
Appl. Comput. Harmon. Anal. 23 (2007) 263–272

www.elsevier.com/locate/acha

Letter to the Editor

The canonical and alternate duals of a wavelet frame

Marcin Bownik a,∗,1, Jakob Lemvig b

a Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA
b Department of Mathematics, Matematiktorvet, Building 303, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Available online 29 April 2007

Communicated by Charles K. Chui on 19 October 2006

Abstract

We show that there exists a frame wavelet ψ with fast decay in the time domain and compact support in the frequency domain
generating a wavelet system whose canonical dual frame cannot be generated by an arbitrary number of generators. On the other
hand, there exists infinitely many alternate duals of ψ generated by a single function. Our argument closes a gap in the original
proof of this fact by Daubechies and Han [The canonical dual frame of a wavelet frame, Appl. Comput. Harmon. Anal. 12 (3)
(2002) 269–285].
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

This paper explores the relationship between canonical and alternate dual frames of a wavelet frame. One of the
first results in this direction is due to Daubechies [9] and Chui and Shi [7] who proved that the canonical dual of a
wavelet frame need not have a wavelet structure. Since their example involved a non-biorthogonal Riesz wavelet, it
has no alternate dual wavelet frames as well.

In general, if the canonical dual of a frame wavelet has a wavelet structure, then it is quite likely that this frame
wavelet has some other wavelet duals. However, the existence of dual wavelet frames does not necessarily imply that
the canonical dual must have a wavelet structure. This claim was asserted by Daubechies and Han [10].

Theorem 1. There exists a frame wavelet ψ ∈ L2(R) such that:

(i) ψ̂ is C∞ and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by a single function,

(iii) there are infinitely many ψ̃ such that ψ and ψ̃ form a pair of dual frame wavelets.
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Unfortunately, the original argument in [10] uses an incorrect formula for the frame operator of a wavelet system
owing to a simple change of sign mistake. This invalidates the original proof to the extent that an easy remedy appears
to be doubtful. More details about the nature of this problem can be found in Section 3.

Therefore, there is a need to provide an alternative proof of Theorem 1. We will use a completely different approach
motivated by [5]. Instead of trying to work directly with the frame operator as in [10], we will use a less direct approach
using the following result of Weber and the first author [5].

Theorem 2. Suppose that the canonical dual of a wavelet frame {ψj,k(x) := 2j/2ψ(2j x − k): j, k ∈ Z} has a wavelet
structure, i.e., it is of the form {φj,k: j, k ∈ Z} for some frame wavelet φ. Then, the space of negative dilates

V (ψ) := span{ψj,k: j < 0, k ∈ Z} (1)

is shift-invariant (SI).

The paper is organized as follows. In Section 2 we recall some basic facts about the period of a wavelet frame.
In particular, we explore the relationship between the period and the number of generators of the canonical dual of a
wavelet frame. In Section 3 we give an explicit construction of a frame wavelet ψ as in Theorem 1. We prove that its
corresponding space of negative dilates V (ψ) lacks shift-invariance. Consequently, by Theorem 2 we conclude that
the canonical dual of the wavelet frame {ψj,k}j,k∈Z is not a wavelet system generated by a single function. In fact, we
prove that our example can be adjusted in such a way that the canonical dual cannot be generated by arbitrarily many
generators, see Theorem 3.

Finally, we review basic definitions. A frame for a separable Hilbert space H is a collection of vectors {fj }j∈J,
indexed by a countable set, such that there are constants 0 < C1 � C2 < ∞ satisfying

C1‖f ‖2 �
∑
j∈J

∣∣〈f,fj 〉
∣∣2 � C2‖f ‖2 for all f ∈ H.

If the upper bound holds in the above inequality, then {fj } is said to be a Bessel sequence with Bessel constant C2.
The frame operator of {fj } is given by

S :H → H, Sf =
∑
j∈J

〈f,fj 〉fj .

This operator is bounded, invertible, and positive. A frame {fj } is said to be tight if we can choose C1 = C2; this is
equivalent to S = C1I , where I is the identity operator.

