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Abstract. In this work we develop the theory of weighted anisotropic Besov spaces
associated with general expansive matrix dilations and doubling measures with the
use of discrete wavelet transforms. This study extends the isotropic Littlewood-
Paley methods of dyadic ϕ-transforms of Frazier and Jawerth [19,21] to non-iso-
tropic settings.

Several results of isotropic theory of Besov spaces are recovered for weighted
anisotropic Besov spaces. We show that these spaces are characterized by the mag-
nitude of the ϕ-transforms in appropriate sequence spaces. We also prove bound-
edness of an anisotropic analogue of the class of almost diagonal operators and
we obtain atomic and molecular decompositions of weighted anisotropic Besov
spaces, thus extending isotropic results of Frazier and Jawerth [21].

Mathematics Subject Classification (2000): Primary 42B25, 42B35, 42C40;
Secondary 46E35, 47B37, 47B38

1. Introduction and statements of main results

Many classical function or distribution spaces occurring in analysis have been
shown to admit decompositions into simpler elementary building blocks, often
called atoms or molecules. Decomposition techniques have become a very useful
tool in the study of a large class of function spaces and operators acting on them,
starting with now-classical atomic decomposition of the Hardy spaces Hp(Rn),
0 < p ≤ 1 of Coifman [13] and including atomic and molecular decomposition
results for Triebel-Lizorkin and Besov spaces of Frazier and Jawerth [19–22].

There are several directions of extending classical function spaces arising in
harmonic analysis of Euclidean spaces to other domains and non-isotropic settings.
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For example, the usual isotropic dyadic dilations can be replaced by more com-
plicated non-isotropic dilation structures as in the study of parabolic Hardy spaces
of Calderón and Torchinsky [11,12] or Hardy spaces on homogeneous groups of
Folland and Stein [18]. The non-isotropic variants of Triebel-Lizorkin and Besov
spaces for diagonal dilations have been studied by Besov, Il’in, and Nikol’skiı̆
[1], Schmeisser and Triebel [32,34,36], Dintelmann [15,16], and Farkas [17]. The
other direction is the study of weighted function spaces associated with general
Muckenhoupt A∞ weights. This direction of research for Besov and Triebel-Li-
zorkin spaces was carried over by Bui, Paluszyński, and Taibleson [6,7,9,10] and
by Rychkov [30,31]. Recently, Roudenko [29] has studied matrix-weighted Besov
spaces defined using matrix analogues of Muckenhoupt Ap weights introduced by
Nazarov, Treil, and Volberg [26,33].

The goal of this work is to show that several aspects of the above mentioned
developments can be extended to a larger class (than previously considered diago-
nal setting) of non-isotropic dilation structures associated with expansive dilations.
In the context of Hardy spaces this goal was achieved by the author in [3], where
it was demonstrated that significant portion of a real-variable isotropic Hp theory
extends to such anisotropic setting. In the context of Triebel-Lizorkin spaces, anal-
ogous extension to weighted anisotropic setting was performed by the author and
Ho [4]. The goal of this work is to show that one can also build a coherent theory of
weighted anisotropic Besov spaces associated with expansive dilations with the use
of the discrete ϕ-transforms of Frazier and Jawerth. Our formulation includes the
previously studied classes of Besov spaces that corresponded to diagonal dilations.
In what follows we summarize the results obtained in this work.

In this work we introduce and study Besov spaces on R
n associated with an

expansive dilation A, that is an n × n real matrix all of whose eigenvalues λ sat-
isfy |λ| > 1. The starting point is a basic representation formula for tempered
distributions

f =
∑

Q∈Q
〈f, ϕQ〉ψQ where Q = {A−j ([0, 1]n + k) : j ∈ Z, k ∈ Z

n},

where Q is the collection of all dilated cubes adapted to the action of a dilation A,
and ϕQ and ψQ are translates and dilates of appropriate functions ϕ and ψ local-
ized to Q. More precisely, functions ϕ and ψ must satisfy support and Calderón
conditions (2.6) and (2.7). In particular, ϕ̂ and ψ̂ have to be smooth and compactly
supported. In the case of dyadic dilationA = 2Id , this is a well-known reproducing
formula for discrete ϕ-transforms of Frazier and Jawerth.

Following Frazier and Jawerth, we then define the ϕ-transform, which maps the
distribution f to the sequence of its wavelet coefficients Sϕf = {〈f, ϕQ〉}Q∈Q. For
any sequence s = {sQ}Q∈Q of complex numbers, we define formally the inverse
ϕ-transform, which maps s to a distribution Tψs = ∑

Q∈Q sQψQ. To guaran-
tee meaningfulness and boundedness of these transforms, we need to introduce
quantitative assumptions on distributions f and sequences s. We will assume that
f belongs to anisotropic Besov space Ḃα,qp (or its inhomogeneous counterpart Bα,qp )
and s belongs to its discrete variant ḃα,qp (or bα,qp ).
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Given α ∈ R, 0 < p, q ≤ ∞, and a dilation A, we introduce the anisotropic
Besov space Ḃα,qp as the collection of all tempered distributions f (modulo poly-
nomials) such that,

‖f ‖Ḃα,qp
=

( ∑

j∈Z

(| detA|jα||f ∗ ϕj ||Lp)q
)1/q

< ∞,

where ϕ ∈ S(Rn) satisfies certain support conditions (3.2) and (3.3), and ϕj (x) =
| detA|j ϕ(Ajx). We show that this definition is independent of the choice of ϕ in
a more general weighted setting, where Lp(Rn) is replaced by Lp(Rn, µ) with µ
a doubling measure on R

n corresponding to the action of a dilation A. The dis-
crete Besov sequence space, ḃα,qp is defined as the collection of all complex-valued
sequences s = {sQ}Q∈Q such that

‖s‖ḃα,qp
=

( ∑

j∈Z

( ∑

Q∈Q, |Q|=| detA|−j
(|Q|−α−1/2|sQ|)p

)q/p)1/q

< ∞.

Then we have the following generalization of the fundamental result of Frazier and
Jawerth [21,22] for ϕ-transforms on Besov spaces; see Theorem 3.5 for a rigorous
statement. A similar result to Theorem 1.1 in the case of (unweighted) anisotropic
spaces was obtained by Dintelmann, see [15].

Theorem 1.1. The ϕ-transform Sϕ : Ḃα,qp → ḃα,qp and the inverse ϕ-transform
Tψ : ḃα,qp → Ḃα,qp are bounded, and Tψ ◦ Sϕ is the identity on Ḃα,qp .

This result will enable us to study operators on Ḃα,qp by considering correspond-
ing operators on ḃα,qp , as it was done in the classical dyadic case by Frazier and
Jawerth. This is because the ḃα,qp norm is generally easier to work with, since it
is discrete and depends only on the magnitude of the sequence elements. A very
useful sufficient condition for the boundedness of operators on ḃα,qp is the almost
diagonal condition studied in great detail in [21,22]. We extend this class of opera-
tors to anisotropic setting associated with expansive dilations A and we show that
the expected boundedness result, Theorem 4.2, holds for anisotropic Besov spaces.
The corresponding result for Triebel-Lizorkin spaces was obtained by the author
and Ho [4].

Next, we introduce notions of smooth atoms and molecules for anisotropic Be-
sov spaces extending familiar isotropic atoms and molecules introduced in [19,21].
A smooth atom supported near the dilated cube Q ∈ Q must satisfy appropriate
smoothness, compact support, and vanishing moments properties. Smooth mole-
cules satisfy similar properties with the exception that support condition is relaxed
by appropriate decay estimate. Theorems 5.5 and 5.7 establish fundamental synthe-
sis || ∑Q sQ�Q||Ḃα,qp ≤ C||s||ḃα,qp , and analysis ||{〈f,�Q〉}Q||ḃα,qp ≤ C||f ||Ḃα,qp
estimates for smooth synthesis {�Q}Q and analysis molecules {�Q}Q. Both of
these results generalize the boundedness of the ϕ-transform and the inverse ϕ-trans-
form in Theorem 1.1 to situations when neither {�Q}Q nor {�Q}Q are necessarily
obtained by translates and dilates of a particular function in S.
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Finally, the above results are used to extend the fundamental smooth atomic
decomposition results of Frazier and Jawerth [19] to a general setting of weighted
anisotropic Ḃα,qp spaces. Analogous results for inhomogeneous anisotropic Besov
spaces Bα,qp are also outlined.

2. Some background tools

We start by recalling basic definitions and properties of non-isotropic Euclidean
spaces associated with general expansive dilations.

2.1. Basic properties of quasi-norms ρA

A real n× n matrix A is an expansive matrix, often called a dilation, if minλ∈σ(A)
|λ|>1,where σ(A) is the set of all eigenvalues (the spectrum) ofA. A fundamental
notion in our study is a quasi-norm ρA associated with A, which induces a quasi-
distance making R

n a space of homogeneous type. For rudimentary facts about
spaces of homogeneous type we refer the reader to [14,23].

Definition 2.1. A quasi-norm associated with an expansive matrix A is a measur-
able mapping ρA : R

n → [0,∞) satisfying

ρA(x) > 0, for x 
= 0,

ρA(Ax) = | detA|ρA(x) for x ∈ R
n, (2.1)

ρA(x + y) ≤ H(ρA(x)+ ρA(y)) for x, y ∈ R
n,

where H ≥ 1 is a constant.

Here, we will only list a few basic properties of quasi-norms ρA, which will
be used subsequently. For more details we refer to [3,24]. We recall that all quasi-
norms associated to a fixed dilationA are equivalent, see [3, Lemma 2.4]. Moreover,
there always exist a quasi-norm ρA, which is C∞ on R

n except the origin, see [24].

Proposition 2.1. For any expansive matrix A and ε > 0,
∫

B(0,1)
ρA(x)

ε−1dx < ∞ and
∫

Rn\B(0,1)
ρA(x)

−1−εdx < ∞.

Lemma 2.2. Suppose A is expansive matrix, and λ− and λ+ are any positive real
numbers such that 1 < λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A) |λ|. Let

ζ+ := ln λ+
ln | detA| , ζ− := ln λ−

ln | detA| .

Then for any quasi-norm ρA there exists a constant C such that,

C−1ρA(x)
ζ− ≤ |x| ≤ CρA(x)

ζ+ if ρA(x) ≥ 1 (2.2)

and

C−1ρA(x)
ζ+ ≤ |x| ≤ CρA(x)

ζ− if ρA(x) ≤ 1. (2.3)

Furthermore, if A is diagonalizable over C, then we may take λ− = minλ∈σ(A) |λ|
and λ+ = maxλ∈σ(A) |λ|.
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We will also need the following easy estimates

(1/c)λj−|x| ≤ |Ajx| ≤ cλ
j
+|x| for j ≥ 0, (2.4)

(1/c)λj+|x| ≤ |Ajx| ≤ cλ
j
−|x| for j ≤ 0, (2.5)

for some constant c > 0, where λ− and λ+ are the same as in Lemma 2.2.

Proposition 2.3. (Rn, ρA, | · |) is a space of homogeneous type, where ρA is a
quasi-norm associated with an expansive dilation A, and | · | is Lebesgue measure
on R

n.

