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Abstract. We show that a compactly supported tight framelet comes from an MRA if the
intersection of all dyadic dilations of the space of negative dilates, which is defined as the
shift-invariant space generated by the negative scales of a framelet, is trivial. We also construct
examples of (non-tight) framelets, which are arbitrarily close to tight frame framelets, such that
the corresponding space of negative dilates is equal to the entire space L2(R).
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1. Introduction

For a function ψ ∈ L2(R), we define its affine system by

ψj,k(x) = 2
j
2ψ(2j x − k) j, k ∈ Z.

If the system is an orthonormal basis of L2(R), then we call ψ a wavelet. In
the more general case when the system forms a frame for L2(R), we call ψ a
framelet, or a tight framelet if the frame is tight (with constant 1). A general pro-
cedure for constructing tight framelets was presented by Ron and Shen [RS1] and
also by Weiss at al. [PSWX1]. Recently, interesting examples of compactly sup-
ported tight framelets were exhibited in [RS2], [GR], [CH], [CHS], [CHSS], [Ha]
and [DHRS]. The main tool used in these constructions is the multiresolution anal-
ysis (MRA) structure. The reason for this may be very simple.A well known result
of Lemarié [Le] asserts that compactly supported wavelets come from an MRA
and it is a common feeling that the same should be true for compactly supported
tight framelets. In the paper we shall investigate this problem.
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The key ingredient in our study is the space of negative dilates V of a framelet
ψ defined as

V = span{ψj,k : j < 0, k ∈ Z}.
In the first part of this work we concentrate on tight framelets for which the space
V is “small”, in the sense that the intersection of all dyadic dilations of V is trivial.
In this case we give necessary and sufficient conditions for a tight framelet ψ to
come from a multiresolution analysis, generalizing a well-known characterization
of MRA wavelets (see [Gr] and [HW]). As a corollary, we obtain that under the
condition of V being “small”, all compactly supported tight framelets must come
from an MRA.

The second part of the paper is devoted to showing that, somewhat counter-
intuitively, the space of negative dilates can indeed be very large. More precisely,
we construct a (non-tight) framelet, whose space of negative dilates is the whole
space L2(R). This framelet can be chosen in such a way that its lower and upper
frame constants are arbitrarily close to one. We shall also show that the framelet
has a dual framelet.

2. Preliminaries

Despite the fact that all of our results are motivated by the classical case of dyadic
dilations in R we will adopt a more general setting of an expansive integer-valued
matrix, i.e., an n×nmatrix whose eigenvalues have modulus greater than 1. That
is, we shall assume that we are given an n × n expansive matrix A with integer
entries, which plays the role of the usual dyadic dilation.

We recall that a sequence {Dj(V ) : j ∈ Z} of closed subspaces of L2(Rn) is
called an MRA if

(M1) V is shift-invariant
(M2) V ⊂ D(V )

(M3)
⋃
j∈Z

Dj(V ) = L2(Rn)

(M4)
⋂
j∈Z

Dj(V ) = {0}
(M5) there exist a function ϕ ∈ V such that {ϕ(· − k)}k∈Zn is an orthonormal

basis of V .

Here, the dilation operator D is given by Dψ(x) = | detA|1/2ψ(Ax) for some
n×n expansive integer-valued matrixA. If only conditions (M1)–(M4) hold, then
we say that the sequence {Dj(V )j ∈ Z} is a generalized multiresolution analysis
(GMRA).

As we can see, a GMRA is based on the core space V . Condition (M1) means
that V is invariant under integer shifts and can be concluded from (M5). It also
allows us to use the theory of shift-invariant spaces for understanding the connec-
tions between the GMRA structure and wavelets or framelets. This is a subject
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of an extensive study by several authors, e.g. [BMM], [BG], [BW], [KKL], and
[LTW].

We say that a finite family � = {ψ1, . . . , ψL} ⊂ L2(Rn) is a wavelet if its
associated affine system

ψj,k(x) = | detA|j/2ψ(Ajx − k), j ∈ Z, k ∈ Z
n, ψ ∈ �

is an orthonormal basis of L2(Rn). In the more general case, when the affine sys-
tem is a frame or tight frame (with constant 1), we say that � is a framelet or a
tight framelet.