Two Bessel sequences {fj } and {gj } are said to be dual frames if

f =
∑
j∈J

〈f,gj 〉fj for all f ∈H.

It can be shown that two such Bessel sequences indeed are frames, and we shall say that the frame {gj } is dual to
{fj }, and vice versa. At least one dual always exists, it is given by {S−1fj } and called the canonical dual. Redundant
frames have several duals; a dual which is not the canonical dual is called an alternate dual.

Let f ∈ L2(R). Define dilation operator Daf (x) = |a|1/2f (ax), translation operator Tbf (x) = f (x − b), and
modulation operator Ecf (x) = e2πicxf (x), where |a| > 1, b, c ∈ R. In the dyadic case we let D := D2. The wavelet
system generated by Ψ = {ψ1, . . . ,ψL}, is defined as {ψj,k}j,k∈Z,ψ∈Ψ , where ψj,k = D

j
aTkψ . We say that Ψ and

Φ is a pair of dual frame wavelets if their wavelet systems are dual frames. As stated above the canonical dual of a
wavelet frame generated by Ψ might not be a wavelet system generated by |Ψ | functions. In this case, we say that the
canonical dual of Ψ does not have the wavelet structure.

Given a frame wavelet Ψ , the subspaces Wj(Ψ ) are defined by

Wj(Ψ ) = span{ψj,k: k ∈ Z, ψ ∈ Ψ }, j ∈ Z. (2)

By this definition we can write the space of negative dilates, introduced in Theorem 2, as

V (Ψ ) = span
⋃

Wj(Ψ ).
j<0
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If we have only one generator, that is L = 1, we shall write V (ψ) instead of V (Ψ ). Suppose that W ⊂ L2(R) is a
closed subspace. We say W is MZ-SI, MZ shift invariant, or shift invariant under MZ, M ∈ R, if TMzW ⊂ W for all
z ∈ Z. In the case M = 1, we shall say that W is shift invariant, or SI.

For f ∈ L1(R), the Fourier transform is defined by Ff (ξ) = f̂ (ξ) = ∫
R

f (x)e−2πiξx dx with the usual extension

to L2(R). Given a measurable subset K ⊂ R, we define the space Ľ2(K), which is invariant under all translations, by

Ľ2(K) = {
f ∈ L2(R): supp f̂ ⊂ K

}
.

2. The period of a frame wavelet

Daubechies and Han [10] have introduced the notion of the period of a dyadic wavelet frame in L2(R). Weber and
the first author [5] extended it to a non-dyadic situation as below.

Definition 1. Suppose that Ψ = {ψ1, . . . ,ψL} ⊂ L2(R) is a frame wavelet associated with an integer dilation factor a,
|a| � 2. The period of Ψ is the smallest integer p � 1 such that for all f ∈ span{Tkψ : k ∈ Z, ψ ∈ Ψ },

TpkS
−1f = S−1Tpkf for all k ∈ Z,

where S is the frame operator of the wavelet frame generated by Ψ . If there is no such p, we say that the period of Ψ

is ∞.

We remark that our convention differs from the definitions in [5,10], where the period is said to be 0 (and not ∞) if
no such p exists. The examples of non-biorthogonal Riesz wavelets by Daubechies [9] and Chui and Shi [7] mentioned
in the introduction have period ∞; while any tight frame wavelet has period 1.

Following [15], the local commutant of a system of operators A at the point f ∈ L2(R) is defined as

Cf (A) := {
B ∈ B

(
L2(R)

)
: BAf = ABf ∀A ∈ A

}
.

