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Abstract

Let A ⊂ L2(R) be at most countable, and p, q ∈ N. We characterize various frame-properties for Gabor
systems of the form

G(1, p/q, A) = {e2�imxg(x − np/q) : m, n ∈ Z, g ∈ A}

in terms of the corresponding frame properties for the row vectors in the Zibulski–Zeevi matrix. This extends
work by [Ron and Shen, Weyl–Heisenberg systems and Riesz bases in L2(Rd). Duke Math. J. 89 (1997)
237–282], who considered the case where A is finite. As a consequence of the results, we obtain results
concerning stability of Gabor frames under perturbation of the generators. We also introduce the concept
of rigid frame sequences, which have the property that all sufficiently small perturbations with a lower
frame bound above some threshold value, automatically generate the same closed linear span. Finally, we
characterize rigid Gabor frame sequences in terms of their Zibulski–Zeevi matrix.
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1. Introduction

Gabor systems are collections of functions

G(a, b, g) = {e2�imaxg(x − nb) : n, m ∈ Z} (1.1)

which are built from a single function g : R → C by shifts in time and frequency determined by
the parameters a, b > 0. Such systems, also called Weyl–Heisenberg systems, were introduced
by Gabor [16] with the aim of constructing efficient, time–frequency localized expansions of
signals as (infinite) linear combinations of elements in (1.1). A major development in the theory
of Gabor systems is due to Daubechies et al. [11] who placed the problem of Gabor expansions
in the framework of frames for a Hilbert space. We state the formal definition of frames and their
main properties in Section 1.1. In particular, letting gma,nb(x) = e2�imaxg(x − nb), if a Gabor
system G(a, b, g) is a frame, the corresponding frame operator S : L2(R) → L2(R) defined by

Sf =
∑

m,n∈Z

〈f, gma,nb〉gma,nb

is bounded and invertible. Letting g̃ = S−1g, this leads to the reconstruction formula

f =
∑

m,n∈Z

〈f, gma,nb〉g̃ma,nb =
∑

m,n∈Z

〈f, g̃ma,nb〉gma,nb for all f ∈ L2(R), (1.2)

where the series converges unconditionally in L2(R).
Since the appearance of [11], Gabor systems are a subject of intensive study, with research

efforts directed at characterizing Gabor systems being frames, studying frame operators, and
efficiently computing canonical duals and expansions (1.2), see for example [9,17,6,12,13]. The
goal of this paper is to study the properties of Gabor expansions in the case when the product ab of
shift and frequency parameters is rational. Applying a standard dilation argument one can assume
that a = 1 and b ∈ Q. The corresponding results involving Gabor systems with ab rational can
be deduced from this special case.

We will, in fact, be more general and consider a multiple-generated Gabor system of the form

G(1, p/q, A) = {e2�imxg(x − np/q) : m, n ∈ Z, g ∈ A}.
Here, A ⊂ L2(R) is at most countable set of generators, and p, q ∈ N. We characterize various
frame-properties for such systems in terms of the corresponding frame properties of the row vectors
in the Zibulski–Zeevi matrix. Since these vectors have finite length, these equivalent conditions
are considerably easier to verify than the frame conditions. This approach was taken already by
Ron and Shen in [21], who considered the case where A is finite. We present an independent
proof. At some points our approach is similar to the one used by Ron and Shen; in order for the
exposition not being too long, we focus on the new parts, and only sketch the similar parts.

As a consequence of the results, we obtain results concerning stability of Gabor frames under
perturbation of the generators. Under natural conditions, these results show that a small perturba-
tion of a Gabor frame sequence has to be a frame sequence for the same subspace; a formalization
of this observation leads to the definition of the concept of rigidity for a frame sequence. While
rigid Gabor frame sequences exist, we prove that no finitely generated shift-invariant (SI) system
has this property.

Note that the idea of characterizing frame-properties of a Gabor system in terms of certain
matrix-valued functions originated in the work of Zibulski and Zeevi [23]. It was later used by
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Gabardo and Han [14] to characterize Gabor frame sequences, also called subspace Gabor frames.
The advantage of our approach is that it applies to multiple generators, and that the conditions are
stated directly in terms of the rows of the Zibulski–Zeevi matrix; the corresponding condition in
[14] is slightly more involved, see (2.7).

In the rest of this section we introduce some of the main tools, in particular frames, the Zibulski–
Zeevi matrix and range functions, and state their main properties.