It turns out that every wavelet comes from a GMRA. Indeed, for a finite family
� ⊂ L2(Rn) we define its space of negative dilates V by

V = span{ψj,k : j < 0, k ∈ Z
n, ψ ∈ �}. (2.1)

We say that a framelet � is associated with an MRA, or shortly comes from an
MRA, if its space V satisfies (M1)–(M5). It is not hard to check that if � is
a wavelet then its space of negative dilates satisfies conditions (M1)–(M4) and,
therefore, it is a core space of a GMRA. If we want to see when a GMRA gives
rise to a wavelet, or when condition (M5) is satisfied, then some knowledge of
shift-invariant spaces is useful.

Every shift-invariant space V ⊂ L2(Rn) has a set of generators �, that is,
a countable family of functions whose integer shifts form a tight frame (with
constant 1) for V . Although this family is not unique, the function

σV (ξ) =
∑

ϕ∈�
|ϕ̂(ξ)|2

does not depend (except on a set of null measure) on the choice of the family of
generators. Here, the Fourier transform is defined by

f̂ (ξ) =
∫

Rn

f (x)e−2πi〈x,ξ〉 dx.

We call σV the spectral function of V . This notion was introduced by the authors
in [BR]. The basic property of σ is that it is additive on countable orthogonal sums
and that σL2(Rn) = 1. The spectral function also behaves nicely under dilations
since σD(V )(ξ) = σV ((A

∗)−1ξ). Moreover, if V is generated by a single function
ϕ then σV (ξ) = |ϕ̂(ξ)|2(∑k∈Zn

|ϕ̂(ξ + k)|2)−1 for ξ ∈ supp ϕ̂ and 0 otherwise.
We also mention that there are several other equivalent ways of defining the

spectral function among which we note the following formula

σV (ξ) = lim
ε→0

||PV̂ (1(ξ−ε/2,ξ+ε/2)n)||2/εn for a.e. ξ ∈ R
n,

where PV̂ denotes the orthogonal projection of the Fourier transform of V onto
L2(Rn).
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The spectral function also allows us to define the dimension function of V

dimV (ξ) =
∑

k∈Zn

σV (ξ + k).

The dimension function (also called the multiplicity function) is integer–valued
and additive on countable orthogonal sums as well. Moreover, the minimal number
of functions needed to generate V is equal to the L∞ norm of dimV . In particular,
V can be generated by a single function if and only if dimV ≤ 1. Moreover, con-
dition (M5) is equivalent to the equation dimV = 1. We refer the reader to [BR]
for the proofs of all these facts.

We can already see how the above information can be applied to connect
GMRAs to framelets. If V is a core space of a GMRA, then the space W =
D(V ) 	 V is shift-invariant and has a (possibly infinite) set of generators � .
From (M2), (M3) and (M4) it follows that

L2(Rn) =
⊕

j∈Z

Dj(W), (2.2)

so we conclude that � is a tight framelet possibly of infinite order. That is, �
may have infinite number of generators and the affine system generated by the
elements of� forms a tight frame for L2(Rn). Moreover, the framelet� is semi–
orthogonal. Semi–orthogonality means that the shift-invariant space

W = span{ψ(· − k) : k ∈ Z
n, ψ ∈ �}

generated by � satisfies condition (2.2). On the other hand, it is also clear that if
� is a semi–orthogonal tight framelet (possibly of infinite order), then the space
V of its negative dilates (given by (2.1)) satisfies conditions (M1)–(M4). There-
fore, we can see that there is a perfect duality between GMRA structures and
semi–orthogonal tight framelets (with possibly infinite number of generators).

The problem of characterizing GMRAs yielding wavelets can be solved in
terms of the dimension function of the core space V . Clearly, a GMRA gives rise
to a wavelet (withL generators) if and only if dimW = L, whereW = D(V )	V .
Since W ⊕ V = D(V ) we get

σW(ξ)+ σV (ξ) = σD(V )(ξ) = σV ((A
∗)−1ξ)

which implies

dimW(ξ)+ dimV (ξ) =
∑

d∈D
dimV ((A

∗)−1(ξ + d)),

where D consists of representatives of distinct cosets of Z
n/(A∗

Z
n). Therefore,

the equation dimW = L is equivalent to the consistency equation of Baggett
∑

d∈D
dimV ((A

∗)−1(ξ + d))− dimV (ξ) = L, (2.3)
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provided that dimV is finite a.e. Fortunately, if � is a wavelet with L generators
then dimV is even integrable over [0,1] and

∫

[0,1]n
dimV (ξ) dξ = L/(| detA| − 1). (2.4)

In this way we recover the main result of [BMM].

Theorem (2.5). A GMRA gives rise to a wavelet if and only if the dimension
function of its core space V satisfies (2.3) and (2.4).