The wavelet system of unitaries is denoted by U := {Dj
aTk: j ∈ Z, k ∈ Z}. The canonical dual of a wavelet frame

U(Ψ ) = {Dj
aTkψ}j,k∈Z,ψ∈Ψ is given as{

S−1D
j
aTkψi : j, k ∈ Z, i = 1, . . . ,L

} = {
D

j
aS−1Tkψi : j, k ∈ Z, i = 1, . . . ,L

}
= {

D
j
aηk,i : j, k ∈ Z, i = 1, . . . ,L

}
,

where S is the frame operator of U(Ψ ), and {ηk,i} is a family of functions, not necessarily with translation structure,
indexed by {1, . . . ,L} × Z. The canonical dual takes the form of a wavelet system generated by |Ψ | = L functions,
i.e., {

S−1D
j
aTkψi : j, k ∈ Z, i = 1, . . . ,L

} = {
D

j
aTk

(
S−1ψi

)
: j, k ∈ Z, i = 1, . . . ,L

}
= {

D
j
aTkφi : j, k ∈ Z, i = 1, . . . ,L

}
,

precisely when TkS
−1ψ = S−1Tkψ for all ψ ∈ Ψ and k ∈ Z; that is, precisely when S−1 ∈ Cψ({Tk: k ∈ Z}) for all

ψ ∈ Ψ . Equivalently, the canonical dual of U(Ψ ) has the wavelet structure generated by |Ψ | functions if and only if
the period of Ψ is one, cf. Proposition 2 below.

The following results from [5] will be used in the proof of Theorem 1. We restate them here since they were
incorrectly stated in [5]. We note that these results can be thought as refinements of Theorem 2.

Proposition 1. Let M ∈ N. If Ψ is a frame wavelet and the period of Ψ divides M , then V (Ψ ) is shift invariant by the
lattice MZ. In addition, if Ψ is a Riesz wavelet, then the period of Ψ divides M if and only if V (Ψ ) is shift invariant
by the lattice MZ.

Corollary 1. If Ψ is a frame wavelet and the period of Ψ divides |a|J for some J � 0, then DJ
a (V (Ψ )) is shift

invariant.
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If the period P(Ψ ) of a frame wavelet Ψ is finite, then the canonical dual frame is a wavelet system generated by
P(Ψ ) · |Ψ | functions, and this is the least number of generators. In this case the wavelet structure of the canonical
dual frame is altered since it is based on the translation lattice P(Ψ ) · Z which is sparser than the original lattice Z.
Moreover, for any non-negative integer M , the period of Ψ divides M if, and only if the canonical dual is a wavelet
system generated by M · |Ψ | functions, see the proposition below. The “only if” direction is implicitly contained in
the proof of [5, Proposition 2]. For the sake of completeness we prove both directions here.

Proposition 2. Suppose that Ψ = {ψ1, . . . ,ψL} ⊂ L2(R) is a frame wavelet. For any non-negative integer M ∈ N, the
following statements are equivalent:

(i) P(Ψ ) | M , i.e., the period of Ψ , denoted P(Ψ ), divides M .
(ii) There exist ML functions Φ = {φ1, . . . , φML} such that {Dj

aTMkφ}j,k∈Z, φ∈Φ is the canonical dual of

{Dj
aTkψ}j,k∈Z,ψ∈Ψ = {Dj

aTMkψ}j,k∈Z,ψ∈ΨM
, where

ΨM := {Tmψ : m = 0, . . . ,M − 1, ψ ∈ Ψ }.

Proof. We note that the frame operator of {Dj
aTkψ}j,k∈Z,ψ∈Ψ equals the frame operator of {Dj

aTMkψ}j,k∈Z,ψ∈ΨM

since the two frames are setwise identical; we denote this operator by S.
We first prove (i) ⇒ (ii). By assumption the period of Ψ is finite, hence the definition of the period yields the

following equation:

TP(Ψ )kS
−1f = S−1TP(Ψ )kf for all k ∈ Z and f ∈ W0(Ψ ). (3)

Since the period of Ψ divides M , we in particular have P(Ψ )Z ⊃ MZ, and the above equation gives us

TMkS
−1f = S−1TMkf for all k ∈ Z and f ∈ W0(Ψ ).

Consequently, for each ψ ∈ Ψ ,

S−1Tkψ = S−1TMl(Tmψ) = TMlS
−1(Tmψ),

where k ∈ Z is written as k = Ml + m for l ∈ Z and m ∈ {0,1, . . . ,M − 1}. The last equality in the above equation
shows that S−1 ∈ Cf ({TMk: k ∈ Z}) for every f ∈ ΨM , so we arrive at (ii) by taking Φ = S−1ΨM = {S−1Tmψ : m =
0, . . . ,M − 1, ψ ∈ Ψ }.