1.1. Frames

A (countable) sequence of elements {fk} in a separable Hilbert space H is a frame for H if

∃A, B > 0 : A‖f ‖2 �
∑

|〈f, fk〉|2 �B‖f ‖2 ∀f ∈ H. (1.3)

The numbers A, B are called frame bounds. In case span{fk} is just a subspace of H and (1.3) holds
for f ∈ span{fk}, the sequence {fk} is a frame sequence. If at least the upper frame condition is
satisfied, {fk} is a Bessel sequence. Finally, a Riesz basis (resp. Riesz sequence) is a frame (resp.
frame sequence), which is at the same time a basis (resp. basis for the subspace span{fk}).

From the definition it is clear that orthonormal bases are special cases of frames. However, the
frame conditions are considerably weaker than the conditions characterizing orthonormal bases;
thus, it is in general much easier to design a frame with special properties than an orthonormal
basis with the same properties. Also, the Balian–Low Theorem (see, e.g., [10,6] and the references
therein) shows that good time–frequency localization is impossible for Gabor expansions based
on an orthonormal basis; on the other hand, exponential decay simultaneous in time and frequency
can be obtained via frame expansions (based on, e.g., the Gaussian). Also, the crucial expansion
property for orthonormal bases has a counterpart for frames. In fact, if {fk} is a frame for H, the
frame operator

S : H → H, Sf =
∑

〈f, fk〉fk

is bounded and bijective, and each f ∈ H has the expansion

f = SS−1f =
∑

〈f, S−1fk〉fk.

For more detailed information on these concepts we refer to [6].

1.2. The Zibulski–Zeevi transform

The Zibulski–Zeevi transform is a map G : L2(R) → L2([0, 1/q] × [0, 1/p], Mq,p(C)); in
fact, the image of g ∈ L2(R) is a matrix-valued function on R2, which we denote by Gg , and
whose (l, r)th entry is

G
g
l,r (t, �) = Zg(t − lp/q, � + r/p), 0� l�q − 1, 0�r �p − 1, (t, �) ∈ R × R.

Here Z : L2(R) → L2([0, 1]2) is the Zak transform

Zg(t, �) =
∑
k∈Z

g(t − k)e2�ik� for a.e. (t, �) ∈ R2.

The matrix Gg is called the Zibulski–Zeevi matrix. Often, we suppress the dependence on g ∈
L2(R) and write G(t, �) instead of Gg(t, �). The lth row of G(t, �), 0� l�q −1, is often denoted
by Gl(t, �).
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It is convenient to equip the space of matrices Mq,p(C) with the Hilbert–Schmidt norm
‖ · ‖HS. Consequently, the space L2([0, 1]2) can be identified with the space L2([0, 1/q] ×
[0, 1/p], Mq,p(C)) by the map

F(t, �) �→ (F (t − lp/q, � + r/p))
r=0,...,p−1
l=0,...,q−1 .

In addition, since Z is an isometric isomorphism we have the following observation.

Proposition 1.1. The Zibulski–Zeevi transform G : L2(R) → L2([0, 1/q]×[0, 1/p], Mq,p(C))

is an isometric isomorphism.

We now state a lemma, which characterizes the frame sequences G(1, p/q, A) which are
Riesz bases, in terms of the Zibulski–Zeevi transform. It appears in different formulations in the
literature, see [1,15]. In [15] the result is stated for the case of one generator, but the argument is
valid for any finite collection of generators. Given a collection A = {g1, . . . , gn} ⊂ L2(R), let
GA denote the nq × p matrix with rows formed by the vectors

G
g1
0 , G

g1
1 , . . . , G

g1
q−1, G

g2
0 , G

g2
1 , . . . , G

g2
q−1, . . . , G

gn

q−1. (1.4)

Lemma 1.1. Let A = {g1, . . . , gn} ⊂ L2(R) and assume that G(1, p/q, A) is a frame sequence.
Then G(1, p/q, A) is a Riesz sequence if and only if rank GA = nq a.e.

Since GA is an nq×p matrix, this result implies that G(1, p/q, A) only can be a Riesz sequence
if nq �p.

1.3. Range functions

A closed subspace V ⊂ L2(R) is shift-modulation invariant (SMI) if it is invariant under
modulations and shifts

MmTnp/qV = V for all n, m ∈ Z.

We will need a characterization of SMI spaces in terms of appropriate range functions. The
analogous characterization of SI spaces dates back to Helson [18] and its proof can be found in [2,
Proposition 1.5]. However, there are some significant differences between these two results. For
example, the range function in the SMI setting takes values in subspaces of a finite-dimensional
space instead of subspaces of �2(Z) as in the SI setting.

