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Abstract

Let S be a shift-invariant subspace ofL2(Rn) defined byN generators and suppose that
lengthL, the minimal number of generators ofS, is smaller thanN . Then we show that at lea
one reduced family of generators can always be obtained by a linear combination of the o
generators, without using translations. In fact, we prove that almost every such combination y
new generator set. On the other hand, we construct an example where any rational linear com
fails.
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1. Introduction and main result

Given a family of functionsφ1, . . . , φN ∈ L2(Rn), let S = S(φ1, . . . , φN) denote the
closed subspace ofL2(Rn) generated by their integer translates. That is,S is the closure o
the set of all functionsf of the form

f (t) =
N∑

j=1

∑
k∈Zn

cj,kφj (t − k), t ∈ Rn, (1)

where finitely manycj,k ∈ C are nonzero. By construction, these spacesS ⊂ L2(Rn) are
invariant under shifts, i.e., integer translations and they are called finitely generated
invariant spaces. Shift-invariant spaces play an important role in analysis, most not
the areas of spline approximation, wavelets, Gabor (Weyl–Heisenberg) systems, s
sion schemes and uniform sampling. The structure of this type of spaces is analyzed
see also [4,6,10,20]. Only implicitly we are concerned with the dependence proper
sets of generators, for details on this topic we refer to [14,19].

The minimal numberL � N of generators for the spaceS is called the length ofS.
Although we include the caseL = N , our results are motivated by the caseL < N . In this
latter case, there exists a smaller family of generatorsψ1, . . . ,ψL ∈ L2(Rn) such that

S(φ1, . . . , φN) = S(ψ1, . . . ,ψL), with L < N.

Since the new generatorsψ1, . . . ,ψL belong toS, they can be approximated in th
L2-norm by functions of the form (1), i.e., by finite sums of shifts of the original genera
However, we prove that at least one reduced set of generators can be obtained from
combination of the original generators without translations. In particular, no limit or infi
summation is required. In fact, we show that almost every such linear combination y
valid family of generators. On the other hand, we show that those combinations whi
to produce a generator set can be dense. That is, combining generators can be a
procedure.

Let MN,L(C) denote the space of complexN × L matrices endowed with the produ
Lebesgue measure ofCNL ∼= R2NL.

Theorem 1. Given φ1, . . . , φN ∈ L2(Rn), let S = S(φ1, . . . , φN) and let L � N be the
length ofS. Let R ⊂ MN,L(C) denote the set of those matricesΛ = (λj,k)1�j�N,1�k�L

such that the linear combinationsψk = ∑N
j=1 λj,kφj , for k = 1, . . . ,L, yield S =

S(ψ1, . . . ,ψL). Then:

(i) R = MN,L(C) \ N , whereN is a null-set inMN,L(C);
(ii) the setN in (i) can be dense inMN,L(C).

Remark 1. (i) The conclusions of Theorem 1 also hold when the complex mat
MN,L(C) are replaced by real matricesMN,L(R).

(ii) Our results are not restricted to the case of compactly supported generato
also mention that the shift-invariant spaceS in Theorem 1 is not required to be regular n
quasi-regular, see [5] for these notions.
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As a consequence of our main result we have the following interesting observ
which also serves as a motivation for our considerations. Suppose that a shift-in
spaceS is given by a (possibly large) number of generatorsφ1, . . . , φN , which all have
some additional special properties, such as smoothness, decay, compact support,
bership in certain function spaces. Assume that we know thatS can be generated by few
generators, i.e., the length ofS is L < N . Then a priori suchL new generators may no
have the special properties of the original generators, and previously it was not k
whether there exists a minimal set of generators which do inherit these properties
by Theorem 1 the answer is always affirmative, since indeed we can find minima
of generatorsψ1, . . . ,ψL by taking appropriate linear combinations ofφ1, . . . , φN , thus
preserving any reasonable property of the original generators. We thank K. Gröche
pointing out this observation.

2. Examples

The main result, Theorem 1, has been formulated for finitely generated shift-inv
(FSI) spaces. We will illustrate this result by examples in the special case of principal
invariant (PSI) spaces. A shift-invariant subspace, initially possibly defined by more
one generator, is called principal if it can be defined by a single generator, i.e., if its l
is L = 1. As an immediate consequence of Theorem 1 in the case of PSI spaces w
the following corollary.

