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Abstract

Let S be a shift-invariant subspace @(R") defined byN generators and suppose that its
length L, the minimal number of generators §f is smaller thanV. Then we show that at least
one reduced family of generators can always be obtained by a linear combination of the original
generators, without using translations. In fact, we prove that almost every such combination yields a
new generator set. On the other hand, we construct an example where any rational linear combination
fails.
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1. Introduction and main result

Given a family of functionsps, ..., ¢y € L2(R"), let S = S(¢1, ..., ¢n) denote the
closed subspace @f(R") generated by their integer translates. ThaSis, the closure of
the set of all functiong of the form

N

fO=) > cjxpjt—k), teR", (1)

j=lkezn

where finitely many; , € C are nonzero. By construction, these spages L2(R") are
invariant under shifts, i.e., integer translations and they are called finitely generated shift-
invariant spaces. Shift-invariant spaces play an important role in analysis, most notably in
the areas of spline approximation, wavelets, Gabor (Weyl-Heisenberg) systems, subdivi-
sion schemes and uniform sampling. The structure of this type of spaces is analyzed in [5],
see also [4,6,10,20]. Only implicitly we are concerned with the dependence properties of
sets of generators, for details on this topic we refer to [14,19].

The minimal numbelL < N of generators for the spacgis called the length of.
Although we include the case= N, our results are motivated by the cdse: N. In this
latter case, there exists a smaller family of generafars.. ., v, € L2(R") such that

S(1,...,0N)=SW1,...,¥L), with L < N.

Since the new generatoif,, ..., ¥, belong toS, they can be approximated in the
L2-norm by functions of the form (1), i.e., by finite sums of shifts of the original generators.
However, we prove that at least one reduced set of generators can be obtained from a linear
combination of the original generators without translations. In particular, no limit or infinite
summation is required. In fact, we show that almost every such linear combination yields a
valid family of generators. On the other hand, we show that those combinations which fail
to produce a generator set can be dense. That is, combining generators can be a sensitive
procedure.

Let My, 1 (C) denote the space of complék x L matrices endowed with the product
Lebesgue measure 6f¥L =~ R2VL,

Theorem 1. Given¢u, ..., ¢n € L2(R"), let S = S(¢1,...,¢n) and letL < N be the
length of S. Let R C My, 1 (C) denote the set of those matricas= (X; 1)1< <N, 1<k<L

A

such that the linear combinationg; = Zyzlkj,k¢j, for k=1,...,L, yield § =
S(1,...,¥L). Then

(i) R=Mpy (C)\ N, whereN is anull-setinMy (C);
(i) the setw in (i) can be dense iMy 1 (C).

Remark 1. (i) The conclusions of Theorem 1 also hold when the complex matrices
My .1 (C) are replaced by real matricasy . (R).

(ii) Our results are not restricted to the case of compactly supported generators. We
also mention that the shift-invariant spaté Theorem 1 is not required to be regular nor
guasi-regular, see [5] for these notions.
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As a consequence of our main result we have the following interesting observation,
which also serves as a motivation for our considerations. Suppose that a shift-invariant
spaces is given by a (possibly large) number of generatgys. .., ¢, which all have
some additional special properties, such as smoothness, decay, compact support, or mem-
bership in certain function spaces. Assume that we knowsStltain be generated by fewer
generators, i.e., the length §fis L < N. Then a priori suchL new generators may not
have the special properties of the original generators, and previously it was not known
whether there exists a minimal set of generators which do inherit these properties. Now
by Theorem 1 the answer is always affirmative, since indeed we can find minimal sets
of generatorg), ..., ¥ by taking appropriate linear combinations @f, ..., ¢y, thus
preserving any reasonable property of the original generators. We thank K. Gréchenig for
pointing out this observation.

2. Examples

The main result, Theorem 1, has been formulated for finitely generated shift-invariant
(FSI) spaces. We will illustrate this result by examples in the special case of principal shift-
invariant (PSI) spaces. A shift-invariant subspace, initially possibly defined by more than
one generator, is called principal if it can be defined by a single generator, i.e., if its length
is L = 1. As an immediate consequence of Theorem 1 in the case of PSI spaces we have
the following corollary.

Corollary 1. Givengs, ..., ¢y € LAR"), let S = S(¢1. ..., ¢n) and suppose thas is
principal, i.e., the length of is L = 1. Let R c CV denote the set of those vectors=
(A1, ..., An) such that the linear combinatiof = Zﬁ-v:l)\.jd)j yieldsS = S(v¥). Then

(i) R=CN\ N, wheren is anull-setinC";
(i) the setv in (i) can be dense i€V .