Next, we introduce the class of measures on R
n, which are doubling with respect

to an expansive matrix A.

Definition 2.2. We say that a non-negative Borel measure µ on R
n is ρA-doubling,

if there exists β > 0 such that

µ(BρA(x, | detA|r)) ≤ | detA|βµ(BρA(x, r)) for all x ∈ R
n, r > 0,

where,

BρA(x, r) = {y ∈ R
n : ρA(x − y) < r}.

The smallest such β = β(µ) as above is called a ρA-doubling constant of µ.

Remark 2.1. We remark that ρA-doubling measureµ does not have to be absolutely
continuous with respect to the Lebesgue measure on R

n. An example of a measure
µ on R, which is doubling and singular with respect to Lebesgue measure can be
found in the work of Buckley and MacManus [5]. Moreover, it is not hard to show
that the doubling constant β is always ≥ 1.

We also remark that any weight w in A∞ (with respect to a quasi-distance
ρA) defines a ρA-doubling measure µ by dµ(x) = w(x)dx, see [4, Definition 2.2].
Unlike the case of Triebel-Lizorkin spaces [4], in this work we relax the assumption
that a weightw ∈ A∞, since in the study of Besov spaces we do not have to use the
Hardy-Littlewood maximal function nor weighted vector-valued Fefferman-Stein
inequality.

2.2. Discrete wavelet transforms

Suppose that ϕ,ψ ∈ S(Rn) be such that

supp ϕ̂, supp ψ̂ ⊂ [−π, π ]n \ {0} (2.6)
∑

j∈Z

ϕ̂((A∗)j ξ)ψ̂((A∗)j ξ) = 1 for all ξ ∈ R
n \ {0}, (2.7)

where A∗ is the adjoint (transpose) of A. Here,

supp ϕ̂ = {ξ ∈ Rn : ϕ̂(ξ) 
= 0},
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and the Fourier transform of f is

f̂ (ξ) =
∫

Rn
f (x)e−i〈x,ξ〉dx.

For any j ∈ Z and k ∈ Z
n, let Qj,k = A−j ([0, 1]n + k) be the dilated cube, and

xQj,k = A−j k be its “lower-left corner”. Let

Q = QA = {Qj,k : j ∈ Z, k ∈ Z
n}

be the collection of all dilated cubes. For ϕ ∈ S(Rn), define

ϕj (x) = | detA|j ϕ(Ajx) for j ∈ Z,

ϕQ(x) = | detA|j/2ϕ(Ajx − k) = |Q|1/2ϕj (x − xQ) for Q = Qj,k ∈ Q.

It can be shown that the conditions (2.6), (2.7) imply that the wavelet systems
{ϕQ : Q ∈ Q} and {ψQ : Q ∈ Q} form a pair of dual frames in L2(Rn); for more
details, see [2,4]. This means that {ϕQ : Q ∈ Q} and {ψQ : Q ∈ Q} are Bessel
sequences and we have a reconstruction formula

f =
∑

Q∈Q
〈f, ϕQ〉ψQ, for all f ∈ L2(Rn), (2.8)

where the above series converges unconditionally in L2.
The above formula has a counterpart in the form of basic reproducing identity

(2.13) valid for the large class of tempered distributions modulo polynomials S ′/P .
For the basic properties of S ′/P , we refer to [25, Section 3.3] or [34, Section 5.1].
Here, we only recall that S ′/P can be identified with the space of all continuous
functionals on the closed subspace S0(R

n) of the Schwartz class S(Rn) given by

S0(R
n) = {ϕ ∈ S :

∫
ϕ(x)xαdx = 0 for all multi-indices α}.

The counterpart of (2.8) for S ′/P follows from Lemmas 2.4 and 2.5, which show
that any distribution f admits a kind of Littlewood-Paley decomposition and wave-
let transform adapted to an expansive dilationA. Both of these results are anisotropic
modifications of their well-known dyadic analogues, see [19,21,22]. The proofs of
these lemmas can be found in [4].

Lemma 2.4. Suppose that A is an expansive matrix and ϕ ∈ S(Rn) is such that
∑

j∈Z

ϕ̂((A∗)j ξ) = 1 for all ξ ∈ R
n \ {0}, (2.9)

and supp ϕ̂ is compact and bounded away from the origin. Then for anyf ∈ S ′(Rn),

f =
∑

j∈Z

ϕj ∗ f, (2.10)

where ϕj (x) = | detA|j ϕ(Ajx), and the convergence is in S ′/P , where P ⊂ S ′
is the class of all polynomials in R

n.
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More precisely, there exist a constant d depending only on the order of the dis-
tribution f̂ , a sequence of polynomials {Pk}∞k=1 ⊂ P with degPk ≤ d, and P ∈ P ,
such that

f = lim
k→∞

( ∞∑

j=−k
ϕj ∗ f + Pk

)
+ P, (2.11)

where the convergence is in S ′.

Lemma 2.5. Suppose thatA is an expansive matrix. If g ∈ S ′
(Rn), h ∈ S(Rn) and

supp ĝ, ĥ ⊂ (A∗)j [−π, π ]n for some j ∈ Z,

then,

(g ∗ h)(x) =
∑

k∈Zn

| detA|−j g(A−j k)h(x − A−j k), (2.12)

with convergence in S ′. Consequently, if ϕ,ψ ∈ S ′(Rn) satisfy (2.6), (2.7), then

f =
∑

Q∈Q
〈f, ϕQ〉ψQ, for any f ∈ S ′

/P, (2.13)

where the convergence of the above series, as well as the equality, is in S ′/P . More
precisely, there exists a sequence of polynomials {Pk}∞k=1 ⊂ P and P ∈ P such
that

f = lim
k→∞

( ∑

Q∈Q, | detA|−k≤|Q|≤| detA|k
〈f, ϕQ〉ψQ + Pk

)
+ P,

with convergence in S ′.

3. Besov spaces

In this section we investigate weighted anisotropic Besov spaces Ḃα,qp (Rn, A,µ)

associated with general expansive dilation matrices using the Littlewood-Paley
decomposition. Hence, in this work we will not be concerned with an alternative
way of defining Besov spaces using Lp modulus of smoothness.

3.1. Homogeneous Besov spaces

Motivated by the classical definition of Besov spaces by Peetre [27], Triebel [34,
35], Frazier and Jawerth [21,22], and their weighted counterparts by Bui [6,8], we
define anisotropic Besov spaces as follows.

Definition 3.1. For α ∈ R, 0 < p, q ≤ ∞, and µ a ρA-doubling measure, we
define the weighted anisotropic Besov space Ḃα,qp = Ḃα,qp (Rn, A,µ) as the collec-
tion of all f ∈ S ′

/P such that,
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‖f ‖Ḃα,qp
=

( ∑

j∈Z

(| detA|jα||f ∗ ϕj ||Lp(µ))q
)1/q

< ∞, (3.1)

where ϕ ∈ S(Rn) satisfies (3.2) and (3.3),

supp ϕ̂ := {ξ ∈ Rn : ϕ̂(ξ) 
= 0} ⊂ [−π, π ]n \ {0}, (3.2)

sup
j∈Z

|ϕ̂((A∗)j ξ)| > 0 for all ξ ∈ R
n \ {0}. (3.3)

To emphasize the dependence on ϕ we will use the notation Ḃα,qp (Rn, A,µ)(ϕ) for
(3.1). Later we will show that this definition is independent of ϕ.

The sequence space, ḃα,qp = ḃα,qp (A,µ) is the collection of all complex-valued
sequences s = {sQ}Q∈Q such that

‖s‖ḃα,qp
=

( ∑

j∈Z

∥∥∥∥
∑

Q∈Q, |Q|=| detA|−j
|Q|−α|sQ|χ̃Q

∥∥∥∥
q

Lp(µ)

)1/q

< ∞,

where χ̃Q := |Q|−1/2χQ is theL2-normalized characteristic function of the dilated
cube Q.

Remark 3.1. The assumption (3.2) is made mostly for convenience and it can be
relaxed by merely requiring that supp ϕ̂ is bounded and bounded away from the
origin. It is clear that this leads to an equivalent definition of Ḃα,qp spaces. We also
remark that if p = ∞ then the Besov space Ḃα,qp does not depend on the choice
of the measure µ. However, it still depends on the choice of an expansive dilation
A. Since the case of p = ∞ is also easier to deal with, in most arguments we will
concentrate on the case p < ∞ , leaving generally obvious verification of the case
p = ∞ to the reader.

3.2. Completeness of Ḃα,qp (Rn, A,µ) spaces

We will use the following extension of a classical result of Plancherel and Pólya
[19,28] to non-isotropic weighted Euclidean spaces.

Lemma 3.1. Suppose K is a compact subset of R
n, 0 < p < ∞, and µ is a ρA-

doubling measure on R
n. Suppose f ∈ S ′(Rn) and supp f̂ ⊂ (A∗)jK for some

j ∈ Z. Then
( ∑

k∈Zn

sup
z∈Qj,k

|f (z)|pµ(Qj,k)

)1/p

≤ C||f ||Lp(µ), (3.4)

whereQj,k = A−j ([0, 1]n+ k), and the constant C = C(K, p,µ) depends onK ,
p, and the doubling constant of µ.

Proof. Assume first thatK = [−1, 1]n. Letψ ∈ S be such that supp ψ̂ ⊂ [−π, π ]n

and ψ̂(ξ) = 1 for ξ ∈ [−1, 1]n. Let g(x) = f (x + y), where y ∈ R
n, and

h(x) = ψj (x) = | detA|jψ(Ajx). Since supp ĝ = supp f̂ and ĥ(ξ) = 1 for
ξ ∈ supp f̂ , we have g ∗ h = g. Hence, by Lemma 2.5 we have
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f (x + y) = g(x) = (g ∗ h)(x) = | detA|−j
∑

l∈Zn

g(A−j l)h(x − A−j l)

=
∑

l∈Zn

f (A−j l + y)ψ(Ajx − l).

Therefore, if we fix momentarily k ∈ Z
n and y ∈ Qj,k , then

sup
z∈Qj,k

|f (z)| ≤ sup
x∈A−j ([−1,1]n)

|f (x + y)|

≤
∑

l∈Zn

|f (A−j l + y)| sup
x∈A−j ([−1,1]n)

|ψ(Ajx − l)|.

Since ψ ∈ S(Rn), for any M > 0 we have

sup
x∈A−j ([−1,1]n)

|ψ(Ajx − l)| = sup
x∈[−1,1]n

|ψ(x − l)| ≤ CM(1 + |l|)−M.

Hence, if p > 1, then by Hölder’s inequality, 1/p + 1/p′ = 1,

sup
z∈Qj,k

|f (z)|p≤
( ∑

l∈Zn

|f (A−j l+y)|p(1+|l|)−n−1
)( ∑

l∈Zn

(1+|l|)(n+1−M)p′
)p/p′

≤ C
∑

l∈Zn

|f (A−j l + y)|p(1 + |l|)−n−1,

if we choose M > 2n+ 2. Likewise, if 0 < p ≤ 1, then by p-triangle inequality

sup
z∈Qj,k

|f (z)|p ≤
∑

l∈Zn

|f (A−j l + y)|p(1 + |l|)−Mp

≤
∑

l∈Zn

|f (A−j l + y)|p(1 + |l|)−n−1,

if we choose M > (n + 1)/p. Therefore, integrating the above estimate over
y ∈ Qj,k with respect to µ, yields

sup
z∈Qj,k

|f (z)|pµ(Qj,k) ≤ C
∑

l∈Zn

(1 + |l|)−n−1
∫

Qj,k+l
|f (x)|pdµ.