Definition 1.1. A range function is a map

J : [0, 1/q] × [0, 1/p] → {E : E is a subspace of Cp}.
Let P(t, �) be the orthogonal projection of Cp onto J (t, �). J is said to be measurable if the map
(t, �) �→ P(t, �) is operator measurable. In other words, we require that each entry of the matrix
function corresponding to P(t, �) is measurable.

The following result, Theorem 1.1, explains the relationship between SMI spaces and range
functions. Its proof follows the line of the parallel result for SI systems in [2] and can be found in
[3].
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Theorem 1.1. There is 1 − 1 correspondence between SMI spaces V and measurable range
functions J: given a measurable range function J , the associated SMI space is

V = {f ∈ L2(R) : G
f
l (t, �) ∈ J (t, �) for all 0� l�q − 1, and f or a.e. (t, �)}, (1.5)

and if V = span G(1, p/q, A), then the associated range function is

J (t, �) = span{Gg
l (t, �) : 0� l�q − 1, g ∈ A}. (1.6)

2. Paradigm of fiberization

The goal of this section is to prove a fiberization characterization of Gabor frames and Riesz
sequences in terms of the Zibulski–Zeevi transform. This is reminiscent of an analogous charac-
terization for SI systems by Ron and Shen [20] and its equivalent formulation by the first author
[2, Theorem 2.3].

Theorem 2.1. Let 0 < a�b < ∞, and A be at most countable. Then the following holds:
(i) G(1, p/q, A) is a Bessel sequence with bound b if and only if the system

{Gg
l (t, �) : 0� l�q − 1, g ∈ A} (2.1)

is a Bessel sequence with bound pb for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p].
(ii) G(1, p/q, A) is a frame (resp. frame sequence) with bounds a, b if and only if (2.1) is a frame

(resp. frame sequence) with bounds pa, pb for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p].

Proof. Standard arguments show that if system (2.1) satisfies either of the properties stated in
Theorem 2.1 for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p], then it satisfies the same property for a.e.
(t, �) ∈ R × R. Also, in [15, Lemma 3.2] it is proved that

〈MmT(nq+l)p/qg, f 〉 =
∫ 1

0

∫ 1/p

0
e2�imt e−2�inp�

p−1∑
s=0

G
g
l,s(t, �)Zf (t, � + s/p) d� dt,

where n ∈ Z, l = 0, . . . , q −1. Using that {√pe2�imt e−2�inp�: m, n ∈ Z} is an orthonormal basis
of L2([0, 1] × [0, 1/p]) and some standard manipulations, this leads to∑

g∈A

∑
m,n∈Z

|〈MmTnp/qg, f 〉|2

= 1

p

∑
g∈A

q−1∑
l,l′=0

∫
[0,1/q]×[0,1/p]

|〈Gg
l (t, �), G

f

l′ (t, �)〉|2 dt d�. (2.2)

In order to prove the theorem, we first suppose that system (2.1) is a frame sequence with
bounds pa, pb for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p]. Then

pa‖v‖2 �
∑
g∈A

q−1∑
l=0

|〈Gg
l (t, �), v〉|2 �pb‖v‖2 for all v ∈ J (t, �), and a.e. (t, �), (2.3)

where J (t, �) is given by (1.6). By Theorem 1.1, if f ∈ span G(1, p/q, A), then v = G
f

l′ (t, �) ∈
J (t, �) for all 0� l′ �q − 1 and a.e. (t, �). Integrating (2.3) for v = G

f

l′ (t, �) over [0, 1/q] ×
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[0, 1/p], summing over 0� l′ �q − 1, and combining with (2.2) shows that G(1, p/q, A) is a
frame sequence with bounds a, b.

For the converse, suppose first that G(1, p/q, A) is a Bessel sequence with bound b. Let D ⊂ Cp

be a countable dense subset. To prove (2.3), it suffices to show that for any v ∈ D

∑
g∈A

q−1∑
l=0

|〈Gg
l (t, �), v〉|2 �pb‖P(t, �)v‖2 a.e. (t, �) ∈ [0, 1/q] × [0, 1/p], (2.4)

where P(t, �) is the orthogonal projection of Cp onto J (t, �). Assume on the contrary that (2.4)
fails. Since D is countable, there exists a measurable set E ⊂ [0, 1/q] × [0, 1/p], with |E| > 0,
v0 ∈ D, and ε > 0, such that

∑
g∈A

q−1∑
l=0

|〈Gg
l (t, �), P (t, �)v0〉|2 �(pb + ε)‖P(t, �)v0‖2 a.e.(t, �) ∈ E, (2.5)

Define M ∈ L2([0, 1/q]× [0, 1/p], Mq,p(C)) by specifying its rows Ml′(t, �), 0� l′ �q − 1, by

Ml′(t, �) =
{

P(t, �)v0 for l′ = 0 and (t, �) ∈ E,

0 otherwise.