Corollary 1. Givenφ1, . . . , φN ∈ L2(Rn), let S = S(φ1, . . . , φN) and suppose thatS is
principal, i.e., the length ofS is L = 1. Let R ⊂ CN denote the set of those vectorsλ =
(λ1, . . . , λN) such that the linear combinationψ = ∑N

j=1 λjφj yieldsS = S(ψ). Then:

(i) R = CN \ N , whereN is a null-set inCN ;
(ii) the setN in (i) can be dense inCN .

The subsequent examples illustrate Corollary 1 and show that the setN can be a single
ton (Example 1) or indeed be dense inCN (Example 2). Example 3 demonstrates how
exceptional setN can be computed. We use the following normalization for the Fou
transform

f̂ (x) =
∫
Rn

f (t)e−2πi〈t,x〉 dt, x ∈ Rn.

The support of a functionf is defined without closure, suppf = {t ∈ Rn: f (t) �= 0}.
Let |F | denote the Lebesgue measure of a subsetF ⊂ Rn. We will need the following
elementary lemma, which can be easily deduced from [5, Theorem 1.7].

Lemma 1. Suppose thatΣ ⊂ Rn is measurable and∣∣Σ ∩ (k + Σ)
∣∣ = 0 for all k ∈ Zn \ {0}.
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Letφ ∈ L2(Rn) be given byφ̂ = χΣ . ThenS = S(φ) is a PSI space of the form

S = {
f ∈ L2(Rn): suppf̂ ⊆ Σ

}
.

Moreover, for anyψ ∈ S, we have

S(ψ) = {
f ∈ L2(Rn): suppf̂ ⊆ suppψ̂

}
.

Example 1. The function sinc∈ L2(R) is defined by

sinc(t) = sinπt

πt
, t ∈ R.

Given N � 1, let φ1, . . . , φN ∈ L2(R) be a collection of distinct translations of the sin
function. That is,

φj (t) = sinc(t − tj ), t ∈ R, j = 1, . . . ,N,

wheret1, . . . , tN ∈ R satisfytj �= tk , for j �= k. Let S = S(φ1, . . . , φN).

Claim. ThenS is the Paley–Wiener space of functions inL2(R) which are band-limited
to [−1

2, 1
2], soS is principal. For example, the sinc-function itself or any of its shifts

dividually generateS. Indeed any linear combination of the original generators yiel
single generator forS as well, unless all coefficients are zero. Hence, in this exampl
setN of Theorem 1 is

N = {0}, 0= (0, . . . ,0) ∈ CN,

consisting of the zero vector only.

Proof. The Fourier transform of any nonzero linear combinationψ = ∑N
j=1 λjφj of

the given generators is a nonzero trigonometric polynomial restricted to the in
[−1/2,1/2]. Such a trigonometric polynomial cannot vanish on a subset of[−1/2,1/2]
with positive measure. Hence, we have suppψ̂ = [−1/2,1/2], modulo null sets. There
fore, by Lemma 1 we obtainS = S(ψ), independently of the choice of(λ1, . . . , λN) �= 0,
soS = S(ψ) holds for any such linear combination.�
Example 2. For x ∈ R, let 
x� denote the largest integer less or equalx. We define a
discretized version of the Archimedean spiral byγ : [0,1) → Z2,

γ (x) = (
ucos2πu�, 
usin2πu�), u = tanπ
2 x, x ∈ [0,1).

Next, let

γ ◦(x) =
{

γ (x)/|γ (x)|, if γ (x) �= 0,
0, otherwise,

x ∈ [0,1).

Now defineφ1, φ2 ∈ L2(R) by their Fourier transforms, obtained fromγ ◦ = (γ ◦
1 , γ ◦

2 ) by

φ̂j (x) =
{

γ ◦
j (x), x ∈ [0,1),

0, x ∈ R \ [0,1),
j = 1,2.

Let S = S(φ1, φ2).
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Claim. ThenS is principal. In fact, the functionψ = λ1φ1 + λ2φ2 is a single generato
S = S(ψ), if and only if λ1 andλ2 are rationally linearly independent. So here the seN
of Theorem 1 is

N = {
(λ1, λ2) ∈ C2: λ1 andλ2 rationally linear dependent

}
.

In particular, any rational linear combination ofφ1, φ2 fails to generateS. This example
illustrates Corollary 1 for the case of real coefficients, cf. Remark 1(i). Namely,N ∩ R2

is a null-set inR2 yet it containsQ2, so it is dense inR2. For the extension to the case
complex coefficients, see the proof of Theorem 1(ii).