Summing over k ∈ Z
n,

∑

k∈Zn

sup
z∈Qj,k

|f (z)|pµ(Qj,k) ≤ C||f ||pLp(µ)
∑

l∈Zn

(1 + |l|)−n−1 ≤ C||f ||pLp(µ),

(3.5)

which proves (3.4) under the constraint of K = [−1, 1]n. We remark that the con-
stantC in (3.5) is independent ofµ and that the hypothesis ofµ being a ρA-doubling
measure was not used, yet.

Finally, to show (3.4) for a general compact K , let j0 ≤ 0 be such that
K ⊂ (A∗)−j0([−1, 1]n). Define fj0(x) = f (Aj0x) and the measure µj0 satisfying
µj0(E) = µ(Aj0E) for Borel sets E ⊂ R

n. Since supp f̂j0 = (A∗)j0(supp f̂ ) ⊂
[−1, 1]n, we have by (3.5)
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∑

k∈Zn

sup
z∈Qj−j0,k

|f (z)|pµ(Qj−j0,k) =
∑

k∈Zn

sup
z∈Qj,k

|fj0(z)|pµj0(Qj,k)

≤ C||fj0 ||pLp(µj0 ) = C||f ||pLp(µ). (3.6)

Since µ is ρA-doubling, it is not hard to show that there exists c = c(β) > 0,
depending only on ρA-doubling constant β, such that for any j ∈ Z and k, l ∈ Z

n,

Qj−j0,k ∩Qj,l 
= ∅ �⇒ µ(Qj,l) ≤ c| detA|−j0βµ(Qj−j0,k). (3.7)

For any l ∈ Z
n, let zl ∈ Qj,l be a point where supz∈Qj,l |f (z)| is achieved. Let

k = k(l) ∈ Z
n be such that zl ∈ Qj−j0,k . Then by (3.7),

sup
z∈Qj,l

|f (z)|pµ(Qj,l) = sup
z∈Qj−j0,k

|f (z)|pµ(Qj,l)

≤ c| detA|−j0β sup
z∈Qj−j0,k

|f (z)|pµ(Qj−j0,k).

Summing the above over l ∈ Z
n and using the observation that each dilated cube

Qj−j0,k can be chosen at most 2n times, by (3.6) we have
∑

l∈Zn

sup
z∈Qj,l

|f (z)|pµ(Qj,l) ≤ 2nc| detA|−j0β
∑

k∈Zn

sup
z∈Qj−j0,k

|f (z)|pµ(Qj−j0,k)

≤ C||f ||pLp(µ),
which shows (3.4). ��

As a consequence of Lemma 3.1 we have the following corollary, which is a
refinement of [4, Lemma 3.1].

Corollary 3.2. Suppose K is a compact subset of R
n, 0 < p < ∞, and µ is a

ρA-doubling measure on R
n. Then there exist c,N > 0 such that for all j ≥ 0,

sup
x∈Rn

|f (x)|
(1 + |x|)N ≤ cj+1||f ||Lp(µ) for all f ∈ S ′ with supp f̂ ⊂ (A∗)jK.

(3.8)

Proof. Initially, suppose that j = 0. Take any f ∈ S ′ with supp f̂ ⊂ K . By Lemma
3.1, there exists a constant C > 0 such that

sup
k∈Zn

sup
z∈Q0,k

|f (z)|pµ(Q0,k) ≤ C||f ||pLp(µ).

Since µ is ρA-doubling, we have µ(BρA(k, 1)) ≤ Cµ(Q0,k) for some C > 0
depending on the doubling constant of µ. Hence,

sup
k∈Zn

sup
z∈Q0,k

|f (z)|pµ(BρA(k, 1)) ≤ C||f ||Lp(µ), (3.9)

Again, by ρA-doubling of µ, there exist constants C,M > 0 such that

µ(BρA(0, 1)) ≤ C(1 + ρA(k))
Mµ(BρA(k, 1)) for all k ∈ Z

n. (3.10)
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Moreover, by Lemma 2.2, we have

1 + ρA(k) ≤ C inf
z∈Q0,k

(1 + ρA(z)) ≤ C inf
z∈Q0,k

(1 + |z|)1/ζ− . (3.11)

Combining (3.9)–(3.11),

sup
x∈Rn

|f (x)|p
(1 + |x|)M/ζ− ≤ C sup

k∈Zn

sup
z∈Q0,k

|f (z)|p
(1 + ρA(k))M

≤ C sup
k∈Zn

sup
z∈Q0,k

|f (z)|p µ(BρA(k, 1))

µ(BρA(0, 1))
≤ C

||f ||pLp(µ)
µ(BρA(0, 1))

,

(3.12)

where the constant C depends only on p, K , and the ρA-doubling constant of µ.
Hence, (3.8) holds for j = 0 with N = M/(ζ−p).

To show (3.8) for arbitrary j ≥ 0 we apply a scaling argument. Suppose f ∈ S ′
with supp f̂ ⊂ (A∗)jK . Define f−j (x) = f (A−j x) and the measure µ−j by
µ−j (E) = µ(A−jE) for Borel sets E ⊂ R

n. We remark that ρA-doubling con-
stants of µ and µ−j are the same. Using (2.4) and (3.12),

sup
x∈Rn

|f (x)|
(1 + |x|)N = sup

x∈Rn

|f−j (x)|
(1 + |A−j x|)N ≤ C(λ+)jN sup

x∈Rn

|f−j (x)|
(1 + |x|)N

≤ C(λ+)jN
||f−j ||Lp(µ−j )

µ−j (BρA(0, 1))1/p
= C(λ+)jN ||f ||Lp(µ)
µ(BρA(0, | detA|−j ))1/p

≤ C((λ+)N | detA|β/p)j
µ(BρA(0, 1))1/p

||f ||Lp(µ) ≤ cj+1||f ||Lp(µ), (3.13)

where in the penultimate step we again used ρA-doubling of µ. Here, c > 0 is a
constant independent of f and j ≥ 0. This completes the proof of Corollary 3.2.

��

As one of the consequences of Corollary 3.2 we can conclude the completeness
of Ḃα,qp (Rn, A,µ) spaces.

Proposition 3.3. The inclusion map i : Ḃα,qp = Ḃα,qp (Rn, A,µ) ↪→ S ′/P is con-
tinuous. Moreover, Ḃα,qp equipped with || · ||Ḃα,qp is a quasi-Banach space, i.e., Ḃα,qp
is a complete quasi-normed space.

Proof. We recall that S0(R
n) can be defined as a collection of φ ∈ S such that

semi-norms

||φ||M = sup
|β|≤M

sup
ξ∈Rn

|∂βφ̂(ξ)|(|ξ |M + |ξ |−M) < ∞ for any M ∈ N.

(3.14)

Moreover, semi-norms || · ||M generate a topology of a locally convex space on
S0(R

n).
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As a consequence of Lemma 3.2 applied forf ∗ϕj andK= ⋃
j≤0(A

∗)j (supp ϕ̂),
there exists c,N > 0 such that for any j ∈ Z and φ ∈ S,

|〈f ∗ ϕj , φ〉| ≤ cmax(0,j)+1||f ∗ ϕj ||Lp(µ)||(1 + |x|)Nφ(x)||∞
≤ c|j |+1| detA|−jα||f ||Ḃα,qp ||(1 + |x|)Nφ(x)||∞
≤ c|j |+1| detA||j ||α|||f ||Ḃα,qp sup

|β|≤n+1,|γ |≤N
||φ̂||β,γ ,

where ||φ||β,γ = supx∈Rn |xβ ||∂γ φ(x)| denotes the usual semi-norm in S(Rn).
Let h ∈ S(Rn) and r > 0 be such that ĥ(ξ) = 1 for all ξ ∈ supp ϕ̂ and supp ĥ ⊂
{ξ : 1/r < |ξ | < r} by (3.2). Hence, using supp ϕ̂j ⊂ supp ĥj = (A∗)j (supp ĥ),
where hj (x) = | detA|j h(Ajx), we have

|〈f ∗ ϕj , φ〉| = |〈f ∗ ϕj , hj ∗ φ〉|
≤ c|j |+1| detA||j ||α|||f ||Ḃα,qp sup

|β|≤n+1,|γ |≤N
||ĥ((A∗)−j ·)φ̂||β,γ

Using growth estimates (2.4) and (2.5) and simple but tedious support techniques,
one can control the above by semi-norms || · ||M as in (3.14). That is, for any s1 > 0
there exists M > 0 such that

sup
|β|≤n+1,|γ |≤N

||ĥ((A∗)−j ·)φ̂(·)||β,γ

≤ C| detA|−|j |s1 sup
|β|≤M

sup
ξ∈Rn

|∂βφ̂(ξ)|(|ξ |M + |ξ |−M)

= C| detA|−|j |s1 ||φ||M for any j ∈ Z. (3.15)

Indeed, (3.15) follows from the simple observation that ĥ((A∗)−j ·)φ̂(·) is sup-
ported in the dilated annulus (A∗)j ({ξ : 1/r < |ξ | < r}), and therefore the decay
of φ̂ at the origin and at infinity can be used to control any kind of growth pro-
duced by taking derivatives of h((A∗)−j ·) in the computation of the semi-norms
||ĥ((A∗)−j ·)φ̂(·)||β,γ . For more details of these kinds of estimates, see the proof
of [4, Lemma 2.6]. Combining the last two estimates we deduce the existence of
M > 0 and s2 > 0 such that

|〈f ∗ ϕj , φ〉| ≤ C||f ||Ḃα,qp | detA|−|j |s2 ||φ||M.
Hence, by Lemma 2.4

|〈f, φ〉| ≤
∑

j∈Z

|〈f ∗ ϕj , φ〉| ≤ C
∑

j∈Z

||f ||Ḃα,qp | detA|−|j |s2 ||φ||M

≤ C||f ||Ḃα,qp ||φ||M,

which shows that i : Ḃα,qp ↪→ S ′/P is continuous.
Once the continuity of the inclusion map i is established, the completeness of

Ḃα,qp (Rn, A,µ) is immediate by Fatou’s Lemma and Lemma 2.4, if ϕ satisfies (2.9)
in addition to (3.2). In the case of general ϕ satisfying only (3.2) and (3.3) one must
use a variant of Lemma 2.4, where (2.10) is replaced by



Anisotropic Besov spaces 551

f =
∑

j∈Z

f ∗ ϕj ∗ ψ̃j , convergence in S ′/P,

where ψ is as in Lemma 3.6 and ψ̃(x) = ψ(−x). This completes the proof of
Proposition 3.3. ��

3.3. Wavelet transforms for Ḃα,qp (Rn, A,µ)

Suppose that ϕ,ψ ∈ S(Rn) are such that supp ϕ̂, supp ψ̂ are compact and bounded
away from the origin.