By Proposition 1.1, there exists a unique f ∈ L2(Rn) such that Gf (t, �) = M(t, �) for a.e.
(t, �) ∈ [0, 1/q] × [0, 1/p]. By Theorem 1.1, f ∈ G(1, p/q, A). Hence, by (2.2) and (2.5)

∑
g∈A

∑
m,n∈Z

|〈MmTnp/qg, f 〉|2 = 1

p

∑
g∈A

q−1∑
l,l′=0

∫
[0,1/q]×[0,1/p]

|〈Gg
l (t, �), G

f

l′ (t, �)〉|2 dt d�

= 1

p

∑
g∈A

q−1∑
l=0

∫
E

|〈Gg
l (t, �), P (t, �)v0〉|2 dt d��(b + ε/p)

×
∫

E

‖P(t, �)v0‖2 dt d�

= (b + ε/p)

∫
[0,1/q]×[0,1/p]

‖M(t, �)‖2
HS dt d�

= (b + ε/p)‖f ‖2,

which is a contradiction with b being an upper bound of G(1, p/q, A). Thus (2.4) holds as
desired, i.e., the system {Gg

l (t, �) : 0� l�q − 1, g ∈ A} is a Bessel sequence with bound pb.
This concludes the proof of (i).

For the proof of the frame sequence case in (ii), we assume that G(1, p/q, A), in addition to
being a Bessel sequence, also satisfies the lower frame condition. We have to prove that

pa‖P(t, �)v‖2 �
∑
g∈A

q−1∑
l=0

|〈Gg
l (t, �), v〉|2 a.e. (t, �) ∈ [0, 1/q] × [0, 1/p]

for any v in a countable dense subset of Cp; however, assuming the opposite leads to a contradiction
via the same arguments as above. This completes the proof for frame sequences.

The case of frames is an immediate consequence of the case of frame sequences and Theorem
1.1. Indeed, by Theorem 1.1, G(1, p/q, A) is complete if and only if its range function J (t, �) =
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Cp for a.e. (t, �), or equivalently, system (2.1) is complete in Cp for a.e. (t, �). Hence, the frame
sequence case shows that G(1, p/q, A) is a frame with bounds a, b if and only if system (2.1) is
a frame in Cp with bounds pa, pb for a.e. (t, �). �

In the case of a finite set of generators, Theorem 2.1 has a counterpart, valid for Riesz bases:

Theorem 2.2. If A = {g1, . . . , gn} ⊂ L2(R), then Theorem 2.1 also holds when the frame
property is replaced by Riesz basis (resp. Riesz sequence) property.

Proof. A Riesz sequence is just a special case of a frame sequence. Note that {Gl(t, �) : 0� l�q−
1, g ∈ A} being a Riesz sequence is equivalent to these nq vectors being linearly independent
(this holds because we are dealing with a finite collection of vectors); and this is equivalent to
rank GA = nq. Invoking Lemma 1.1 completes the proof. �

As a conclusion on this section, we note that the idea of stating frame properties of G(1, p/q, A)

in terms of matrix-valued functions is due to Zibulski and Zeevi [22,23]. In the case when A is
finite, Zibulski and Zeevi define p × p matrix-valued function

S(t, �) = SA(t, �) := 1

p

∑
g∈A

Gg(t, �)∗Gg(t, �), (2.6)

and they prove that G(1, p/q, A) is a frame with bounds a, b if and only if all eigenvalues of S(t, �)
lie in the interval [a, b] for a.e. (t, �). The case of frame sequences was considered by Gabardo and
Han [14]. Corollary 6.5.2 in [14] states that a single-generated system {e2�imxg(x −np/q)}m,n∈Z

is a frame sequence with bounds a, b if and only if

paG∗(t, �)G(t, �) � [G∗(t, �)G(t, �)]2

� pbG∗(t, �)G(t, �) a.e. (t, �) ∈ [0, 1] × [0, 1/p]. (2.7)

Then, it is not difficult to see that (2.7) is equivalent to the property that all non-zero eigenvalues
of S(t, �) lie in the interval [a, b] for a.e. (t, �). The advantage of Theorem 2.1 is that the frame
properties are characterized directly in terms of the rows of the Zibulski–Zeevi matrices.

3. Perturbation of Gabor frames sequences

The goal of this section is to prove perturbation results for Gabor frame sequences in terms of
rank conditions on the Zibulski–Zeevi matrix. The analogous result for SI systems was shown by
Kim, Kim, Lim, and the second author in [8].