To see why (2.4) must be satisfied we recall the following basic fact (see [BR])
that will be also important in the next section.

Lemma (2.6). If � is a semi–orthogonal tight framelet and V is the space of
negative dilates of � then

σV (ξ) =
∑

ψ∈�

∞∑

j=1

|ψ̂((A∗)j ξ)|2 (2.7)

and

dimV (ξ) =
∑

ψ∈�

∑

k∈Zn

∞∑

j=1

|ψ̂((A∗)j (ξ + k))|2. (2.8)

To show (2.4) we observe that if � is a wavelet then from (2.7) it follows that
∫

[0,1]n
dimV (ξ) dξ =

∫

Rn

σV (ξ) dξ

=
∑

ψ∈�

∞∑

j=1

∫

R

|ψ̂((A∗)j ξ)|2

= L/(| detA| − 1),

so (2.4) is proved.
Lemma (2.6) can be also used to recover Gripenberg’s characterization of

MRA wavelets, see [Gr]. We know already that condition (M5) is equivalent to
the equation dimV = 1. By (2.8) this equation becomes

∑

ψ∈�

∑

k∈Zn

∞∑

j=1

|ψ̂((A∗)j (ξ + k))|2 = 1 a.e. (2.9)

and we conclude that a wavelet � comes from an MRA if and only if (2.9) is
satisfied. Note that (2.9) together with (2.8) and (2.4) imposes the restriction on
the number of generators L of an MRA wavelet �. Thus, a necessary condition
for � to be a MRA wavelet is that L = | detA| − 1.
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In this setting, the previously mentioned one–dimensional result of Lemarié is
also clear. Ifψ is a compactly supported dyadic wavelet inL2(R) then supp ψ̂ = R

a.e., so by (2.8) we have dimV > 0. Since dimV is integer–valued, from (2.4) it
follows that dimV = 1, thus condition (M5) holds.

The main goal of the paper is to extend the characterization of MRA wavelets
to tight framelets. The argument leading to (2.9) is due to Auscher who proved
that the function

D�(ξ) :=
∑

ψ∈�

∑

k∈Zn

∞∑

j=1

|ψ̂((A∗)j (ξ + k))|2 (2.10)

is integer–valued (provided � is a wavelet) without using the theory of shift–
invariant spaces, see [Au]. This key step is missing in the case of tight framelets.
In fact, in [PSWX2] it is shown that in one dimension for any tight framelet ψ ,
the function Dψ is integer–valued if and only if the framelet is semi–orthogonal.
In the next section we will see that the lack of Dψ being integer–valued can be
overcome and that the real difficulty in extending Lemarié’s result to framelets
lies in a completely different spot.

3. MRA for compactly supported tight framelets

All constructions of tight framelets appearing in the literature are based on the
GMRA structure. The only notable exception is the paper [GHSW], where GMRA
techniques are not used at all. Nevertheless, the question “Does every tight fram-
elet come from a GMRA?” is still valid.

In general, when dealing with a tight framelet, we ask if the space of nega-
tive dilates V given in (2.1) is a core space of a GMRA. The starting point for
answering this question is the following observation due to Baggett.

Proposition (3.1). If � is a tight framelet then its space of negative dilates V is
shift-invariant.

Proof. It is enough to prove that the orthogonal complement V ⊥ of V is shift-
invariant. It is clear that this complement is given by

V ⊥ = { f ∈ L2(R) : ‖f ‖2
2 =

∑

ψ∈�

∞∑

j=0

∑

k∈Zn

|〈f,ψj,k〉|2 }

(this follows from the tight frame property). Thus, we can see immediately that
the space V ⊥ is shift–invariant. �

We remark that the above result also holds if we relax the assumption of tight-
ness by the requirement that the framelet � has a canonical dual framelet with
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the same number of generators, or equivalently, that � has period one in the ter-
minology of Daubechies and Han [DH]. However, the above result in general is
false for non-tight framelets and even for framelets which have a dual framelet.
These facts were shown by the first author and Weber in [BW].

Proposition (3.1) proves condition (M1). The other two conditions, (M2) and
(M3), are clearly satisfied leaving only (M4). This crucial obstacle was noted by
Baggett who posed during his talk at Washington University in 1999 the following
open problem.

Question (3.2). Let � be a tight framelet with the space of negative dilates V . Is
it true that

⋂

j∈Z

Dj(V ) = {0} ?