Definition 3.2. The ϕ-transform Sϕ , often called the analysis transform, is the map
taking each f ∈ S ′

(Rn)/P to the sequence Sϕf = {(Sϕf )Q}Q∈Q defined by
(Sϕf )Q = 〈f, ϕQ〉. This is well-defined, since

∫
xγ ϕQ(x)dx = 0 for any multi-

index γ . Here, we follow the pairing convention which is consistent with the usual
scalar product inL2(Rn), i.e., 〈f, ϕ〉 = f (ϕ) for f ∈ S ′ and ϕ ∈ S . The inverse ϕ-
transform, Tψ , often called the synthesis transform, is the map taking the sequence
s = {sQ}Q∈Q to Tψs = ∑

Q∈Q sQψQ.We will show later that Tψs is well-defined

for s ∈ ḃα,qp .

Lemma 3.4. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling measure.
Then there exist constants C, λ > 0 such that

‖s∗λ‖ḃα,qp (A,µ) ≤ C‖s‖ḃα,qp (A,µ) for all s = {sQ}Q, (3.16)

where the sequence s∗λ = {(s∗λ)Q}Q∈Q is given by

(s∗λ)Q =
∑

P∈Q, |P |=|Q|

|sP |
(1 + |Q|−1ρA(xQ − xP ))λ

.

Proof. We start by showing that for any L > β, where β is ρA-doubling constant
of µ, there exists C > 0 such that

∑

Q∈Q, |P |=|Q|

µ(Q)

(1 + |Q|−1ρA(xQ − xP ))L
≤ Cµ(P ) for any P ∈ Q. (3.17)

First, we will show that (3.17) holds for |P | = 1 with a constant C depending only
on β. Then by ρA-doubling of µ

∑

k∈Zn

µ(Q0,k)

(1 + ρA(k − l))L
≤ C

∫

Rn

dµ(x)

(1 + ρA(x − l))L

= C

∫

BρA(l,1)

dµ(x)

(1 + ρA(x − l))L

+C
∞∑

j=0

∫

BρA(l,| detA|j+1)\BρA(l,| detA|j )
dµ(x)

(1 + ρA(x − l))L
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≤ Cµ(BρA(l, 1))+ C

∞∑

j=0

µ(BρA(l, | detA|j+1))| detA|−jL

≤ Cµ(BρA(l, 1))

(
1 +

∞∑

j=0

| detA|(j+1)β−jL
)

≤ Cµ(BρA(l, 1)) ≤ Cµ(Q0,l).

To show (3.17) for a general P ∈ Q with P = | detA|−j , it suffices to consider
a measure µ−j given by µ−j (E) = µ(A−jE) for Borel sets E ⊂ R

n and use a
scaling argument.

If p > 1 then by Hölder’s inequality, 1/p+1/p′ = 1, |(s∗λ)Q|p can be bounded
by

∑

P∈Q, |P |=|Q|

|sP |p
(1 + |Q|−1ρA(xQ − xP ))λ

×
( ∑

P∈Q, |P |=|Q|

1

(1 + |Q|−1ρA(xQ − xP ))λ

)p/p′

≤ C
∑

P∈Q, |P |=|Q|

|sP |p
(1 + |Q|−1ρA(xQ − xP ))λ

, (3.18)

since the sum in parenthesis is finite by a discrete version of Proposition 2.1. More
precisely,

∑
k∈Zn

(1 + ρA(k))
−λ < ∞ for λ > 1. If p ≤ 1 then by p-triangle

inequality

|(s∗λ)Q|p ≤
∑

P∈Q, |P |=|Q|

|sP |p
(1 + |Q|−1ρA(xQ − xP ))pλ

. (3.19)

Hence, if we choose λ > β max(1, 1/p), then combining (3.17) with (3.18) or
(3.19) yields (3.16) by a straightforward calculation. ��

The next result is a generalization of the fundamental result of Frazier and
Jawerth [19,22] on the boundedness of ϕ-transforms on Besov spaces.

Theorem 3.5. Suppose α ∈ R, 0 < p, q ≤ ∞, µ is ρA-doubling, and ϕ,ψ ∈
S(Rn) are such that supp ϕ̂, supp ψ̂ are compact and bounded away from the origin.
Then the operatorsSϕ : Ḃα,qp (Rn, A,µ)(ϕ̃) → ḃα,qp (A,µ) andTψ : ḃα,qp (A,µ) →
Ḃα,qp (Rn, A,µ)(ϕ) are bounded, where ϕ̃(x) = ϕ(−x). In addition, if ϕ,ψ satisfy
(2.6), (2.7) then Tψ ◦Sϕ is the identity on Ḃα,qp (Rn, A,µ)(ϕ) = Ḃα,qp (Rn, A,µ)(ϕ̃).

Proof. We will only prove the case of p, q < ∞ and leave details of the easier case
of p = ∞ or q = ∞ to the reader.

First, we will prove the boundedness of Tψ . Take any s = {sQ}Q ∈ ḃα,qp with
finite support. Since the supports of ϕ̂ and ψ̂ are bounded and bounded away from
the origin, there is an integerM such that supp ϕ̂j ∩ supp ψ̂i = ∅ for |i − j | > M .
Therefore,

(ϕj ∗ f )(x) =
i=j+M∑

i=j−M

∑

|P |=| detA|−i
sP (ϕj ∗ ψP )(x).
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By direct calculations, see [4, Theorem 3.5], one can show that for any λ > 1, there
is a constant C = C(λ) > 0 such that

|ϕj ∗ f (x)| ≤ C

i=j+M∑

i=j−M

∑

|Q|=| detA|−i
(s∗λ)Qχ̃Q(x).

Hence, by choosing λ as in Lemma 3.4, we have

‖Tψs‖Ḃα,qp
≤ C

( ∑

j∈Z

∥∥∥∥
M∑

l=−M

∑

|Q|=| detA|−j+l
| detA|jα(s∗λ)Qχ̃Q

∥∥∥∥
q

Lp(µ)

)1/q

≤ C

( ∑

j∈Z

M∑

l=−M

∥∥∥∥
∑

|Q|=| detA|−j
| detA|(j+l)α(s∗λ)Qχ̃Q

∥∥∥∥
q

Lp(µ)

)1/q

≤ C‖s∗λ‖ḃα,qp
≤ C‖s‖ḃα,qp

. (3.20)

To show that the same estimate holds for arbitrary s ∈ ḃα,qp , we apply the above
argument for some special ϕ satisfying additionally (2.9) and (3.2). Then by Prop-
osition 3.3 and (3.20), Tψs = ∑

Q sQψQ is a well-defined element of S ′/P , since

sequences with finite support are dense in ḃα,qp for p, q < ∞. Hence, by a limiting
argument, the above estimate must also hold for arbitrary s ∈ ḃα,qp , which shows
the boundedness of Tψ .

Next, we will prove the boundedness of Sϕ . Suppose that f∈Ḃα,qp (Rn, A,µ)(ϕ̃)

and sQ = 〈f, ϕQ〉. Since, for any Q ∈ Q,

|〈f, ϕQ〉| = |Q|1/2|(ϕ̃j ∗ f )(xQ)| ≤ |Q|1/2 sup
z∈Q

|(ϕ̃j ∗ f )(z)|,

hence, by Lemma 3.1 applied for ϕ̃j ∗ f ,

∥∥∥∥
∑

|Q|=| detA|−j
|Q|−α|sQ|χ̃Q

∥∥∥∥
Lp(µ)

≤ C| detA|jα‖ϕ̃j ∗ f ‖Lp(µ).

Summing the above raised to the power of q over j ∈ Z yields ‖Sϕf ‖ḃα,qp
=

‖s‖ḃα,qp
≤ C‖f ‖Ḃα,qp (Rn,A,µ)(ϕ̃).

Finally, if we assume additionally that ϕ and ψ satisfy (2.6) and (2.7), then by
Lemma 2.5, Tψ ◦Sϕ is the identity on Ḃα,qp . More precisely, Ḃα,qp (Rn, A,µ)(ϕ̃) ↪→
Ḃα,qp (Rn, A,µ)(ϕ) is a bounded inclusion. Hence, by reversing the roles of ϕ and
ϕ̃ we have

Ḃα,qp (Rn, A,µ)(ϕ̃) = Ḃα,qp (Rn, A,µ)(ϕ),

which completes the proof of Theorem 3.5. ��
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3.4. Basic properties of Ḃα,qp (Rn, A,µ)

Next, we will show that the definition of Besov spaces Ḃα,qp (Rn, A,µ) does not
depend on the choice of ϕ satisfying (3.2) and (3.3). We will use the following
elementary lemma, see [4].

Lemma 3.6. Suppose ϕ ∈ S satisfies (3.2) and (3.3). Then there exists ψ ∈ S such
that (2.6) and (2.7) are satisfied.

Corollary 3.7. Suppose thatα ∈ R, 0 < p, q ≤ ∞, andµ isρA-doubling measure.
Then the space Ḃα,qp is well-defined in the sense that, for any ϕ1 and ϕ2 satisfying
(3.2) and (3.3), their associated quasi-norms in Ḃα,qp (Rn, A,µ)(ϕi), i = 1, 2, are
equivalent, i.e., there exist constants C1, C2 > 0 such that

C1‖f ‖Ḃα,qp (Rn,A,µ)(ϕ1) ≤ ‖f ‖Ḃα,qp (Rn,A,µ)(ϕ2) ≤ C2‖f ‖Ḃα,qp (Rn,A,µ)(ϕ1).

(3.21)

Proof. Suppose that ϕ1 and ϕ2 each satisfy (3.2) and (3.3), then by Lemma 3.6, it
is possible to find ψ1 and ψ2 so that (2.6) and (2.7) are satisfied for each pair ϕi ,
ψi , i = 1, 2. Then by Lemma 2.5,

‖f ‖Ḃα,qp (Rn,A,µ)(ϕ1) = ‖(Tψ̃2 ◦ Sϕ̃2)f ‖Ḃα,qp (Rn,A,µ)(ϕ1) ≤ C‖Sϕ̃2f ‖ḃα,qp (A,µ)

≤ C‖f ‖Ḃα,qp (Rn,A,µ)(ϕ2),

by the boundedness of Sϕ̃2 and Tψ̃2 , since the pair ϕ̃2, ψ̃2 satisfies (2.6) and (2.7).

Reversing the roles of ϕ1 and ϕ2, yields (3.21). ��

Remark 3.2. It follows from the above argument and Theorem 3.5 that we have a
more general estimate

||f ||Ḃα,qp (Rn,A,µ)(ϕ) ≤ C||f ||Ḃα,qp for all f ∈ Ḃα,qp ,

where ϕ ∈ S is such that supp ϕ̂ is compact and bounded away from the origin.
Hence, ϕ may not necessarily satisfy (3.3) and consequently Ḃα,qp (Rn, A,µ)(ϕ)

may not be a complete quasi-normed space.

We will also need the following very useful fact, which resolves all sorts of
issues caused by the fact the elements of Ḃα,qp are equivalence classes of tem-
pered distributions S ′ modulo polynomials P . This result guarantees the existence
of canonical representatives of elements in Ḃα,qp modulo polynomials of degree
≤ L = �α/ζ−�. Proposition 3.8 is a generalization of [21, Remark B.4] and [27,
pp. 52–56] in the unweighted case and [8, Proposition 1.1] in the weighted case.
The analogous result for weighted anisotropic Triebel-Lizorkin spaces was shown
by the author and Ho [4].