Proof. The Archimedean spiral is sufficiently close toZ2 such that its discretizationγ
contains all ofZ2. In fact, for eachz ∈ Z2, the pre-image

Iz := γ −1(z) ⊂ R

has positive measure, it contains at least one interval of positive length. Now suppo
λ1, λ2 ∈ C are linearly dependent over the rationals or, equivalently, over the integers
is,

λ1z1 + λ2z2 = 0, for somez = (z1, z2) ∈ Z2 \ {0}.
Then, forψ = λ1φ1 + λ2φ2 we obtain

ψ̂(x) = λ1φ̂1(x) + λ2φ̂2(x) = |z|−1(λ1z1 + λ2z2) = 0 for all x ∈ Iz. (2)

Sincez �= 0, we have

Iz ⊂ suppφ̂1 ∪ suppφ̂2,

while (2) implies that

Iz ∩ suppψ̂ = ∅,

so we conclude that∣∣(suppφ̂1 ∪ suppφ̂2
) \ suppψ̂

∣∣ � |Iz| > 0.

Thus, using Lemma 1 withΣ = suppφ̂1 ∪ suppφ̂2 ⊂ [0,1] we obtainS(ψ) �= S(φ1, φ2),
for any rationally dependentλ1, λ2.

With complementary arguments we obtain that ifλ1, λ2 are rationally independent, the

ψ̂(x) �= 0, for a.e.x ∈
⋃
z �=0

Iz = suppφ̂1 ∪ suppφ̂2,

and consequentlyS(ψ) = S(φ1, φ2). �
Example 3. Let ρ: [0,1] → [0,1] be an arbitrary measurable function. Defineφ1, φ2 ∈
L2(R) by their Fourier transform

φ̂1(x) = χ[0,1](x)cos 2πρ(x), φ̂2(x) = χ[0,1](x)sin 2πρ(x), x ∈ R,

and letS = S(φ1, φ2).
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Claim. Then

S = {
f ∈ L2(R): suppf̂ ⊆ [0,1]}.

In this example, the setN of Theorem 1 is determined by

N = {0} ∪
⋃
θ∈Θ

(uθ )
⊥,

whereuθ = (cos2πθ,sin 2πθ) ∈ C2, for givenθ ∈ [0,1], and

Θ = {
θ ∈ [0,1]: ∣∣ρ−1(θ)

∣∣ > 0
}
.

Proof. First, we observe that

suppφ̂1 ∪ suppφ̂2 = [0,1].
Hence, forψ = λ1φ1 + λ2φ2 with λ = (λ1, λ2) ∈ C2, by using Lemma 1 withΣ = [0,1]
we have the equivalence

S = S(ψ) ⇔ suppψ̂ = [0,1] (modulo null sets)

⇔ λ1φ̂1(x) + λ2φ̂2(x) �= 0, for a.e.x ∈ [0,1]
⇔ (λ1, λ2) �⊥ (

cos2πρ(x),sin 2πρ(x)
)
, for a.e.x ∈ [0,1]

⇔ λ �⊥ uρ(x), for a.e.x ∈ [0,1].
Therefore, we obtain the complementary characterization

S �= S(ψ) ⇔ λ ⊥ uρ(x), for all x from a set of positive measure,

⇔
{

λ = 0 or
λ ∈ (uθ )

⊥, for someθ ∈ Θ,

since(uθ1)
⊥ ∩ (uθ2)

⊥ = {0}, for θ1 �= θ2. �

3. Proof of Theorem 1

We generally identify an operatorA :CN → �2(Zn), v �→ Av, with its matrix represen
tation,

A = (a1, . . . , aN), a1, . . . , aN ∈ �2(Zn), (3)

that is,

Av(k) =
N∑

j=1

vjaj (k), k ∈ Zn. (4)

The composition ofA with Λ ∈ MN,L(C) of the formA◦Λ can thus be viewed as a matr
multiplication. Recall the notion rank(A) = dim(range(A)).
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Lemma 2. LetL � N and suppose thatA :CN → �2(Zn) satisfiesrank(A) � L. Define

NA = {
Λ ∈ MN,L(C): rank(A ◦ Λ) �= rank(A)

}
.

ThenNA is a null-set inMN,L(C).

Remark 2. (i) SinceA andΛ in Lemma 2 are finite rank operators, we notice that
identity rank(A ◦ Λ) = rank(A) holds if and only if range(A ◦ Λ) = range(A), for both of
these range spaces are finite-dimensional hence they are closed.

(ii) If rank(A) = L = N , then

NA = {
Λ ∈ MN,N(C): Λ singular

}
.