To prove the other direction, (ii) ⇒ (i), we assume that the canonical dual of the system {Dj
aTMkψ}j,k∈Z,ψ∈ΨM

is generated by ML functions Φ = {φ1, . . . , φML}. Since |ΨM | = ML, it follows that S−1 ∈ Cψ({TMk: k ∈ Z}) for all
ψ ∈ ΨM , i.e.,

S−1TMk(Tmψ) = TMkS
−1(Tmψ) for all k ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ. (4)

In this equation we replace k ∈ Z by k + l with l ∈ Z, whereby we obtain S−1TMk(TMl+mψ) = TMkS
−1(TMl+mψ)

for all k, l ∈ Z, m ∈ {0, . . . ,M − 1}, and ψ ∈ Ψ . Now since

W0(Ψ ) = span
{
TMl+mψ : l ∈ Z, m ∈ {0, . . . ,M − 1}, ψ ∈ Ψ

}
,

we see that

S−1TMkf = TMkS
−1f for all k ∈ Z, f ∈ W0(Ψ ), (5)

and conclude that the period of Ψ is at most M .
To complete the proof we need to show that the period of Ψ is a divisor of M . Assume on the contrary that the

period of Ψ is not a divisor of M . Then there are q, r ∈ N ∪ {0} such that M = qP (Ψ ) + r and 0 < r < P(Ψ ). We
know that the period of Ψ is finite, so Eq. (3) is satisfied, and from (3) and (5) we have

S−1TP(Ψ )k1+Mk2f = TP(Ψ )k1+Mk2S
−1f for k1, k2 ∈ Z, f ∈ W0(Ψ ).

Taking k1 = −qk and k2 = k for each k ∈ Z gives us rk = P(Ψ )k1 + Mk2. Therefore,

S−1Trkf = TrkS
−1f for all k ∈ Z, f ∈ W0(Ψ ),

which contradicts the minimality of P(Ψ ) since 0 < r < P(Ψ ). �
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Remark 1. In the dyadic case and when M is a power of two, Proposition 2 reduces to [10, Proposition 2.1]. Indeed,
if M = 2J for some J ∈ N, then any dyadic wavelet system of the form {DjTMkφ}j,k∈Z, φ∈Φ with translation with
respect to the lattice MZ, can be written as a wavelet system {DjTkφ}j,k∈Z, φ∈Φ ′ using the standard translation lattice
Z and the same number of generators |Φ| = |Φ ′|, see [10]. Corollary 7 in [5] states that the period of a dyadic Riesz
wavelet is either a power of two or infinite. Hence, whenever a Riesz wavelet has finite period the canonical dual takes
the form {DjTkφ}j,k∈Z, φ∈Φ ′ for some family of functions Φ ′, where we note that the translation is with respect to the
lattice Z.

3. Canonical dual frames without wavelet structure

In this section we will prove Theorem 1 by giving an example of a wavelet frame in L2(R) whose canonical dual
does not have wavelet structure. To be precise, we will construct a family of examples, indexed by J ∈ N, such that
the canonical dual cannot be generated by fewer than 2J functions. In each of these examples the wavelet itself is
nice in the sense that it has compact support in the Fourier domain and fast decay in the time domain, and it has nice
alternate dual frame wavelets.

Our construction is motivated by the proof of [5, Theorem 2(ii)], where Weber and the first author give an example
of a frame wavelet ψ with compact support in the Fourier domain whose canonical dual cannot be generated by one
function. The Fourier transform of ψ is not continuous yielding poor decay in the time domain. Furthermore, the
space of negative dilates V (ψ) is not Z-SI (this is necessary in order to utilize Theorem 2), but it is in fact 2Z-SI,
hence the canonical dual must be generated by at least two functions, cf. Proposition 1. We modify this example so
that ψ̂ becomes C∞ and so that the space of negative dilates becomes non-pZ-SI for p < 2J and p ∈ N for a chosen
J ∈ N. Hence, we have the following generalization of Theorem 1.