Proposition 3.8. Suppose that α ∈ R, 0 < p, q ≤ ∞, µ is ρA-doubling mea-
sure, and f ∈ Ḃα,qp (Rn, A,µ). For any ϕ1 ∈ S(Rn) such that supp ϕ̂1 is compact
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and bounded away from the origin, and (2.9) holds, there exists a sequence of
polynomials {P 1

k }∞k=1 with degP 1
k ≤ L = �α/ζ−� such that

g1 := lim
k→∞

( ∞∑

j=−k
(ϕ1)j ∗ f + P 1

k

)
(3.22)

exists in S ′. Moreover, if g2 is the corresponding limit in (3.22) for some other
ϕ2 ∈ S(Rn) such that supp ϕ̂2 is compact and bounded away from the origin, and
(2.9) holds, then

g1 − g2 ∈ P and deg(g1 − g2) ≤ L. (3.23)

In particular, Proposition 3.8 asserts that if α < 0 then the polynomials {P 1
k }

are simply not needed in (3.22) and the limit g = limk→∞
∑∞
j=−k(ϕ1)j ∗ f exists

in S ′ and is independent of the choice of ϕ1 as above.
For the sake of completeness we include the proof of Proposition 3.8, which is

a minor modification of the corresponding Ḟα,qp result [4, Proposition 3.8].

Proof. Note that Lemma 2.4 already guarantees the existence of polynomials
{P 1
k }∞k=1 with degP 1

k ≤ d for some d ≥ 0 such that (3.22) holds. However, it is not
clear why d could be chosen to be ≤ L = �α/ζ−� and why (3.23) holds. Never-
theless, by Lemma 2.4 we know that

∑∞
j=0(ϕ

1)j ∗ f converges in S ′, see also [4].
Let c,N > 0 be the constants guaranteed by Corollary 3.2 for a compact set

K = ⋃
j<0(A

∗)j (supp ϕ̂1). Then, for any j < 0 and a multi-index β, by Remark
3.2 and Lemma 3.2,

sup
x∈Rn

|∂β((ϕ1)j ∗ f )(x)|
(1 + |x|)N ≤ c||∂β((ϕ1)j ∗ f )||Lp(µ) = c||(∂β(ϕ1)j ) ∗ f ||Lp(µ)

≤ C
∑

|γ |=|β|
|aγ,j |||(∂γ ϕ1)j ∗ f ||Lp(w)

≤ C(λ−)j |β|| detA|−jα
∑

|γ |=|β|
||f ||Ḃα,∞p (Rn,A,µ)(∂γ ϕ1)

≤ C| detA|j (|β|ζ−−α) ∑

|γ |=|β|
||f ||Ḃα,qp (Rn,A,µ)(∂γ ϕ1)

≤ C| detA|j (|β|ζ−−α)||f ||Ḃα,qp . (3.24)

Here, we used that for any ϕ ∈ S and a multi-index β, there exists a constantC > 0
such that for all j ≥ 0, we have

∂βϕj (x) =
∑

|γ |=|β|
aγ,j (∂

γ ϕ)j (x), where |aγ,j | ≤ C(λ−)j |γ |. (3.25)

This follows from the chain rule and the estimate ||Aj |||γ | ≤ C(λ−)j |γ | for j ≤ 0,
see also [3, the proof of Lemma 5.2].

Therefore, by (3.24),
∑
j<0 ∂

β((ϕ1)j ∗ f ) converges in S ′ for any |β| > L,

since |β|ζ−−α > 0. Consequently, [4, Proposition 2.7] yields polynomials {P 1
k }∞k=1

with degP 1
k ≤ L and g1 ∈ S ′ such that (3.22) holds.
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To show (3.23), let ϕ2 be another function satisfying hypotheses of Proposi-
tion 3.8, and let g2 ∈ S ′ be the corresponding limit of (3.22) for some sequence
of polynomials {P 2

k }∞k=1 with degP 2
k ≤ L. Since g1 and g2 represent the same

equivalence class in S ′/P of f ∈ Ḃα,qp , g1 − g2 is a polynomial. Let K =⋃
j<0(A

∗)j (supp ϕ̂1 ∪ supp ϕ̂2). Then, by a simple support argument and (2.9),

supp

( ∞∑

j=−k
((ϕ1)j ∗ f − (ϕ2)j ∗ f )

)̂
⊂ (A∗)−kK for any k ∈ Z.

(3.26)

Let ϕ be given by

ϕ̂(ξ) =
∞∑

j=0

ϕ̂1((A∗)−j ξ)− ϕ̂2((A∗)−j ξ). (3.27)

Then it is not hard to verify that ϕ̂ is C∞ and that the support of ϕ̂ is bounded and
bounded away from the origin. Moreover,

∞∑

j=−k
((ϕ1)j ∗ f − (ϕ2)j ∗ f ) = ϕ−k ∗ f for any k ∈ Z, (3.28)

where the series converges in S ′, see [4]. Hence, by (3.24) and (3.28), for any φ ∈ S
and |β| > L,

|〈∂β(g1 − g2), φ〉| =
∣∣∣∣ lim
k→∞

〈 ∞∑

j=−k
∂β((ϕ1)j ∗ f + P 1

k − (ϕ2)j ∗ f − P 2
k ), φ

〉∣∣∣∣

= lim
k→∞

∣∣∣∣

〈 ∞∑

j=−k
∂β((ϕ1)j ∗ f − (ϕ2)j ∗ f ), φ

〉∣∣∣∣ = lim
k→∞

|〈∂β(ϕ−k ∗ f ), φ〉|

≤ lim
k→∞

sup
x∈Rn

|∂β(ϕ−k ∗ f )(x)|
(1 + |x|)N

∫

Rn
(1 + |x|)N |φ(x)|dx

≤ C lim
k→∞

| detA|−k(|β|ζ−−α)||f ||Ḃα,qp = 0.

This shows (3.23) and completes the proof of Theorem 3.8. ��
As an immediate corollary of Lemma 2.5 and Proposition 3.8, we have

Corollary 3.9. Suppose that α ∈ R, 0 < p, q ≤ ∞, µ is ρA-doubling measure,
and f ∈ Ḃα,qp (Rn, A,µ). Given ϕ1, ψ1 ∈ S satisfying (2.6) and (2.7), there exists
a sequence of polynomials {P 1

k }∞k=1 with degP 1
k ≤ L = �α/ζ−� such that

g1 := lim
k→∞

( ∑

Q∈Q, | detA|−k≤|Q|≤| detA|k
〈f, (ϕ1)Q〉(ψ1)Q + P 1

k

)
(3.29)

exists in S ′. Moreover, if g2 is the corresponding limit in (3.29) for some other
ϕ2, ψ2 ∈ S satisfying (2.6) and (2.7), then (3.23) holds.
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3.5. Inhomogeneous Besov spaces

In this subsection we briefly describe basic properties of inhomogeneous Besov
spaces Bα,qp . Most of them are straightforward modifications of the corresponding
homogeneous results and therefore we will only outline required changes.

Definition 3.3. Forα ∈ R, 0 < p, q ≤ ∞, andµaρA-doubling measure, we define
the weighted inhomogeneous anisotropic Besov space Bα,qp = Bα,qp (Rn, A,µ) as
the collection of all f ∈ S ′

such that,

‖f ‖Bα,qp
= ‖f ∗�‖Lp(µ) +

( ∞∑

j=1

(| detA|jα‖f ∗ ϕj‖Lp(µ))q
)1/q

< ∞,

where � ∈ S(Rn) and ϕ ∈ S(Rn) satisfy (3.2), (3.30), and (3.31),

supp �̂ ⊂ [−π, π ]n, (3.30)

sup
j≥1

{|ϕ̂((A∗)−j ξ)|, |�̂(ξ)|} > 0 for all ξ ∈ R
n, (3.31)

As in the homogeneous case, this definition is independent of � and ϕ as above.
Let Q0 = {Q ∈ Q : |Q| ≤ 1}. The sequence space, bα,qp = bα,qp (A,µ) is the

collection of all complex-valued sequences s = {sQ}Q∈Q0 such that

‖s‖bα,qp
=

( ∞∑

j=0

∥∥∥∥
∑

QεQ,|Q|=| detA|−j
|Q|−α|sQ|χ̃Q

∥∥∥∥
q

Lp(µ)

)1/q

< ∞,

where χ̃Q = |Q|−1/2χQ is theL2-normalized characteristic function of the dilated
cube Q.

Since bα,qp is trivially isometrically imbedded in ḃα,qp , virtually all results for
ḃα,qp have immediate analogues for bα,qp . In particular, it is immediate that Lemma
3.4 holds for bα,qp .

We can also define ϕ-transform Sϕ and the inverse ϕ-transform Tψ correspond-
ing to the inhomogeneous setting.

Definition 3.4. Suppose that�,� ∈ S(Rn), ϕ,ψ ∈ S(Rn) satisfy (3.2), (3.3), and
(3.31). Define the inhomogeneousϕ-transformSϕ = S�,ϕ to be the map taking each
f ∈ S ′

(Rn) to the sequence Sϕf = {(Sϕf )Q}Q∈Q0 defined by

(Sϕf )Q = 〈f,�Q〉 if |Q| = 1, (Sϕf )Q = 〈f, ϕQ〉 if |Q| < 1.

The inhomogeneous inverseϕ-transform Tψ = T�,ψ is the map taking the sequence
s = {sQ}Q∈Q0 to Tψs = ∑

|Q|=1 sQ�Q + ∑
|Q|<1 sQψQ.

Given a pair �,ϕ ∈ S satisfying (3.2), (3.30), and (3.31) one can show that
there exists another pair �,ψ ∈ S satisfying the same properties such that

�̂(ξ) ˆ�(ξ)+
∞∑

j=1

ϕ̂((A∗)−j ξ)ψ̂((A∗)−j ξ) = 1 for all ξ ∈ R
n. (3.32)
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Moreover, we have the following representation formula,

f =
∑

|Q|=1

〈f,�Q〉�Q +
∑

|Q|<1

〈f, ϕQ〉ψQ, (3.33)

for any f ∈ S ′(Rn) with convergence in S ′.
One can then show that Theorem 3.5 adapts directly to inhomogeneous setting.

That is, Sϕ is a bounded operator from Bα,qp to bα,qp and Tψ is a bounded operator
from bα,qp to Bα,qp . Moreover, if �,� ∈ S(Rn) and ϕ,ψ ∈ S(Rn) satisfy (3.2),
(3.30), and (3.31), then Tψ ◦ Sϕ is the identity operator on Bα,qp . Consequently,
an analogue of Corollary 3.7 also holds for Bα,qp . Note that technical convergence
issues in S ′/P covered by Proposition 3.8 and Corollary 3.9 are non-existent in
inhomogeneous case thanks to (3.33).