Our approach is based on the following result:

Lemma 3.1. Let {fk} and {gk} be finite sequences in a Hilbert space H, and let W = span{fk},
{V } := span{gk}. Denote the bounds for {fk} (as frame for W ) by A, B. Assume that there exists
a constant � > 0 such that

∥∥∥∑
ck(fk − gk)

∥∥∥ ��
(∑

|ck|2
)1/2

(3.1)
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for all scalar sequences {ck}. Then the following holds:
(a) {gk} is a Bessel sequence with bound B(1 + �/

√
B)2;

(b) If � <
√

A and dim W = dim V , then {gk} is a frame for V with bounds

A(1 − �/
√

A)2, B(1 + �/
√

B)2. (3.2)

Note that a finite collection of vectors always form a frame for the linear span of the elements;
the role of Lemma 3.1 is that it provides us with estimates for the frame bounds.

Remark 3.1. Lemma 3.1 follows from a more general result stated in [8]. In fact, the result in
[8] is valid for infinite-dimensional spaces. When W and V are infinite-dimensional, an extra
condition on the angle between W and V is needed; in the finite-dimensional case [4, Corollary
2.9] shows that the angle condition is satisfied if dim W = dim V . Alternatively, see [19, Lemma
3.9].

For A′ = {h1, . . . , hn} ⊂ L2(R), the matrix GA′
is defined similarly to the matrix GA, see

(1.4).

Theorem 3.1. Let A = {g1, . . . , gn} ⊂ L2(R), and assume that G(1, p/q, A) is a frame se-
quence with bounds a, b. Given another set of generators A′ = {h1, . . . , hn} ⊂ L2(R), define

� := ess sup
(t,�)∈[0,1/q]×[0,1/p]

‖GA−A′
(t, �)‖ where A − A′ = {gi − hi : 1� i�n}. (3.3)

Then the following holds.
(i) If � < ∞, then G(1, p/q, A′) is a Bessel sequence with bound b(1 + �/

√
pb)2.

(ii) If � <
√

pa and

rank GA(t, �) = rank GA′
(t, �) a.e. (t, �), (3.4)

then G(1, p/q, A′) is also a frame sequence, with bounds

a(1 − �/
√

pa)2, b(1 + �/
√

pb)2.

Proof. By Theorem 2.1, the system

{Gg
l (t, �) : 0� l�q − 1, g ∈ A} (3.5)

is a frame sequence for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p], with bounds A := pa, B := pb. Note
that (3.5) being a Bessel sequence with bound B for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p] is equivalent
with

ess sup
(t,�)∈[0,1/q]×[0,1/p]

‖GA(t, �)‖�
√

B

or

ess sup
(t,�)∈[0,1/q]×[0,1/p]

‖
(
GA)∗

(t, �)‖�
√

B.

Since GA−A′
(t, �) = GA(t, �) − GA′

(t, �), the assumption in (i) implies that for a.e. (t, �) ∈
[0, 1/q] × [0, 1/p],

‖GA′
(t, �)‖�� + √

B,
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thus, for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p], {Gg
l (t, �) : 0� l�q − 1, g ∈ A′} is a Bessel sequence

with bound
(
� + √

B
)2 = B

(
1 + �√

B

)2

= pb

(
1 + �√

pb

)2

.

Again by Theorem 2.1, it follows that G(1, p/q, A′) is a Bessel sequence with bound b(1 +
�/

√
pb)2.

We now prove (ii). Let

W = span{Gg
l (t, �) : 0� l�q − 1, g ∈ A}, (3.6)

V = span{Gg
l (t, �) : 0� l�q − 1, g ∈ A′}. (3.7)

By Lemma 3.1, the assumptions that � <
√

A and dim V = dim W imply that for a.e. (t, �) ∈
[0, 1/q] × [0, 1/p], {Gg

l (t, �) : 0� l�q − 1, g ∈ A′} is a frame for V with lower bound

(√
A − �

)2 = A

(
1 − �√

A

)2

.

Again by Theorem 2.1, it follows that G(1, p/q, A′) is a frame sequence with bound a(1 −
�/

√
pa)2. �

Remark 3.2. In case G(1, p/q, A) is a Riesz sequence, condition (3.4) in Theorem 3.1 is super-
fluous, see Theorem 3.2 in [7]. By [5], it is also superfluous if G(1, p/q, A) is a frame for L2(R).
However, in general, the condition is needed; see Example 4.1.

As a consequence of Theorem 3.1 we have the following corollary.