If rank(A) = L = 1, thenA = s ⊗ a for somes ∈ �2(Zn), a ∈ CN , and

NA = a⊥ = {λ ∈ CN : λ ⊥ a}.

Proof. Let K = rank(A) and note that

K = dim
(
range(A)

) = dim
(
ker(A)⊥

)
.

Let {q1, . . . , qK} ⊂ CN denote an orthonormal basis for ker(A)⊥ and let{qK+1, . . . , qN } ⊂
CN denote an orthonormal basis for ker(A). DefineQ ∈ MN,N(C) by its column vectors,

Q = (q1, . . . , qN),

and notice thatQ is unitary. Then the operatorR = A ◦ Q :CN → �2(Zn) has the matrix
representation

R = A ◦ Q = (Aq1, . . . ,AqN) = (r1, . . . , rK,0, . . . ,0),

wherer1, . . . , rK ∈ �2(Zn) are linearly independent. The special structure ofR allows us
to determine

NR = {
Λ ∈ MN,L(C): rank(R ◦ Λ) �= rank(R)

}
= {

Λ = (Λ1
Λ2

) ∈ MK,L(C) × MN−K,L(C): rank(Λ1) � K − 1
}
. (5)

Since the rank-deficient matrices inMK,L(C) are a null-set inMK,L(C), we conclude
from (5) thatNR is a null-set inMN,L(C), i.e.,

|NR| = 0. (6)

Now we observe that

NA = {
Λ ∈ MN,L(C): rank(A ◦ Λ) �= rank(A)

}
= {

Λ ∈ MN,L(C): rank(R ◦ Q−1 ◦ Λ) �= rank(R ◦ Q−1)
}

= {
Q ◦ Λ ∈ MN,L(C): rank(R ◦ Λ) �= rank(R)

} = QNR. (7)

Since Q is unitary, we notice that the bijectionΛ ↔ QΛ is measure preserving i
MN,L(C). Therefore, from (6) and (7) we obtain

|NA| = |QNR| = |NR| = 0. �
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The next lemma is a variant of the Fubini theorem without integrals, it is some
called Fubini’s theorem for null sets. In some cases it is an implicit preliminary r
for proving the Fubini–Tonelli theorem. Conversely, it also follows immediately from
Fubini–Tonelli theorem, so we omit a reference.

Lemma 3. GivenX ⊆ Rn1 andY ⊆ Rn2, let us supposeF ⊆ X × Y . For x ∈ X, let Fx =
{y ∈ Y : (x, y) ∈ F } and fory ∈ Y , let Fy = {x ∈ X: (x, y) ∈ F }. If F is measurable, the
the following are equivalent:

(i) |F | = 0;
(ii) |Fx | = 0, for a.e.x ∈ X;
(iii) |Fy | = 0, for a.e.y ∈ Y .

Remark 3. It is known from a paradoxical set of Sierpiński that the assumption thatF is
measurable in Lemma 3 cannot be removed.

Proof of Theorem 1. (i) Given f ∈ L2(Rn), let Tf :Tn → �2(Zn) denote the fibration
mapping for shift-invariant spaces [5,6], defined by

Tf (x) = (
f̂ (x + k)

)
k∈Zn , x ∈ Tn,

whereTn = Rn/Zn is identified with the fundamental domain[−1
2, 1

2)n. See also Re
mark 4(i). Forx ∈ Tn, defineA(x) :CN → �2(Zn), v �→ A(x)v, by its matrix representa
tion, cf. (3) and (4),

A(x) = (
T φ1(x), . . . , T φN(x)

)
, x ∈ Tn.

We note that each column ofA(x) is an element of�2(Zn). Then for the composed operat
A(x) ◦ Λ :CL → �2(Zn) we have

A(x) ◦ Λ = (
T φ1(x), . . . , T φN(x)

)



λ1,1 . . . λ1,L

...
...

λN,1 . . . λN,L




= (
T ψ1(x), . . . , T ψL(x)

)
, x ∈ Tn.

Define the subsetF ⊂ Tn × MN,L(C) by

F = {
(x,Λ) ∈ Tn × CN : rank

(
A(x) ◦ Λ

) �= rank
(
A(x)

)}
.

Sincex �→ T φj (x) is measurable, forj = 1, . . . ,N , we have thatx �→ A(x) is measurable
so the functionh :Tn × MN,L(C) → N defined by

h(x,Λ) = rank
(
A(x)

) − rank
(
A(x) ◦ Λ

)
is measurable. Now the setF is the pre-image underh of {1, . . . ,L}, i.e.,

F = h−1({1, . . . ,L}),
so we conclude thatF is measurable. Denote
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Fx = {
Λ ∈ MN,L(C): rank

(
A(x) ◦ Λ

) �= rank
(
A(x)

)}
, x ∈ Tn, and

FΛ = {
x ∈ Tn: rank

(
A(x) ◦ Λ

) �= rank
(
A(x)

)}
, Λ ∈ MN,L(C).

