

∫

B(1)
k1

|fk1, k2(y1, y2)|2 dy1 dy2

}1/2

=

{
∑

k2∈Z
b−k2
2

∫

B(2)
k2

‖f·, k2(·, y2)‖2
H1

dy2

}1/2

.

The last equation is the consequence of the fact that H1 ⊗ H2 can be thought of as a collection of measurable
H1-valued functions {f·, k2(·, y2)}k2∈Z defined almost everywhere for y2 ∈ B(2)

k2
. Clearly, H1, H2, H1 ⊗ H2

are Hilbert spaces. Here and in what follows, we always let

ϕ(1)
k1
∗1 g(x1, x2) ≡

∫

Rn1

ϕ(1)
k1

(x1 − y1)g(y1, x2) dy1

and

ϕ(2)
k2
∗2 g(x1, x2) ≡

∫

Rn2

ϕ(2)
k2

(x2 − y2)g(x1, y2) dy2.

For any x2 ∈ Rn2 \ {0}, define K(2)(x2) : H1 → H1 ⊗H2 by tensoring

K(2)(x2) ≡
{
ϕ(2)

k2
(x2 − z2) : k2 ∈ Z, z2 ∈ B(2)

k2

}
.

As in the proof of Theorem 3.2, we know that K(2) satisfies (3.2) and (3.3) with B1 = H1 and B2 = H1 ⊗H2.
Moreover, for any F (·) =

{
Fk1(y1, ·) : y1 ∈ B(1)

k1

}

k1∈Z
∈ L∞

c (Rm, H1), define

T (F )(x2) ≡ K(2) ∗2 F (x2)

≡
{(
ϕ(2)

k2
∗2 F

)
(x2 − y2) : y2 ∈ B(2)

k2
, k2 ∈ Z

}

=
{(
ϕ(2)

k2
∗2 Fk1

)
(y1, x2 − y2) : y1 ∈ B(1)

k1
, y2 ∈ B(2)

k2
, k1, k2 ∈ Z

}
.

Denote by F2 the Fourier transform on the second variable. By the Plancherel formula and Remark 2.13, we have

‖T (F )‖2
L2(Rm,H1⊗H2)

=
∫

Rm

∑

k1∈Z

∑

k2∈Z
b−k1
1 b−k2

2

∫

B(2)
k2

∫

B(1)
k1

∣∣ϕ(2)
k2
∗2 Fk1(y1, x2 − y2)

∣∣2 dy1 dy2 dx2 =
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=
∑

k1∈Z
b−k1
1

∫

B
(1)
k1

∫

Rm

∑

k2∈Z

∣∣∣∣ϕ̂
(2)
k2

(ξ2)
∣∣∣∣
2

|F2F k1(y1, ξ2)|2d ξ2 dy1

!
∫

Rm

∑

k1∈Z
b−k1
1

∫

B(1)
k1

∑

k2∈Z
|Fk1(y1, y2)|2 dy1 dy2

! ‖F‖2
L2(Rm,H1)

.

Therefore by Proposition 3.6, for any p ∈ (1, ∞) and w ∈ Ap(A2), T is bounded from Lp
w(Rm, H1) to

Lp
w(Rm, H1 ⊗H2).

Let f ∈ L∞
c (Rn × Rm). For any x1 ∈ Rn and x2 ∈ Rm, set

Fx1(x2) ≡
{

(ϕ(1)
k1
∗1 f)(x1 − y1, x2) : y1 ∈ B(1)

k1
, k1 ∈ Z

}
∈ H1.

Then Fx1 ∈ L∞
c (Rm, H1) and we have

T (Fx1)(x2) ≡
{

(ϕk1, k2 ∗ F )(x1 − y1, x2 − y2) : y1 ∈ B(1)
k1

, k1 ∈ Z, y2 ∈ B(2)
k2

, k2 ∈ Z
}

,

and !Sϕ(f)(x1, x2) = ‖T (Fx1)(x2)‖H1⊗H2 . Recall that by Definition 2.9, for almost all x1 (or x2), w(x1, ·) ∈
Ap(A2) (or w(·, x2) ∈ Ap(A1)) and the weighted constants are uniformly bounded. Then, by Theorem 3.2 for
Sϕ(1) , we have

‖!Sϕ(f)‖p
Lp

w(Rn×Rm)
=
∫

Rn

{∫

Rm

‖T (Fx1)(x2)‖p
H1⊗H2

w(x1, x2) dx2

}
dx1

!
∫

Rn

∫

Rm

‖Fx1(x2)‖p
H1

w(x1, x2) dx2 dx1

∼
∫

Rm

{∫

Rn

[Sϕ(1)(f(·, x2))(x1)]pw(x1, x2) dx1

}
dx2

! ‖f‖p
Lp

w(Rn×Rm),

which completes the proof of Theorem 3.4.

4 Weighted anisotropic product Hardy spaces

We begin with the notion of weighted anisotropic product Hardy spaces.

Definition 4.1 Let p ∈ (0, 1], w ∈ A∞( !A ) and qw be as in (2.7), ψ be as in Proposition 2.16. Define the
weighted anisotropic product Hardy space by

Hp
w(Rn × Rm; !A )≡

{
f ∈ S′

∞, w(Rn × Rm) : ‖f‖Hp
w(Rn×Rm; !A ) ≡ ‖!Sψ(f)‖Lp

w(Rn×Rm) < ∞
}

.

Notice that if p ∈ (qw, ∞), where qw is as in (2.7), then by Theorem 3.4, we obtain Hp
w(Rn × Rm; !A ) =

Lp
w(Rn × Rm) with equivalent norms. If p ∈ (1, qw], the element of Hp

w(Rn × Rm; !A ) may be a distribu-
tion, and hence, Hp

w(Rn × Rm; !A ) 1= Lp
w(Rn × Rm); see [57, p. 86] for one parameter case. For applications

considered in this paper, we concentrate only on Hp
w(Rn × Rm; !A ) with p ∈ (0, 1].

To define atomic Hardy spaces, we introduce the following notation and notions. Let Ai be a dilation on Rni ,
and Q(i), $(Qi), vi, ui be the same as in Lemma 2.3 corresponding to Ai for i = 1, 2. Let R ≡ Q(1) × Q(2).
For R ∈ R, we always write R = R1×R2 with Ri ∈ Q(i) and call R a dyadic rectangle. For (k1, k2) ∈ Z×Z,
define Rk1,k2 ≡ {R ∈ R : $(R1) = k1, $(R2) = k2}. For R ∈ R, let

R+ ≡ {(y, t) : y ∈ R, t = (t1, t2) ∈ R2, ti ∼ vi$(Ri) + ui, i = 1, 2}, (4.1)

where and in what follows, ti ∼ vi$(Ri) + ui always means

vi$(Ri) + ui + σi ≤ ti < vi($(Ri)− 1) + ui + σi, (4.2)
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and σi is as in (2.1) and (2.2) associated with Ai for i = 1, 2. Note that the inequality (4.2) is seemingly reversed
since the vi’s are negative.

Assume that Ω is an open set of Rn × Rm. A dyadic rectangle R ⊂ Ω is said to be maximal in Ω if for
any rectangle S ⊂ Ω satisfying that R ⊂ S, then S = R. Denote by m(Ω) the family of all maximal dyadic
rectangles contained in Ω. We choose a positive integer c0 > 2 such that b−c0u1

1 b−c0u2
2 ≤

(
b−2u1
1 b−2u2

2 /2
)

and
set

Ω̃ ≡
{
x ∈ Rn × Rm, Ms(χΩ)(x) > b−c0u1

1 b−c0u2
2

}
. (4.3)

Definition 4.2 Let w ∈ A∞( !A ) and qw be as in (2.7). The triplet (p, q, !s )w is said to be admissible if
p ∈ (0, 1], q ∈ [2, ∞) ∩ (qw, ∞) and si ≥ $( qw

p − 1)ζ−1
i,−&, where ζi,− is defined as in (2.3), i = 1, 2.

A function a is said to be a (p, q, !s )w-atom associated to an open set Ω of Rn × Rm with w(Ω) < ∞ if

(I) a can be written as a =
∑

R∈m(Ω̃) aR in S′(Rn × Rm), where aR satisfies that

(i) aR is supported on R′′ = R′′
1 ×R′′

2 , where R′′
i ≡ xRi + B(i)

vi($(Ri)−1)+ui+3σi
for i = 1, 2.

(ii)
∫

Rn aR(x1, x2)xα1 dx1 = 0 for all |α| ≤ s1 and almost all x2 ∈ Rm, and
∫

Rm aR(x1, x2)xβ2 dx2 = 0 for all |β| ≤ s2 and almost all x1 ∈ Rn.

Here aR is called a particle associated with the rectangle R.
(II) ‖a‖Lq

w(Rn×Rm) ≤ [w(Ω)]1/q−1/p and
∑

R∈m(Ω̃) ‖aR‖q
Lq

w(Rn×Rm)
≤ [w(Ω)]1−q/p.

Definition 4.3 Let p ∈ (0, 1], w ∈ A∞( !A ) and qw be as in (2.7) and (p, q, !s )w be an admissible triplet.
The weighted atomic anisotropic product Hardy space Hp, q, !s

w (Rn × Rm; !A ) is defined to be the collection of
all f ∈ S′(Rn × Rm) of the form f =

∑
j∈Nλjaj in S′(Rn × Rm), where

∑
j∈N|λj |p < ∞ and {aj}j∈N are

(p, q, !s )w-atoms. For f in Hp, q, !s
w (Rn × Rm; !A ), the norm f on Hp, q, !s

w (Rn × Rm; !A ) is defined by

‖f‖Hp, q, !s
w (Rn×Rm; !A ) ≡ inf









∑

j∈N
|λi|p




1/p




,

where the infimum is taken over all the above decompositions of f .
Remark 4.4 a) We remark here that the restriction q ∈ [2,∞) in Definition 4.2 seems reasonable, since

we use the Lusin-area function to introduce Hp
w(Rn × Rm; !A ). Moreover, from the known result on classical

product Hardy spaces, we know that {si}i=1, 2 in Definition 4.2 are best possible.
b) Notice that if (p, q, !s )w and (p, r, !t )w are admissible, q ≤ r and si ≤ ti for i = 1, 2, then a (p, r, !t )w-

atom is a (p, q, !s )w-atom. Thus, the space Hp, r,!t
w (Rn × Rm) ⊂ Hp, q, !s

w (Rn × Rm; !A ).
The main result of this section is as follows.
Theorem 4.5 Let w ∈ A∞( !A ) and qw be as in (2.7). If (p, q, !s )w is an admissible triplet, then

Hp
w(Rn × Rm; !A ) = Hp, q, !s

w (Rn × Rm; !A )

with equivalent norms.

From Theorem 4.5, we immediately deduce that the definition of the Hardy space Hp
w(Rn × Rm; !A ) in

Definition 4.1 is independent of the choice of ψ as in Proposition 2.16.
Since the proof of Theorem 4.5 is quite complicated, we will use several lemmas. Precisely, by choosing

si such that si ≥ $(qw/p − 1)ζi, −& and (si + 1)ζi,− > 1 for i = 1, 2, we first prove in Lemma 4.6 bellow
that Hp

w(Rn × Rm; !A ) ⊂ Hp, q, !s
w (Rn × Rm; !A ). Conversely, for all admissible (p, q, !s )w, in Lemma 4.8, we

prove

[Hp, q, !s
w (Rn × Rm; !A ) ∩ S′

∞, w(Rn)] ⊂ Hp
w(Rn × Rm; !A )

by using Journé covering lemma established in Lemma 4.9 below, and in Lemma 4.10, we further show that
Hp, q, !s

w (Rn × Rm; !A ) ⊂ S′
∞, w(Rn). Combining Lemmas 4.6, 4.8, 4.9 and Remark 4.4 b) then finishes the

proof of Theorem 4.5.
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Lemma 4.6 Let w ∈ A∞( !A ) and qw be as in (2.7). If (p, q, !s )w is an admissible triplet and (si+1)ζi,− > 1
for i = 1, 2, then there exists a positive constant C such that ‖f‖Hp, q, !s

w (Rn×Rm; !A ) ≤ C‖f‖Hp
w(Rn×Rm; !A ) for

all f ∈ Hp
w(Rn × Rm; !A ).

P r o o f. To prove this lemma, we borrow some ideas from Fefferman [24, 26]. The whole proof is divided
into 8 steps. In Step 1, we use the Calderón reproducing formula from Proposition 2.16 to decompose f into a
sum of functions {eR}R essentially supported in rectangles and recombine these functions (according to the size
of the intersection between their corresponding rectangles and the level sets of the Lusin-area function) to obtain
the particles {aP}P and atoms {ak}k; see (4.6), (4.7) and (4.8). In Step 2 through Step 5, we show that {ak}k

are (p, q, !s )w-atoms. The crucial step is to estimate the size of these atoms in Step 3. Here we use the method
from Fefferman [26] instead of the dual method used in [12] via a subtle inequality (4.10). Step 6 through Step
8 is devoted to proving the inequality (4.10), which when n = m = 1 was established in [13, 26]. To obtain
(4.10) here, in Step 6, we conclude its proof to the proofs of the inequalities (4.17) and (4.18), which are given,
respectively, in Step 7 and Step 8. To prove (4.17), a main technique used here is to scale the longer sides of
considered rectangles to 1 via the anisotropic dilation invariance of the Lebesgue measure so that we can obtain
a desired decreasing factor; see |$(Ri)− $(Pi)| in (4.17).

We now start to prove Lemma 4.6 by letting ψ be as in Proposition 2.16 and f ∈ Hp
w(Rn × Rm; !A ).

Step 1. Decompose f by the Calderón reproducing formula.
For k ∈ Z, set Ωk ≡ {x ∈ Rn × Rm : !Sψ(f)(x) > 2k} and

Rk ≡ {R ∈ R : |R ∩ Ωk| > |R|/2, |R ∩ Ωk+1| ≤ |R|/2}.

Then for each R = R1 ×R2 ∈ R, there exists a unique k ∈ Z such that R ∈ Rk . Thus,
⋃

R∈R
R =

⋃

k1, k2∈Z

⋃

R∈Rk1, k2

R =
⋃

k∈Z

⋃

R∈Rk

R. (4.4)

Moreover, for all R ∈ Rk and all x ∈ R, by Lemma 2.3(iv), we obtain

Ms(χΩk)(x) ≥ 1

bv1$(R1)+u1
1 bv2$(R2)+u2

2

∫

xR+B
(1)
v1#(R1)+u1

×B
(2)
v2#(R2)+u2

χΩk(y) dy

≥ b−2u1
1 b−2u2

2

|Ωk ∩R|
|R|

> b−c0u1
1 b−c0u2

2 ,

which implies that
⋃

R∈Rk

R ⊂ Ω̃k, (4.5)

where Ω̃k is as in (4.3).
Let θ(i) and ψ(i) be as in Proposition 2.14 such that each θ(i) has the vanishing moments up to degree s3 ≡

2 max(s1, s2) + 1, where si ≥ $(qw/p − 1)ζ−1
i, −& and (si + 1)ζi, − > 1, i = 1, 2. Set θ ≡ θ(1)θ(2) and

ψ ≡ ψ(1)ψ(2). Then by Proposition 2.16, Lemma 2.3(i) and (4.4), for all x ∈ Rn × Rm, we have

f(x) =
∑

k1, k2∈Z
θk1, k2 ∗ ψk1, k2 ∗ f(x)

=
∑

k1, k2∈Z

∑

m1∼v1k1+u1
m2∼v2k2+u2

∫

Rn×Rm

θm1, m2(x− y)ψm1, m2 ∗ f(y) dy

=
∑

k1, k2∈Z

∑

R∈Rk1, k2

∑

m1∼v1k1+u1
m2∼v2k2+u2

∫

R
θm1, m2(x− y)ψm1, m2 ∗ f(y) dy =
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=
∑

k∈Z

∑

R∈Rk

∫∫

R+

θt1, t2(x− y)ψt1, t2 ∗ f(y) dy dσ(t1) dσ(t2)

in S′(Rn × Rm), where R+ is as in (4.1) and σ is the counting measure on R.
Set λk ≡ 2k[w(Ωk)]1/p and ak ≡ λ−1

k

∑
R∈Rk

eR, where for all x ∈ Rn × Rm,

eR(x) ≡
∫∫

R+

θt1, t2(x− y)ψt1, t2 ∗ f(y) dy dσ(t1) dσ(t2). (4.6)

It is not hard to show that eR ∈ Ss1, s2(Rn × Rm). Let m
(
Ω̃k

)
be the set of all maximal dyadic rectangles

contained in Ω̃k. For each R ∈ Rk, by (4.5), there exists at least one maximal dyadic rectangle in m(Ω̃k)
containing R; if there exists only one such maximal dyadic rectangle, we then denote it by R∗; if there exist more
than one such cubes, we denote the one which has the “longest” side in the Rn “direction” by R∗. We point out
that R∗ is unique by the choice. For each P ∈ m

(
Ω̃k

)
, let

aP ≡ λ−1
k

∑

R∈Rk, R∗=P

eR, (4.7)

and then ak =
∑

P∈m(Ω̃k) aP in S′(Rn × Rm). Moreover, we rewrite f as

f =
∑

k∈Z
λkak =

∑

k∈Z
λk

∑

P∈m(Ω̃k)

aP =
∑

k∈Z
λk

∑

P∈m(Ω̃k)

∑

R∈Rk, R∗=P

λ−1
k eR (4.8)

in S′(Rn × Rm).
Then we have

∑

k∈Z
λp

k =
∑

k∈Z
2pkw(Ωk) ≤ ‖!Sψ(f)‖p

Lp
w(Rn×Rm) = ‖f‖p

Hp
w(Rn×Rm; !A )

.

By this and (4.8), to conclude the proof of Lemma 4.6, we must show that each ak is a fixed multiple of a
(p, q, !s )w-atom associated with Ωk.