Corollary 3.1. Assume that A and A′ are the same as in Theorem 3.1 and that

rank GA(t, �) ∈ {0, p} a.e. (t, �). (3.8)

If � <
√

pa and

supp GA′ ⊂ supp GA, (3.9)

then G(1, p/q, A′) is also a frame sequence, with bounds

a(1 − �/
√

pa)2, b(1 + �/
√

pb)2.

Furthermore, G(1, p/q, A) and G(1, p/q, A′) are frames for the same subspace.

Proof. As in the proof of Theorem 3.1, for a fixed (t, �) ∈ [0, 1/q] × [0, 1/p], define the spaces
W and V by (3.6) and (3.7). By (3.8) the space W is either a null space {0} or Cp for a.e. (t, �). In
the former case, the assumption (3.9) forces that V = W = {0}. In the latter case, Theorem 2.1
implies that the system

{Gg
l (t, �) : 0� l�q − 1, g ∈ A}

is a frame for Cp with bounds A = pa and B = pb. Hence, by a standard frame perturbation
result (see [5,6, Theorem 15.1.1]) and the assumption � <

√
A, the system

{Gg
l (t, �) : 0� l�q − 1, g ∈ A′}
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is also a frame for Cp with bounds given by (3.2). Consequently, V = W = Cp. Therefore, by
Theorems 1.1 and 2.1, G(1, p/q, A′) is a frame sequence for the same subspace as G(1, p/q, A).

�

Remark 3.3. In case of a single generator, A = {g}, the rank condition (3.8) in Corollary 3.1 is

rank Gg(t, �) ∈ {0, p} a.e. (t, �). (3.10)

By [15, Theorem 2.3], this is equivalent to the property that G(1, p/q, g) has a unique Gabor dual
of type II in the terminology of Gabardo and Han [15].

In the next section we will prove that any such Gabor frame sequence can be perturbed only
on the same subspace as the original system. That is, if we require that a perturbed Gabor frame
sequence has a lower bound greater than some positive constant ε > 0, then it must generate
the same subspace (as the original Gabor frame sequence) for sufficiently small perturbations.
Hence, Gabor frame sequences satisfying (3.10) are in a sense very rigid under perturbations.
And conversely, we will show that if a Gabor frame sequence is rigid in the above sense, then it
must satisfy condition (3.10).

4. Optimality and rigidity of perturbations

There are two goals of this section. The first one is to prove that the rank condition (3.4) in
Theorem 3.1 is optimal. More precisely, unless (3.4) is satisfied, in general, the perturbed Gabor
system does not have to be a frame sequence regardless how small a perturbation (measured by
the parameter �) is. In particular, the support condition (3.9) in Corollary 3.1 is also optimal in
the same sense. This leads naturally to the second goal of this section: a characterization of rigid
Gabor frame sequences.

Rigid frame sequences are a special type of frame sequences which have the property that
whenever they are perturbed by a sufficiently small perturbation then their closed linear span
remains the same. We show that certain types of systems such as finitely generated SI frame
sequences can never be rigid. Nevertheless, we prove the existence of rigid Gabor frame sequences
using their characterization in terms of the rank of the Zibulski–Zeevi matrix.

The optimality of the rank condition (3.4) is shown by the following example.

Example 4.1. LetA = {g1, . . . , gn} ⊂ L2(R), and assume thatG(1, p/q, A) is a frame sequence
with bounds a, b. According to Remark 3.2 we assume that G(1, p/q, A) is neither a Riesz
sequence nor a frame for all of L2(R).

Our aim is to construct another Gabor system G(1, p/q, A′), which is a very small perturbation
of G(1, p/q, A), but yet it is not a frame sequence. To achieve this we consider, for any 1�k0 �n,
0� l0 �q − 1, the set

Ek0,l0 = {(t, �) ∈ [0, 1/q] × [0, 1/p] : rank GA(t, �)

= dim span{Ggk

l (t, �) : (k, l) �= (k0, l0)}}.

In other words, (t, �) ∈ Ek0,l0 iff row G
gk0
l0

(t, �) is a linear combination of the remaining (nq −1)

rows of GA(t, �). We claim that there exist 1�k0 �n, 0� l0 �q − 1 such that the set

E = Ek0,l0 ∩ {(t, �) ∈ [0, 1/q] × [0, 1/p] : rank GA(t, �)�p − 1}. (4.1)
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has positive measure. Indeed, suppose on the contrary that (modulo null sets)

{(t, �) : rank GA(t, �)�nq − 1}
=

⋃
1�k �n, 0� l �q−1

Ek,l ⊂ {(t, �) : rank GA(t, �) = p}. (4.2)

Since GA(t, �) is not a Riesz sequence, Lemma 1.1 shows that rank GA(t, �)�nq − 1 on a set
of positive measure. Consequently, (4.2) implies that p�nq − 1. However, this also implies that

[0, 1/q] × [0, 1/p] = {(t, �) : rank GA(t, �) = p},
which is a contradiction with Theorem 2.1 and our hypothesis that G(1, p/q, A) is not a frame;
thus E has positive measure as claimed.