4. Almost diagonal operators

In this section we study the class of almost diagonal operators on ḃα,qp (A,µ), which
was introduced in the dyadic case by Frazier and Jawerth [21]. Almost diagonal
operators on ḟα,qp spaces for expansive dilations were introduced by the author
and Ho [4]. The interest of these operators on ḃα,qp spaces arises from their close
connection to operators on Besov Ḃα,qp spaces.

Definition 4.1. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ a ρA-doubling measure.
Let J = β/p + max(0, 1 − 1/p), where β is ρA-doubling constant of µ. We say
that a matrix {aQP }Q,P∈Q is almost diagonal, if there exists an ε > 0 such that,

sup
Q,P∈Q

|aQP |/κQP (ε) < ∞ (4.1)

where

κQP (ε)=
( |Q|

|P |
)α(

1+ ρA(xQ−xP )
max(|P |, |Q|)

)−J−ε
min

[( |Q|
|P |

) 1+ε
2

,

( |P |
|Q|

) 1+ε
2 +J−1]

.

Consequently, we say that A is an almost diagonal operator on ḃα,qp (A,µ), if
it is associated with an almost diagonal matrix {aQP }Q,P∈Q. That is, (As)Q =∑
Q∈Q aQP sP for every s = {sP }P ∈ ḃα,qp .

Remark 4.1. We remark that almost diagonal condition for ḃα,qp and ḟα,qp are identi-
cal, with the exception of the method of determining the decay parameter J , see [4,
Definition 4.1]. In the unweighted case the corresponding J = max(1, 1/p, 1/q)
for ḟα,qp versus J = max(1, 1/p) for ḃα,qp . Moreover, since the doubling constant
always satisfies β ≥ 1, we have J ≥ 1.

Lemma 4.1. Suppose µ is a ρA−doubling measure, and L > β, the doubling
constant of µ. Then for any i ≤ j ∈ Z and Q ∈ Q with |Q| = | detA|−j , we have

∑

P∈Q, |P |=| detA|−i

µ(P )

(1 + ρA(xQ − xP )/|P |)L ≤ C| detA|(j−i)βµ(Q), (4.2)

where the constant C depends only on L and β.
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Proof. Let P ′ ∈ Q be such that xQ ∈ P ′ and |P ′| = | detA|−i . Since µ is ρA-dou-
bling, it is not hard to show that there exists C > 0 (independent of i, j , and Q)
such that µ(P ′) ≤ C| detA|(j−i)βµ(Q), see (3.7). Therefore, by (3.17),

∑

P∈Q, |P |=| detA|−i

µ(P )

(1 + ρA(xQ − xP )/|P |)L

≤ C
∑

P∈Q, |P |=| detA|−i

µ(P )

(1 + ρA(xP ′ − xP )/|P |)L

≤ Cµ(P ′) ≤ C| detA|(j−i)βµ(Q),
which shows (4.2). ��
Theorem 4.2. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ a ρA-doubling measure. An
almost diagonal operator A is bounded as a linear operator on ḃα,qp (A,µ).

Proof. We will first show that the proof of Theorem 4.2 can be reduced to the case
of α = 0. This is not surprising, since analogous reducing technique works also for
ḟα,qp , see [21, Theorem 3.3].

Suppose that Theorem 4.2 is true in the case α = 0. Let A be an almost diagonal
operator on ḃα,qp with matrix {aQP }Q,P . Let B be a linear operator on ḃ0,q

p with
matrix {bQP }Q,P defined by

bQP = (|P |/|Q|)αaQP .
It is easy to see that B satisfies the almost diagonal condition (4.1) with α = 0.
Given {sP }P ∈ ḃα,qp , define {tP }P ∈ ḃ0,q

p by tP = |P |−αsP . By Theorem 4.2 for
α = 0,
∥∥∥∥

{ ∑

P

aQP sP

}

Q

∥∥∥∥
ḃα,qp

=
∥∥∥∥

{ ∑

P

|Q|−αaQP sP
}

Q

∥∥∥∥
ḃ0,q
p

=
∥∥∥∥

{ ∑

P

bQP tP

}

Q

∥∥∥∥
ḃ0,q
p

≤ C‖{tP }P ‖ḃ0,q
p

= C‖{sP }P ‖ḃα,qp
,

which shows the reduction to the case α = 0.
Next, it remains to show Theorem 4.2 for α = 0. Again, we consider only the

case of p, q < ∞ leaving details of the special case of p = ∞ or q = ∞ to the
reader.

Let A be an almost diagonal operator on ḃ0,q
p with matrix {aQP }Q,P satisfying

condition (4.1). We write A = A0 + A1, with

(A0s)Q =
∑

P∈Q, |P |≥|Q|
aQP sP and (A1s)Q =

∑

P∈Q, |P |<|Q|
aQP sP

for s = {sP }P ∈ ḃ0,q
p . For Q ∈ Q, |Q| = | detA|−j , we have

|(A0s)Q| ≤ C
∑

|P |≥|Q|
κQP (ε)|sP |

≤ C
∑

|P |≥|Q|

( |Q|
|P |

)(1+ε)/2 |sP |
(1 + |P |−1ρA(xP − xQ))J+ε
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≤ C
∑

i∈Z, i≤j

∑

|P |=| detA|−i
| detA|(i−j)(1+ε)/2 |sP |

(1+|P |−1ρA(xP −xQ))J+ε .

Hence, if p > 1 then by Hölder’s inequality, 1/p + 1/p′ = 1,

|(A0s)Q|p ≤ C

( ∑

i≤j

∑

|P |=| detA|−i

| detA|(i−j)p′ε/4

(1 + |P |−1ρA(xP − xQ))1+p′ε/2

)p/p′

×
∑

i≤j

∑

|P |=| detA|−i
| detA|(i−j)p(1/2+ε/4) |sP |p

(1 + |P |−1ρA(xP − xQ))β+pε/2 .

By Proposition 2.1 and by a simple geometric series estimate, the double sum in
the above parenthesis is finite, and hence

|(A0s)Q|p ≤ C
∑

i≤j

∑

|P |=| detA|−i

| detA|(i−j)p(1/2+ε/4)|sP |p
(1 + |P |−1ρA(xP − xQ))β+pε/2 . (4.3)

Analogously, if p ≤ 1 then by p-triangle inequality we also obtain (4.3). Since,

ρA(xP − x) ≤ H(ρA(xP − xQ)+ ρA(xQ − x)) ≤ H(ρA(xP − xQ)+ |Q|c)
for any x ∈ Q,

hence, by (4.3),

‖A0s‖q
ḃ0,q
p

≤ C
∑

j∈Z

(∫

Rn

∑

i≤j

∑

|P |=| detA|−i
|Q|=| detA|−j

| detA|(i−j)p(1/2+ε/4)|sP |p
(1+|P |−1ρA(xP − x))β+pε/2

χQ(x)

|Q|p/2 dµ(x)
)q/p

= C
∑

j∈Z

( ∑

i≤j

∑

|P |=| detA|−i

∫

Rn

| detA|(i−j)p(1/2+ε/4)|sP |p
(1+|P |−1ρA(xP −x))β+pε/2

dµ(x)

| detA|−jp/2
)q/p

≤ C
∑

j∈Z

( ∑

i≤j
| detA|(i−j)pε/4

∑

|P |=| detA|−i
|sP |p µ(P )|P |p/2

)q/p
.

Here, we used that for any L > β and P ∈ Q,
∫

Rn

dµ(x)

(1 + ρA(xP − x)/|P |)L ≤ Cµ(P ),

which is a continuous analogue of (3.17). Thus, if q/p > 1 then by Hölder’s
inequality, p/q + 1/r = 1, the last expression in parenthesis is bounded by

( ∑

i≤j
| detA|(i−j)prε/8

)1/r( ∑

i≤j
| detA|(i−j)qε/8

( ∑

|P |=| detA|−i
|sP |p µ(P )|P |p/2

)q/p)p/q

≤ C

( ∑

i≤j
| detA|(i−j)qε/8

∥∥∥∥
∑

|P |=| detA|−i
sP χ̃P

∥∥∥∥
q

Lp(µ)

)p/q
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Likewise, if q/p ≤ 1, then by q/p-triangle inequality we arrive at the same esti-
mate. Therefore,

‖A0s‖q
ḃ0,q
p

≤ C
∑

j∈Z

∑

i≤j
| detA|(i−j)qε/8

∥∥∥∥
∑

|P |=| detA|−i
sP χ̃P

∥∥∥∥
q

Lp(µ)

≤ C
∑

i∈Z

∥∥∥∥
∑

|P |=| detA|−i
sP χ̃P

∥∥∥∥
q

Lp(µ)

= C‖s‖q
ḃ0,q
p

.

To complete the proof of Theorem 4.2, it remains to show similar bounds for
A1s. For Q ∈ Q, |Q| = | detA|−j , we have

|(A1s)Q| ≤ C
∑

i∈Z, i>j

∑

|P |=| detA|−i
| detA|(j−i)(ε/2+J−1/2)

× |sP |
(1 + |Q|−1ρA(xP − xQ))J+ε .

Thus, by similar calculations as for A0s and by Hölder’s inequality or by p-triangle
inequality,

|(A1s)Q|p ≤ C
∑

i>j

∑

|P |=| detA|−i

| detA|(j−i)p(β/p−1/2+ε/4)|sP |p
(1 + |Q|−1ρA(xP − xQ))β+pε/2 . (4.4)

Hence, by Lemma 4.1 and by summing first over Q,

‖A1s‖q
ḃ0,q
p

≤ C
∑

j∈Z

( ∑

i>j

∑

|P |=| detA|−i
|Q|=| detA|−j

| detA|(j−i)p(β/p−1/2+ε/4)|sP |p
(1 + |Q|−1ρA(xP − xQ))β+pε/2

µ(Q)

|Q|p/2
)q/p

≤ C
∑

j∈Z

( ∑

i>j

|detA|(j−i)p(β/p+ε/4)+(i−j)β
∑

|P |=| detA|−i
|sP |p µ(P )|P |p/2

)q/p

≤ C
∑

j∈Z

( ∑

i>j

| detA|(j−i)pε/4
∑

|P |=| detA|−i
|sP |p µ(P )|P |p/2

)q/p
.

Again, by Hölder’s inequality (if q/p > 1) or by q/p-triangle inequality
(if q/p ≤ 1),

‖A1s‖q
ḃ0,q
p

≤ C
∑

j∈Z

∑

i>j

| detA|(j−i)qε/8
∥∥∥∥

∑

|P |=| detA|−i
sP χ̃P

∥∥∥∥
q

Lp(µ)

≤ C
∑

i∈Z

∥∥∥∥
∑

|P |=| detA|−i
sP χ̃P

∥∥∥∥
q

Lp(µ)

= C‖s‖q
ḃ0,q
p

.

This completes the proof of Theorem 4.2. ��
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5. Atomic and molecular decompositions

5.1. Smooth molecules

Our goal is to define smooth molecules on Besov spaces adapted to anisotropic
setting of expansive dilation matrices considered in this work. To achieve this we
will adapt the usual notion of smooth molecules associated with dyadic dilations
by Frazier and Jawerth [19,21,22] to a non-isotropic situation. For the motivation
behind Definition 5.1 we refer to [4, Section 5.1].