If the answer is positive then the sequence {Dj(V ) : j ∈ Z} forms a GMRA
and we could extend most of the results of the previous section to the case of tight
framelets. For a long time we thought that the answer is affirmative even in the
case of framelets, but recently we constructed an example of a framelet (not tight)
with the spaceV equal toL2(R). This example is presented in the next section and
indicates that the above problem is indeed quite serious. The main result of this
section shows that there are no other obstacles in characterizing tight framelets
associated with an MRA.

Theorem (3.3). Let � be a tight framelet with L = | detA| − 1 generators such
that its space of negative dilates V satisfies condition (M4). Then � comes from
an MRA if and only if

D�(ξ) =
∑

ψ∈�

∑

k∈Z

∞∑

j=1

|ψ̂((A∗)j (ξ + k))|2 > 0 a.e. (3.4)

Remark. We recall that the restriction on the number of generatorsL = | detA|−1
in Theorem (3.3) is a necessary condition for (orthogonal) wavelet � to be asso-
ciated with an MRA. In the case of tight framelets it is possible to have MRA
constructions of tight framelets resulting with bigger number of generators, see
[CH], [CHS], and [DHRS]. However, Theorem (3.3) is false without the assump-
tion L = | detA| − 1.

Before we give the proof of Theorem (3.3) we must emphasize that, in general,
D� is not equal to dimV for tight framelets. This is unlike the case of (orthogo-
nal) wavelets, where it is well-known that D� equals dimV , see [RS3], [W] or
Lemma (2.6). Nevertheless, it is possible to prove that for tight framelets both
these functions have the same support, i.e.,

suppD� = supp dimV . (3.5)
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Indeed, from Proposition (3.1) it follows immediately that V is the shift-invariant
space generated by the functions

{D−jψ : ψ ∈ �, j = 1, 2, . . . }.
This, combined with an equivalent definition of the dimension function of shift-
invariant spaces in terms of its range function, see [BDR], [Bo] and [BR] yields

dimV (ξ) = dim span{(ψ̂((A∗)j (ξ + k))k∈Zn : ψ ∈ �, j = 1, 2, . . . },
which shows (3.5).

Proof of Theorem (3.3). First, suppose that� comes from an MRA, i.e., its space
of negative dilates satisfies dimV = 1. By (3.5) we have that suppD� = R

n and
thus (3.4) holds.

Conversely, assume (3.4). We need to show that (M5) is satisfied, or equiva-
lently that dimV = 1. First we conduct the standard orthogonalization procedure
on the sequence {Dj(V ) : j ∈ Z}. Let W = D(V ) 	 V . Since the sequence
{Dj(V ) : j ∈ Z} forms a GMRA we recall that (2.2) holds. This allows us to find
a semi–orthogonal tight framelet associated to the GMRA. Indeed,W is generated
by L functions, namely ψ −PVψ , ψ ∈ �, where PV is the orthogonal projection
onto V . Therefore, we can find at most L generators � in W whose shifts form a
tight frame forW . From (2.2) it follows that� is a semi–orthogonal tight framelet
and we can use Lemma (2.6) to obtain

∫

[0,1]n
dimV (ξ) dξ =

∫

Rn

σV (ξ) dξ

=
∑

ϕ∈�

∞∑

j=1

∫

Rn

|ϕ̂((A∗)j ξ)|2

=
∑

ϕ∈�
‖ϕ̂‖2/(| detA| − 1) ≤ 1, (3.6)

were the last inequality follows from the fact that� generates a tight frame (with
constant 1) and consequently for each ϕ ∈ � we have ||ϕ|| ≤ 1.

On the other hand, (3.4) and (3.5) imply that dimV (ξ) > 0 for a.e. ξ . Since
dimV is integer–valued, from (3.6) it follows that dimV = 1, which concludes the
proof of Theorem (3.3). �
Remark. It should be noticed that Theorem (3.3) holds also for framelets� which
have a canonical dual framelet with the same number of generators. Indeed, in
this case the space of negative dilates of � is shift-invariant, see [BW], and the
above proof works without any changes. However, if a framelet � has merely a
dual framelet (not canonical) then Theorem (3.3) fails, since the space of negative
dilates may not be shift-invariant, see [BW].
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As a corollary of Theorem (3.3) we can extend previously mentioned Lemarié’s
result to tight framelets.

Corollary (3.7). Suppose that a tight framelet� satisfies the assumptions of The-
orem (3.3) and at least one generator of � is compactly supported. Then � must
necessarily come from an MRA.

As we can see, condition (3.4) would characterize all tight framelets with
| detA| − 1 generators coming from an MRA if one could prove that Question
(3.2) has a positive answer. It turns out that in some cases such an answer can be
given.