Step 2. Show supp aP ⊂ P ′′ ≡ P ′′
1 × P ′′

2 .
If x ∈ supp aP , by (4.7), aP (x) 1= 0 implies that there exists R ∈ Rk such that R∗ = P and eR(x) 1= 0.

Recall that for all t1, t2 ∈ Z and (x1, x2) ∈ Rn × Rm,

θt1, t2(x1, x2) = b−t1
1 b−t2

2 θ(1)t1 (A−t1
1 x1)θ

(2)
t2 (A−t2

2 x2)

and supp θ(i) ⊂ B(i)
0 . If eR(x1, x2) 1= 0, by (4.6), there exists (y, (t1, t2)) ∈ R+ such that Ati

i (xi−yi) ∈ B(i)
0 .

Moreover, by (4.2), we have ti < vi[$(Ri) − 1] + ui + σi. Therefore, by Lemma 2.3(iv) and (2.1), we further
have

xi ∈ yi + B(i)
ti
⊂ xRi + B(i)

vi$(Ri)+ui
+ B(i)

vi($(Ri)−1)+ui+σi
⊂ xRi + B(i)

vi($(Ri)−1)+ui+2σi
≡ R′

i.

Thus,

supp eR ⊂ R′ ≡ R′
1 ×R′

2. (4.9)

Since Ri ⊂ Pi, by Lemma 2.3(iv) and (2.1), we obtain

R′
i = xRi + B(i)

vi($(Ri)−1)+ui+2σi
⊂ xRi − xPi + xPi + B(i)

vi($(Pi)−1)+ui+2σi

⊂ xPi + B(i)
vi$(Pi)+ui

+ B(i)
vi($(Pi)−1)+ui+2σi

⊂ xPi + B(i)
vi($(Pi)−1)+ui+3σi

≡ P ′′
i .

From this and (4.7), we obtain supp aP ⊂ P ′′ ≡ P ′′
1 × P ′′

2 .

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



410 Bownik, Baode Li, Dachun Yang, and Yuan Zhou: Weighted anisotropic product Hardy spaces

Step 3. Prove ‖ak‖Lq
w(Rn×Rm) ! [w(Ωk)]1/q−1/p.

To this end, we need the following key lemma which will be shown in Steps 6-8 bellow.
Lemma 4.7 Let θ, ψ be as in Proposition 2.16, G any set of dyadic rectangles in Rn × Rm, and eR as in

(4.6) for any R ∈ G. Then, there exists a positive constant C such that for all x ∈ Rn × Rm,
[
!Sθ

(
∑

R∈G
eR

)
(x)

]2

≤ C
∑

R∈G
[Ms(cRχR)(x)]2, (4.10)

where

cR =

{∫∫

R+

|ψt1, t2 ∗ f(y)|2 dy
dσ(t1) dσ(t2)

bt1
1 bt2

2

}1/2

.

Assuming Lemma 4.7 for the moment, since q > qw, we have w ∈ Aq( !A ). By this, Theorem 3.4, Lemma 4.7
with G = Rk and Proposition 2.10(ii), we have

‖ak‖Lq
w(Rn×Rm) ! λ−1

k

∥∥∥∥∥
!Sθ

(
∑

R∈Rk

eR

)∥∥∥∥∥
Lq

w(Rn×Rm)

! λ−1
k

∥∥∥∥∥∥

{
∑

R∈Rk

[Ms (cRχR)]2
}1/2

∥∥∥∥∥∥
Lq

w(Rn×Rm)

! λ−1
k

∥∥∥∥∥∥

[
∑

R∈Rk

c2
RχR

]1/2
∥∥∥∥∥∥

Lq
w(Rn×Rm)

.

Since for all R ∈ Rk, |R∩Ωk+1| ≤ |R|/2 and R ⊂ Ω̃k by Lemma 2.3(iv) and (4.5), then for all x ∈ R, we have

Ms

(
χR∩(Ω̃k\Ωk+1)

)
(x) " 1

|R|

∫

R
χR∩(Ω̃k\Ωk+1)

(y) dy " |R| − |R|/2
|R| " χR(x).

From this and Proposition 2.10(ii), it follows that

‖ak‖Lq
w(Rn×Rm) ! λ−1

k

∥∥∥∥∥

{
∑

R∈Rk

[
Ms

(
cRχR∩(Ω̃k\Ωk+1)

)]2}1/2
∥∥∥∥∥

Lq
w(Rn×Rm)

! λ−1
k

∥∥∥∥∥∥

(
∑

R∈Rk

c2
RχR∩(Ω̃k\Ωk+1)

)1/2
∥∥∥∥∥∥

Lq
w(Rn×Rm)

.

(4.11)

Moreover, fix x ∈ Rn × Rm. If R ∈ Rk and x ∈ R, then for any (y, t) ∈ R+, by Lemma 2.3(iv) and (2.1),
xi − yi ∈ B(i)

vi$(Ri)+ui+σi
⊂ B(i)

ti
, which together with Remark 3.5 and the disjointness of R+ implies that

∑

R∈Rk

c2
RχR∩(Ω̃k\Ωk+1)

(x)

=
∑

R∈Rk

∫∫

R+

|ψt1, t2 ∗ f(y)|2 dy
dσ(t1) dσ(t2)

bt1
1 bt2

2

χR∩(Ω̃k\Ωk+1)
(x)

!
[
!Sψ(f)(x)

]2
χΩ̃k\Ωk+1

(x)

! 22kχΩ̃k\Ωk+1
(x).

(4.12)

Notice that w
(
Ω̃k

)
! w(Ωk) by w ∈ Aq( !A ) and Proposition 2.10(ii). From these estimates, we deduce

‖ak‖Lq
w(Rn×Rm) ! 2−k[w(Ωk)]−1/p2k

[
w
(
Ω̃k

)]1/q ! [w(Ωk)]1/q−1/p. (4.13)
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Step 4. Prove
∑

P ∈m(Ω̃k) ‖aP ‖q
Lq

w(Rn×Rm)
! [w(Ωk)]1−q/p.

Similarly to the proof of (4.13), by Theorem 3.4, Lemma 4.7 with G = {R ∈ Rk : R∗ = P}, the monotonicity
of $q/2 with q ≥ 2, (4.12) and w

(
Ω̃k

)
! w(Ωk), we have

∑

P∈m(Ω̃k)

‖aP ‖q
Lq

w(Rn×Rm)

! λ−q
k

∑

P∈m(Ω̃k)

∥∥∥∥∥∥
!Sθ

(
∑

R∈Rk, R∗=P

eR

)∥∥∥∥∥∥

q

Lq
w(Rn×Rm)

! λ−q
k

∑

P∈m(Ω̃k)

∥∥∥∥∥∥

{
∑

R∈Rk, R∗=P

c2
RχR∩(Ω̃k\Ωk+1)

}1/2
∥∥∥∥∥∥

q

Lq
w(Rn×Rm)

! λ−q
k

∥∥∥!Sψ(f)χΩ̃k\Ωk+1

∥∥∥
q

Lq
w(Rn×Rm)

! 2−qk[w(Ωk)]−q/pw
(
Ω̃k

)
2q(k+1)

! [w(Ωk)]1−q/p.

(4.14)

Step 5. Show the vanishing moments of aP .
By (4.12) and w

(
Ω̃k

)
! w(Ωk), we have

λ−q
k

∫

Rn×Rm

{∫∫

⋃
R∈Rk

R+

|f ∗ ψt1, t2(y)|2χR∩(Ω̃k\Ωk+1)(x) dy
dσ(t1) dσ(t2)

bt1
1 bt2

2

}q/2

w(x) dx

= λ−q
k

∥∥∥∥∥∥

(
∑

R∈Rk

c2
RχR∩(Ω̃k\Ωk+1)

)1/2
∥∥∥∥∥∥

q

Lq
w(Rn×Rm)

! [w(Ωk)]1−q/p < ∞.

(4.15)

Take any N ∈ N and let Rk, N ≡ {R ∈ Rk : |$(Ri)| > N, i = 1, 2}. Replacing ak by λ−1
k

∑
R∈Rk, N

eR,
similarly to the estimate of (4.11), we obtain

∥∥∥∥∥∥
λ−1

k

∑

R∈Rk, N

eR

∥∥∥∥∥∥

q

Lq
w(Rn×Rm)

! λ−q
k

∥∥∥∥∥∥

(
∑

R∈Rk, N

c2
RχR∩(Ω̃k\Ωk+1)

)1/2
∥∥∥∥∥∥

q

Lq
w(Rn×Rm)

∼ λ−q
k

∫

Rn×Rm

{∫∫

⋃
R∈Rk, N

R+

|f ∗ ψt1, t2(y)|2χR∩(Ω̃k\Ωk+1)(x) dy
dσ(t1) dσ(t2)

bt1
1 bt2

2

}q/2

w(x) dx.

Then by (4.15) and Lebesgue dominated convergence theorem, we have
∥∥∥∥λ

−1
k

∑

R∈Rk, N

eR

∥∥∥∥
Lq

w(Rn×Rm)

−→ 0,

as N → ∞, which implies that aP = λ−1
k

∑
R∈Rk, R∗=P eR converges in Lq

w(Rn × Rm), and thus for al-
most everywhere x2 ∈ Rm, aP (·, x2) ∈ Lq

w(·, x2)
(Rn). Moreover, recall that θ has vanishing moments s1 ≥

$(qw/p − 1)ζ−1
1,−& in the first variable and so is eR. Let h1(x1) ≡ xα1χP ′′

1
(x1) with |α| ≤ s1 and q̃ ∈ R+
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such that q−1 + (q̃)−1 = 1. Obviously, h1 ∈ Lq̃
w−q̃/q(·, x2)

(Rn). Then by the fact that supp aP (·, x2) ⊂ P ′′
1 ,

(
Lq̃

w−q̃/q(·, x2)
(Rn)

)∗ = Lq
w(·, x2)

(Rn) and supp eR(·, x2) ⊂ P ′′
1 , we have

∫

Rn

aP (x1, x2)xα1 dx1 = 〈aP (·, x2), h1〉

=
∑

R∗=P, R∈Rk

〈eR(·, x2), h1〉

=
∑

R∗=P, R∈Rk

∫

Rn

eR(x1, x2)xα1
1 dx1

= 0.

Thus, aP has vanishing moments up to order s1 in the first variable. By symmetry, aP has vanishing moments
up to order s2 in the second variable.

Combining Steps 3 through 5 shows that ak is a fixed multiple of a (p, q, !s )w-atom associated with Ωk. To
finish the proof of Lemma 4.6, we still need to show Lemma 4.7.

Step 6. Proof of Lemma 4.7.
For P ∈ R, let P+ be as in (4.1). For all x ∈ Rn × Rm, by Remark 3.5, we have

[
!Sθ

(
∑

R∈G
eR

)
(x)

]2

=
∫∫

Γ(x)

∣∣∣∣∣θt1, t2 ∗
(
∑

R∈G
eR

)
(y)

∣∣∣∣∣

2

dy
dσ(t1) dσ(t2)

bt1
1 bt2

2

≤
∑

P∈R, P+∩Γ(x) ,=∅

∫∫

P+

[
∑

R∈G
|eR ∗ θt1, t2(y)|

]2

dy
dσ(t1) dσ(t2)

bt1
1 bt2

2

.

(4.16)

For any (y, t) ∈ P+ with P+ ∩ Γ(x) 1= ∅, we will prove in Step 7 that if P ′ ∩R′ = ∅, eR ∗ ϕt1, t2(y) ≡ 0, or
else,

|eR ∗ θt1, t2(y)| ! cRMs(χR)(x)
2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i . (4.17)

For any P ∈ R, we will show in Step 8 that

∑

R∈R, R′∩P ′ ,=∅

2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i ! 1. (4.18)

Assuming that (4.17) and (4.18) for the moment, for any (y, t) ∈ P+ and P+ ∩ Γ(x) 1= ∅, by (4.17), the
Cauchy-Schwarz inequality and (4.18), we obtain

(
∑

R∈G
|eR ∗ θt1, t2(y)|

)2

!
{

∑

R∈G, R′∩P ′ ,=∅

cRMs(χR)(x)
2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i

}2

!
∑

R∈G, R′∩P ′ ,=∅

c2
R[Ms(χR)(x)]2

2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i .

From this, (4.16) and (4.18), it follows that
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[
!Sθ

(
∑

R∈G
eR

)
(x)

]2

!
∑

P+∩Γ(x) ,=∅

∫∫

P+

∑

R∈G
R′∩P ′ (=∅

c2
R[Ms(χR)(x)]2

2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i dy

dσ(t1) dσ(t2)
bt1
1 bt2

2

!
∑

R∈G
c2
R[Ms(χR)(x)]2






∑

P∈R
R′∩P ′ (=∅

2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i






!
∑

R∈G
c2
R[Ms(χR)(x)]2,

which yields (4.10). To finish the proof of Lemma 4.7, we still need to show (4.17) and (4.18).

Step 7. Show (4.17).
Consider first the trivial case when R′ ∩ P ′ = ∅. In this case we claim that for (y, (t1, t2)) ∈ P+, we have

eR ∗ θt1, t2(y) = 0. By (4.9), we have

eR ∗ θt1, t2(y1, y2) =
∫∫

R′
eR(z1, z2)θt1, t2(y1 − z1, y2 − z2) dz1 dz2.

Recall that

θt1, t2(y1 − z1, y2 − z2) = b−t1
1 b−t2

2 θ(1)
(
A−t1

1 (y1 − z1)
)
θ(2)
(
A−t2

2 (y2 − z2)
)
,

and supp θ(i) ⊂ B(i)
0 for i = 1, 2. Moreover, since (y, (t1, t2)) ∈ P+, by (4.1), (4.2) and Lemma 2.3(iv), we

obtain yi ∈ Pi ⊂ xPi +B(i)
vi$(Pi)+ui

and ti < vi($(Pi)−1)+ui+σi for i = 1, 2. Therefore, if (y, (t1, t2)) ∈ P+

and θt1, t2(y1 − z1, y2 − z2) 1= 0, then by (2.1), we have

zi ∈ yi + B(i)
ti
⊂ xPi + B(i)

vi$(Pi)+ui
+ B(i)

vi($(Pi)−1)+ui+σi
⊂ xPi + B(i)

vi($(Pi)−1)+ui+2σi
= P ′

i .

Thus, for all (y, (t1, t2)) ∈ P+, we have

eR ∗ θt1, t2(y) =
∫

R′∩P ′
eR(z)θt1, t2(y − z) dz, (4.19)

and if P ′ ∩R′ = ∅, we obtain eR ∗ θt1, t2(y) = 0.
We now consider the non-trivial case R′∩P ′ 1= ∅. We shall establish (4.17) by considering the following four

subcases.
Case I. $(R1) ≥ $(P1) and $(R2) ≥ $(P2). Let i = 1, 2. We first observe that for any (y, (t1, t2)) ∈ P+ and

zi ∈ R′
i ≡ xRi + B(i)

vi[$(Ri)−1]+ui+2σi
, by ti ≥ vi$(Pi) + ui + σi, we have

z′i ≡ A−ti
i zi ∈ A−ti

i xRi + B(i)
vi[$(Ri)−1]+ui+2σi−ti

⊂ A−ti
i xRi + B(i)

vi[$(Ri)−1−$(Pi)]+σi
≡ R̄i.

Let R̄ ≡ R̄1 × R̄2. Then for any z′i ∈ R̄i, since −vi, σi > 0 and vi[$(Ri) − $(Pi)] ≤ 0, by (2.5) and (2.4), we
obtain

|z′i −A−ti
i xRi | = |A−vi+σi

i [Avi−σi
i (z′i −A−ti

i xPi)]| ! b
vi[$(Ri)−$(Pi)]ζi, −
i . (4.20)

On the other hand, by the Cauchy-Schwarz inequality, θ ∈ S(Rn × Rm) and Lemma 2.3(iv), we have

|eR(x)|2 ≤ c2
R

∫∫

R+

|θt1, t2(x1 − y1, x2 − y2)|2bt1
1 bt2

2 dy1 dy2 dσ(t1) dσ(t2)

! c2
R

∑

t1∼v1$(R1)+u1

∑

t2∼v2$(R2)+u2

|R|b−t1
1 b−t2

2

! c2
R.

(4.21)
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Let

P(i)
wi

(zi) =
∑

|αi|≤si

1
αi!
∂αiθ(i)(wi)(zi − wi)αi

be the Taylor polynomial of θ(i) about wi ∈ Rni of degree si. For any (y, (t1, t2)) ∈ P+, since eR ∈
Ss1, s2(Rn × Rm), θ = θ(1)θ(2) and θ(i) ∈ Ssi(Rni) for i = 1, 2, by (4.9), Taylor’s remainder theorem, (4.20)
and (4.21), we obtain

|eR ∗ θt1, t2(y)|

=

∣∣∣∣∣

∫

R̄
eR

(
At1

1 z1, At2
2 z2

) 2∏

i=1

θ(i)
(
A−ti

i yi − zi

)
dz

∣∣∣∣∣

=

∣∣∣∣∣

∫

R̄
eR

(
At1

1 z1, At2
2 z2

) 2∏

i=1

(
θ(i)
(
A−ti

i yi − zi

)
− P(i)

A
−ti
i yi−A

−ti
i xRi

(
A−ti

i yi − zi

))
dz

∣∣∣∣∣

≤
∫

R̄1×R̄2

∣∣eR

(
At1

1 z1, At2
2 z2

)∣∣
2∏

i=1

∣∣A−ti
i xRi − zi

∣∣si+1
dz1dz2

! cR

2∏

i=1

bvi[$(Ri)−$(Pi)]
i b

(si+1)vi[$(Ri)−$(Pi)]ζi, −
i .