The subsequent examples illustrate Corollary 1 and show that thé sah be a single-
ton (Example 1) or indeed be densedff (Example 2). Example 3 demonstrates how the
exceptional setv can be computed. We use the following normalization for the Fourier
transform

foo = / F@e &N gy x eR".
Rn

The support of a functiory is defined without closure, supgp= {t € R": f(z) # 0}.
Let |F| denote the Lebesgue measure of a sulbset R". We will need the following
elementary lemma, which can be easily deduced from [5, Theorem 1.7].

Lemma 1. Suppose thal’ C R” is measurable and

| XN+ 2)|=0 forallkeZ"\ ({0}
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Letgp € L2(R") be given byj? = xx. ThenS = S(¢) is a PSI space of the form
S={f e L*®"): suppf C X}.

Moreover, for anyy € S, we have
S() ={f € L>R"): suppf C suppy}.

Example 1. The function sine L?(R) is defined by

. sinmt
singt) = , teR.
Tt

GivenN >1, letén, ..., ¢y € L2(R) be a collection of distinct translations of the sinc-
function. That is,

;) =sinat —t;), teR, j=1,...,N,
wherery, ..., 1y e R satisfyr; # 1, for j #k. LetS = S(¢1,...,dn).

Claim. Thens is the Paley—Wiener space of functionsliA(R) which are band-limited

to [-3, 51, so S is principal. For example, the sinc-function itself or any of its shifts in-
dividually generateS. Indeed any linear combination of the original generators yields a
single generator fof§ as well, unless all coefficients are zero. Hence, in this example the
setV of Theorem 1 is

N={0}, 0=(0,...,00eCV,

consisting of the zero vector only.

Proof. The Fourier transform of any nonzero linear combinatipr= Z?’:l/\quj of

the given generators is a nonzero trigonometric polynomial restricted to the interval
[—1/2,1/2]. Such a trigonometric polynomial cannot vanish on a subsét-&f2, 1/2]

with positive measure. Hence, we have stipg [—1/2, 1/2], modulo null sets. There-
fore, by Lemma 1 we obtai§ = S(v), independently of the choice ¢k1, ..., Ax) #0,

s0 S = S(y) holds for any such linear combinationc

Example 2. For x € R, let |x] denote the largest integer less or equaWe define a
discretized version of the Archimedean spirahby{0, 1) — Z2,

y(x)=(lucosZu], lusin2ru]), wu=tanZx, x€[0,1).
Next, let

o 9 .f 1
O T Y

Now definegy, 2 € L2(R) by their Fourier transforms, obtained froni = (v, v5) by

. [y, xelo.), .
¢,(x)_{0{ reR\[0,1), J=L2Z

Let S = S(¢1, ¢2).
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Claim. ThenS is principal. In fact, the functiony = L1¢1 + A2¢2 is a single generator,
S = S(y), if and only if A1 andX, are rationally linearly independent. So here the.get
of Theorem 1 is

N = {(A1, 22) € C% A1 anda; rationally linear dependeht

In particular, any rational linear combination ¢f, ¢- fails to generateS. This example
illustrates Corollary 1 for the case of real coefficients, cf. Remark 1(i). Namélg, R2

is a null-set inR? yet it containsQ?, so it is dense iiR?. For the extension to the case of
complex coefficients, see the proof of Theorem 1(ii).

Proof. The Archimedean spiral is sufficiently close Z3 such that its discretizatiop
contains all ofZ2. In fact, for each; € Z2, the pre-image
L=y CR

has positive measure, it contains at least one interval of positive length. Now suppose that
A1, A2 € C are linearly dependent over the rationals or, equivalently, over the integers. That
is,

Az1+ A2z =0, for somez = (z1, z2) € Z2 \ {O}.
Then, fory = A1¢1 + A2¢2 We obtain
¥ (xX) = A1 (x) + Aadha(x) = |z| " H(haz1 + Aaz2) =0 forallx e L. )
Sincez # 0, we have
I, C supppy U supppz,
while (2) implies that
L. Nsuppy =9,
so we conclude that
| (suppg1 U suppp2) \ suppy| > |I| > 0.

Thus, using Lemma 1 witlE = suppp1 U supppz C [0, 1] we obtainS(y) # S(¢1, ¢2),
for any rationally dependents, Az.
With complementary arguments we obtain thatyif > are rationally independent, then

J(x)#0, fora.exe| JI =suppp Usupppz,
z#0
and consequentl§ () = S(¢1, ¢2). O

Example 3. Let p:[0, 1] — [0, 1] be an arbitrary measurable function. Defifxg ¢, €
L2(R) by their Fourier transform

$1(x) = x101(x) COS 2rp(x),  2(x) = xo.1(x)SiN2rp(x), x€R,
and letS = S(¢1, ¢2).