We already know that semi–orthogonality implies condition (M4). The con-
dition clearly holds if the generators of a tight framelet � are band–limited or,
more generally, if their Fourier transform is supported in a set of a finite measure.

A less trivial result was presented in [Rz].

Proposition (3.8). LetV be a shift-invariant space. IfσV ∈ L1(Rn) then condition
(M4) holds.

If V has a finite number of generators then dimV is bounded and therefore σV
is integrable over R

n. This allows us to combine Proposition (3.1), Theorem (3.3)
and Proposition (3.8) into the following

Corollary (3.9). Suppose that a tight framelet� has L = | detA|− 1 generators
and at least one of them is compactly supported. If the shift-invariant space V of
negative dilates of � is finitely generated, then � comes from an MRA.

So to speak, either V has one generator or infinitely many. We suspect that
in the case of compactly supported tight framelets the latter possibility can be
excluded. Nevertheless, in the final section we construct an example of a fram-
elet (neither tight nor compactly supported) whose space V is as big as possible,
namely L2(R).

4. Framelets with dense negative dilates

In this section we show that the answer to the generalized Baggett’s problem, that
is, when the adjective “tight” in Question (3.2) is dropped, is negative. We will
exhibit an example of a dyadic frameletψ ∈ L2(R), such that its space of negative
dilates V given in (2.1) is the largest possible, i.e., V = L2(R). Furthermore, we
shall show that this framelet can be chosen to be arbitrary close to a tight framelet
(with respect to its frame bounds) and that it has a dual framelet.

Our construction is motivated by the following model situation, where the
dyadic dilation operatorD on L2(R) is replaced by the shift operator S on L2(T).
More precisely, S is given by (Sf )(eix) = eixf (eix), where T = {eix : x ∈



714 M. Bownik, Z. Rzeszotnik

[0, 2π ]} (S can be viewed as the shift on the dual group Z). Given f ∈ L2(T),
define the corresponding cyclic space Mf by Mf = span{Sjf : j ≥ 0}. Follow-
ing the terminology of Helson [He], we say that a closed subspace M ⊂ L2(T)

is simply invariant if M is invariant (SM ⊂ M), but M is not doubly invariant,
i.e., SM �= M.

One may ask whether there existsf ∈ L2(T) such that Mf = L2(T)? The fol-
lowing result, due to Helson, which is a consequence of inner-outer factorization
for Hardy spaces Hp on the unit disk, helps to answer this question.

Theorem (4.1). Suppose that f ∈ L2(T). Then the following are equivalent:
(i) Mf is simply invariant,
(ii) there exists g ∈ H 2 such that |f (eix)| = |g(eix)| for a.e. x ∈ [0, 2π ],
(iii)

∫ 2π
0 log |f (eix)|dx > −∞.

Hence, Wiener’s characterization of doubly invariant subspaces M ⊂ L2(T)

as spaces of the form M = {f ∈ L2(T) : supp f ⊂ E} for some measurable
E ⊂ T, yields the following corollary.

Corollary (4.2). Suppose f ∈ L2(T). Then Mf = L2(T) if and only if

f (eix) �= 0 for a.e. x ∈ T and
∫ 2π

0 log |f (eix)|dx = −∞.

Since it is not hard to construct a function satisfying the assumptions of the
above corollary, we conclude that there exist functions f such that Mf = L2(T).
Since the dyadic dilation operatorD is unitarily equivalent to a bilateral shift with
infinite multiplicity, we can suspect that there are functions ψ ∈ L2(R), whose
space of negative dilates is equal to L2(R). More precisely, D acts like a shift
operator on dyadic Littlewood-Paley blocks

Wj = Ľ2([−2j ,−2j−1] ∪ [2j−1, 2j ]), j ∈ Z,

where we use the convention that for a measurable set Z ⊂ R,

Ľ2(Z) = {f ∈ L2(R) : supp f̂ ⊂ Z}.
Indeed, the main result of this section shows the following.

Theorem (4.3). For any δ > 0, there exists a framelet ψ ∈ L2(R), with frame
bounds 1 and 1+δ, such that the space of negative dilates ofψ is equal toL2(R).
Moreover, ψ has a dual framelet.

In the proof of Theorem (4.3) we will use the following two standard results.