By Lemma 2 we have that

|Fx | = 0, for a.e.x ∈ Tn.

So Lemma 3 implies that

|FΛ| = 0, for a.e.Λ ∈ MN,L(C). (8)

Next, by Remark 2 and using the notion of the range functionJS of a shift-invariant spaceS
[5,6,10], we have forx ∈ Tn,

rank
(
A(x) ◦ Λ

) = rank
(
A(x)

)
,

⇔ range
(
A(x) ◦ Λ

) = range
(
A(x)

)
,

⇔ span
(
T ψ1(x), . . . , T ψL(x)

) = span
(
T φ1(x), . . . , T φN(x)

)
,

⇔ JS(ψ1,...,ψL)(x) = JS(φ1,...,φN )(x). (9)

Thus, from the characterization of FSI spaces in terms of the range function [5,
using (9) we obtain the following equivalence,

S(ψ1, . . . ,ψL) = S(φ1, . . . , φN)

⇔ JS(ψ1,...,ψL)(x) = JS(φ1,...,φN )(x), for a.e.x ∈ Tn,

⇔ rank
(
A(x) ◦ Λ

) = rank
(
A(x)

)
, for a.e.x ∈ Tn. (10)

Then using (10) the setN of Theorem 1 can be expressed as follows,

N = {
Λ ∈ MN,L(C): S(ψ1, . . . ,ψL) �= S(φ1, . . . , φN)

}
= {

Λ ∈ MN,L(C): rank
(
A(x) ◦ Λ

) �= rank
(
A(x)

)
for all x from a set of positive

measure
}

= {
Λ ∈ MN,L(C): |FΛ| > 0

}
.

Therefore, (8) implies thatN is a null set.
(ii) For principal shift-invariant spaces (L = 1) and in dimensionn = 1, the statement i

verified by Example 2 for the case ofN = 2 generators and real coefficients. The c
struction can be extended to generalN and complex coefficients. Namely, replace
Archimedean spiral inR2, which comes close to each point of the latticeZ2, with a con-
tinuous curveγ in CN ∼= R2N which comes close to the latticeZ2N . More precisely, we
require thatγ intersects with every open cubek + (0,1)2N , for k ∈ Z2N . The case of gen
eralL = 1, . . . ,N is obtained by extending the pair of generatorsφ1, φ2 to the set of 2L
generators{φ(k)

1 , φ
(k)
2 }1�k�L, where

φ
(k)
j (x) = e2πikxφj (x), k = 1, . . . ,L, j = 1,2, x ∈ R.

The extension of this construction to arbitrary dimensionn = 1,2, . . . yields no additiona
difficulty, and hence we omit the details.�
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Remark 4. (i) We note that what is now known as fiberization in approximation the
can be traced back to the theory of invariant subspaces in [10]. In fact, this techniq
be understood naturally from the multiplicity theory of group representations for ce
operator algebras based on the bilateral shift operatorf (t) �→ f (t − 1) in L2(Rn), i.e., the
characterization of projections commuting with the shift operator, see [15, Section
6.7] and [18]. This important link between approximation theory and operator alg
has been observed first in wavelet theory by Baggett et al. [3]. For further applicati
wavelet and approximation theory, see [2,7–9,11,16,17,21–23].

(ii) Minimal sets of generators for shift-invariant systems can be constructed e
based on the abstract understanding described in (i). A construction of minimal gen
sets also follows from the results in [1]. Our contribution shows that in the case of fi
generated shift-invariant subspaces ofL2(Rn) there exists an abundance of linear com
nations producing such less redundant sets of generatorswithout using the translationsof
the initial set of generators.

4. Final remarks

We have shown that some minimal generator sets for finitely generated shift-inv
subspaces ofL2(Rn) can always be obtained as linear combinations of the original ge
ators without using translations. It is interesting to ask whether the same holds for fi
generated shift-invariant subspaces ofLp(Rn), where 1� p � ∞ andp �= 2. For a few
properties of these spaces we refer to [12,13]. Since the proof of Theorem 1 relies h
on fiberization techniques forp = 2 and on the characterization of shift-invariant space
terms of range functions, this question remains open forp �= 2.
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