(4.22)

Observing that since $(Pi) ≤ $(Ri) and P ′
i ∩ R′

i 1= ∅ for i = 1, 2, by (2.1) and Lemma 2.3(iv), it is easy to
see

R′
i ⊂ P ′′′

i ≡ xPi + B(i)
vi($(Pi)−1)+ui+4σi

, (4.23)

and hence R′ ⊂ P ′′′. Moreover, for any x ∈ Rn × Rm and Γ(x) ∩ P+ 1= ∅, by (2.1) and Lemma 2.3(iv), we
obtain

x ∈ P ′. (4.24)

By Lemma 2.3(iv), we have that bvi$(Ri)
i ∼ |R′

i| and bvi$(Pi)
i ∼ |P ′′′

i |. By this, (4.23), (4.24), Lemma 2.3(iv)
and Remark 2.8, we have that for any x ∈ Rn × Rm and Γ(x) ∩ P+ 1= ∅,

2∏

i=1

bvi[$(Ri)−$(Pi)]
i ! Ms(χR′)(x) ! Ms(χR)(x). (4.25)

Combining this and (4.22) yields (4.17).
Case II. $(R1) < $(P1) and $(R2) < $(P2). In this case, for any zi ∈ P ′

i = xPi + B(i)
vi[$(Pi)−1]+ui+2σi

, we
have

z′i ≡ A−vi$(Ri)−ui

i zi ∈ A−vi$(Ri)−ui

i xPi + B(i)
vi[$(Pi)−1−$(Ri)]+2σi

≡ P̃i. (4.26)

Let P̃ ≡ P̃1 × P̃2. For any z′i ∈ P̃i, since $(Pi) > $(Ri) and −vi, σi > 0, by (2.5) and (2.4), similarly to the
estimate of (4.20), we obtain

∣∣∣z′i −A−vi$(Ri)−ui

i xPi

∣∣∣ ! b
vi[$(Pi)−$(Ri)]ζi, −
i . (4.27)

Let ẽR(z) ≡ eR

(
Av1$(R1)+u1

1 z1, Av2$(R2)+u2
2 z2

)
. For any z ∈ Rn × Rm and (α1, α2) ∈ (Z+)n1 × (Z+)n2 ,

we have

|∂α1
1 ∂

α2
2 ẽR(z)| ! cR. (4.28)
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Indeed, for any γi ≥ vi$(Ri) + ui + σi and zi ∈ Rni , an application of chain rule yields
∥∥∥∂αi

[
θ(i)
(
Avi$(Ri)+ui−γi

i ·
)]∥∥∥

∞
! 1.

Hence (4.28) follows by the Cauchy-Schwarz inequality, (4.2) and Lemma 2.3(iv), similarly to the estimate of
(4.21),

|∂α1
1 ∂

α2
2 ẽR(z)|2 =

∣∣∣∣
∫∫

R+

∂α1
z1
∂α2

z2

[
θγ1, γ2

(
Av1$(R1)+u1

1 · −y1, Av2$(R2)+u2
2 · −y2

)]
(z1, z2)

× (ψγ1, γ2 ∗ f)(y) dy dσ(γ1) dσ(γ2)
∣∣∣∣
2

! c2
R

∫∫

R+

b−γ11 b−γ22 dy1 dy2 dσ(γ1) dσ(γ2)

! c2
R.

Without loss of generality we can assume that

b
(s1+1)v1($(P1)−$(R1))ζ1, −
1 ≤ b

(s2+1)v2($(P2)−$(R2))ζ2, −
2 , (4.29)

since the other case is dealt in the same way. Let

Pw1(z1, z2) =
∑

|α1|≤s3

∂α1
z1

ẽR(w1, z2)
α1!

(z1 − w1)α1

be the Taylor polynomial of ẽR(·, z2) in the first variable about w1 ∈ Rn1 and degree s3. For any (y, (t1, t2)) ∈
Γ(x)∩P+, by (4.19) and (4.26), the change of variables, and our hypothesis that each θ(i) has vanishing moments
up to degree s3 = 2 max(s1, s2) + 1, we have

|eR ∗ θt1, t2(y)| =

∣∣∣∣∣

∫

P̃

{
ẽR(z1, z2)− P

A
−v1#(R1)−u1
1 xP1

(z1, z2)
}

×
2∏

i=1

θ(i)ti

(
yi −Avi$(Ri)+ui

i zi

)
bvi$(Ri)+ui

i dz

∣∣∣∣∣

! cR

∫

P̃

∣∣∣z1 −A−v1$(R1)−u1
1 xP1

∣∣∣
s3+1 2∏

i=1

∣∣∣θ(i)ti

(
yi −Avi$(Ri)+ui

i zi

)∣∣∣ bvi$(Ri)
i dz

! cRb
(s3+1)v1[$(P1)−$(R1)]ζ1, −
1

2∏

i=1

bvi[$(Pi)−$(Ri)]
i b−ti+vi$(Ri)

i

! cR

2∏

i=1

b
(si+1)vi($(Pi)−$(Ri))ζi, −
i .

Indeed, the first estimate is a consequence of Taylor’s remainder theorem and (4.28), the second follows from
(4.27), and the last follows from (4.29) and bti

i ∼ bvi$(Pi)
i for i = 1, 2.

Since $(R1) < $(P1) and $(R2) < $(P2), by (4.23) and symmetry, we obtain P ′ ⊂ R′′′. From this, (4.24),
Remark 2.8 and Lemma 2.3(iv), it follows that for x ∈ P ′, 1 = Ms(χR′′′)(x) ! Ms(χR)(x); see also (4.25).
Then, combining this and (4.29) yields (4.17).

Case III. $(R1) ≥ $(P1) and $(R2) < $(P2). In this case define

e(2)
R (z1, z2) ≡ eR

(
z1, Av2$(R2)+u2

2 z2

)
.
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For any z ∈ Rn × Rm and α2 ∈ (Z+)n2 , similarly to the estimate of (4.28), we obtain
∣∣∣∂α2

2 e(2)
R (z1, z2)

∣∣∣ ! cR. (4.30)

Let R̄1 ≡ A−t1
1 xR1 + B(1)

v1[$(R1)−1]+u1+2σ1−t1
and P̃2 ≡ A−v2$(R2)−u2

2 xP2 + B(2)
v2[$(P2)−1−$(R2)]+2σ2

. Let P(1)
w1

be the Taylor polynomial of θ(1) about w1 ∈ Rn1 of degree s1, and let

Pw2(z1, z2) =
∑

|α2|≤s2

∂α2
z2

e(2)
R (z1, w2)
α2!

(z2 − w2)α2

be the Taylor polynomial of e(2)
R (z1, ·) in the second variable about w2 ∈ Rn2 of degree s2. For any (y, (t1, t2)) ∈

Γ(x) ∩ P+, by (4.19), the change of variables, and vanishing moment conditions, we have

eR ∗ θt1, t2(y)

=
∫

R̄1×P̃2

e(2)
R

(
At1

1 z1, z2

)
θ(1)
(
A−t1

1 y1 − z1

)
θ(2)t2

(
y2 −Av2$(R2)+u2

2 z2

)
bv2$(R2)+u2
2 dz

= bv2$(R2)+u2
2

∫

R̄1×P̃2

(
e(2)

R

(
At1

1 z1, z2

)
− P

A
−v2#(R2)−u2
2 xP2

(
At1

1 z1, z2

))

×
(
θ(1)
(
A−t1

1 y1 − z1

)
− P(1)

A
−t1
1 y1−A

−t1
1 xR1

(
A−t1

1 y1 − z1

))

× θ(2)t2

(
y2 −Av2$(R2)+u2

2 z2

)
dz1 dz2.

The last equation is a consequence of Fubini’s theorem with the inside integration over the z2 variable. Conse-
quently, Taylor’s remainder theorem, (4.20) for i = 1, and (4.27) for i = 2 yields

|eR ∗ θt1, t2(y)| ! cRbv1($(R1)−$(P1))
1 bv2[$(P2)−$(R2)]

2 b−t2+v2$(R2)
2

2∏

i=1

b
(si+1)vi|$(Pi)−$(Ri)|ζi, −
i

! cRbv1[$(R1)−$(P1)]
1

2∏

i=1

b
(si+1)vi|$(Pi)−$(Ri)|ζi, −
i .

(4.31)

Moreover, observing that $(R1) ≥ $(P1) and $(R2) < $(P2), by (4.23) and symmetry, we obtain that R′
1 ⊂

P ′′′
1 and P ′

2 ⊂ R′′′
2 . From this, bvi$(Ri)

i ∼ |R′
i|, bvi$(Pi)

i ∼ |P ′′′
i |, (4.24), Remark 2.8 and Lemma 2.3(iv), it

follows that

bv1[$(R1)−$(P1)]
1 ∼ |R′

1|
|P ′′′

1 | ∼
|R′

1 ∩ P ′′′
1 |

|P ′′′
1 |

|R′′′
2 ∩ P ′

2|
|P ′

2|
! |R′′′

1 ∩ P ′′′
1 |

|P ′′′
1 |

|R′′′
2 ∩ P ′′′

2 |
|P ′′′

2 |

∼ |R′′′ ∩ P ′′′|
|P ′′′| ! Ms(χR′′′)(x) ! Ms(χR)(x);

see also (4.25). Combining this and (4.31) yields (4.17).
Case IV . Finally, the case $(R1) < $(P1) and $(R2) ≥ $(P2) follows from Case III by the symmetry. This

completes the proof of the crucial estimate (4.17).

Step 8. Verify (4.18).
Let 3E be the cardinality of the set E. For i = 1, 2, by (4.23) and Lemma 2.3, we have

3
{
Ri ∈ Q(i) : R′

i ∩ P ′
i 1= ∅, |Ri| ≤ |Pi|, $(Ri) = ki

}
! |P ′′′

i |
|Ri|

∼ b−vi|ki−$(Pi)|
i

and

3
{
Ri ∈ Q(i) : R′

i ∩ P ′
i 1= ∅, |Ri| ≥ |Pi|, $(Ri) = ki

}
= 1.
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Then by this and (si + 1)ζi,− − 1 > 0, we obtain

∑

R′∩P ′ ,=∅

2∏

i=1

b
(si+1)vi|$(Ri)−$(Pi)|ζi,−
i !

2∏

i=1

∑

ki∈Z

∑

#(Ri)=ki
R′

i∩P ′
i (=∅

b
(si+1)vi|$(Ri)−$(Pi)|ζi, −
i

!
2∏

i=1

∑

ki∈Z
b
vi[(si+1)ζi,−−1]|ki−$(Pi)|
i

! 1,

which shows (4.18) and hence, completes the proof of Lemma 4.6.

We now prove the converse of Lemma 4.6.

Lemma 4.8 Let the assumptions be as in Theorem 4.5. Then there exists a positive constant C such that for
all f ∈ Hp, q, !s

w (Rn × Rm; !A ) ∩ S′
∞, w(Rn × Rm), ‖f‖Hp, q, !s

w (Rn×Rm; !A ) ≤ C‖f‖Hp
w(Rn×Rm; !A ).

To prove Lemma 4.8, we need a variant of the Journé’s covering lemma established in [37,45]; see also [7] for
some different variants. We first recall some notation and definitions. Let Ω ⊂ Rn × Rm be an open set. Denote
by mi(Ω) the family of all dyadic rectangles R ⊂ Ω which are maximal in the Rni “direction”, where i = 1, 2.
Recall that n1 = n and n2 = m. Let η0 ∈ (0, 1). For R = R1×R2 ∈ m1(Ω), let R̂2 ≡ R̂2(R1) be the “longest”
dyadic cube containing R2 such that

∣∣(R1 × R̂2

)
∩ Ω
∣∣ > η0

∣∣R1 × R̂2

∣∣; and for R = R1 × R2 ∈ m2(Ω), let
R̂1 ≡ R̂1(R2) be the “longest” dyadic cube containing R1 such that

|(R̂1 ×R2) ∩ Ω| > η0|R̂1 ×R2|. (4.32)

For Ri ∈ Q(i) and ji ∈ N, we denote by (Ri)ji the unique dyadic cube in Q(i) containing Ri with $((Ri)ji) =
$(Ri) − ji. Obviously, (Ri)0 = Ri. Also, let h : [0,∞) → [0,∞) be an increasing function such that∑∞

j=0 jh
(
C0δ

j
0

)
< ∞, where C0 ≡ max

{
b2u1−1
1 , b2u2−1

2

}
and δ0 ≡ max{bv1

1 , bv2
2 }.

The following result is a variant of the well-known Journé’s covering lemma in [45] and is adapted to expansive
dilations.

Lemma 4.9 Let Ai be a dilation on Rni for i = 1, 2, w ∈ A∞( !A ) and qw be as in (2.7). Let η0 ∈ (0, 1).
Then there exists a positive constant C, only depending on n, m, η0 and Cq, !A, n, m(w) with q ∈ (qw,∞), such
that for all open sets Ω ⊂ Rn × Rm with w(Ω) < ∞,

∑

R=R1×R2∈m1(Ω)

w(R)h
(
|R2|
|R̂2|

)
≤ Cw(Ω) (4.33)

and
∑

R=R1×R2∈m2(Ω)

w(R)h
(
|R1|
|R̂1|

)
≤ Cw(Ω). (4.34)

P r o o f. Since the proofs for (4.33) and (4.34) are similar, we only show (4.34).
Let R1 ∈ Q(1) such that R1 × R2 ∈ m2(Ω) for certain R2. Notice that for any given R1 ∈ Q(1), there may

exist more than one P2 ∈ Q(2) such that R1 × P2 ∈ m2(Ω). Based on this, for any j1 ∈ N, we define

AR1, j1 ≡
{
P2 ∈ Q(2) : R1 × P2 ∈ m2(Ω), R̂1 ≡ R̂1(P2) = (R1)j1−1

}
. (4.35)

If AR1, j1 1= ∅, for each R2 ∈ AR1, j1 , then by Lemma 2.3(iv), we have

xR1 + B(1)
v1$(R1)−u1

⊂ R1 ⊂ xR1 + B(1)
v1$(R1)+u1

and xR̂1
+ B(1)

v1$(R̂1)−u1
⊂ R̂1 ⊂ xR̂1

+ B(1)

v1$(R̂1)+u1
. From this, it follows that

b−2u1
1 bv1(j1−1)

1 ≤ |R1|
|R̂1|

≤ b2u1
1 bv1(j1−1)

1 . (4.36)
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Let C̃ ≡ b2u1−1
1 . By (4.36) and the disjointness of {R2 : R1 ×R2 ∈ m2(Ω)}, we have

∑

R=R1×R2∈m2(Ω)

w(R)h

(
|R1|
|R̂1|

)

=
∑

{R1: R1×R2∈m2(Ω)}

∑

j1∈N, AR1, j1 ,=∅

∑

R2∈AR1, j1

w(R1 ×R2)h

(
|R1|
|R̂1|

)

≤
∑

j1∈N
h
(
C̃bv1j1

1

) ∑

{R1: R1×R2∈m2(Ω), AR1, j1 ,=∅}

w



R1 ×
⋃

R2∈AR1, j1

R2



 .

Set ER1 ≡
⋃

R1×R2⊂Ω R2. For any j1 ∈ N and any given R1 ∈ Q(1) satisfying AR1, j1 1= ∅, if x2 ∈
⋃

R2∈AR1, j1
R2, then there exists a dyadic cube R2 ∈ Q(2) such that R1 × R2 ∈ m2(Ω), x2 ∈ R2 and R̂1 =

(R1)j1−1 by (4.35). By (4.32) and the maximality of R̂1, we have
∣∣((R1)j1−1×R2

)
∩Ω
∣∣ > η0

∣∣(R1)j1−1×R2

∣∣
and
∣∣((R1)j1 × R2

)
∩ Ω
∣∣ ≤ η0

∣∣(R1)j1 × R2

∣∣, which implies that
∣∣((R1)j1 × R2

)
∩
(
(R1)j1 × E(R1)j1

)
| ≤

η0
∣∣(R1)j1 ×R2

∣∣, namely,
∣∣(R1)j1 ×

(
R2 ∩E(R1)j1

)∣∣ ≤ η0
∣∣(R1)j1 ×R2

∣∣. Therefore,
∣∣R2 ∩E(R1)j1

∣∣ ≤ η0|R2|,
and hence,

∣∣∣R2 ∩
(
E(R1)j1

)!∣∣∣ > (1− η0)|R2|, where
(
E(R1)j1

)! ≡
(
Rm \E(R1)j1

)
. From this and R2 ⊂ ER1 ,

it follows that for x2 ∈ R2, M(2)
(
χER1\E(R1)j1

)
(x2) > 1 − η0, where M(2) is the Hardy-Littlewood maximal

operator with respect to the second variable, namely, on Rm. Thus, for any j1 ∈ N, we obtain

⋃

R2∈AR1, j1

R2 ⊂ K ≡
{

x2 ∈ Rm : M2

(
χER1\E(R1)j1

)
(x2) > 1− η0

}
. (4.37)

Since w ∈ A∞( !A ) implies that there exists q ∈ (1, ∞) such that w ∈ Aq( !A ). Then by Definition 2.9, for
almost all x1 ∈ Rn, we obtain that w(x1, ·) ∈ Aq(A2) and the weighted constants are uniformly bounded. By
this, (4.37) and Proposition 2.5(ii), we have

w
(
R1 ×

(⋃
R2∈AR1, j1

R2

))
≤ w(R1 ×K) ! w

(
R1 × (ER1 \ E(R1)j1

)
)
. (4.38)

For i = 1, . . . , j1, by the disjointness of sets
{
(R1)i−1 ×

(
E(R1)i−1 \ E(R1)i

)
⊂ Ω : R1 ∈ Q(1)

}
, we have

∑

{R1: R1×R2∈m2(Ω), AR1, j1 ,=∅}

w
(
(R1)i−1 ×

(
E(R1)i−1 \ E(R1)i

))
≤ w(Ω).