Theorem (4.4). Suppose that f ∈ L2(R) is such that f̂ ∈ L∞(R) and

f̂ (ξ) = O(|ξ |δ) as ξ → 0,
f̂ (ξ) = O(|ξ |−1/2−δ) as |ξ | → ∞,

for some δ > 0. Then the affine system generated by f is a Bessel sequence.
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Lemma (4.5). Suppose that H is a Hilbert space, {fj } ⊂ H is a frame with
constants C1 and C2,

C1||f ||2 ≤
∑

j

|〈f, fj 〉|2 ≤ C2||f ||2 for all f ∈ H,

and {gj } ⊂ H is a Bessel sequence with constant C0,
∑

i

|〈f, gj 〉|2 ≤ C0||f ||2 for all f ∈ H.

If C0 < C1, then {fj + gj } is a frame with constants ((C1)
1/2 − (C0)

1/2)2 and
((C2)

1/2 + (C0)
1/2)2.

Theorem (4.4) gives a sufficient condition for an affine system to be a Bessel
sequence. Its proof can be found in [Ho , Theorem 13.0.1]. Lemma (4.5) is a basic
perturbation result for frames, which can be found in [Ch ,Corollary 2.7] or [FZ ,
Theorem 3.]

Proof of Theorem (4.3). Define the sets Z1, . . . , Z4 by

Z1 =
⋃

k∈Z,k≥0

(k + (1/8, 1/4)),

Z2 = −Z1,

Z3 =
⋃

k∈Z

(k + (Z1 ∪ Z2)) =
⋃

k∈Z

(k + (1/8, 1/4) ∪ (3/4, 7/8)),

Z4 = R \ Z3.

Suppose ψ0 = ψ1 +ψ2, where ψ1 ∈ Ľ2(Z3) and ψ2 ∈ Ľ2(Z4). As usual, define

Wl
j = span{ψlj,k : k ∈ Z} for l = 0, 1, 2.

We claim that

W 0
j = W 1

j ⊕W 2
j for j ∈ Z. (4.6)

It suffices to show (4.6) for j = 0. Take any f ∈ W 1
0 and g ∈ W 2

0 . Since

Wl
0 = {f ∈ L2 : f̂ (ξ) = m(ξ)ψ̂ l(ξ), m is measurable and 1-periodic}, (4.7)

supp f̂ ⊂ Z3, supp ĝ ⊂ Z4 and hence f ⊥ g. Thus, W 1
0 ⊥ W 2

0 . Finally, it
suffices to prove W 1

0 ⊕ W 2
0 ⊂ W 0

0 , since the converse inclusion is trivial. Take
any f ∈ W 1

0 ⊕W 2
0 . By (4.7) there are 1-periodic measurable functions m1 and

m2 such that

f̂ (ξ)=m1(ξ)ψ̂
1(ξ)+m2(ξ)ψ̂

2(ξ)=m1(ξ)1Z3(ξ)ψ̂
0(ξ)+m2(ξ)1Z4(ξ)ψ̂

0(ξ).
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Since the sets Z3 and Z4 are invariant under integer shifts, m = m11Z3 +m21Z4

is 1-periodic. Hence, by (4.7) f ∈ W 0
0 , which shows W 0

0 = W 1
0 ⊕W 2

0 .
It now remains to choose ψ1 and ψ2 appropriately. The idea is that negative

dilates of ψ1 will generate functions whose Fourier transform is supported near
the origin, whereas the negative dilates of ψ2 will exhaust all functions which are
supported away from the origin (in the Fourier domain). Define ψ1 ∈ Ľ2(Z3) by

ψ̂1 = 1(−1/4,−1/8)∪(1/8,1/4).

Clearly, ψ1 is a tight framelet that is a dilated version of the usual orthonormal
Shannon wavelet 1̌(−1,−1/2)∪(1/2,1). Moreover, by (4.7),W 1

0 = Ľ2((−1/4,−1/8)∪
(1/8, 1/4)). Hence,

W 1
j = Ľ2((−2j−2,−2j−3) ∪ (2j−3, 2j−2)) for any j ∈ Z,

and therefore, the space of negative dilates of ψ1 is

V 1 = span
⋃

j<0

W 1
j =

⊕

j<0

W 1
j = Ľ2(−1/8, 1/8). (4.8)

The function ψ2 should be regarded as a perturbation term of ψ0 = ψ1 + ψ2.
However, the construction of ψ2 requires much more work.