Theorem 3. For all J ∈ N, there exists a frame wavelet ψ ∈ L2(R) such that:

(i) ψ̂ is C∞ and compactly supported,
(ii) its canonical dual frame is not a wavelet system generated by fewer than 2J function,

(iii) there are infinitely many ψ̃ such that ψ and ψ̃ form a pair of dual wavelet frames.

Before providing the proof of Theorem 3, we will analyze the original proof of Theorem 1 by Daubechies and Han
[10]. The key role in the argument of [10] is played by an explicit formula for the frame operator of a wavelet system.

Proposition 3. Suppose that Ψ = {ψ1, . . . ,ψL} ⊂ L2(R) generates a wavelet system which is a Bessel sequence. Let

D = {
f ∈ L2(R): f̂ ∈ L∞(R) and supp f̂ ⊂ [−R,−1/R] ∪ [1/R,R] for some R > 1

}
.

Then its frame operator S is given by

Ŝf (ξ) = f̂ (ξ)

L∑
l=1

∑
j∈Z

∣∣ψ̂l

(
2j ξ

)∣∣2 +
∑
p∈Z

∑
q∈2Z+1

f̂
(
ξ + 2−pq

)
tq

(
2pξ

)
for a.e. ξ ∈ R, (6)

and for all f ∈D, where

tq(ξ) =
L∑

l=1

∞∑
j=0

ψ̂l

(
2j ξ

)
ψ̂l

(
2j (ξ + q)

)
for q ∈ Z.

Proposition 3 is implicitly contained in the book of Hernández and Weiss [16, Proposition 7.1.19]. This result can
be extended to higher dimensions and more general dilations, see [4,13,14,18].

Initially, the problem with the argument of Daubechies and Han appears to be very minor since the formula (2.6)
of [10] lacks a negative sign which is present in f̂ (ξ + 2−pq) of (6). This mistake can be traced back to the proof
of Lemma 2.3 in [14]. However, this change of sign has profound effects for the rest of this paper. First, it affects
Lemma 3.1 in [10] by wiping out the negative signs in 2−jK1 and 2−jK2 of formula (3.1). Consequently, it invalidates
the proof of [10, Theorem 3.3]. To see this, consider the example borrowed from the paper of Weber and the first
author [5].
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Example 1. Let ψb ∈ L2(R) be given by

ψ̂b = χ[−1,−b]∪[b,1].

In [5] it is shown that ψb is a biorthogonal Riesz wavelet whenever 1/3 � b � 1/2. In fact, one can explicitly exhibit
its dual biorthogonal wavelet φb as

φ̂b = χ[−1,−1/2]∪[1/2,1] − χ[−2+2b,−1]∪[1,2−2b].

We note that this fact is far from being obvious, since one can also show that ψb is not a frame wavelet when
1/6 < b < 1/3, see [5, Example 2]. While ψb is of a slightly different form than the function considered in [10,
Theorem 3.3], one could arrive at the conclusion that ψb is not a biorthogonal wavelet when b = 1/3 by following the
same argument as in [10]. This stands in a direct contradiction with the above mentioned fact from [5]. In fact, this is
how the change of sign mistake in [10] was uncovered by the first author.

In order to prove Theorem 3 we need to show two lemmas.

Lemma 1. For every N � 4 and 0 < δ < 2−N , there exists a frame wavelet ψ such that ψ̂ ∈ C∞
0 (R) and

ψ̂(ξ) �= 0 ⇔ ξ ∈ (−1/2,−1/4) ∪ (1/2,3/4)

∪ (−2−N+1 − δ,−2−N + δ
) ∪ (

2−N − δ,2−N+1 + δ
)
, (7)

ψ̂(ξ) = ψ̂(ξ − 1) �= 0 for ξ ∈ (1/2,3/4). (8)