By this, R1 ⊂ (R1)i−1 for i ∈ N and (4.38), we obtain

∑

R=R1×R2∈m2(Ω)

w(R)h
(
|R1|
|R̂1|

)

!
∑

j1∈N
h
(
C̃bv1j1

1

) ∑

{R1: R1×R2∈m2(Ω), AR1, j1 ,=∅}

w
(
R1 ×

(
ER1 \ E(R1)j1

))

!
∑

j1∈N
h
(
C̃bv1j1

1

) ∑

{R1: R1×R2∈m2(Ω), AR1, j1 ,=∅}

j1∑

i=1

w
(
(R1)i−1 ×

(
E(R1)i−1 \ E(R1)i

))

! w(Ω)
∑

j1∈N
j1h
(
C̃bv1j1

1

)

! w(Ω),

which completes the proof of Lemma 4.9.
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P r o o f o f L e m m a 4.8. We prove Lemma 4.8 by the following 7 steps.

Step 1. Reduce to the uniform estimates on atoms.
Let ψ be as in Proposition 2.16. It suffices to prove that for all (p, q, !s )w-atoms a,

‖!Sψ(a)‖Lp
w(Rn×Rm) ! 1. (4.39)

In fact, for any f ∈ Hp, q, !s
w (Rn × Rm; !A ), there exist {λk}k∈N ⊂ C and (p, q, !s )w-atoms {ak}k∈N such

that f =
∑

k∈N λkak in S′(Rn × Rm) and
∑

k∈N |λk|p ! ‖f‖p

Hp, q, !s
w (Rn×Rm; !A )

. By this, ψ ∈ S(Rn × Rm),
Minkowski’s inequality, Fatou’s lemma, and the monotonicity of the $p-norm with p ∈ (0, 1] and (4.39), we have

‖!Sψ(f)‖p
Lp

w(Rn×Rm)
≤
∑

k∈N
λp

k‖!Sψ(a)‖p
Lp

w(Rn×Rm)
! ‖f‖p

Hp, q, !s
w (Rn×Rm; !A )

.

Let us now show (4.39) by Step 2 through Step 7.

Step 2. Estimate !Sψ(a) on a “finite” expansion of the support of a.
Assume that a is a (p, q, !s )w-atom associated with an open set Ω satisfying w(Ω) < ∞ as in Definition 4.2.

Let Ω̃ be as in (4.3) and η0 ≡ bv1−5σ1
1 bv2−5σ2

2 . Obviously, η0 ∈ (0, 1). For each R = R1 × R2 ∈ m(Ω̃), let
R̂1 be the “longest” dyadic cube containing R1 such that

∣∣(R̂1 × R2

)
∩ Ω̃
∣∣ > η0

∣∣R̂1 × R2

∣∣. For Ω̃, we define
Ω̃′ ≡

{
x ∈ Rn × Rm : Ms

(
χΩ̃

)
(x) > b−2u1

1 b−2u2
2 η0

}
. Similarly, we define Ω̃′′ and Ω̃′′′ by replacing Ω̃ in the

definition of Ω̃′, respectively, by Ω̃′ and Ω̃′′. Obviously,
(
R̂1 × R2

)
⊂ Ω̃′. For any given R̃1 × R2 ∈ m1

(
Ω̃′)

and R̃1 ⊃ R1, let R̂2 be the “longest” dyadic cube containing R2 such that
∣∣(R̃1 × R̂2

)
∩ Ω̃′∣∣ > η0

∣∣R̃1 × R̂2

∣∣.
Set R̄∗ ≡ R̄∗

1 × R̄∗
2 ≡

(
xR1 + B(1)

v1($(R̂1)−1)+u1+5σ1

)
×
(
xR2 + B(2)

v2($(R̂2)−1)+u2+5σ2

)
. Then we have

w




⋃

R∈m(Ω̃)

R̄∗



 ! w(Ω). (4.40)

In fact, to prove (4.40), let R0 ≡
(
xR̂1

+ B(1)

v1$(R̂1)−u1

)
×
(
xR̂2

+ B(2)

v2$(R̂2)−u2

)
. By Lemma 2.3(iv) and (2.1),

R0 ⊂
(
R̂1× R̂2

)
! R̄∗ and R0 ⊂ Ω̃′′ which is deduced from the fact that R̃1× R̂2 ⊂ Ω̃′′ and R̂1 ⊂ R̃1. For any

R ∈ m
(
Ω̃
)

and x ∈ R̄∗,

Ms

(
χΩ̃′′

)
(x) ≥ 1

|R̄∗|

∫

R̄∗
χΩ̃′′(y) dy >

|R0|
|R̄∗|

= b−2u1
1 b−2u2

2 η0,

which implies that
⋃

R∈m(Ω̃) R̄∗ ⊂ Ω̃′′′. From this, w ∈ Aq( !A ) and the boundedness of Ms on Lq
w(Rn × Rm)

(see Proposition 2.10(ii)), it follows that

w




⋃

R∈m(Ω̃)

R̄∗



 ≤ w
(
Ω̃′′′) ! w(Ω).

Thus, (4.40) holds.
Then for w ∈ A∞( !A ), p ∈ (0, 1] and q ∈ [2, ∞) ∩ (qw, ∞), by Hölder’s inequality, Theorem 3.4, (4.40)

and Definition 4.2(II), we obtain

∫∫

∪R∈m(Ω̃)R̄
∗
[!Sψ(a)(x)]pw(x) dx ≤



w




⋃

R∈m(Ω̃)

R̄∗








1−p/q

‖!Sψ(a)‖p
Lq

w(Rn×Rm)

! [w(Ω)]1−p/q‖a‖p
Lq

w(Rn×Rm)

! 1.

(4.41)
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Step 3. Estimate !Sψ(a) on the complement of a “finite” expansion of the support of a.
Set R̄1 ≡ xR1 + B(1)

v1($(R1)−1)+u1+5σ1
and R̄2 ≡ xR2 + B(2)

v2($(R2)−1)+u2+5σ2
. Then by a =

∑
R∈m(Ω̃) aR in

S′(Rn × Rm) as in Definition 4.2 and the monotonicity of the $p-norm with p ∈ (0, 1], we obtain
∫∫

(⋃R∈m(Ω̃) R̄∗)!
[!Sψ(a)(x)]pw(x) dx

≤
∑

R∈m(Ω̃)

∫∫

(R̄∗)!
[!Sψ(aR)(x)]pw(x) dx

≤
∑

R∈m(Ω̃)

[∫∫

(R̄∗
1)!×R̄2

+
∫∫

(R̄∗
1)!×(R̄2)!

+
∫∫

R̄1×(R̄∗
2)!

+
∫∫

(R̄1)!×(R̄∗
2)!

]
[!Sψ(aR)(x)]pw(x) dx

≡
∑

R∈m(Ω̃)

(K1 + K2 + K3 + K4).

(4.42)

Step 4. Pointwise estimate of !Sψ(aR) on (R̄1)! × R̄∗
2.

Let γ1(R) ≡ $(R̂1) − $(R1), R̄∗
1, k1

≡ xR1 + B(1)

v1($(R̂1)−1−k1)+u1+5σ1
for k1 ∈ N, and R̄∗

1,0 ≡ R̄∗
1. We will

prove in this step that for all k1 ∈ Z+ and x = (x1, x2) with x1 ∈ R̄∗
1, k1+1 \ R̄∗

1, k1
and x2 ∈ R̄2,

!Sψ(aR)(x) ! b
[k1−γ1(R)]v1(s1+1)ζ1, −
1 b−v1($(R̂1)−k1)

1

∫

R′′
1

Sψ(2)(aR(z1, ·))(x2) dz1, (4.43)

where Sψ(2) is the Lusin-area function with respect to the second variable and s1 as in Definition 4.2.
Let L(R1) ≡ v1[$(R1)−1]+u1 +3σ1. We now estimate aR ∗ψj1, j2(x− y) by considering two cases, where

x is as in (4.43), j1, j2 ∈ Z and y ∈ B(1)
j1

×B(2)
j2

.

Case I. j1 > L(R1). For any z1 ∈ R′′
1 ≡ xR1 + B(1)

L(R1)
, we have

z′1 ≡ A−j1
1 z1 ∈ A−j1

1 R′′
1 = A−j1

1 xR1 + B(1)
L(R1)−j1

≡ R̃′′
1 .

Then, by j1 > L(R1) and (2.4), we have
∣∣z′1 −A−j1

1 xR1

∣∣ ! b
[L(R1)−j1]ζ1, −
1 . (4.44)

Let

Pw1(z1) ≡
∑

|α1|≤s1

1
α1!
∂α1ψ(1)(w1)(z1 − w1)α1

be the Taylor polynomial of ψ(1) about w1 ∈ Rn1 of degree s1. Since supp aR ⊂ R′′ and aR has vanishing
moments up to order s1 for the first variable, by Taylor’s remainder theorem, we have

|aR ∗ ψj1, j2(x− y)|

=
∣∣∣∣
∫

R′′
1

(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)

(z1)b−j1
1 ψ(1)

(
A−j1

1 (x1 − y1 − z1)
)

dz1

∣∣∣∣

=
∣∣∣∣
∫

R̃′′
1

(
aR ∗2 ψ

(2)(x2 − y2)
)(

Aj1
1 z1

) [
ψ(1) − P

A
−j1
1 (x1−y1−xR1)

] (
A−j1

1 (x1 − y1)− z1

)
dz1

∣∣∣∣

! D
∫

R̃′′
1

∣∣∣
(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)(

Aj1
1 z1

)∣∣∣
∣∣(A−j1

1 xR1 − z1

)∣∣s1+1
dz1,

where

D ≡ sup
|α1|=s1+1

sup
ξ1∈A

−j1
1 xR1+B

(1)
L(R1)−j1

∣∣∣∂α1ψ(1)
(
A−j1

1 (x1 − y1)− ξ1
)∣∣∣ .
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Since A−j1
1 x1 −A−j1

1 xR1 1∈ B(1)
L(R1)+v1[γ1(R)−k1]+2σ1−j1

, by (2.2), we know

Aj1
1 x1 − ξ1 1∈ B(1)

L(R1)+v1[γ1(R)−k1]+σ1−j1
.

Thus, if j1 ≤ L(R1) + v1[γ1(R) − k1], by A−j1
1 y1 ∈ B(1)

0 and (2.2), we have A−j1
1 (x1 − y1) − ξ1 1∈

B(1)
L(R1)+v1[γ1(R)−k1]−j1

. This together with ψ(1) ∈ S(Rn) and (2.3) yields that

D ! sup
ξ1∈A

−j1
1 xR1+B(1)

L(R1)−j1

[
1 + ρ1

(
A−j1

1 (x1 − y1)− ξ1
)]−N1

!
[
1 + bL(R1)+v1(γ1(R)−k1)−j1

1

]−N1

(4.45)

for any given N1 > 0. The same estimate also holds trivially for j1 > L(R1) + v1[γ1(R) − k1] since D ! 1.
Combining (4.44) through (4.45) yields

|aR ∗ ψj1, j2(x− y)| ! I(j1)
∫

R′′
1

∣∣∣
(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)

(z1)
∣∣∣ dz1, (4.46)

where I(j1) ≡ b−j1
1

[
1 + bL(R1)+v1(γ1(R)−k1)−j1

1

]−N1

b
(s1+1)[L(R1)−j1]ζ1, −
1 . Observe also that by choosing

N1 > s1 + 2, which implies that N1 > (s1 + 1)ζ1,− + 1, we have

∑

j1>L(R1)

I(j1)2 ! b−2v1($(R̂1)−k1)
1 b

2[k1−γ1(R)]v1(s1+1)ζ1, −
1 . (4.47)

Case II. j1 ≤ L(R1). In this case, for x1 − xR1 1∈ B(1)
L(R1)+v1(γ1(R)−k1)+2σ1

and z1 − xR1 ∈ B(1)
L(R1)

, since

−v1, −γ1(R), k1 ≥ 0 and j1 ≤ L(R1), by (2.2), we obtain A−j1
1 (x1−z1) 1∈ B(1)

L(R1)+v1(γ1(R)−k1)+σ1−j1
. From

this, A−j1
1 y1 ∈ B(1)

0 and (2.2), we deduce A−j1
1 (x1 − y1 − z1) 1∈ B(1)

L(R1)+v1(γ1(R)−k1)−j1
, and hence,

ρ1
(
A−j1

1 (x1 − y1 − z1)
)
≥ bL(R1)+v1(γ1(R)−k1)−j1

1 . (4.48)

Choosing N1 ≥ s1 + 2, we have b1b
(s1+1)ζ1, −
1 ≤ bN1

1 . Since suppaR ⊂ R′′ and ψ(1) ∈ S(Rn), by (4.48), we
have

|aR ∗ ψj1, j2(x− y)|

=

∣∣∣∣∣

∫

R′′
1

(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)

(z1)b−j1
1 ψ(1)

1

(
A−j1

1 (x1 − y1 − z1)
)

dz1

∣∣∣∣∣

! b−j1
1 b−N1[L(R1)+v1(γ1(R)−k1)−j1]

1

∫

R′′
1

∣∣∣
(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)

(z1)
∣∣∣ dz1

! I(j1)
∫

R′′
1

∣∣∣
(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)

(z1)
∣∣∣ dz1,

(4.49)

where I(j1) ≡ b−v1($(R̂1)−k1)
1 b

−[L(R1)+v1(γ1(R)−k1)−j1](s1+1)ζ1, −
1 . Observe also that we have

∑

j1≤L(R1)

[I(j1)]2 ! b−2v1($(R̂1)−k1)
1 b

2[k1−γ1(R)]v1(s1+1)ζ1, −
1 . (4.50)

Therefore, (4.43) follows by (4.46), (4.47), (4.49), (4.50), and Minkowski’s inequality
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!Sψ(aR)(x)

!






(
∑

j1∈Z
[I(j1)]2

)
∑

j2∈Z
b−j2
2

∫

B
(2)
j2

[∫

R′′
1

∣∣∣
(
aR ∗2 ψ

(2)
j2

(x2 − y2)
)

(z1)
∣∣∣ dz1

]2

dy2






1/2

! b−v1($(R̂1)−k1)
1 b

[k1−γ1(R)]v1(s1+1)ζ1, −
1

∫

R′′
1

Sψ(2)(aR(z1, ·))(x2) dz1.

Step 5. Estimate for K1.
Since s1 ≥ $(qw/p− 1)ζ−1

1, −&, there exists r ∈ (qw, q] such that p(s1 + 1)ζ1,− + p− r > 0 and w ∈ Ar( !A ).
Recall that M(1) denotes the Hardy-Littlewood maximal operator on Rn. Then, by (4.43), suppaR ⊂ R′′,
w ∈ Ar( !A ), the Lr

w(Rn)-boundedness of M(1), Theorem 3.2 and Hölder’s inequality, we obtain

b
−[k1−γ1(R)]v1(s1+1)ζ1, −
1

[∫

R̄∗
1, k1+1\R̄∗

1, k1

∫

R̄2

[!Sψ(aR)(x)]rw(x) dx

]1/r

! b−v1($(R̂1)−k1)
1

{∫

R̄∗
1, k1+1\R̄∗

1, k1

∫

R̄2

[∫

R′′
1

Sψ(2)(aR(z1, ·))(x2) dz1

]r

w(x) dx

}1/r

!
{∫

R̄∗
1, k1+1\R̄∗

1, k1

∫

R̄2

[
M(1)

(
Sψ(2)(aR)(x2)

)
(x1)

]r
w(x) dx

}1/r

!
{∫

Rn

∫

R̄2

(
Sψ(2)(aR(x1, ·))(x2)

)r
w(x) dx

}1/r

!
{∫

R′′
|aR(x)|rw(x) dx

}1/r

! ‖aR‖Lq
w(Rn×Rm)[w(R)]1/r−1/q .

From this, v1 < 0, p(s1 +1)ζ1,−+p−r > 0 and w ∈ Ar( !A ), Hölder’s inequality and Lemma 2.3(iv), it follows
that

K1 =
∞∑

k1=0

∫

R̄∗
1, k1+1\R̄∗

1, k1

∫

R̄2

[!Sψ(aR)(x)]pw(x) dx

≤
∞∑

k1=0

[
w
(
R̄∗

1, k1+1 × R̄2

)]1−p/r

[∫

R̄∗
1, k1+1\R̄∗

1, k1

∫

R̄2

[!Sψ(aR)(x)]rw(x) dx

]p/r

!
∞∑

k1=0

bv1(γ1(R)−k1)(r−p)
1 [w(R)]1−p/rb

p[k1−γ1(R)]v1(s1+1)ζ1, −
1 ‖aR‖p

Lq
w(Rn×Rm)

[w(R)]p/r−p/q

! [w(R)]1−p/q‖aR‖p
Lq

w(Rn×Rm)b
v1γ1(R)[r−p−p(s1+1)ζ1, −]
1 .

(4.51)

Step 6. Estimate for
∑

R∈m(Ω̃)(K1 + K2).

Observe that the integral in K2 is on the domain (R̄1)! × (R̄∗
2)! and the integral in K1 is on the domain

(R̄1)! × R̄∗
2. Thus, applying the ideas used in the estimate of K1 on the first variable to both variables of K2, we

also have

K2 ! [w(R)]1−p/q‖aR‖p
Lq

w(Rn×Rm)
b
v1γ1(R)[r−p−p(s1+1)ζ1, −]
1 .

Take h1(t) ≡ ta1 for t ∈ (0, 1) and a1 ≡ p + p(s1 + 1)ζ1, − − r. Then, by a1 > 0, we obtain that∑
j≥0 jh1(tj)q/(q−p) < ∞. By Lemma 2.3(iv), we have

b
v1γ1(R)[r−p−p(s1+1)ζ1, −]
1 ∼ h1

(
|R1|
|R̂1|

)
.
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From this, Definition 4.2(II), Hölder’s inequality, Lemma 4.9 and Proposition 2.10(ii) with w ∈ Aq( !A ), it follows
that

∑

R∈m(Ω̃)

(K1 + K2) !
∑

R∈m(Ω̃)

‖aR‖p
Lq

w(Rn×Rm)
[w(R)]1−p/qh1

(
|R1|
|R̂1|

)

!





∑

R∈m(Ω̃)

‖aR‖q
Lq

w(Rn×Rm)






p/q


∑

R∈m(Ω̃)

w(R)h1

(
|R1|
|R̂1|

) q
q−p






1−p/q

! [w(Ω)]p/q(1−q/p)
[
w
(
Ω̃
)]1−p/q

! 1.