We will need a simple probabilistic fact. For a fixed k ∈ Z, define random
variables Xl = 1(k,k+1)12−3lZ4

, l ≥ 0 on the probability space being the interval
(k, k + 1). An easy verification shows that for any l1, l2 ≥ 0 and l1 �= l2

|(k, k + 1) ∩ 2−3l1Z3 ∩ 2−3l2Z3| = (1/4)2,

|(k, k + 1) ∩ 2−3l1Z3 ∩ 2−3l2Z4| = 3/16,

|(k, k + 1) ∩ 2−3l1Z4 ∩ 2−3l2Z4| = (3/4)2.

Therefore, {Xl : l ≥ 0} is a sequence of independent identically distributed
random variables with

P(Xl = 1) = 3/4 and P(Xl = 0) = 1/4.

Let {ϕm : m ∈ N} be some enumeration of the “truncated” Gabor system

{1(k,k+1)e
2πijξ : j ∈ Z, k ∈ Z, k �= −1, 0}.

Clearly, {ϕm : m ∈ N} is an orthonormal basis of L2((−∞,−1) ∪ (1,∞)).
For any m ∈ N, let km ∈ Z denote the left endpoint of the support of ϕm, i.e.,
suppϕm = (km, km + 1).

Let (mp)p∈N be a sequence of natural numbers such that each natural number
occurs infinitely many times. We construct by induction a sequence of functions
{φp : p ∈ N} and a sequence of natural numbers (lp)p∈N ⊂ 3N. The requirement
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that lp’s are divisible by 3 plays an essential role later in the proof when the above
probabilistic observation is used.

Let φ1 = D−3(ϕm1)1Z4 and l1 = 3. Suppose we have constructed φ1, . . . , φp
and l1, . . . , lp for some p ∈ N. Define lp+1 to be the smallest integer divisible by
3 such that

suppφ1 ∪ . . . ∪ suppφp ⊂ (−2lp+1, 2lp+1), (4.9)

and

φp+1 = D−lp+1(ϕmp+1)1Z4 . (4.10)

It is easy to see that the sequence (lp)p∈N is increasing and the supports of φp’s
are included in pairwise disjoint open intervals. Therefore, 〈φp, φp′ 〉 = 3/4δp,p′

for any p, p′ ∈ N, since |Z4 ∩ (k, k + 1)| = 3/4 for any k ∈ Z. Finally, define
ψ2 ∈ Ľ2(Z4) by

ψ̂2(ξ) =
∑

p∈N

cpφp(ξ), (4.11)

for some sufficiently fast decaying sequence (cp)p∈N of positive numbers. More
precisely, we choose cp’s such that 0 < cp+1 < cp/(p + 1) for all p ∈ N and
ψ̂2(ξ) = O(|ξ |−1) as |ξ | → ∞. Hence, by Theorem (4.4), the affine system
generated byψ2 is a Bessel sequence. Our next goal is to show the following fact.

Lemma (4.12). Suppose that ψ2 given by (4.11) is constructed as above. Let V 2

be the space of negative dilates of ψ2 and P be the orthogonal projection onto
Ľ2((−∞,−1) ∪ (1,∞)), i.e.,

(̂Pf )(ξ) = f̂ (ξ)1(−∞,−1)∪(1,∞) for f ∈ L2.

Then P(V 2) is dense in Ľ2((−∞,−1) ∪ (1,∞)).

Proof. Since Ṽ 2 := span{ψ2
−lp,0 : p ∈ N} ⊂ V 2 it suffices to show that P(Ṽ 2)

is dense in Ľ2((−∞,−1) ∪ (1,∞)). Hence, we need to show that each basis
element ϕm, m ∈ N, of L2((−∞,−1) ∪ (1,∞)) belongs to the closure of the
Fourier transform of P(Ṽ 2). Given r ∈ N,

̂ψ2
−lr ,0 = Dlr (ψ̂2) =

∑

p∈N

cpD
lr (φp).

By (4.9), suppDlr (φp) ⊂ (−1, 1) for p < r , and we have

(P (ψ2
−lr ,0))̂ =

∑

p≥r
cpD

lr (φp) =
∑

p≥r
cpD

lr−lp (ϕmp)12−lr Z4

= cr12−lr Z4

[

ϕmr +
∑

p>r

cp

cr
Dlr−lp (ϕmp)

]

.
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Since cr+1/cr < 1/(r + 1),
∣
∣
∣
∣

∣
∣
∣
∣

∑

p>r

cp

cr
Dlr−lp (ϕmp)

∣
∣
∣
∣

∣
∣
∣
∣ ≤

∑

p>r

1

(r + 1)(r + 2) . . . p
||Dlr−lp (ϕmp)|| < 2/r,

we conclude that ϕmr12−lr Z4
+ ηr belongs to the Fourier transform of P(Ṽ 2) for

some ηr ∈ L2 with ||ηr || < 2/r .
For a fixed m ∈ N, let R = {r ∈ N : mr = m}. By our construction

R = {r1, r2, . . . } is infinite. Define random variablesXl = 1(km,km+1)12−lZ4
, l ≥ 0

on the probability space being the interval (km, km+1). Earlier we have observed
that {Xl : l ∈ 3Z, l ≥ 0} is a sequence of independent identically distributed
random variables with

P(Xl = 1) = 3/4 and P(Xl = 0) = 1/4.