Proof. Let ψ0 ∈ L2(R) be a frame wavelet such that ψ̂0 ∈ C∞
0 (R) and

ψ̂0(ξ) �= 0 ⇔ ξ ∈ (−2−N+1 − δ,−2−N + δ
) ∪ (

2−N − δ,2−N+1 + δ
)
,

where N � 4 and 0 < δ < 2−N as in the assumption. Let ψ1 ∈ L2(R) be such that ψ̂1 ∈ C∞
0 (R) has support in

[−1/2,−1,4] ∪ [1/2,3/4] and

ψ̂1(ξ) = ψ̂1(ξ − 1) �= 0 whenever ξ ∈ (1/2,3/4). (9)

For any such ψ1 ∈ L2(R) the sequence {DjTkψ
1} generates a Bessel sequence by [17, Theorem 13.0.1] or by the

proof of [8, Lemma 3.4].
Define ψ ∈ L2(R) by ψ = ψ0 + εψ1, where εψ1 acts as a perturbation on the wavelet frame generated by ψ0

and ensures that ψ satisfies (8), see also Fig. 1. Denote the frame bounds of {DjTkψ
0} by C1 and C2, and the Bessel

bound of {DjTkψ
1} by C0. The function εψ1 generates a Bessel sequence with bound ε2C0. Hence, for sufficiently

small ε > 0, we have ε2C0 < C1, and by a perturbation result [6, Corollary 2.7] or [12, Theorem 3], we conclude that
ψ generates a wavelet frame. By our construction ψ̂ is in C∞

0 (R) and satisfies (7) and (8).
Finally, let us illustrate how one can construct two such functions ψ0 and ψ1. For N � 4 and 0 < δ < 2−N , define

the function η by

η̂ = hδ ∗ χ[−2−N+1,−2−N ]∪[2−N ,2−N+1], (10)

Fig. 1. Sketch of the graph of ψ̂ = ψ̂0 + εψ̂1.
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where hδ(x) = δ−1h(x/δ) with h ∈ C∞
0 (R), h � 0,

∫
R

h(x)dx = 1, and supph ⊂ [−1,1]. This yields η̂ ∈ C∞ with

η̂(ξ) �= 0 ⇔ ξ ∈ (−2−N+1 − δ,−2−N + δ
) ∪ (

2−N − δ,2−N+1 + δ
)
.

By ‖η̂‖L∞ � 1 and the above, there exist constants C1,C2 > 0, such that

0 < C1 �
∑
j∈Z

∣∣η̂(
2j ξ

)∣∣2 � C2 < 2 for all ξ ∈ R \ {0}.

Moreover, for q ∈ 2Z + 1,

tq(ξ) :=
∞∑

j=0

η̂
(
2j ξ

)
η̂
(
2j (ξ + q)

) = 0 for all ξ ∈ R,

since η̂(2j ·) and η̂(2j (· + q)) have disjoint support for all j � 0. We define ψ0 as a normalization of η by

ψ̂0(ξ) = η̂(ξ)√∑
j∈Z

|η̂(2j ξ)|2
for ξ ∈ R \ {0}, (11)

and ψ̂0(0) = 0. Consequently, we have
∑

j∈Z |ψ̂0(2j ξ)|2 = 1 and tq(ξ) = 0 for ξ ∈ R and q ∈ 2Z + 1. By [16,

Theorem 7.1.6], ψ0 generates a tight wavelet frame with frame bound 1, and it has the desired properties. For the
proof of the lemma the last normalization step could be omitted since η itself generates a (non-tight) frame. However,
it is included since we later want to use the fact that the ψ0 can be chosen to be a tight frame wavelet with frame
bound 1.

The construction of the perturbation term ψ1 is straightforward. Let θλ := hλ ∗ χ[1/2+λ,3/4−λ] for some 0 < λ <

1/8, where hλ is defined as above. Define ψ1 by ψ̂1 = θλ + T−1θλ. This makes ψ̂1 a C∞ function with compact
support in [−1/2,−1,4] ∪ [1/2,3/4], satisfying Eq. (9). This completes the proof of Lemma 1. �
Lemma 2. Suppose that a function ψ ∈ L2(R) satisfies (7) and (8) for some N � 4 and 0 < δ < 2−N . Then the space
of negative dilates V (ψ) is not pZ-SI for any p < 2N−3, p ∈ N.