Let J be the range function associated to the shift-modulation space span G(1, p/q, A), that is,
J (t, �) is given by (1.6). Define another range function J ′ by

J ′(t, �) =
{

J (t, �)⊥ (t, �) ∈ E,

{0} otherwise.

Since J ′ is a non-zero measurable range function, there exists by Theorem 1.1 0 �= f ∈ L2(R)

such that

G
f
l (t, �) ∈ J ′(t, �) for all 0� l�q − 1, and a.e. (t, �).

By Proposition 1.1 we can find f as above such that all rows of Gf (t, �), except the l0th row
G

f
l0
(t, �), are zero. Let � > 0 be any constant. By a simple rescaling argument we can also

assume that

‖Gf
l0
(t, �)‖�� for a.e. (t, �) (4.3)

and for all r > 0,

|{(t, �) : 0 < ‖Gf
l0
(t, �)‖ < r}| > 0. (4.4)

Finally, define the perturbed system A′ = {h1, . . . , hn} by hk0 = gk0 + f and hk = gk for
k �= k0. By (4.3) the perturbation parameter � in (3.3) is at most � and it can be made arbitrarily
small. However, we claim that the Gabor system G(1, p/q, A′) is not a frame sequence. Indeed,
by our construction G

f
l (t, �) can only be non-zero if l = l0 and (t, �) ∈ Ek0,l0 . Consequently, for

a.e. (t, �)

J ′′(t, �) = span{Ghk

l (t, �) : 1�k�n, 0� l�q − 1}
= span({Ggk

l (t, �) : (k, l) �= (k0, l0)}, Ggk0
l0

(t, �) + G
f
l0
(t, �))

= span(J (t, �), Gf
l0
(t, �)).

Likewise, using the orthogonality condition G
f
l0
(t, �) ⊥ J (t, �) we have

∑
1�k �n, 0� l �q−1

|〈Gf
l0
(t, �), Ghk

l (t, �)〉|2 = |〈Gf
l0
(t, �), G

hk0
l0

(t, �)〉|2 = ‖Gf
l0
(t, �)‖4.

Therefore, the lower bound of the frame sequence {Ghk

l (t, �) : 1�k�n, 0� l�q − 1} is at most

‖Gf
l0
(t, �)‖2 for a.e. (t, �) such that G

f
l0
(t, �) �= 0. By (4.4) this value can be made arbitrarily
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close to zero on sets of positive measure. By Theorem 3.1 our perturbation G(1, p/q, A′) is not
a frame sequence.

Our next aim is to characterize rigid Gabor frame sequences. To state precisely our result we
adopt the following definition of rigidity.

Definition 4.1. We say that G(1, p/q, A) is a rigid frame sequence if for every � > 0, there
exists � > 0, such that whenever G(1, p/q, A′) is a frame sequence with lower bound � and the
Bessel constant of G(1, p/q, A − A′) is less than �, then both frames sequences generate that
same subspace.

Recall that the (optimal) Bessel bound of G(1, p/q, A−A′) equals �/
√

p, where � is given by
(3.3). Hence, a Gabor frame sequence G(1, p/q, A) is rigid if and only if any sufficiently small
perturbation G(1, p/q, A′), in the sense that � < �, generates the same subspace as G(1, p/q, A).
Naturally, we are restricting to perturbations G(1, p/q, A′) with lower frame sequence bound
above some threshold value of ε > 0.

Theorem 4.1. Let G(1, p/q, A) be a Gabor frame sequence. Then G(1, p/q, A) is rigid if and
only if (3.8) holds.

Proof. Suppose that (3.8) fails, that is

E = {(t, �) ∈ [0, 1/q] × [0, 1/p] : 0 < rank GA(t, �) < p}
has positive measure. Let U be a p×p diagonal unitary matrix with diagonal entries ei�1 , . . . , ei�p .
Given � > 0, we choose �j ’s to be all different and 0 < |�j | < �. Define the perturbed set of
generators A′ = {h1, . . . , hn} by their Zibulski–Zeevi matrix

G
hk

l (t, �) = U(G
fk

l (t, �)) for all 1�k�n, 0� l�q − 1, (t, �) ∈ [0, 1/q] × [0, 1/p].
(4.5)