Step 7. Estimate for
∑

R∈m(Ω̃)(K3 + K4).

To estimate K3 and K4, notice that if I(1)
i ×R2 ∈ m

(
Ω̃
)

for i = 1, 2, then either I1(1) = I2(2) or I1(1)∩I2(1) =
∅. Recall that for any R1 × R2 ∈ m

(
Ω̃
)
, then R̂2 = R̂2(R̃1), where R̃1 × R2 ∈ m1

(
Ω̃′) and R̃1 ⊃ R1. Thus,

we have

∑

R∈m(Ω̃)

w(R)h2

(
|R2|
|R̂2|

) q
q−p

≤
∑

R̃1×R2∈m1(Ω̃′)

∑

R=R1×R2∈m(Ω̃)
R1⊂R̃1

w(R)h2

(
|R2|
|R̂2|

) q
q−p

≤
∑

R̃1×R2∈m1(Ω̃′)

w(R̃1 ×R2)h2

(
|R2|
|R̂2|

) q
q−p

,

where h2(t) ≡ ta2 for t ∈ (0, 1) and a2 ≡ p + p(s2 + 1)ζ2, − − r. From this, Lemma 4.9 and an argument
similar to the estimate for

∑
R∈m(Ω̃)(K1 + K2), we deduce

∑
R∈m(Ω̃)(K3 + K4) ! 1. This together with (4.41)

implies (4.39) and thus completes the proof of Lemma 4.8.

Lemma 4.10 Let the assumptions be as in Theorem 4.5. Then Hp, q, !s
w (Rn × Rm; !A ) ⊂ S′

∞, w(Rn × Rm).

To prove Lemma 4.10, for i = 1, 2 and Ni ∈ Z+, we let !N ≡ (N1, N2). Set

SNi(Rni) ≡
{
ϕ(i) ∈ S(Rni) :

∥∥ϕ(i)
∥∥

SNi (Rni )
≡ sup

xi∈Rni

sup
|αi|≤Ni

∣∣∂αiϕ(i)(xi)
∣∣[1 + ρi(xi)]Ni ≤ 1

}
,

and denote by S !N (Rn × Rm) the collection of all ϕ such that ϕ(x) = ϕ(1)(x1)ϕ(2)(x2) for all x = (x1, x2) ∈
Rn × Rm and all ϕ(i) ∈ SNi(Rni).

For any f ∈ S′(Rn × Rm) and x ∈ Rn × Rm, we define the grand maximal function M !N(f)(x) of f by

M !N (f)(x) ≡ sup
ϕ∈S !N (Rn×Rm)

sup
k1, k2∈Z

|f ∗ ϕk1, k2(x)|.

Notice that if N1, N2 ≥ 2, then for all locally integrable functions f and x ∈ Rn × Rm, M !N(f)(x) !
Ms(f)(x). Thus if w ∈ Ap( !A ) with p ∈ (1, ∞), then M !N is bounded on Lp

w(Rn × Rm). Moreover, we
have the following proposition.

Proposition 4.11 Let the assumptions be as in Theorem 4.5. If Ni ≥ si +2 for i = 1, 2, then M !N is bounded
from Hp, q, !s

w (Rn × Rm; !A ) to Lp
w(Rn × Rm).

Then Lemma 4.10 follows from Proposition 4.11.

P r o o f o f L e m m a 4.10. Fix ϕ ∈ S(Rn × Rm). Let ϕy(x) = ϕ(x + y) for all x ∈ Rn × Rm and y ∈
B(1)

0 × B(2)
0 . Notice that there exists a positive constant C, depending on ϕ, such that Cϕy ∈ S !N (Rn × Rm)
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for all y ∈ B(1)
0 × B(2)

0 . If a is (p, q, !s )w-atom, then for j1, j2 ∈ N and w ∈ Aq( !A ), by Proposition 4.11 and
Proposition 2.10(i), we have

|a ∗ ϕj1, j2 (x)|p ! inf
y∈B

(1)
j1

×B
(2)
j2

[M !N(a)(x − y)]p

! 1

w(x + B(1)
j1

×B(2)
j2

)

∫

x+B(1)
j1

×B(2)
j2

[M !N (a)(y)]pw(y) dy

≤ Cx, wb
−j1

q

1 b
− j2

q

2 ,

where Cx, w is a positive constant independent of j1 and j2, and the atom a. If f =
∑

k∈Z λkak in S′(Rn × Rm),
where ak is (p, q, !s )w-atom and

∑
k∈Z |λk|p < ∞, then

|f ∗ ϕj1, j2(x)|p ≤ Cx, wb
−j1

q

1 b
− j2

q

2

∑

k∈Z
|λk|p −→ 0

as j1, j2 →∞, which completes the proof of Lemma 4.10.

Finally we prove Proposition 4.11.

P r o o f o f P r o p o s i t i o n 4.11. The proof of Proposition 4.11 is similar to that of Lemma 4.8. By a reason
similar to that used in Step 1 of the proof of Lemma 4.8, it suffices to show that ‖M !N(a)‖Lp

w(Rn×Rm) ! 1 for
all (p, q, !s )w-atoms a.

Assuming that a =
∑

R∈m(Ω̃) aR is a (p, q, !s )w-atom associated with open set Ω with w(Ω) < ∞ as in
Definition 4.2. Let all the notation be as in the proof of Lemma 4.8. Similarly to the proof of (4.41), using the
Lq

w(Rn × Rm)-boundedness of M !N (see Proposition 2.10(ii)), we have
∫

⋃
R∈m(Ω̃) R̄∗

[M !N (a)(x)]pw(x) dx ! 1.

And similarly to the proof of (4.42), we write
∫∫

(⋃R∈m(Ω̃) R̄∗)!
[M !N (a)(x)]pw(x) dx

≤
∑

R∈m(Ω̃)

[∫∫

(R̄∗
1)!×R̄2

+
∫∫

(R̄∗
1)!×(R̄2)!

+
∫∫

R̄1×(R̄∗
2)!

+
∫∫

(R̄1)!×(R̄∗
2)!

]
[M !N (aR)(x)]pw(x) dx

≡
∑

R∈m(Ω̃)

(J1 + J2 + J3 + J4).

For any ψ ∈ S !N (Rn × Rm), x1 ∈ R̄∗
1, k1+1 \ R̄∗

1, k1
with k1 ∈ Z+, x2 ∈ R̄2 and y ∈ B(1)

j1
× B(2)

j2
with

j1, j2 ∈ Z, similarly to the proofs of Case I and Case II in the proof of Lemma 4.8, we have that
(I) if j1 > L(R1), then |aR ∗ ψj1, j2(x− y)| has the same upper estimate as in (4.46) and

sup
j1>L(R1)

b−j1
1

(
1 + bL(R1)+v1(γ1(R)−k1)−j1

1

)−N1

b
(s1+1)[L(R1)−j1]ζ1, −
1

! b−v1($(R̂1)−k1)
1 b

[k1−γ1(R)]v1(s1+1)ζ1, −
1 .

Here, unlike the calculation of (4.47), we only need N1 ≥ s1 + 2;
(II) if j1 ≤ L(R1), then |aR ∗ ψj1, j2 | has the same upper estimate as in (4.49) and

sup
j1≤L(R1)

b−v1($(R̂1)−k1)
1 b

−[L(R1)+v1(γ1(R)−k1)−j1](s1+1)ζ1, −
1

! b−v1($(R̂1)−k1)
1 b

[k1−γ1(R)]v1(s1+1)ζ1, −
1 .
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Then similarly to the estimate of (4.43), by N1 ≥ s1 + 2, we have

M !N (aR)(x) ! b−v1($(R̂1)−k1)
1 b

[k1−γ1(R)]v1(s1+1)ζ1, −
1

∫

R′′
1

M(2)
N2

(aR(z1, ·))(x2) dz1,

where

M(2)
N2

(g)(x2) = sup
ψ(2)∈SN2(Rn2)

sup
k2∈Z

∣∣∣
(
ψ(2)

k2
∗ g
)

(x2)
∣∣∣ .

Observing that for s ∈ (1, ∞) and ν ∈ As(A2), M(2)
N2

is bounded on Ls
ν(Rn). Then similarly to the estimate of

(4.51), we obtain

J1 ! [w(R)]1−p/q‖aR‖p
Lq

w(Rn×Rm)
b
v1γ1(R)[r−p−p(s1+1)ζ1, −]
1 .

Also, similarly to the proof in Step 6 of the proof of Lemma 4.8, we have

J2 ! [w(R)]1−p/q‖aR‖p
Lq

w(Rn×Rm)
b
v1γ1(R)[r−p−p(s1+1)ζ1, −]
1 ,

and
∑

R∈m(Ω̃)(J1 + J2) ! 1. Finally, similarly to the proof in Step 7 of the proof of Lemma 4.8, we obtain∑
R∈m(Ω̃)(J3 + J4) ! 1, which completes the proof of Proposition 4.11.

Remark 4.12 Let w ∈ A∞( !A ) and (p, q, s)w be an admissible triplet. By Proposition 4.11 and Theo-
rem 4.11, for Ni ≥ si + 2 with i = 1, 2, we obtain the boundedness of M !N from Hp

w(Rn × Rm; !A ) to
Lp

w(Rn × Rm).

5 Weighted finite atomic Hardy spaces

In this section we establish finite atomic decomposition of the anisotropic product Hardy spaces.

Definition 5.1 Let w ∈ A∞( !A ), qw be as in (2.7) and (p, q, !s )w be an admissible triplet as in Definition 4.2.
Let a be a (p, q, !s )w-atom associated with an open set Ω. We say a is a (p, q, !s )∗w-atom if a ∈ S(Rn × Rm),
Ω is bounded, and there exist only finitely many R ∈ m

(
Ω̃
)

such that aR 1= 0.
The weighted finite Hardy space Hp, q, !s

w, fin (Rn × Rm; !A) is defined to be the space of all functions f =
∑k

j=1 λjaj , where k ∈ N, {aj}k
j=1 are (p, q, !s )∗w-atoms and {λj}k

j=1 ⊂ C. The norm of f is defined by

‖f‖Hp, q, !s
w, fin (Rn×Rm; !A) ≡ inf

{(∑k
j=1 |λj |p

)1/p
}

, where the infimum is taken over all the above finite decom-

positions of f .

The main result of this section is as follows.

Theorem 5.2 Let w ∈ A∞( !A ), qw be as in (2.7), (p, q, !s )w be an admissible triplet as in Definition 4.2.
Then,

(i) Hp, q, !s
w, fin (Rn × Rm; !A) is dense in Hp

w(Rn × Rm; !A ).
(ii) Moreover, if !s ≡ (s1, s2) satisfies

s1 > [(qw/p)− 1 + (qw/p)(v2/v1)(logb1 b2)]ζ−1
1,− − 1 and (5.1)

s2 > [(qw/p)− 1 + (qw/p)(v1/v2)(logb2 b1)]ζ−1
2,− − 1, (5.2)

then ‖f‖Hp, q, !s
w, fin (Rn×Rm; !A) ∼ ‖f‖Hp

w(Rn×Rm; !A ) for all f ∈ Hp, q, !s
w,fin (Rn × Rm; !A).

Remark 5.3 Notice that comparing with the non-product case (see [6,33,40]), we need additional assumptions
(5.1) and (5.2) on vanishing moments of atoms in Theorem 5.2(ii). This is due to the fact that the product Hardy
space is not just a product of one-parameter Hardy spaces.

To prove Theorem 5.2, we need the following auxiliary lemma, which generalizes Lemma 2 and Lemma 4 in
Appendix (III) of [29]. Lemma 5.4 below can be also deduced with some effort from [5, Lemma 6.3].
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Lemma 5.4 Let A be a dilation on Rn, s ∈ Z+ and M ∈ [0, ∞).
(i) If g ∈ S(Rn) and ψ ∈ Ss(Rn), then there exists a positive constant C such that for all k ∈ Z \ N and all

x ∈ Rn, |(g ∗ ψk)(x)| ≤ Cbk(s+1)ζ− [1 + ρ(x)]−M .
(ii) If g ∈ Ss(Rn) and ψ ∈ S(Rn), then there exists a positive constant C such that for all k ∈ Z+ and all

x ∈ Rn, |(g ∗ ψk)(x)| ≤ Cb−k[(s+1)ζ−+1][1 + b−kρ(x)]−M .

P r o o f. To prove (i), let k ∈ Z \ N. Since ψ ∈ Ss(Rn), for all x ∈ Rn, we have

(g ∗ ψk)(x) =

[∫

ρ(y)≤ρ(x)/(2bσ)
+
∫

ρ(y)>ρ(x)/(2bσ)

]
ψk(y)



g(x− y)−
∑

|α|≤s

∂αg(x)
α!

(−y)α



 dy

≡ I1 + I2.

For I1, since g ∈ S(Rn), by Taylor’s remainder theorem, we have
∣∣∣∣∣∣
g(x− y)−

∑

|α|≤s

1
α!
∂αg(x)(−y)α

∣∣∣∣∣∣
! |y|s+1 sup

|α|=s+1, ρ(z)≤ρ(x)/(2bσ)
|∂αg(x− z)|

! |y|s+1 sup
ρ(z)≤ρ(x)/(2bσ)

[1 + ρ(x− z)]−M .

This together with ρ(x− z) ≥ ρ(x)/bσ − ρ(z) ≥ ρ(x)/(2bσ), (2.3), (2.4), k ≤ 0 and ψ ∈ Ss(Rn), yields

|I1| ! [1 + ρ(x)]−M

{∫

ρ(y)≤1
ρ(y)(s+1)ζ− |ψk(y)| dy +

∫

ρ(y)>1
ρ(y)(s+1)ζ+ |ψk(y)| dy

}

! bk(s+1)ζ− [1 + ρ(x)]−M

{∫

Rn

[
ρ(y)(s+1)ζ− + ρ(y)(s+1)ζ+

]
|ψ(y)| dy

}

! bk(s+1)ζ− [1 + ρ(x)]−M .

For I2, if ρ(x) > 1, since g ∈ S(Rn) and k ≤ 0, by Taylor’s remainder theorem, (2.3) and (2.4), we have

|I2| !
∫

ρ(y)>ρ(x)/(2bσ)
|y|s+1 sup

|α|=s+1
‖∂αg‖L∞(Rn)|ψk(y)| dy

!
∫

ρ(x)/(2bσ)<ρ(y)<1
ρ(y)(s+1)ζ− |ψk(y)| dy +

∫

ρ(x)/(2bσ)<ρ(y), ρ(y)>1
ρ(y)(s+1)ζ+ |ψk(y)| dy

! bk(s+1)ζ−

∫

ρ(y)>b−kρ(x)/(2bσ)

[
ρ(y)(s+1)ζ− + ρ(y)(s+1)ζ+

]
|ψ(y)| dy

! bk(s+1)ζ−ρ(x)−M .

By this and ρ(x) > 1, we have |I2| ! bk(s+1)ζ− [1 + ρ(x)]−M . For ρ(x) ≤ 1, similarly to the above estimate, we
obtain |I2| ! bk(s+1)ζ− ! bk(s+1)ζ− [1+ ρ(x)]−M . Combining above estimates for I1 and I2 completes the proof
Lemma 5.4(i).

To prove (ii), we observe the identity g ∗ ψk = (g−k ∗ ψ)k . Thus, if k ∈ Z+, then (i) with the roles of g and
ψ exchanged yields

|g ∗ ψk(x)| = |(g−k ∗ ψ)k(x)| ! b−k(s+1)ζ−
[
1 + ρ

(
A−kx

)]−M
b−k,

which completes the proof of Lemma 5.4.

By Lemma 5.4 and an argument similar to the proof of [11, Lemma 2.2], we have the following estimates. We
leave the details to the reader.
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Lemma 5.5 For i = 1, 2, let Ai be a dilation on Rni , let si ∈ Z+ and let Mi ∈ [0, ∞). Suppose that
f ∈ Ss1, s2(Rn × Rm), ϕ(1) ∈ Ss1(Rn), ϕ(2) ∈ Ss2 (Rn) and ϕt1, t2(x) ≡ ϕ(1)

t1 (x1)ϕ
(2)
t2 (x2) for all t1, t2 ∈ Z

and x = (x1, x2) ∈ Rn × Rm. Then there exists C > 0 such that |(ϕt1, t2 ∗ f)(x)|/C is bounded for all
x ∈ Rn × Rm by:

2∏

i=1

b
ti(si+1)ζi,−
i [1 + ρi(xi)]−Mi if t1, t2 ≤ 0,

b
t1(s1+1)ζ1,−
1 b

−t2[(s2+1)ζ2,−+1]
2 [1 + ρ1(x1)]−M1

[
1 + b−t2

2 ρ2(x2)
]−M2 if t1 ≤ 0, t2 ≥ 0,

b
−t1[(s1+1)ζ1,−+1]
1 b

t2(s2+1)ζ2,−
2

[
1 + b−t1

1 ρ1(x1)
]−M1 [1 + ρ2(x2)]−M2 if t1 ≥ 0, t2 ≤ 0,

2∏

i=1

[
1 + b−ti

i ρi(xi)
]−Mib

−ti[(si+1)ζi,−+1]
i if t1, t2 ≥ 0.

We now turn to the proof of Theorem 5.2.

P r o o f o f T h e o r e m 5.2. We first show (i). Let the notation be as in the proof of the Lemma 4.6. For
f ∈ Hp

w(Rn × Rm; !A ), by (4.8), we have

f =
∑

k∈Z
λkak =

∑

k∈Z
λk

∑

P∈m(Ω̃k)

aP =
∑

k∈Z
λk

∑

P∈m(Ω̃k)

∑

R∈Rk, R∗=P

λ−1
k eR (5.3)

in S′(Rn × Rm). For N, L ∈ N and k ∈ Z, let Rk,L ≡ {R ∈ Rk : |$(Ri)| ≤ L, i = 1, 2} and fN, L ≡∑
|k|≤N λkak, L, where ak, L ≡

∑
P∈m(Ω̃k) aP, L, aP, L ≡

∑
R∈Rk,L, R∗=P λ

−1
k eR if {R ∈ Rk, L : R∗ = P} 1=

∅ and otherwise aP, L = 0.
On the other hand, notice that Ωk is a bounded set. In fact, let Mi > 0 satisfying that (si + 1)ζi,− −Mi > 0.