Proof. To prove this claim we will look at the subspaces Wj(ψ) for j � 0, defined by

Wj(ψ) = span
{
DjTkψ : k ∈ Z

}
, j ∈ Z.

First, consider a principal shift-invariant (PSI) subspace W0(ψ) = span{Tkψ}k∈Z. By a result in [11], see also [3], this
subspace can be described as

W0(ψ) = {
f ∈ L2(R): f̂ = ψ̂m for some measurable, 1-periodic m

}
.

Hence, by (7) and (8) we have

W0(ψ) = {
f ∈ L2(R): supp f̂ ⊂ [−1/2,−1/4] ∪ [1/2,3/4] ∪ K, f̂ (ξ − 1) = f̂ (ξ) a.e. ξ ∈ [1/2,3/4]},

where K = [−2−N+1 − δ,−2−N + δ
] ∪ [

2−N − δ,2−N+1 + δ
]
. (12)

Applying the scaling relation Wj(ψ) = DjW0(ψ) to (12) yields

Wj(ψ) = {
f ∈ L2(R): supp f̂ ⊂ [−2j−1,−2j−2] ∪ [

2j−1,3/2 · 2j−1] ∪ 2jK,

f̂
(
ξ − 2j

) = f̂ (ξ) a.e. ξ ∈ [
2j−1,3/2 · 2j−1]}. (13)

Therefore, each space Wj(ψ), j ∈ Z, can be decomposed as the orthogonal sum

Wj(ψ) = W 0
j ⊕ W 1

j , (14)

where
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W 0
j = Ľ2(2jK

)
, (15)

W 1
j = {

f ∈ L2(R): supp f̂ ⊂ [−2j−1,−2j−2] ∪ [
2j−1,3/2 · 2j−1],

f̂
(
ξ − 2j

) = f̂ (ξ) a.e. ξ ∈ [
2j−1,3/2 · 2j−1]}. (16)

Using (14), it is possible to describe the space of negative dilates

V (ψ) = span

( ⋃
j<0

Wj(ψ)

)
in the Fourier domain. However, such a description would be quite complicated owing to interactions of the spaces
W 0

j and W 1
j at various scales j < 0.

Instead, we consider another space

Ṽ (ψ) = V (ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [
2−N+2,∞))

.

By (15) and K ⊂ (−2−N+2,2−N+2), we have

W 0
j ⊂ Ľ2([−2−N+1,2−N+2]) for j < 0.

Likewise, by (16) we have

W 1
j ⊂

{
Ľ2([−2−N+1,2−N+2]) for j � −N + 2,

Ľ2((−∞,−2−N+1] ∪ [2−N+2,∞)) for j � −N + 3.

Combining the last four equations with (14) yields

Ṽ (ψ) = span

( ⋃
j<0

Wj(ψ) ∩ Ľ2((−∞,−2−N+1] ∪ [
2−N+2,∞))) = span

( −1⋃
j=−N+3

W 1
j

)
,

and further, by the orthogonality of the subspaces W 1−N+3, . . . ,W
1−1,

Ṽ (ψ) =
−1⊕

j=−N+3

W 1
j .

Consequently, by (16),

Ṽ (ψ) =
{

f ∈ L2(R): supp f̂ ⊂
−1⋃

j=−N+3

2j
([−1/2,−1/4] ∪ [1/2,3/4]),

f̂
(
ξ − 2−1) = f̂ (ξ) a.e. ξ ∈ [

2−2,3/2 · 2−2],
f̂

(
ξ − 2−2) = f̂ (ξ) a.e. ξ ∈ [

2−3,3/2 · 2−3],
...