By Proposition 1.1 and Theorem 2.1, G(1, p/q, A′) is a Gabor frame sequence with the same
bounds as G(1, p/q, A). Furthermore, these Gabor systems generate the same subspace if and
only if

U(J (t, �)) = J (t, �) for a.e. (t, �) ∈ [0, 1/q] × [0, 1/p], (4.6)

where J = J (t, �) is the range function of span G(1, p/q, A). In addition, G(1, p/q, A′) is a
small perturbation of G(1, p/q, A), since

(GA−A′
)∗(t, �) = (I − U)((GA)∗(t, �))

and ‖I − U‖ = |1 − ei�| < �. Consequently, G(1, p/q, A − A′) is a Bessel sequence with a
bound less than the product of � and the upper bound of G(1, p/q, A). Thus, if (4.6) fails then
G(1, p/q, A) is not rigid.

Likewise, suppose that (4.6) holds. By our choice of U, its only invariant subspaces are of the
form

V = span{ei1 , . . . , eim}
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for some 1� i1 < · · · < im �p. Hence, if (4.6) holds, then J (t, �) = V on some set of positive
measure E′ ⊂ E. Let 1� i0 �p be such that i0 �= i1, . . . , im. Let U ′ be the unitary matrix which
is the identity on span(ei0 , ei1)

⊥ and

U ′(ei1) = cos(�)ei1 + sin(�)ei0 , U ′(ei0) = sin(�)ei1 − cos(�)ei0 .

Define the perturbed set of generators A′ = {h1, . . . , hn} by (4.5) with U ′ in place of U. By the
same argument as before we conclude that G(1, p/q, A) is not rigid as well.

Conversely, suppose that (3.8) holds. Let a, b be the frame sequence bounds of G(1, p/q, A).
Take any ε > 0 and suppose that G(1, p/q, A′) is a frame sequence with lower bound ε and the
Bessel constant of G(1, p/q, A − A′) is less than ε/2. Without loss of generality we can assume
that 0 < ε < a/2. By Theorem 2.1, the rows of GA(t, �) form a frame for Cp on the set

Ep = {(t, �) ∈ [0, 1/q] × [0, 1/p] : rank GA(t, �) = p}.
Consequently, the rows of GA′

(t, �) form a frame for Cp for a.e. (t, �) ∈ Ep as well. On the other
hand, if (t, �) belongs to the set

E0 = {(t, �) ∈ [0, 1/q] × [0, 1/p] : rank GA(t, �) = 0},
then GA′

(t, �) = −GA−A′
(t, �). By Theorem 2.1, the rows of GA′

(t, �) form a frame sequence
with the lower bound pε and at the same time a Bessel sequence with constant pε/2. Consequently,
GA′

(t, �) = 0 for a.e. (t, �) ∈ Ep. This shows that the range functions corresponding to the shift-
modulation spaces span G(1, p/q, A) and span G(1, p/q, A′) are identical. By Theorem 1.1, the
Gabor frame sequence G(1, p/q, A) is rigid. �

The mere existence of rigid Gabor frame sequences is far from being obvious. Indeed, one
could contrast Theorem 4.1 with the SI setting.

Definition 4.2. Let A ⊂ L2(R) be finite and suppose that the SI system

E(A) = {g(x − k) : k ∈ Z, g ∈ A}
is a frame sequence. We say that E(A) is rigid if it satisfies Definition 4.1, where each appearance
of a Gabor system G(1, p/q, A) is replaced by the corresponding SI system E(A).

Theorem 4.2. No finitely generated SI frame sequence E(A) is rigid.

Proof. By [2, Theorem 2.3], E(A) is a frame sequence if and only {T g1(�), . . . , T gn(�)} ⊂ �2(Z)

is a frame sequence for a.e. � ∈ [0, 1]. Here,

T g(�) = (ĝ(� + k))k∈Z, ĝ(�) =
∫

R
g(x)e−2�ix� dx.

Given any � > 0, let U be any unitary operator on �2(Z) such that ‖I − U‖ < � and (4.7) fails

U(J (�)) = J (�) for a.e. � ∈ [0, 1], where J (�) = span{T g1(�), . . . , T gn(�)}. (4.7)

It is not difficult to prove the existence of such U following the approach in the proof of Theorem
4.1 and using the fact J (�) are finite-dimensional subspaces of �2(Z).

Define the perturbed set of generators A′ = {h1, . . . , hn} by T hk(�) = U(T gk(�)). Using [2,
Theorem 2.3] one can conclude that E(A′) is a frame sequence with the same bounds as E(A),
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which is a small perturbation of E(A). However, [2, Proposition 1.5] shows that these two systems
generate distinct SI spaces. Consequently, E(A) is not rigid. �
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