Observing that 1 + ρi(xi) ≤ bti
i + ρi(xi) ∼ bti

i + ρi(yi) for yi ∈ xi + B(i)
ti

and ti ∈ Z+, by Lemma 5.5, we have

[!Sψ(f)(x1, x2)]2

!
{∫ 0

−∞

∫ 0

−∞

∫

y1∈x1+B
(1)
t1

∫

y2∈x2+B
(2)
t2

b
2t1(s1+1)ζ1,−
1 b

2t2(s2+1)ζ2,−
2

[1 + ρ1(y1)]2M1 [1 + |ρ2(y2)]2M2

+
∫ ∞

0

∫ 0

−∞

∫

y1∈x1+B
(1)
t1

∫

y2∈x2+B
(2)
t2

b
−2t1(s1+1)ζ1,−−2t1
1 b

2t2(s2+1)ζ2,−
2

[1 + b−t1
1 ρ1(y1)]2M1 [1 + |ρ2(y2)]2M2

+
∫ 0

−∞

∫ ∞

0

∫

y1∈x1+B
(1)
t1

∫

y2∈x2+B
(2)
t2

b
2t1(s1+1)ζ1,−
1 b

−2t2(s2+1)ζ2,−−2t2
2

[1 + ρ1(y1)]2M1 [1 + b−t2
2 ρ2(y2)]2M2

+
∫ ∞

0

∫ ∞

0

∫

y1∈x1+B(1)
t1

∫

y2∈x2+B(2)
t2

b
−2t1(s1+1)ζ1,−−2t1
1 b

−2t2(s2+1)ζ2,−−2t2
2

[1 + b−t1
1 ρ1(y1)]2M1 [1 + b−t2

2 ρ2(y2)]2M2

}
dy1 dy2

dσ(t1)
bt1
1

dσ(t2)
bt2
2

! [1 + ρ1(x1)]−2M1 [1 + ρ2(x2)]−2M2 .

Thus for any k ∈ Z, Ωk is a bounded set in Rn × Rm and so is Ω̃k.
Therefore, for any N ∈ N and k = −N, . . . , N , ak, L is a (p, q, !s )∗w-atom associated with the bounded open

set Ωk and thus fN, L ∈ Hp, q, !s
w, fin (Rn × Rm; !A).

Observe that for any ε > 0, there exists an integer Nε > 0 such that
(∑

|k|>Nε
|λk|p

)1/p
< ε. Moreover, for

k = −Nε, . . . , Nε, similarly to the estimate for (4.11), we have

‖ak − ak, L‖Lq
w(Rn×Rm) ! λ−1

k

∥∥∥∥∥∥∥∥




∑

P∈m(Ω̃k)

∑

R/∈Rk, L
R∗=P

c2
RχR∩(Ωk\Ωk+1)





1/2
∥∥∥∥∥∥∥∥

Lq
w(Rn×Rm)

,
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which together with (4.12) implies that ‖ak − ak, L‖Lq
w(Rn×Rm) → 0 as L → ∞. Similarly to the estimate of

(4.14), we also have
∑

P∈m(Ω̃k) ‖aP − aP, L‖q
Lq

w(Rn×Rm) → 0 as L → ∞. Thus there exists an integer Lε > 0

such that (2(Nε+1))1/p

ε (ak − ak, Lε) is a (p, q, s)w-atom. Therefore,

‖f − fNε, Lε‖Hp
w(Rn×Rm; !A )

!





∑

|k|>Nε

|λk|p





1/p

+

∥∥∥∥∥∥

∑

|k|≤Nε

λk(ak − ak, Lε)

∥∥∥∥∥∥
Hp

w(Rn×Rm; !A )

! ε+ ‖f‖Hp
w(Rn×Rm; !A )




∑

|k|≤Nε

‖ak − ak, Lε‖
p

Hp
w(Rn×Rm; !A )




1/p

! ε
(
1 + ‖f‖Hp

w(Rn×Rm; !A )

)
,

which gives (i).
Now we prove (ii). From Definition 5.1 and Theorem 4.5, we automatically deduce ‖f‖Hp

w(Rn×Rm; !A ) !
‖f‖Hp, q, !s

w, fin (Rn×Rm; !A). Thus, to show (ii), it suffices to prove that for all f ∈ Hp, q, !s
w, fin (Rn × Rm; !A),

‖f‖Hp, q, !s
w, fin (Rn×Rm; !A) ! ‖f‖Hp

w(Rn×Rm; !A ).

Let f ∈ Hp, q, !s
w,fin (Rn × Rm; !A). Since f ∈ S(Rn × Rm), by Lemma 2.15, we know that (5.3) also holds

in Lq(Rn × Rm) and hence, pointwise. Assume that supp f ⊂ B(1)
h1

× B(2)
h2

for certain h1, h2 ∈ Z. By
homogeneity, we further assume that ‖f‖Hp

w(Rn×Rm; !A ) ≡ ‖!Sψ(f)‖Lp
w(Rn×Rm) = 1, whereψ is as in Proposition

2.16.
Let i = 1, 2. For certain given N ∈ N which will be determined later, set Di ≡ −viN + ui + σi; then we

choose certain M0 ∈ N, depending on N , such that di ≡ vi(M0N − 1) + ui + σi satisfies di(si + 1)ζi,− ≤
−Di[1 + (si + 1)ζi, −]. We first assume that N is large enough such that Di > hi. Then, by the definition of R+

in (4.1), we know that there exist finite dyadic rectangles R, whose collection is denoted by RN , such that

R+ ∩
{

B(1)
D1+σ1

×B(2)
D2+σ2

× [d1, D1)× [d2, D2)
}
1= ∅. (5.4)

From now on, we adopt the notation in the proof of Lemma 4.6 again. Observe that for each R ∈ RN , there
exists a unique k ∈ Z such that R ∈ Rk, and we denote by JN the set of all such k’s.

Let ãP, N ≡ λ−1
k

∑
R∈Rk∩RN , R∗=P eR if {R ∈ Rk ∩ RN : R∗ = P} 1= ∅ and otherwise ãP, N = 0. Let

ãk,N ≡
∑

P∈m(Ω̃k) ãP, N . Then similarly to the proof of Lemma 4.6, we know that ãk, N is a (p, q, !s )w-atom
which is a finite linear combination of particles ãP, N . Obviously, ãP, N is also a finite linear combination of
eR and hence is smooth. This further implies that ãk, N is a (p, q, !s )∗w-atom. Let fN ≡

∑
k∈JN

λkãk, N and

gN ≡ f − fN . Then fN ∈ Hp, q, !s
w, fin (Rn × Rm; !A) and ‖fN‖p

Hp, q, !s
w, fin (Rn×Rm; !A)

≤
∑

k∈Z |λk|p ! 1.

So it remains to prove gN ∈ Hp, q, !s
w, fin (Rn × Rm; !A) and ‖gN‖p

Hp, q, !s
w, fin (Rn×Rm; !A)

! 1. In fact, we will prove that

there exists a positive constant C̃ , independent of f and N , such that C̃gN is a (p, q, s)∗w-atom, which implies
‖gN‖p

Hp, q, !s
w, fin (Rn×Rm; !A)

! 1.

Obviously, gN ∈ Ss1, s2(Rn × Rm). Noticing that if R ∈ RN , then by (5.4), $(Ri) ∈ (−N, M0N). By this,
(2.1) and Lemma 2.3(iv), we further obtain

R′
i ≡ xRi + B(i)

vi($(Ri)−1)+ui+2σi
⊂ xRi + B(i)

Di+σi
,

which together with R ⊂ R′ and (5.4) yields that (xRi + B(i)
Di+σi

) ∩ B(i)
Di+σi

1= ∅. Then by (4.9) and (2.1), we
obtain

supp fN ⊂
⋃

R∈RN

R′ ⊂
(
B(1)

D1+3σ1
×B(2)

D2+3σ2

)
.
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From this, supp f ⊂ B(1)
h1

×B(2)
h2

and Di > hi, it follows that supp gN ⊂
(
B(1)

D1+3σ1
×B(2)

D2+3σ2

)
.

We now claim that there exists an N0 ∈ N, depending on f, w, m, n, A1 and A2, such that for all N ≥ N0,

‖gN‖Lq
w(Rn×Rm) ≤

[
w
(
B(1)

D1
×B(2)

D2

)]1/q−1/p
. (5.5)

Now we prove that there exists a positive constant C̃, independent of f and N , such that C̃gN is a (p, q, !s )∗w-
atom.

In fact, by Lemma 2.3(i), there exist certain Pi ∈ Q(i) and xi, 0 ∈ Rni satisfying that xi, 0 ∈ Pi ∩B(i)
Di+σi

and
vi$(Pi)+ ui < Di + σi ≤ vi[$(Pi)− 1]+ ui. For this P , let P ′′ be as in Definition 4.2(I). Then P ≡ P1×P2 ⊂
B(1)

D1+3σ1
×B(2)

D2+3σ2
⊂ P ′′. To see this, for any xi ∈ Pi, since xi, 0 ∈ Pi ∩B(i)

Di+σi
and vi$(Pi)+ui < Di +σi,

using Lemma 2.3(iv) and (2.1), we obtain

xi ∈ xPi + B(i)
vi$(Pi)+ui

⊂ xi, 0 + B(i)
vi$(Pi)+ui

+ B(i)
vi$(Pi)+ui

⊂ B(i)
Di+σi

+ B(i)
Di+σi

+ B(i)
Di+σi

⊂ B(i)
Di+3σi

,

which implies that P ⊂ B(1)
D1+3σ1

× B(2)
D2+3σ2

. For any xi ∈ B(i)
Di+3σi

, since Di + σi ≤ vi[$(Pi)− 1] + ui and

xi, 0 ∈ Pi ∩B(i)
Di+σi

, by Lemma 2.3(iv) and (2.1), we have

xi − xPi ∈ B(i)
Di+3σi

+ xi, 0 + B(i)
vi$(Pi)+ui

⊂ B(i)
vi[$(Pi)−1]+ui+2σi

+ B(i)
vi[$(Pi)−1]+ui+σi

⊂ B(i)
vi[$(Pi)−1]+ui+3σi

,

which implies that B(1)
D1+3σ1

×B(2)
D2+3σ2

⊂ P ′′.

Let Ω ≡ B(1)
D1+3σ1

× B(2)
D2+3σ2

and Ω̃ be as in (4.3). Obviously, Ω is an open bounded set. Noticing that
P ⊂ Ω, then we have P ⊂ Ω̃. Thus, there exists a dyadic rectangle P 2 ∈ m

(
Ω̃
)

such that P ⊂ P 2. Moreover,
since P ⊂ P 2, similarly to the proof of Ω ⊂ P ′′, we have that Ω ⊂ (P 2)′′. For R ∈ m

(
Ω̃
)
, let aR = gN if

R = P 2 and aR = 0 if R ∈ m
(
Ω̃
)

and R 1= P 2. By the vanishing moment satisfied by gN and (5.5) together
with Proposition 2.10(i), we know that C̃gN is a (p, q, s)∗w-atom associated with Ω for certain positive constant
C̃ independent of f and N .

Finally, we establish the estimate (5.5). Since f ∈ S(Rn × Rm), by (4.4), (5.3) and
∣∣∣∣∣

{
B(1)

D1+σ1
×B(2)

D2+σ2
× [d1, D1)× [d2, D2)

}
\
(
⋃

R∈RN

R+

)∣∣∣∣∣ = 0,

together with the observation that for two different rectangles R and S, then R+ ∩ S+ = ∅, we have that for all
x ∈ B(1)

D1+3σ1
×B(2)

D2+3σ2
,

|gN (x)| =

∣∣∣∣∣
∑

R∈R
eR(x)−

∑

R∈RN

eR(x)

∣∣∣∣∣

!
[∫

[d1, D1)!×R

∫

Rn×Rm

+
∫

R×[d2, D2)!

∫

Rn×Rm

+
∫

[d1, D1)×[d2, D2)

∫

Rn×
(

B
(2)
D2+σ2

)! +
∫

[d1, D1)×[d2, D2)

∫
(

B
(1)
D1+σ1

)!
×Rm

]

×|θt1, t2(x− y)(ψt1, t2 ∗ f)(y)| dy dσ(t1) dσ(t2)
≡ J1 + J2 + J3 + J4.

Recall that θ = θ(1)θ(2) ∈ Ss1, s2(Rn × Rm) with supp θ(1) ⊂ B(1)
0 and supp θ(2) ⊂ B(2)

0 . Notice that if
xi − yi ∈ B(i)

ti
, then for all ti ∈ Z, we have

1 + b−ti
i ρ(xi) ∼ 1 + b−ti

i ρ(yi). (5.6)
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Let Mi > 1 for i = 1, 2. Since f, ψ = ψ(1)ψ(2), θ = θ(1)θ(2) ∈ Ss1, s2(Rn × Rm), by Lemma 5.5 and (5.6) ,
we have

J2 !
(∫ ∞

0

b
−t1[(s1+1)ζ1,−+1]
1

[1 + b−t1
1 ρ1(x1)]M1

dσ(t1) +
∫ 0

−∞

b
t1(s1+1)ζ1, −
1

[1 + ρ1(x1)]M1
dσ(t1)

)

×
(∫ d2

−∞

b
t2(s2+1)ζ2,−
2

[1 + ρ2(x2)]M2
dσ(t2) +

∫ ∞

D2

b
−t2[(s2+1)ζ2,−+1]
2

[1 + b−t2
2 ρ2(x2)]M2

dσ(t2)

)

! b
d2(s2+1)ζ2,−
2 + b

−D2[(s2+1)ζ2,−+1]
2

! b
−D2[1+(s2+1)ζ2,−]
2 .

The last inequality is a consequence of our stipulation that d2(s2 + 1)ζ2,− ≤ −D2[1 + (s2 + 1)ζ2,−]. More-
over, by the assumptions (5.1), (5.2) and that (p, q, !s )w is an admissible triplet, there exists κ > 0 such that
(si + 1)ζi,− + 1− (qw + κ)/p > 0 for i = 1, 2, and

b∗1 ≡ b
v1[(s1+1)ζ1, −+1−(qw+κ)/p]
1 b−v2(qw+κ)/p

2 < 1, (5.7)

b∗2 ≡ b−v1(qw+κ)/p
1 b

v2[(s2+1)ζ2, −+1−(qw+κ)/p]
2 < 1. (5.8)

Thus, by (5.8), supp gN ⊂ B(1)
D1+3σ1

×B(2)
D2+3σ2

and Proposition 2.10(i) with w ∈ Aqw+κ( !A ), if we choose N
large enough, we further obtain

‖J2‖Lq
w(Rn×Rm) ≤ C

[
w
(
B(1)

D1
×B(2)

D2

)]1/q
b
−D2[1+(s2+1)ζ2,−]
2

≤ C
[
w
(
B(1)

D1
×B(2)

D2

)]1/q−1/p
(b∗2)

N

≤
[
w
(
B(1)

D1
×B(2)

D2

)]1/q−1/p
,

where C is a positive constant, which is the desired estimate.

For J4, observe that if y1 ∈
(
B(1)

D1+σ

)!
, t1 ≤ D1 and θ(1)t1 (x1 − y1) 1= 0, then by (2.2), we have

x1 ∈ y1 + B(1)
t1 ⊂

(
B(1)

D1

)!
(5.9)

and thus ρ1(x1) ≥ bD1
1 . Let M1 ∈ (1, (s1 + 1)ζ1,− + 1) and M2 > 1. Then by (5.9) and an argument similar to

the estimate of J2, we have

J4 !
[ ∫ D1

0

b
−t1[(s1+1)ζ1,−+1]
1

[1 + b−t1
1 ρ1(x1)]M1

dσ(t1) +
∫ 0

d1

b
t1(s1+1)ζ1, −
1

[1 + ρ1(x1)]M1
dσ(t1)

]

×
[∫ 0

d2

b
t2(s2+1)ζ2,−
2

[1 + ρ2(x2)]M2
dσ(t2) +

∫ D2

0

b
−t2[(s2+1)ζ2,−+1]
2

[1 + b−t2
2 ρ2(x2)]M2

dσ(t2)
]

! b
−D1[(s1+1)ζ1,−+1]
1 .

Moreover, by (5.7), Proposition (2.10)(i) with w ∈ Aqw+κ( !A ) and an argument similar to the estimate of
‖J2‖Lq

w(Rn×Rm), if we choose N large enough, we then have

‖J4‖Lq
w(Rn×Rm) ≤

[
w
(
B(1)

D1
×B(2)

D2

)]1/q−1/p
.

By symmetry, we have similar estimates for ‖J1‖Lq
w(Rn×Rm) and ‖J3‖Lq

w(Rn×Rm), which gives (5.5) and
hence completes the proof of Theorem 5.2.
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6 Applications

We first recall that a quasi-Banach space B is a vector space endowed with a quasi-norm ‖ · ‖B which is non-
negative, non-degenerate (i. e., ‖f‖B = 0 if and only if f = 0), homogeneous, and obeys the quasi-triangle
inequality, i. e., there exists a positive constant K no less than 1 such that for all f, g ∈ B, ‖f +g‖B ≤ K(‖f‖B+
‖g‖B).

Recall that the following notion of γ-quasi-Banach spaces was first introduced in [64].

Definition 6.1 Let γ ∈ (0, 1]. A quasi-Banach space Bγ with the quasi-norm ‖ · ‖Bγ is called a γ-quasi-
Banach space if ‖f + g‖γBγ

≤ ‖f‖γBγ
+ ‖g‖γBγ

for all f, g ∈ Bγ .