Therefore, by the Strong Law of Large Numbers

(Xlr1 (ξ)+ · · · +Xlrn (ξ))/n → E(Xl) = 3/4 as n → ∞
for a.e. ξ ∈ (km, km + 1).

Hence, by the Lebesgue Dominated Convergence Theorem

(ϕmr1 12−lr1Z4
+ ηr1)+ · · · + (ϕmrn12−lrn Z4

+ ηrn)

n

= (ϕmXlr1 + ηr1)+ · · · + (ϕmXlrn + ηrn)

n
→ 3/4ϕm in L2(R) as n → ∞,

since (ηr1 + · · · + ηrn)/n → 0 in L2(R) as n → ∞. Therefore, ϕm belongs
to the closure of the Fourier transform of P(Ṽ 2). Since m ∈ N is arbitrary and
{ϕm : m ∈ N} is an orthonormal basis of L2((−∞,−1)∪ (1,∞)), this completes
the proof of the lemma. �
Corollary (4.13). Suppose that V 2 is the same as in Lemma (4.12). Let Pj be the
orthogonal projection onto Ľ2((−∞,−2j ) ∪ (2j ,∞)), i.e.,

(̂Pjf )(ξ) = f̂ (ξ)1(−∞,−2j )∪(2j ,∞) for f ∈ L2.

Then Pj(V 2) is dense in Ľ2((−∞,−2j ) ∪ (2j ,∞)) for any j ∈ Z.

Proof. Since the case j ≥ 0 follows immediately from Lemma (4.12), we may
assume that j < 0.A straightforward calculation shows thatPj = DjPD−j . Take
any f ∈ Ľ2((−∞,−2j )∪ (2j ,∞)). SinceD−jf ∈ Ľ2((−∞,−1)∪ (1,∞)), by
Lemma (4.12) there exists a sequence {fk : k ∈ N} ⊂ V 2 such thatP0fk → D−jf
as k → ∞. Hence, PjDjfk → f as k → ∞. Since Djfk ∈ V 2 for j ≤ 0, this
shows the corollary. �

We are now ready to conclude the proof of Theorem (4.3). Let V 0 be the space
of negative dilates of ψ0. By (4.6),
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V 0 = span

( ⋃

j<0

W 0
j

)

= span

( ⋃

j<0

(W 1
j ∪W 2

j )

)

= span(V 1 ∪ V 2).

Therefore, by (4.8) and P−3(V 2) = Ľ2((−∞,−1/8) ∪ (1/8,∞)), we have that
V 0 is dense in L2(R). Since V 0 is closed it must be equal to L2(R). It remains to
show that one can also find a framelet with this property.

Recall that ψ0 = ψ1 + ψ2, where ψ1 is a tight framelet and ψ2 is a Bessel
sequence. Therefore, by Lemma (4.5), there exists ε > 0 such thatψ ′ = ψ1+εψ2

is a framelet with frame constants 1 − δ/3 and 1 + δ/3. Moreover, since εψ2 is
of the form (4.11), the space of negative dilates of ψ ′ is also L2(R). Therefore,
ψ = (1 − δ/3)−1/2ψ ′ is a framelet with constants 1 and 1 + δ whose space of
negative dilates is L2(R). Finally, we employ a set of equations which charac-
terizes dual framelets. We recall that functions φ,ψ ∈ L2(R) whose respective
affine systems are Bessel sequences form a pair of dual framelets if and only if

∑

j∈Z

φ̂(2j ξ)ψ̂(2j ξ) = 1 a.e. ξ,

∞∑

j=0

φ̂(2j ξ)ψ̂(2j (ξ + q)) = 0 a.e. ξ and for odd q.

Thus, an easy verification shows that φ = (1 − δ/3)1/2ψ1 is a dual framelet to
ψ = (1 − δ/3)−1/2(ψ1 + εψ2). This completes the proof of Theorem (4.3). �
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