Definition 5.1. Supposeα ∈ R, 0 < p, q ≤ ∞, andβ is a ρA -doubling constant of
measureµ. Let J = β/p+max(0, 1−1/p) andN = max(�(J−α−1)/ζ−�,−1).

We say that�Q(x) is a smooth synthesis molecule for Ḃα,qp (Rn, A,µ) supported
near Q ∈ Q with |Q| = | detA|−j and j ∈ Z, if there exist M > J such that

|∂γ [�Q(A
−j ·)](x)| ≤ | detA|j/2

(1 + ρA(x − AjxQ))M
for |γ | ≤ �α/ζ−� + 1, (5.1)

|�Q(x)| ≤ | detA|j/2
(1 + ρA(Aj (x − xQ)))max(M,(M−α)ζ+/ζ−) , (5.2)

∫
xγ�Q(x)dx = 0 for |γ | ≤ N. (5.3)

We say that a collection {�Q}Q∈Q is a family of smooth synthesis molecules, if
each �Q is a smooth synthesis molecule supported near Q.

We say that�Q(x) is a smooth analysis molecule for Ḃα,qp (Rn, A,µ) supported
near Q ∈ Q with |Q| = | detA|−j and j ∈ Z, if there exists M > J such that

|∂γ [�Q(A
−j ·)](x)| ≤ | detA|j/2

(1 + ρA(x − AjxQ))M
for |γ | ≤ N + 1, (5.4)

|�Q(x)| ≤ | detA|j/2
(1 + ρA(Aj (x − xQ)))max(M,1+αζ+/ζ−+M−J ) , (5.5)

∫
xγ�Q(x)dx = 0 for |γ | ≤ �α/ζ−�. (5.6)

We say that {�Q}Q∈Q is a family of smooth analysis molecules, if each �Q is
a smooth analysis molecule supported near Q.

The following remark is needed to clarify the above definition.

Remark 5.1. In Definition 5.1, �Q and �Q should be understood as a function
indexed byQ ∈ Q, which is not necessarily equal to the usual convention�Q(x) =
| detA|j/2�(Ajx−k) used throughout Section 3. Conditions (5.1) and (5.4) should
be understood as follows. Let DA be the dilation operator given by DAf (x) =
f (Ax). Then the left hand side of (5.1) is simply |∂γ (DA−j �Q)(x)| and similarly
for (5.4). Moreover, to avoid any ambiguity, (5.1) and (5.4) require that�Q and�Q
have continuous partial derivatives of order �α/ζ−� + 1 and N + 1, respectively.
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Remark 5.2. If α < 0 then the smoothness condition (5.1) is void. Likewise, if
α > J − 1 then N = −1 and the vanishing moment condition (5.3) is void.
Furthermore, if α = 0, 0 < p ≤ 1 and µ is the Lebesgue measure, then N =
�(J − 1)/ζ−� = �(1/p − 1)/ζ−�, and (5.3) coincides with the vanishing moment
condition for atoms in the anisotropic Hardy space Hp

A(R
n), see [3, Section 4].

Similar comments are applicable for smooth analysis molecules.

Remark 5.3. Analogous definition of smooth molecules for Triebel-Lizorkin spaces
was introduced by the author and Ho [4]. The definitions of smooth molecules for
both Ḃα,qp and Ḟα,qp spaces are virtually identical with the only exception being
the method of calculating the decay parameter J . Hence, all properties of smooth
molecules derived in [4] can be readily applied to the case of Besov spaces.

The main motivation behind somewhat non-obvious orders of decay and smooth-
ness imposed on smooth molecules is revealed in the following lemma, which is a
non-isotropic variant of [21, Corollary B.3].

Lemma 5.1. Suppose {�Q}Q and {�Q}Q are families of smooth analysis and syn-
thesis molecules for Ḃα,qp , respectively. Then the matrix {aQP }, given by aQP =
〈�P ,�Q〉, is almost diagonal on ḃα,qp . More precisely, there existC > 0 and ε > 0,
such that

|〈�P ,�Q〉| ≤ CκQP (ε) for all Q,P ∈ Q.
The proof of Lemma 5.1 for Ḟα,qp spaces can be found in [4]. Since the notion

of almost diagonal matrices is identical for both ḃα,qp and ḟα,qp (with the exception
of the way the decay parameter J is computed) then by Remark 5.3, exactly the
same proof as in [4] yields the corresponding result for Ḃα,qp .

We also have two immediate consequences of Lemma 5.1 and the following
approximation result, the proof of which can be found in [4].

Corollary 5.2. Suppose {�Q}Q is a family of smooth synthesis molecules for Ḃα,qp
andϕ ∈ S(Rn)with 0 
∈ supp ϕ̂. Then the matrix {aQP }, given byaQP = 〈�P , ϕQ〉,
is almost diagonal.

Corollary 5.3. Suppose {�Q}Q is a family of smooth analysis molecules for Ḃα,qp
and ψ ∈ S(Rn) with 0 
∈ supp ψ̂ . Then the matrix {aQP }, given by aQP =
〈ψP ,�Q〉, is almost diagonal.

Lemma 5.4. Suppose that � is a smooth analysis (or synthesis) molecule of sup-
ported near Q ∈ Q. Then there exists a sequence {φk}∞k=1 ⊂ S and c > 0 such
that cφk is a smooth analysis (or synthesis) molecule supported near Q for every
k, and φk(x) → �(x) uniformly on R

n as k → ∞.

5.2. Smooth molecular decompositions

We are now ready to show generalizations of Theorem 3.5 in the situation when the
usual wavelet families of translates and dilates {ϕQ}Q∈Q and {ψQ}Q∈Q are replaced
by families of smooth analysis {�Q}Q∈Q and synthesis molecules {�Q}Q∈Q.
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Theorem 5.5 (Smooth Molecular Synthesis). Suppose A is an expansive matrix
and µ is a ρA-doubling measure. Then, there exists a constant C > 0, such that
for f = ∑

Q∈Q sQ�Q and {�Q}Q a family of smooth synthesis molecules for

Ḃα,qp (Rn, A,µ), we have

‖f ‖Ḃα,qp
≤ C‖{sQ}Q‖ḃα,qp

for all {sQ}Q ∈ ḃα,qp .

Proof. By Lemma 2.5, we can write�P = ∑
Q〈�P , ϕQ〉ψQ with the convergence

in S ′/P . By Theorem 4.2 and Corollary 5.2, A given by the matrix {aQP }Q,P =
{〈�P , ϕQ〉}Q,P is a bounded operator on ḃα,qp (A,µ). Since,

TψAs =
∑

Q

∑

P

aQP sPψQ = ∑
P sP

∑
Q〈�P , ϕQ〉ψQ = ∑

P sP�P = f

then by Theorem 3.5,

‖f ‖Ḃα,qp (Rn,A,µ) = ‖TψAs‖Ḃα,qp (Rn,A,µ) ≤ C‖As‖ḃα,qp (A,µ) ≤ C‖s‖ḃα,qp (A,µ).

��
If 0 < p ≤ 1 then the conclusion of Theorem 5.7 still holds when smooth mol-

ecules {�Q}Q are not necessarily indexed by the usual family of dilated cubes Q,
but instead they can be indexed by less structured families of cubes. More precisely,
one can allow families of cubes of the form

Q′ = {Q′ = A−j ([0, 1]n + xj,k) : j ∈ Z, xj,k ∈ R
n}

where for each j ∈ Z, {xj,k}k is an arbitrary sequence of points in R
n. Then we

have the following result.

Theorem 5.6. Suppose that 0 < p ≤ 1 and {�Q′ }Q′∈Q′ is a family of smooth
synthesis molecules supported near cubes Q′ ∈ Q′, where Q′ is as above. Then,
for f = ∑

Q′∈Q′ sQ′�Q′ , we have

‖f ‖Ḃα,qp
≤ C

( ∑

j∈Z

( ∑

Q′∈Q′, |Q′|=| detA|−j
(|Q′|−α−1/2|sQ′ |)pµ(Q′)

)q/p)1/q

. (5.7)

Proof. Since we cannot use almost diagonality argument as in Theorem 5.5, we
must resort to elementary, but tedious calculations yielding

|ϕj ∗�Q′(x)|≤C
{

| detA|j/2−(j−i)(α+ε+1/2)(1+ρA(Ai(x−A−ixi,k)))−M for j≥ i,
| detA|j/2−(i−j)(J−α+ε−1/2)(1+ρA(Aj (x−A−ixi,k)))−M for j <i,

where ϕ satisfies (3.2) and (3.3), Q′ ∈ Q′ with |Q′| = | detA|−i , M > J = β/p

and ε > 0. Alternatively, one can show the above by applying [4, Lemmas 6.3 and
6.4]. Hence, if we write

ϕj ∗ f =
( ∑

i≤j
+

∑

i>j

) ∑

|Q′|=| detA|−i
sQ′ϕj ∗�Q′ ,
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and use a continuous version of estimate (4.2) and p-triangle inequality, we obtain

||f ||q
Ḃα,qp

≤ C
∑

j∈Z

( ∑

i≤j
| detA|ip(α+1/2)−(j−i)pε ∑

|Q′|=| detA|−i
|sQ′ |pµ(Q′)

)q/p

+C
∑

j∈Z

( ∑

i>j

| detA|ip(α+1/2)−(i−j)p(J+ε)

×
∑

|Q′|=| detA|−i
|sQ′ |p| detA|β(i−j)µ(Q′)

)q/p
.

Thus, by Hölder’s inequality if q ≥ p and by q/p-triangle inequality if q < p, we
have (5.7). ��

Next, we will show the converse of Theorem 5.5.

Theorem 5.7 (Smooth Molecular Analysis). SupposeA is an expansive matrix and
µ a ρA-doubling measure. There exists a constant C > 0, such that, if {�Q}Q is a
family of smooth analysis molecules, then

‖{〈f,�Q〉}Q‖ḃα,qp
≤ C‖f ‖Ḃα,qp

for all f ∈ Ḃα,qp (Rn, A,µ).

The main technical difficulty in the proof Theorem 5.7 is to justify the mean-
ingfulness of the pairing 〈f,�Q〉, since f ∈ Ḃα,qp is an equivalence class in S ′/P ,
and �Q may not even belong to S. Therefore, we need to show a precise pairing
procedure, which is a consequence of Proposition 3.8.

Lemma 5.8. Suppose f ∈ Ḃα,qp (Rn, A,µ) and �Q is a smooth analysis molecule
for Ḃα,qp (Rn, A,µ) supported near Q ∈ Q. Then for any ϕ,ψ ∈ S(Rn) satisfying
(2.6) and (2.7), the series

〈f,�Q〉 :=
∑

j∈Z

〈ϕ̃j ∗ ψj ∗ f,�Q〉 =
∑

P∈Q
〈f, ϕP 〉〈ψP ,�Q〉 (5.8)

converges absolutely and its value is independent of the choice ofϕ andψ satisfying
(2.6) and (2.7).

The proof of Lemma 5.8 is virtually the same as the proof of the analogous
result for Triebel-Lizorkin spaces, see [4, Lemma 5.7].