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces $γ , Lγw(Rn × Rm)
and Hγ

w(Rn × Rm; !A ) with γ ∈ (0, 1) are typical γ-quasi-Banach spaces. Moreover, according to the Aoki-
Rolewicz theorem (see [2], [31, p. 66] or [48]), any quasi-Banach space is essentially a γ-quasi-Banach space,
where γ ≡ [log2(2K)]−1.

For any given γ-quasi-Banach space Bγ with γ ∈ (0, 1] and a linear space Y , an operator T from Y to Bγ is
called Bγ-sublinear if for all f, g ∈ Y and λ, ν ∈ C, we have

‖T (λf + νg)‖Bγ ≤
(
|λ|γ‖T (f)‖γBγ

+ |ν|γ‖T (g)‖γBγ

)1/γ

and ‖T (f)− T (g)‖Bγ ≤ ‖T (f − g)‖Bγ . The notion of Bγ-sublinear operators was first introduced in [63].
We remark that if T is linear, then T is Bγ-sublinear. Moreover, if Bγ is a space of functions, T is sublinear in

the classical sense and T (f) ≥ 0 for all f ∈ Y , then T is also Bγ-sublinear.

Theorem 6.2 Let w ∈ A∞( !A ), qw as in (2.7) and (p, q, !s )w an admissible triplet. Let γ ∈ [p, 1] and Bγ be
a γ-quasi-Banach space. Suppose that T : Hp, q, !s

w,fin (Rn × Rm; !A) → Bγ is a Bγ-sublinear operator such that

sup{‖T (a)‖Bγ : a is any (p, q, !s )∗w-atom} < ∞. (6.1)

Then there exists a unique bounded Bγ-sublinear operator T̃ from Hp
w(Rn × Rm; !A ) to Bγ which extends T .

P r o o f. Without loss of generality, we may also assume that !s satisfies (5.1) and (5.2). For every f ∈
Hp, q, !s

w, fin (Rn × Rm; !A), by Theorem 5.2(ii), there exist {λj}$j=1 ⊂ C and (p, q, !s )∗w-atoms {aj}$j=1 such that

f =
∑$

j=1 λjaj pointwise and
∑$

j=1 |λj |p ! ‖f‖p

Hp
w(Rn×Rm; !A )

. Then by (6.1), we have

‖T (f)‖Bγ !




$∑

j=1

|λj |p



1/p

! ‖f‖Hp
w(Rn×Rm; !A ).

Since Hp, q, !s
w, fin (Rn × Rm; !A) is dense in Hp

w(Rn × Rm; !A ) by Theorem 5.2(i), a density argument gives the
desired result. This finishes the proof of Theorem 6.2.

Remark 6.3 If T is a bounded Bγ-sublinear operator from Hp
w(Rn × Rm; !A ) to Bγ , then it is clear that for

all admissible triplet (p, q, !s )w, T maps all (p, q, !s )∗w-atoms into uniformly bounded elements of Bγ . Thus the
condition (6.1) of Theorem 6.2 is also necessary.

Motivated by Theorem 1 in [25], we introduce the rectangular atoms in the current setting and then derive the
boundedness of sublinear operators from their behavior on rectangular atoms.

Definition 6.4 Let w ∈ A∞( !A ) and qw be as in (2.7) and (p, q, !s )w be an admissible triplet as in Definition
4.2. For R ∈ R, a function aR is said to be a rectangular (p, q, !s )w-atom if

(i) aR is supported on R′′ = R′′
1 ×R′′

2 , where R′′
i ≡ xRi + B(i)

vi($(Ri)−1)+ui+3σi
, i = 1, 2;

(ii)
∫

Rn aR(x1, x2)xα1 dx1 = 0 for all |α| ≤ s1 and almost all x2 ∈ Rm, and∫
Rm aR(x1, x2)xβ2 dx2 = 0 for all |β| ≤ s2 and almost all x1 ∈ Rn;

(iii) ‖a‖Lq
w(Rn×Rm) ! [w(R)]1/q−1/p.
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Let i = 1, 2. For any Ri ∈ Q(i) and k ∈ Z+, set Ri, k ≡ xRi + B(i)
vi($(Ri)−1)+ui+5σi+k.

The following corollary is very useful in the study of boundedness of operators in Hp
w(Rn × Rm; !A ).

Corollary 6.5 Let w ∈ A∞( !A ), qw as in (2.7) and (p, q1, !s )w an admissible triplet. Let T be a bounded
sublinear operator from Lq1

w (Rn × Rm) to Lq0
w (Rn × Rm), where q0 ∈ [q1, ∞). Let q ∈ [p, 2) be such that

1/q − 1/p = 1/q0 − 1/q1. If there exist positive constants C, ε such that for all k ∈ Z+ and all rectangular
(p, q1, !s )w-atoms aR,

∫

(R1,k×R2, k)!
|T (aR)(x)|qw(x) dx ≤ C min

{
b−kε
1 , b−kε

2

}
, (6.2)

then T uniquely extends to a bounded operator from Hp
w(Rn × Rm; !A ) to Lq

w(Rn × Rm).

P r o o f. Let all the notation be as in the proof of Lemma 4.8. To show Corollary 6.5, by Theorem 6.2, we
only need to show that for all (p, q1, !s )∗w-atoms a =

∑
R∈m(Ω̃) aR, ‖Ta‖Lq

w(Rn×Rm) ! 1.

Recall that η0 ≡ bv1−5σ1
1 bv2−5σ2

2 . For each R = R1 × R2 ∈ m
(
Ω̃
)
, let R̂1 ≡ R̂1(R2) being the “longest”

dyadic cube containing R1 such that
∣∣(R̂1 ×R2

)
∩ Ω̃
∣∣ > η0

∣∣R̂1 ×R2

∣∣. Let

Ω̃′ ≡
{
x ∈ Rn × Rm : Ms

(
χΩ̃

)
(x) > b−2u1

1 b−2u2
2 η0

}
.

For any given R̃1 × R2 ∈ m
(
Ω̃′) and R̃1 ⊃ R1, let R̂2 ≡ R̂2

(
R̃1

)
being the “longest” dyadic cube containing

R2 such that
∣∣(R̃1 × R̂2

)
∩ Ω̃′∣∣ > η0

∣∣R̃1 × R̂2

∣∣.
Let γ1(R) ≡ γ1

(
R, Ω̃

)
≡ $
(
R̂1

)
− $(R1) and γ2

(
R̃1×R2

)
≡ γ2

(
R̃1×R2, Ω̃′) ≡ $

(
R̂2

)
− $(R2). Then by

Lemma 4.9, for any δ > 0, we obtain
∑

R∈m(Ω̃)

bγ1(R)δ
1 w(R) ! w(Ω) (6.3)

and
∑

R∈m1(Ω̃′)

bγ2(R1×R2)δ
2 w(R) ! w(Ω). (6.4)

Set

R̄∗ ≡ R̄∗
1 × R̄∗

2 ≡
(
xR1 + B(1)

v1($(R̂1)−1)+u1+5σ1

)
×
(
xR2 + B(2)

v2($(R̂2)−1)+u2+5σ2

)
.

By the argument for (4.40) and the Lq0
w (Rn × Rm)-boundedness of Ms (see Proposition 2.10(ii)), we have

⋃

R∈m(Ω̃)

R̄∗ ⊂ Ω̃′′′ and w
(
Ω̃′′′) ! w(Ω). (6.5)

From this, 1/q − 1/p = 1/q0 − 1/q1 and the size condition of a, together with Hölder’s inequality and the
boundedness of T from Lq1

w (Rn × Rm) to Lq0
w (Rn × Rm), we deduce that

{∫

Ω̃′′′
|T (a)(x)|qw(x) dx

}1/q

!
{∫

Ω̃′′′
|T (a)(x)|q0w(x) dx

}1/q0

w
(
Ω̃′′′)1/q−1/q0

! ‖a‖L
q1
w (Rn×Rm)w(Ω)1/p−1/q1

! 1.

It remains to prove that
∫
(Ω̃′′′)! |T (a)(x)|q dx ! 1. Without loss of generality, we may assume that q ≤ 1.

The proof of the case q ∈ (1, 2) is similar and we omit the details. Since q ≤ 1 and a =
∑

R∈m(Ω̃) aR, by (6.5),
we obtain
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∫

(Ω̃′′′)!
|T (a)(x)|qw(x) dx

≤
∑

R∈m(Ω̃)

∫

(Ω̃′′′)!
|T (aR)(x)|qw(x) dx

≤
∑

R∈m(Ω̃)

[ ∫

(Rn\R̄∗
1)×Rm

+
∫

Rn×(Rm\R̄∗
2)

]
|T (aR)(x)|qw(x) dx

≡ E1 + E2.

Since aR[w(R)]1/q1−1/p‖aR‖−1
L

q1
w (Rn×Rm)

is a rectangular (p, q1, !s )w-atom, by (6.2), we have
∫

(Rm\R̄∗
1)×Rn

|T (aR)(x)|qw(x) dx ! ‖aR‖q
L

q1
w (Rn×Rm)

[w(R)]1−q/q0bεγ1(R)
1 .

From this, 1/q1 − 1/p = 1/q0 − 1/q, Hölder’s inequality, the size condition of a and (6.3), it follows that

E1 !





∑

R∈m(Ω̃)

‖aR‖q1

L
q1
w (Rn×Rm)






q/q1




∑

R∈m(Ω̃)

[w(R)]
q1(q0−q)
q0(q1−q) b

q1εγ1(R)
q1−q

1






1−q/q1

! [w(Ω)]q(1/q1−1/p)[w(Ω)]q(1/q1−1/q0)





∑

R∈m(Ω̃)

w(R)bq1εγ1(R)/(q1−q)
1






1−q/q1

! 1.

Similarly, by (6.4), we obtain E2 ! 1. This finishes the proof of Corollary 6.5.

Appendix

In this appendix, we give the proof of Proposition 3.6 by establishing a more general version, namely, Theorem
A.3 below. Let B be a Banach space and L∞

c (Rn, B) the set of f ∈ L∞(Rn, B) with compact support. Through
the whole appendix, we use B1 and B2 to denote two Banach spaces.

Definition A.1 An operator T is called a Calderón-Zygmund operator if T is bounded from Lr(Rn, B1) to
Lr(Rn, B2) for certain fixed r ∈ (1, ∞), and T has a distributional L(B1, B2)-valued kernel K such that for all
f ∈ L∞

c (Rn, B1) and x 1∈ supp f ,

T (f)(x) =
∫

Rn

K(x, y)f(y) dy,

where K is a standard kernel in the following sense: there exist positive constants C and ε such that for all
x, y, z ∈ Rn satisfying ρ(z − y) ≤ b−2σρ(x− y),

‖K(x, y)‖L(B1, B2) ≤ C/ρ(x− y) (A.1)

and

‖K(y, x)−K(z, x)‖L(B1, B2) + ‖K(x, y)−K(x, z)‖L(B1,B2) ≤ C
ρ(z − y)ε

ρ(x− y)1+ε
. (A.2)

Let L1,∞(Rn, B) be the set of all B-measurable functions f on Rn such that

‖f‖L1,∞(Rn,B) ≡ sup
α>0

α| {x ∈ Rn : ‖f‖B > α} | < ∞.

Then by [34, Theorem 1.1], we have the following result.
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Lemma A.2 Let p ∈ (1, ∞). Suppose that T is a Calderón-Zygmund operator. Then T is bounded from
Lp(Rn, B1) to Lp(Rn, B2) and bounded from L1(Rn, B1) to L1,∞(Rn, B2)

The following theorem is the main result of this appendix, which is a weighted version of Lemma A.2. This
theorem extends [19, Theorems 7.11 and 7.12] to the weighted anisotropic settings and also has an independent
interest.

Theorem A.3 Suppose that T is Calderón-Zygmund operator. If p ∈ (1, ∞) and w ∈ Ap(A), then T
is bounded from Lp

w(Rn, B1) to Lp
w(Rn, B2), and if w ∈ A1(A), then T is bounded from L1

w(Rn, B1) to
L1,∞

w (Rn, B2).
The proof of Theorem A.3 follows from the procedure in [19]. Here we present some details for the conve-

nience of readers.
To this end, we first introduce the dyadic maximal function in this setting. For any given B-measurable func-

tion f ∈ L1
loc (Rn, B) and x ∈ Rn, we define the dyadic maximal function by Md(f)(x) ≡ supk∈Z Ek(f)(x),

where

Ek(f)(x) ≡
∑

Q∈Qk

(
1
|Q|

∫

Q
‖f(y)‖B dy

)
χQ(x)

and Qk ≡
{
Qk
α : α ∈ Ik

}
denotes the set of dyadic cubes as in Lemma 2.3.

In fact, Ek(f) is a discrete analog of an approximation of the identity. The following Proposition A.4 makes
this precise, whose proof is similar to that of [19, Theorem 2.10] and we omit the details.

Proposition A.4 (i) Let p ∈ (1, ∞]. The dyadic maximal function Md is bounded from L1(Rn, B) to
L1,∞(Rn) and bounded from Lp(Rn, B) to Lp(Rn).

(ii) If f ∈ L1
loc (Rn, B), then limk→∞ Ek(f)(x) = ‖f(x)‖B and ‖f(x)‖B ≤ Md(f)(x) almost everywhere.

The following proposition provides the Calderón-Zygmund decomposition in our setting with a non-typical
assumption on f instead of the usual f ∈ L1. This adds an extra layer of difficulty to the standard arguments as
in [19, Theorem 2.11].

Proposition A.5 Given a B-measurable function f ∈ Lp
w(Rn, B) for certain p ∈ [1, ∞) and w ∈ Ap(A),

and a positive number λ, then exists a sequence {Qj}j ⊂ Q of disjoint dyadic cubes such that
(i)
⋃

j Qj = {x ∈ Rn : Md(f)(x) > λ};
(ii) ‖f(x)‖B < λ for almost every x 1∈ ∪jQj;

(iii) λ < 1
|Qj |
∫

Qj
‖f(x)‖B dx ≤ Cλ, where C ≥ 1 is a constant independent of f and λ;

(iv) for any Q ∈ {Qj}j , there exists a unique Q̃ ∈ Q such that

Q ⊂ Q̃, $(Q̃) = $(Q)− 1 and
1
|Q̃|

∫

Q̃
‖f(x)‖B dx < λ.

P r o o f. Let p ∈ [1, ∞), w ∈ Ap(A) and f ∈ Lp
w(Rn). It is easy to see that f ∈ L1

loc (Rn, B). In fact, if
p > 1, by w ∈ Ap(A), we have w−p′/p = w1−p′ ∈ Ap′ (A), which implies that w−p′/p ∈ L1

loc (Rn), where
p′ ∈ (1,∞) satisfying 1/p′ + 1/p = 1. Then for any k ∈ Z and Bk, by Hölder’s inequality, we have

∫

Bk

‖f(x)‖B dx ≤ ‖f‖Lp
w(Rn,B)

{∫

Bk

[w(x)]−p/p′
dx

}1/p′

< ∞.

If p = 1, observing that supB
1

|B|
∫

B w(x) dx supB[w(x)]−1 ! 1, we have

∫

Bk

‖f(x)‖B dx ≤ sup
Bk

[w(x)]−1

∫

Bk

‖f(x)‖Bw(x) dx < ∞.

Moreover, we claim that for almost all y ∈ Rn, we have Ek(f)(y) → 0, as k → −∞. To see this, notice that
for almost all y ∈ Rn, by Lemma 2.1(i), there exists a unique dyadic cube Qk, y ∈ Qk for each k ∈ Z such that
y ∈ Qk, y .
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Then for sufficient small k ∈ Z, by Q0, y ⊂ Qk y , Proposition 2.1(i), Lemma 2.1(iii) and (iv), we have

w(Qk, y)
w(Q0, y)

" w(xQk, y + Bvk−u)
w(xQ0, y + Bu)

" |Bvk−u|1/p

|Bu|1/p
" bvk/p.

From this, Hölder’s inequality, w ∈ Ap(A) and v < 0, it follows that

Ek(f)(y)≤ ‖f‖Lp
w(Rn)

1
|Qk, y|

{∫

Qk, y

[w(x)]−p′/p dx

}1/p′

! ‖f‖Lp
w(Rn)[w(Qk, y)]−1/p −→ 0 as k −→ −∞.

Thus, the claim holds.
For each k ∈ Z, set

Ωk ≡ {x ∈ Rn : Ek(f)(x) > λ, and for all j < k, Ej(f)(x) ≤ λ}.

Then we have

{x ∈ Rn : Md(f)(x) > λ} =
⋃

k

Ωk.

Indeed, obviously, we have
⋃

k

Ωk ⊂ {x ∈ Rn : Md(f)(x) > λ}.

On the other hand, for almost all y ∈ Rn such that Md(f)(y) > λ, since Ek(f)(y) → 0 as k → −∞, there
exists a minimal k0 ∈ Z such that Ek0(f)(y) > λ and for any j < k0, Ej(f)(y) ≤ λ. Thus, we obtain y ∈ Ωk0 .

Moreover, observe that Ωk can be covered by disjoint dyadic cubes for each k ∈ Z. In fact, if Q ∩ Ωk 1= ∅,
then Q ⊂ Ωk by the definition of Ekf . Also notice that {Ωk}k are disjoint with each other. By this and
{x ∈ Rn : Md(f)(x) > λ} =

⋃
k Ωk, we get (i).

By the definition of Ωk and
⋃

k Ωk =
⋃

j Qj , we obtain that (ii), (iv) and the first inequality of (iii) hold.

Furthermore, for any Q ∈ {Qj}j , by (iv) and Lemma 2.1(iv), there exists a unique dyadic cube Q̃ ⊃ Q such that
$(Q̃) = $(Q)− 1 and

1
|Q|

∫

Q
‖f(x)‖B dx ≤ |Q̃|

|Q|
1
|Q̃|

∫

Q̃
‖f(x)‖B dx ≤ Cλ,

where C ≥ 1 is a constant independent of f and λ. Thus, the second inequality of (iii) holds. This finishes the
proof of Proposition A.5.