M. Bownik, N. Kaiblinger / J. Math. Anal. Appl. 313 (2006) 342—-352 347

Claim. Then
S={f e L*R): suppf < [0, 11}.
In this example, the set” of Theorem 1 is determined by

N =1{0pu [ w) ",

e®
whereuy = (cos 2t6, sin2r6) € C?, for givend € [0, 1], and

©=1{0¢(0,15:|p71®)|>0}.

Proof. First, we observe that

suppgp1 U suppgo = [0, 1].

Hence, fory = A1¢1 + Aago With A = (A1, A2) € C?, by using Lemma 1 withZ = [0, 1]
we have the equivalence

S=S) & supp& =[0,1] (modulo null sets)
& Adr(x) + Aodo(x) £0, fora.ex €[0,1]
& (A1, A2) L (cos2rp(x),sin2rp(x)), fora.ex €[0,1]
& A Luyy, foraexe[0,1].

Therefore, we obtain the complementary characterization

S#SW) & A Lupyy), forallx from a setof positive measure

N A=0 or
X € (up)t, forsomed € O,

since(ug,)* N (ug,)t = {0}, for61 #62. O

3. Proof of Theorem 1

We generally identify an operatar: CN — ¢2(Z"), v Av, with its matrix represen-
tation,

A:(als-"saN)a al?ﬂ'?aNeez(Zn)s (3)
that is,
N
Av(k) =Y "vjajk), keZ". (4)
j=1

The composition ofA with A € My 1 (C) of the formA o A can thus be viewed as a matrix
multiplication. Recall the notion rarid) = dim(rang&A)).
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Lemma 2. Let L < N and suppose that : CN — ¢2(2") satisfiesank(A) < L. Define
Na={A €My (C): rank(A o A) #rankA)}.

ThenwNy is a null-setinMy 1. (C).

Remark 2. (i) Since A and A in Lemma 2 are finite rank operators, we notice that the

identity rankA o A) =rank(A) holds if and only if rangéA o A) =ranggA), for both of

these range spaces are finite-dimensional hence they are closed.
(i) If rank(A) = L = N, then

Na={A € My n(C): Asingulag.
If rank(A) = L = 1, thenA = s ® a for somes € ¢3(Z"), a € CV, and
Na=at={reCV: xLa).

Proof. Let K =rank(A) and note that
K =dim(rangeA)) = dim(ker(A)").

Let{g1, ..., gx} C CN denote an orthonormal basis for k&y- and let{gx .1, ..., gy} C
CN denote an orthonormal basis for kej. DefineQ € My y(C) by its column vectors,

Qz(qla-"qu)7

and notice thap is unitary. Then the operatdt = A o Q:CN — ¢2(Z") has the matrix
representation

R=A0Q=(Aq1,...,Aqn) =(r1,...,rk,0,...,0),

wherery, ..., rg € £3(Z") are linearly independent. The special structureRadllows us
to determine

Ng={A €My (C): rankR o A) # rank(R)}
= {A = (ﬁ;) €Mk 1 (C) x Mn_k 1.(C): rank(A1) < K — 1}. (5)

Since the rank-deficient matrices Mg 1 (C) are a null-set inMg ;. (C), we conclude
from (5) thatwg is a null-set inMy 1. (C), i.e.,

| Nkl =0. (6)
Now we observe that
Na={A €My (C): rank(A o A) # rankA)}
={Ae My (C): rankRo Q' o A) #rankR o 071}
={QoA €My (C): rankR o A) #rankR)} = QNg. (7

Since Q is unitary, we notice that the bijection <~ QA is measure preserving in
My 1.(C). Therefore, from (6) and (7) we obtain

|NA|=|QeNR|=|dVR|=0. O
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The next lemma is a variant of the Fubini theorem without integrals, it is sometimes
called Fubini’s theorem for null sets. In some cases it is an implicit preliminary result
for proving the Fubini—-Tonelli theorem. Conversely, it also follows immediately from the
Fubini—Tonelli theorem, so we omit a reference.

Lemma 3. GivenX C R" andY C R"2, let us suppos& C X x Y. Forx € X, let F, =
{yeY: (x,y)e FlandforyeY,letF,={x € X: (x,y) € F}. If F is measurable, then
the following are equivalent

(i) |FI=0;
(i) |Fy|=0,fora.e.x e X;
(i) |Fy|=0,fora.e.ye?.

Remark 3. It is known from a paradoxical set of Siengki that the assumption thét is
measurable in Lemma 3 cannot be removed.

Proof of Theorem 1. (i) Given f € L2(R"), let Tf:T" — ¢%(Z") denote the fibration
mapping for shift-invariant spaces [5,6], defined by
TF@) = (f&x+K),epn xeT,

where T" = R"/Z" is identified with the fundamental domajr-3, 1)". See also Re-
mark 4(i). Forx € T”, defineA(x):CN — ¢2(Z"), v — A(x)v, by its matrix representa-
tion, cf. (3) and (4),

A = (Th1(x), ..., Ten(x)), xeT".