Proof. First, note that for any f ∈ Ḃα,qp , there exists a matrix {bQP }Q,P∈Q such
that bQP ≥ 0 and

|〈f, ϕP 〉||〈ψP , φ〉| ≤ bQP and
∑

P

bQP < ∞, (5.9)

whenever φ is a smooth analysis molecule supported nearQ. Indeed, (5.9) follows
by Corollary 5.3 and Theorems 3.5 and 4.2. This shows the absolute convergence
of the series in (5.8).
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To show independence of the choice ofϕ andψ , let {φl}∞l=1 ⊂ S be the sequence
of (constant multiples of) smooth analysis molecules supported nearQ and converg-
ing uniformly to �Q guaranteed by Lemma 5.4. By Proposition 3.8 and Corollary
3.9, there exists a sequence of polynomials {Pk}∞k=1 with degPk ≤ L = �α/ζ−�
such that

∑∞
j=−k ϕ̃j ∗ψj ∗ f +Pk converges in S ′ as k → ∞. Therefore, for each

l, we can define

〈f, φl〉 :=
〈

lim
k→∞

∞∑

j=−k
ϕ̃j ∗ ψj ∗ f + Pk, φl

〉
= lim
k→∞

∞∑

j=−k
〈ϕ̃j ∗ ψj ∗ f, φl〉

= lim
k→∞

∑

P∈Q,|P |≥| detA|−k
〈f, ϕP 〉〈ψP , φl〉 =

∑

P∈Q
〈f, ϕP 〉〈ψP , φl〉,

since the above series converges absolutely by (5.9). Moreover, by (3.23) in Prop-
osition 3.8 and (5.6), this definition does not depend on the choice of ϕ and ψ .
Since 〈ψP , φl〉 → 〈ψP ,�Q〉 as l → ∞, by (5.8) and the Lebesgue Dominated
Convergence Theorem,

∑

P∈Q
〈f, ϕP 〉〈ψP , φl〉 →

∑

P∈Q
〈f, ϕP 〉〈ψP ,�Q〉 as l → ∞.

By the above reasoning, this limit is independent of ϕ and ψ satisfying (2.6) and
(2.7). This shows that 〈f,�Q〉 is well-defined by (5.8) and completes the proof of
Lemma 5.8. ��

Proof of Theorem 5.7. Once Lemma 5.8 is shown, the proof of Theorem 5.7 is
trivial. Recall that by Lemma 5.8,

〈f,�Q〉 :=
∑

P

〈f, ϕP 〉〈ψP ,�Q〉.

By Theorem 4.2 and Corollary 5.2, the operator A given by the matrix {aQP }Q,P =
{〈ψP ,�Q〉}Q,P is bounded on ḃα,qp (A,µ). Since 〈f,�Q〉 = ∑

P 〈f, ϕP 〉aQP , by
Theorem 3.5, we have

‖{〈f,�Q〉}‖ḃα,qp (A,µ) = ‖ASϕf ‖ḃα,qp (A,µ) ≤ C‖f ‖Ḃα,qp (Rn,A,µ). ��

5.3. Smooth atomic decompositions

In this subsection we introduce smooth atoms for anisotropic Besov spaces and
show their atomic decomposition. This extends the classical smooth atoms for
dyadic dilations introduced by Frazier and Jawerth [19].

Definition 5.2. A function aQ(x) is said to be a smooth atom supported near a
dilated cube Q = Qj,k = A−j ([0, 1]n + k) ∈ Q if it satisfies
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supp aQ ⊂ A−j ([−δ0, 1 + δ0]n + k), (5.10)

where δ0 > 0 is some fixed constant, and

|∂γ [aQ(A
−j ·)](x)| ≤ |Q|−1/2 for |γ | ≤ K̃, (5.11)
∫

Rn
xγ aQ(x)dx = 0 for |γ | ≤ Ñ, (5.12)

where Ñ ≥ N is the same as in Definition 5.1 and K̃ ≥ max(�α/ζ−� + 1, 0).
Recall that

N = max(�(J − α − 1)/ζ−�,−1), where J = β/p + max(0, 1 − 1/p).

We say that {aQ}Q∈Q is a family of smooth atoms, if each function aQ is a
smooth atom supported near Q.

Remark 5.4. It is clear that every smooth atom aQ is always some fixed constant
multiple of a smooth synthesis molecule supported nearQ. Moreover, this constant
multiple depends only on δ0 > 0, which controls the relative size of the support
of aQ. Indeed, the support condition (5.10) together with (5.11) imply the decay
conditions (5.1) and (5.2) for any value of M > J .

Theorem 5.9 (Smooth Atomic Decomposition). SupposeA is an expansive matrix,
α ∈ R, 0 < p, q ≤ ∞, andµ aρA-doubling measure. For anyf ∈ Ḃα,qp there exists
a family of smooth atoms {aQ} and a sequence of coefficients s = {sQ} ∈ ḃα,qp ,
such that,

f =
∑

Q∈Q
sQaQ, and ‖s‖ḃα,qp

≤ C‖f ‖Ḃα,qp
, (5.13)

where the above series converges unconditionally in Ḃα,qp . Conversely, for any
family of smooth atoms {aQ},

∥∥∥∥
∑

Q

sQaQ

∥∥∥∥
Ḃα,qp

≤ C‖s‖ḃα,qp
. (5.14)

Proof. The converse direction (5.14) follows immediately from Theorem 5.5 and
Remark 5.4. Let θ ∈ S be such that supp θ ⊂ B(0, δ0), and

∫
xγ θ(x)dx = 0 for all |γ | ≤ Ñ, (5.15)

|θ̂ (ξ)| ≥ c > 0 for all (2||A||)−1 ≤ |ξ | ≤ 1. (5.16)

The construction of such θ can be found in [19, Theorem 2.6]. Then, one can show,
see [4, Theorem 5.8], that there exists ϕ ∈ S satisfying (3.2), (3.3), and

∑

j∈Z

ϕ̂((A∗)j ξ)θ̂((A∗)j ξ) = 1 for all ξ ∈ R
n \ {0}.
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Therefore, by Lemma 2.4 we can expand f ∈ Ḃα,qp as

f =
∑

j∈Z

θj ∗ ϕj ∗ f,

where the equality and convergence is in S ′/P . Consequently,

f (x) =
∑

j∈Z

∑

Q∈Q, |Q|=| detA|−j

∫

Q

θj (x − y)(ϕj ∗ f )(y)dy. (5.17)

We will show the above series converges in Ḃα,qp , and consequently, by Lemma
2.5 and Proposition 3.3, it must converge to f in S ′/P . Indeed, for Q ∈ Q with
|Q| = | detA|−j , we define

sQ = |Q|1/2 sup
y∈Q

|(ϕj ∗ f )(y)|,

aQ(x) =
{
s−1
Q

∫
Q
θj (x − y)(ϕj ∗ f )(y)dy, if sQ 
= 0,

0 if sQ = 0.

Hence, we can rewrite (5.17) as f = ∑
Q∈Q sQaQ.

Therefore, by Lemma 3.1 (see also the proof of the boundedness of Sϕ in Theo-
rem 3.5) we have s = {sQ}Q ∈ ḃα,qp and ||s||ḃα,qp ≤ C||f ||Ḃα,qp . Hence, to guarantee,

that the series (5.17) converges in Ḃα,qp , by Theorem 5.5 and Remark 5.4, it suffices
to verify that each aQ is a smooth atom. It is immediate that aQ satisfies (5.10) and
(5.12). Finally, to verify (5.11) it may be necessary to re-normalize {aQ} and {sQ}
by some fixed multiplicative factor depending only θ . The verification of this is a
routine and can be found in [4]. This completes the proof of Theorem 5.9. ��

5.4. Atomic and molecular decompositions of Bα,qp

The above smooth atomic and molecular decompositions results for Ḃα,qp spaces
can be easily adapted to inhomogeneous anisotropic Besov spaces Bα,qp introduced
in Section 3.5. Here, we only outline modifications that need to be done to achieve
this.

Definition 5.3. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ a ρA-doubling measure on
R
n. Let Q0 = {Q ∈ Q : |Q| ≤ 1}.

We say that �Q(x) is an inhomogeneous smooth synthesis (or analysis) mol-
ecule for Bα,qp supported near Q ∈ Q0, if it satisfies (5.1)–(5.3) (or (5.4)–(5.6))
if |Q| < 1, and (5.1) (or (5.4)) only if |Q| = 1. Hence, we do not assume that
�Q has any vanishing moments if |Q| = 1. A collection {�Q}Q∈Q0 is a family of
inhomogeneous smooth synthesis (or analysis) molecules, if each �Q is a smooth
synthesis (or analysis) molecule supported near Q.

We say that an operator A with a matrix {aPQ}P,Q∈Q0 is almost diagonal for
bα,qp if there exists an ε > 0 such that
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sup
P,Q∈Q0

|aQP |/κQP (ε) < ∞. (5.18)

As a consequence of Theorem 4.2 and the observation that bα,qp ↪→ ḃα,qp is an
isometric embedding, any almost diagonal operator A on bα,qp is bounded.

Suppose that {�Q} and {�Q} are families of inhomogeneous smooth synthesis
and analysis molecules, respectively. Then the inhomogeneous analogue of Lemma
5.1 holds, i.e., the matrix {aPQ}P,Q = {〈�P ,�Q〉}P,Q is almost diagonal on bα,qp .
The proof of this fact is a slight modification of the homogeneous case. As a conse-
quence, we have inhomogeneous analogues of smooth molecular decompositions
of Theorems 5.5 and 5.7.

For the inhomogeneous analogue of smooth atomic decomposition of Theorem
5.9 we need the following definition.

Definition 5.4. A function aQ(x) is said to be a inhomogeneous smooth atom sup-
ported near a dilated cube Q ∈ Q0 if it satisfies (5.10), (5.11), and (5.12) if
|Q| < 1 and (5.10) and (5.11) only if |Q| = 1. We say that {aQ}Q∈Q0 is a family
of inhomogeneous smooth atoms, if each function aQ is a smooth atom supported
near Q.

Theorem 5.10. Suppose A is an expansive matrix and µ a ρA-doubling measure.
For any f ∈ Bα,qp there exists a family of inhomogeneous smooth atoms {aQ} and
a sequence of coefficients s = {sQ} ∈ bα,qp , such that,

f =
∑

Q∈Q0

sQaQ, and ‖s‖bα,qp
≤ C‖f ‖Bα,qp

,

where the above series converges unconditionally in Bα,qp . Conversely, for any
family of inhomogeneous smooth atoms {aQ},

∥∥∥∥
∑

Q∈Q0

sQaQ

∥∥∥∥
Bα,qp

≤ C‖s‖bα,qp
.

The proof of Theorem 5.10 is a direct modification of the proof of Theorem 5.9
with the help of reproducing formula,

f = � ∗� ∗ f +
∑

j≥1

θj ∗ ϕj ∗ f,

where θ,�, ϕ,� ∈ S satisfy (3.2), (3.30), (3.31), (5.15), (5.16), supp θ, supp� ⊂
B(0, δ0), |�̂(ξ)| ≥ c > 0 for |ξ | ≤ 1 and

�̂(ξ)�̂(ξ)+
∞∑

j=1

ϕ̂((A∗)−j ξ)θ̂((A∗)−j ξ) = 1 for all ξ ∈ R
n. (5.19)
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