...

f̂
(
ξ − 2−N+3) = f̂ (ξ) a.e. ξ ∈ [

2−N+2,3/2 · 2−N+2]}. (17)

Assume, towards a contradiction, that V (ψ) is pZ-SI for some p < 2N−3 with p ∈ N. Then, Ṽ (ψ) is pZ-SI as
well. Define f ∈ L2(R) by

f̂ = χIN∪(IN−2−N+3), where IN = [
2−N+2,3/2 · 2−N+2].

Then f ∈ Ṽ (ψ), and by our hypothesis we have Tpkf ∈ Ṽ (ψ) for all k ∈ Z. Equivalently, using FTk = E−kF , we
have Epkf̂ ∈ F(Ṽ (ψ)) for all k ∈ Z. For k = 1, this implies that Epf̂ (ξ) = e2πipξχIN∪(IN−2−N+3)(ξ) ∈ F(Ṽ (ψ)).
By (17),

e2πip(ξ−2−N+3) = e2πipξ for a.e. ξ ∈ IN .

This can only be satisfied if e−2πip2−N+3 = 1, which contradicts the hypothesis that 1 � p < 2N−3. This completes
the proof of Lemma 2. �
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Remark 2. A more detailed analysis shows that V (ψ) is 2N−2
Z-SI, and it is not shift invariant by any sublattice of Z

strictly larger than 2N−2
Z. Since we do not need such precise assertion, we will skip its proof.

Finally, we are ready to complete the proof of Theorem 3.

Proof of Theorem 3. Take any J ∈ N. Suppose that ψ is a frame wavelet as in Lemma 1 with N = J + 3. By
Lemma 2 and Proposition 1, the period of ψ is at least 2N−3. Hence, by Proposition 2, we need at least 2J functions
to generate the canonical dual of {DjTkψ}j,k∈Z.

We have only left to show that the wavelet frame generated by ψ has infinitely many alternate duals that are
generated by one function. For this purpose it is convenient to assume that ψ = ψ0 + εψ1 is of the same form as in
the proof of Lemma 1, i.e., ψ0 generates a tight frame with frame bound 1. Hence, the functions ψ and ψ0 satisfy the
characteristic equations∑

j∈Z

ψ̂
(
2j ξ

)
ψ̂0

(
2j ξ

) = 1, a.e. ξ ∈ R,

∞∑
j=0

ψ̂
(
2j ξ

)
ψ̂0

(
2j (ξ + q)

) = 0, a.e. ξ ∈ R for odd q ∈ Z,

since ψ̂ = ψ̂0 on supp ψ̂0 and since ψ̂(2j ·)ψ̂0(2j (· + q)) = 0 for all j � 0 and all odd q . We conclude that {ψ0
j,k} is

a dual frame of {ψj,k}. Since {ψ0
j,k} is generated by one function, it is apparent from the above that {ψ0

j,k} must be an
alternate dual.

Any function φ ∈ L2(R) defined by φ̂ = ψ̂0 + h, where

h ∈ C
∞(R), supph ⊂ [−1/4,1/2], supph ∩ supp ψ̂0 = ∅, h(0) = 0,

generates a Bessel sequence by [17, Theorem 13.0.1]. Since ψ and φ satisfy the characteristic equations above, such
a φ is an alternate dual frame wavelet of ψ . This example demonstrates that we have infinitely many alternate duals,
and completes the proof of Theorem 3. �

We end by putting our example in a perspective with other known results.

Remark 3. Auscher [1] proved that every “regular” orthonormal wavelet ψ ∈ L2(R) is associated with an MRA.
“Regular” means that |ψ̂ | is continuous and ψ̂(ξ) = O(|ξ |−1/2−δ) as |ξ | → ∞ for some δ > 0, see [16, Corol-
lary 7.3.16]. This fact does not hold for tight frame wavelets. In fact, Baggett et al. [2] constructed a non-MRA Cr

tight frame wavelet with rapid decay for any r ∈ N. Moreover, their tight frame wavelet is associated with a GMRA
having the same dimension/multiplicity function as the Journé wavelet. Once we allow non-tight frame wavelets we
might lose even the GMRA property. Indeed, the frame wavelet from Theorem 3 is an example of a non-GMRA C∞
frame wavelet with rapid decay.
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