For any f ∈ L1
loc (Rn, B) and E ⊂ Rn, set fE ≡ 1

|E|
∫

E f(x) dx, and define the sharp maximal function
associated with dilation A by setting, for all x ∈ Rn,

M0f(x) ≡ sup
k∈Z, y∈Rn

sup
x∈y+Bk

b−k

∫

y+Bk

‖f(z)− fy+Bk‖B dz.

Then by a similar argument to that used in [19, Proposition 6.4], we have the following result. We omit the
details.

Proposition A.6 For any f ∈ L1
loc (Rn, B) and all x ∈ Rn, M0f(x) ≤ M(‖f‖B)(x), and

1
2
M0f(x) ≤ sup

k∈Z, y∈Rn
sup

x∈y+Bk

inf
a∈B

b−k

∫

y+Bk

‖f(z)− a‖B dz ≤M0f(x).

Based on this, we have the following conclusion.

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



436 Bownik, Baode Li, Dachun Yang, and Yuan Zhou: Weighted anisotropic product Hardy spaces

Lemma A.7 If p0, p ∈ [1, ∞), p0 ≤ p, w ∈ Ap(A) and f ∈ L1
loc (Rn, B) such that Md(f) ∈ Lp0

w (Rn),
then there exists a positive constant C, independent of f , such that

∫

Rn

[Md(f)(x)]pw(x) dx ≤ C

∫

Rn

[M0(f)(x)]p w(x) dx.

The proof of Lemma A.7 needs the following generalized “good-λ” inequality, which is an extension of [19,
Lemma 7.10].

Lemma A.8 Let p0 ∈ [1, ∞) and w ∈ Ap0(A). Then there exists a positive constant C0 such that for all
f ∈ Lp0

w (Rn, B), γ > 0 and λ > 0,

w({x ∈ Rn : Md(f)(x) > 2λ, M0(f)(x) ≤ γλ}) ≤ C0γ
1/pw({x ∈ Rn : Md(f)(x) > λ}).

P r o o f. Fix λ, γ > 0. Since f ∈ Lp0
w (Rn, B), by Proposition A.5 the set {x ∈ Rn : Md(f)(x) > λ} can be

written as the union of disjoint dilated cubes. To show Lemma A.8, it suffices to prove that if Q is one of such
cubes, then w(E) ! γ1/pw(Q), where E ≡ {x ∈ Q : Md(f)(x) > 2λ, M0(f)(x) < γλ}. By Lemma 2.3 and
Proposition 2.5(i), we have

w(E)
w(Q)

≤ w(E)
w(xQ + Bv$(Q)−u)

! |E|1/p

|xQ + Bv$(Q)−u|1/p
! |E|1/p

|Q|1/p
,

where u and v are the same as in Lemma 2.3(iv). Therefore, to finish the proof of Lemma A.8, we only need to
prove |E| ! γ|Q|. By Proposition A.5(iv), there exists Q̃ ∈ Q such that $(Q̃) = $(Q)− 1, Q ⊂ Q̃ and

1
|Q̃|

∫

Q̃
‖f(x)‖B dx < λ. (A.3)

Furthermore, if x ∈ Q and Md(f)(x) > 2λ, then there exist certain k0 ∈ Z and Qk0 ∈ Qk0 such that
Ek0 (f)(x) > 2λ, namely, 1

|Qk0 |
∫

Qk0
‖f(y)‖B dx > 2λ, Proposition A.5(iv) further implies that Qk0 ⊂ Q.

Therefore, for such x, we have

Md(fχQ)(x) ≥ Ek0 (fχQ)(x) =
1

|Qk0 |

∫

Qk0

‖fχQ(y)‖B dy > 2λ,

from which and (A.3), it follows that

Md((f − fQ̃)χQ)(x) ≥ Md(fχQ)(x) −Md(fQ̃χQ)(x)

≥ Md(fχQ)(x) − 1
|Q̃|

∫

Q̃
‖f(y)‖B dy

> λ,

where we used the fact that
∥∥∥∥
∫

Ω
f(x) dx

∥∥∥∥
B
≤
∫

Ω
‖f(x)‖B dx (A.4)

for all measurable sets Ω and integrable functions f on Ω; see [31, 65]. Therefore, E ⊂
{
x ∈ Rn :

Md

((
f − fQ̃

)
χQ

)
(x) > λ

}
.
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Moreover, by $
(
Q̃
)

= $(Q)− 1, Proposition A.4(i) and Lemma 2.1, we have

∣∣{x ∈ Rn : Md

((
f − fQ̃

)
χQ

)
(x) > λ

}∣∣

! 1
λ

∫

Q

∥∥f(x)− fQ̃

∥∥
B dx

! 1
λ

∫

Q

∥∥f(x)− fxQ̃+Bv#(Q̃)+u

∥∥
B dx +

1
λ

∥∥fQ̃ − fxQ̃+Bv#(Q̃)+u

∥∥
B

! |Q̃|
λ

1
bv$(Q̃)+u

∫

xQ̃+Bv#(Q̃)+u

∥∥f(x)− fxQ̃+Bv#(Q̃)+u

∥∥
B dx

! |Q|
λ

inf
x∈Q

M0(f)(x).

(A.5)

If the set E is empty, there is nothing to prove. Otherwise, there exists certain x ∈ Q such that M0(f)(x) < γλ,
which together with (A.5) further implies that |E| ! γ|Q|. This finishes the proof of Lemma A.8.

P r o o f o f L e m m a A.7. For N > 0, let

IN ≡
∫ N

0
pλp−1w({x ∈ Rn : Md(f)(x) > λ}) dλ.

The assumptions that p0 ≤ p and Md(f) ∈ Lp0
w (Rn) imply that IN < ∞. Then, by Lemma A.8,

IN = 2p

∫ N/2

0
pλp−1w({x ∈ Rn : Md(f)(x) > 2λ}) dλ

≤ 2p

∫ N/2

0
pλp−1

[
w({x ∈ Rn : Md(f)(x) > 2λ, M0(f)(x) ≤ γλ})

+w({x ∈ Rn : M0(f)(x) > γλ})
]
dλ

≤ C02pγ1/pIN +
2p

γp

∫ Nγ/2

0
pλp−1w({x ∈ Rn : M0(f)(x) > λ}) dλ.

Choose γ such that C02pγ1/p = 1/2. Thus, we obtain

IN ≤ 2p+1

γp

∫ Nγ/2

0
pλp−1w({x ∈ Rn : M0(f)(x) > λ}) dλ,

which implies the desired conclusion of the lemma. This finishes the proof of Lemma A.7.

Lemma A.9 If T is a Calderón-Zygmund operator as in Definition A.1, then for each s ∈ (1, ∞), there
exists a positive constant Cs such that for all f ∈ L∞

c (Rn, B1) and x ∈ Rn,

M0(T (f))(x) ≤ Cs[M(‖f‖s
B)(x)]1/s,

where M is the Hardy-Littlewood maximal operator.

P r o o f. Fix s ∈ (1, ∞). For any given x ∈ Rn, pick y ∈ Rn and k ∈ Z such that x ∈ y+Bk. By Proposition
A.6, to complete the proof of Lemma A.9, it suffices to find an element a ∈ B2 such that

b−k

∫

y+Bk

‖T (f)(z)− a‖B2 dz ! [M(‖f‖s
B1

)(x)]1/s.

Decompose f as f = f1 + f2, where f1 = fχy+Bk+2σ . Now let a ≡ T (f2)(x). By Definition A.1 and
f ∈ L∞

c (Rn, B1), we have that a ∈ B2 and
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b−k

∫

y+Bk

‖T (f)(z)− a‖B2 dz

≤ b−k

∫

y+Bk

‖T (f1)(z)‖B2 dz + b−k

∫

y+Bk

‖T (f2)(z)− a‖B2 dz

≡ I + II.

By Hölder’s inequality and the boundedness of T from Ls(Rn, B1) to Ls(Rn, B2) (see Lemma A.2), we then
have

I !
{

b−k

∫

y+Bk

‖T (f1)(z)‖s
B2

dz

}1/s

!
{

b−k−2σ

∫

y+Bk+2σ

‖f(z)‖s
B1

dz

}1/s

! [M(‖f‖s
B1

)(x)]1/s.

Moreover, if x−y ∈ Bk, y−z ∈ Bk and α−y ∈ B!
k+2σ , by (2.1) and (2.2), we obtain ρ(z−x) ≤ b−σρ(x−α)

and ρ(x− α) ≥ bk+σ . From this, (A.2) and Hölder’s inequality, it follows that

II! b−k

∫

y+Bk

∫

Rn\(y+Bk+2σ)
‖K(z, α)−K(x, α)‖L(B1,B2)‖f(α)‖B1 dα dz

! b−k

∫

y+Bk

∫

ρ(x−α)≥bk+σ

[ρ(z − x)]ε

[ρ(x− α)]1+ε
‖f(α)‖B1 dα dz

! b−k

∫

y+Bk

bkε
∞∑

j=0

∫

bk+σ+j+1≤ρ(x−α)<bk+2σ+j

b−(k+j)(1+ε)‖f(α)‖B1 dα dz

!
∞∑

j=0

b−jεbk+2σ+j+1

∫

y+Bk+2σ+j+1

‖f(α)‖B1 dα

! [M(‖f‖s
B1

)(x)]1/s.

Combining the estimates of I and II yields the desired result and thus finishes the proof Lemma A.9.

P r o o f o f T h e o r e m A.3. We first prove that T is bounded from Lp
w(Rn, B1) to Lp

w(Rn, B2) when p ∈
(1, ∞) and w ∈ Ap(A). By [57, Lemma 8, p. 5], there exists r ∈ (1, p) such that w ∈ Ap/r(A). Since
L∞

c (Rn, B1) is dense in Lp
w(Rn, B1) (see [34, Remark 2.2]), then we only need to prove the conclusions of

Theorem A.3 by assuming that f ∈ L∞
c (Rn, B1). Observe that if T (f) ∈ Lp

w(Rn, B2), then by Proposition
A.4(ii), Lemma A.7, Lemma A.9 and Proposition 2.5(ii), we have

∫

Rn

‖T (f)(x)‖p
B2

w(x) dx ≤
∫

Rn

[Md(T (f))(x)]pw(x) dx

!
∫

Rn

[M0(T (f))(x)]pw(x) dx

!
∫

Rn

[M(‖f‖r
B1

)(x)]p/rw(x) dx

!
∫

Rn

‖f(x)‖p
B1

w(x) dx.

Now we turn to prove T (f) ∈ Lp
w(Rn, B2). Since f ∈ L∞

c (Rn, B1), we assume that supp f ⊂ Bk0 for
certain k0 ∈ Z. Write

‖T (f)‖p
Lp

w(Rn,B2)
=

{∫

Bk0+σ

+
∫

B!
k0+σ

}
‖T (f)(x)‖p

B2
w(x) dx = I + II.
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By [57, p. 7], there exists η ∈ (1, ∞) such that w satisfies the reverse Hölder’s inequality, which implies that
w ∈ Lηloc (Rn). This combined with Hölder’s inequality and Lemma A.2 yields that I < ∞.

For x ∈ (Bk0+σ)! and y ∈ Bk0 , we have x − y ∈ B!
k0

and ρ(x) ! ρ(x − y) + ρ(y) ! ρ(x − y). By this,
f ∈ L∞

c (Rn, B1), (A.4) and (A.1), we have

‖T (f)(x)‖B2 ≤
∫

Rn

‖f(y)‖B1‖K(x, y)‖L(B1,B2) dy !
∫

Bk0

1
ρ(x− y)

dy ! ρ(x)−1.

Therefore,

II !
∞∑

j=k0

∫

Bσ+j+1\Bσ+j

ρ(x)−pw(x) dx !
∞∑

j=k0

b−jpw(Bσ+j+1).

By w ∈ Ap/s(A) and Proposition 2.5(i), we have w(Bσ+j+1) ! bjp/sw(Bk0 ), which together with s ∈ (1, ∞)
implies that II is finite. Thus, T (f) ∈ Lp

w(Rn, B2), which completes the proof of the boundedness of T from
Lp

w(Rn, B1) to Lp
w(B2).

Finally, we prove that T is bounded from L1
w(Rn, B1) to L1,∞

w (Rn, B2). Fix λ > 0 and f ∈ L∞
c (Rn, B1).

By Proposition A.5, there exists a sequence {Qj}j of disjoint dilated cubes such that the conclusions (i)-(iv) of
Proposition A.5 hold. Then we write f = g + b, where

g(x) ≡






f(x), x ∈ Rn \
⋃

j Qj,
1

|Qj |

∫

Qj

f(y) dy, x ∈ Qj ,

and b(x) ≡
∑

j bj(x) with

bj(x) =

{
f(x)− 1

|Qj |

∫

Qj

f(y) dy

}
χQj (x).

Thus by Proposition A.5 and (A.4), we obtain

‖g(x)‖B1 ≤ λ for almost all x ∈ Rn, supp b ⊂
⋃

j

Qj and
∫

Qj

b(x) dx = 0. (A.6)

So the estimate of w({x ∈ Rn : ‖T (f)(x)‖B2 > 2λ}) is reduced to those of w({x ∈ Rn : ‖T (g)(x)‖B2 > λ})
and w({x ∈ Rn : ‖T (b)(x)‖B2 > λ}). Notice that w ∈ A1(A) implies w ∈ A2(A) and thus, T is bounded from
L2

w(Rn, B1) to L2
w(Rn, B2) as already proved above in this proof. Then by (A.6), we have

w({x ∈ Rn : ‖T (g)(x)‖B2 > λ})≤ 1
λ2

∫

Rn

‖T (g)(x)‖2
B2

w(x) dx

! 1
λ2

∫

Rn

‖g(x)‖2
B1

w(x) dx

! 1
λ

∫

Rn

‖g(x)‖B1w(x) dx.

To obtain a desired estimate for T (g), we still need to show that
∫

Rn

‖g(x)‖B1w(x) dx !
∫

Rn

‖f(x)‖B1 w(x) dx.

Notice that for all x ∈ Rn \
⋃

j Qj , we have g(x) = f(x). On each Qj , by (A.4) and w ∈ A1(A), we have
∫

Qj

‖g(x)‖B1w(x) dx ≤
∫

Qj

1
|Qj|

∫

Qj

‖f(y)‖B1 dy w(x) dx !
∫

Qj

‖f(y)‖B1w(y) dy.
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Since {Qj}j are disjoint, we further have

w({x ∈ Rn : ‖T (g)(x)‖B2 > λ}) !
∫

Qj

‖f(y)‖B1w(y) dy,

which completes the estimate for T (g).
On the other hand, set Q∗

j ≡ xQj + Bv$(Qj)+u+2σ , where u, xQ, v and $(Qj) are as in Lemma 2.3. Then we
obtain

w({x ∈ Rn : ‖T (b)(x)‖B2 > λ}) ≤ w

(
⋃

j

Q∗
j

)
+ w

({
x ∈ Rn \

⋃

j

Q∗
j : ‖T (b)(x)‖B2 > λ

})
.

Since w ∈ A1(A), by Proposition 2.5, Lemma 2.3, Proposition A.6(iv) and the definition of A1(A), we have

w




⋃

j

Q∗
j



≤
∑

j

w(Q∗
j ) !

∑

j

|Qj |
w(Q∗

j )
|Q∗

j |
! 1
λ

∑

j

∫

Qj

‖f(y)‖B1 w(y) dy ! 1
λ
‖f‖L1

w(Rn,B1).

Moreover, from the fact that bj has zero average on Qj , and (A.4), it follows that

w








x ∈ Rn \
⋃

j

Q∗
j : ‖T (b)(x)‖ > λ










≤ 1
λ

∑

j

∫

Rn\
⋃

j Q∗
j

‖T (bj)(x)‖B2 w(x) dx

=
1
λ

∑

j

∫

Rn\
⋃

j Q∗
j

∣∣∣∣∣

∫

Qj

[K(x, y)−K(x, xQj )]bj(y) dy

∣∣∣∣∣ w(x) dx

≤ 1
λ

∑

j

∫

Qj

∫

Rn\
⋃

j Q∗
j

‖K(x, y)−K(x, xQj )‖L(B1, B2) w(x) dx ‖bj(y)‖B1 dy.

(A.7)

Observe that x − xQj ∈ B!
v$(Qj)+u+2σ and y − xQj ∈ Bv$(Qj)+u imply that ρ(y − xQj ) ≤ b−3σρ(x − xQj ).

Then by (A.2), for all y ∈ Qj , we have
∫

Rn\
⋃

j Q∗
j

‖K(x, y)−K(x, xQj )‖L(B1,B2) w(x) dx

!
∫

Rn\
⋃

j Q∗
j

ρ(y − xQj )ε

ρ(x− xQj )1+ε
w(x) dx

!
∞∑

k=0

b−kε 1
bv$(Qj)+u+2σ+k+1

∫

Bv#(Qj )+u+2σ+k+1

w(x) dx

! M(w)(y).

From this, w ∈ A1(A),
∫

Qj

‖bj(y)‖B1 w(y) dy =
∫

Qj

‖b(y)‖B1 w(y)dy ≤
∫

Qj

(‖f(y)‖B1 + ‖g(y)‖B1)w(y) dy

and (A.7), it follows that

w








x ∈ Rn \
⋃

j

Q∗
j : ‖T (b)(x)‖B2 > λ








 ! 1
λ

∑

j

∫

Qj

‖bj(y)‖B1 M(w)(y) dy !

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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! 1
λ

∑

j

∫

Qj

(‖f(y)‖B1 + ‖g(y)‖B1)w(y) dy

! 1
λ

∑

j

∫

Qj

‖f(y)‖B1 w(y) dy

! 1
λ

∫

Rn

‖f(y)‖B1 w(y) dy.

This finishes the proof of Theorem A.3.
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Hardy spaces, Astérisque 77, 67–149 (1980).
[59] H. Triebel, Theory of Function Spaces (Birkhäuser Verlag, Basel, 1983).
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