We note that each column df(x) is an element of2(Z"). Then for the composed operator
A(x) o A:CL — ¢2(Z") we have

ALl ... ALL
A) o A= (Thpr(x),..., Ty () :
AN - AN
= (Ty1(x), ..., TYr(x)), xeT"
Define the subset ¢ T" x My 1.(C) by
F={(x,A)eT" x C: rank(A(x) o A) # rank(A(x))}.

Sincex — T ¢;(x) is measurable, fof =1, ..., N, we have that — A(x) is measurable
so the functior : T" x My 1. (C) — N defined by

h(x, A) =rank(A(x)) — rank(A(x) o A)
is measurable. Now the sgtis the pre-image undérof {1,..., L}, i.e.,
F=n"({1,...,L}),

so we conclude thak is measurable. Denote
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Fy={A €My (C): rankA(x) o A) #rankA(x))}, xeT", and
Fa={xeT": ranA(x) o A) #rank(A(x))}, A€My (O).
By Lemma 2 we have that
|Fy| =0, fora.exeT".
So Lemma 3 implies that
|Fal=0, fora.e.Ae My (C). (8)
Next, by Remark 2 and using the notion of the range funcfipaf a shift-invariant spac§
[5,6,10], we have fox € T",
rank(A(x) o A) =rank(A(x)),
& rangdA(x) o A) =rangdA(x)),
& spar(Tyi(x),.... Ty (x)) =sparT¢1(x), ..., Ten(x)),
< Is@ryn) () = Is@r....on) (X)- (9)
Thus, from the characterization of FSI spaces in terms of the range function [5,6], by
using (9) we obtain the following equivalence,
SWi,....¥L)=S@1,...,9N)
& Js i) X)) = Is@y,..on (),  fora.ex eT",
& rankA(x) o A) =rank(A(x)), fora.exeT". (10)

Then using (10) the seY of Theorem 1 can be expressed as follows,

N ={AeMy(C): SWt, ..., v1) #S@1,...,¢n)}
={A e My 1(C): rank(A(x) o A) # rank(A(x)) for all x from a set of positive
measuré
={A €My (C):|F4|>0}.

Therefore, (8) implies thawy is a null set.

(i) For principal shift-invariant space4.(= 1) and in dimension = 1, the statement is
verified by Example 2 for the case of = 2 generators and real coefficients. The con-
struction can be extended to geneMland complex coefficients. Namely, replace the
Archimedean spiral ifR?, which comes close to each point of the latt&% with a con-
tinuous curvey in CY = R2V which comes close to the lattié&" . More precisely, we
require thaty intersects with every open cubet (0, 1)2V, for k € Z2N . The case of gen-
eralL =1, ..., N is obtained by extending the pair of generatpis¢, to the set of 2
generatorsf,q&ik), ¢§k)}1<k<L, where

¢V () = pi(x), k=1....L j=12 xeR

The extension of this construction to arbitrary dimensica 1, 2, ... yields no additional
difficulty, and hence we omit the detailsO
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Remark 4. (i) We note that what is now known as fiberization in approximation theory
can be traced back to the theory of invariant subspaces in [10]. In fact, this technique can
be understood naturally from the multiplicity theory of group representations for certain
operator algebras based on the bilateral shift operétor— f(t — 1) in L2(R"), i.e., the
characterization of projections commuting with the shift operator, see [15, Sections 6.6,
6.7] and [18]. This important link between approximation theory and operator algebras
has been observed first in wavelet theory by Baggett et al. [3]. For further applications in
wavelet and approximation theory, see [2,7-9,11,16,17,21-23].

(i) Minimal sets of generators for shift-invariant systems can be constructed easily
based on the abstract understanding described in (i). A construction of minimal generator
sets also follows from the results in [1]. Our contribution shows that in the case of finitely
generated shift-invariant subspaced.8fR") there exists an abundance of linear combi-
nations producing such less redundant sets of generatitrsut using the translationsf
the initial set of generators.

4. Final remarks

We have shown that some minimal generator sets for finitely generated shift-invariant
subspaces af2(R") can always be obtained as linear combinations of the original gener-
ators without using translations. It is interesting to ask whether the same holds for finitely
generated shift-invariant subspaces/#f(R"), where 1< p < oo and p # 2. For a few
properties of these spaces we refer to [12,13]. Since the proof of Theorem 1 relies heavily
on fiberization techniques fgr = 2 and on the characterization of shift-invariant spaces in
terms of range functions, this question remains openpfgr2.
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