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BOUNDEDNESS OF OPERATORS ON HARDY SPACES
VIA ATOMIC DECOMPOSITIONS

MARCIN BOWNIK

(Communicated by Andreas Seeger)

Abstract. An example of a linear functional defined on a dense subspace
of the Hardy space H1(Rn) is constructed. It is shown that despite the fact
that this functional is uniformly bounded on all atoms, it does not extend
to a bounded functional on the whole H1. Therefore, this shows that in
general it is not enough to verify that an operator or a functional is bounded
on atoms to conclude that it extends boundedly to the whole space. The
construction is based on the fact due to Y. Meyer which states that quasi-norms
corresponding to finite and infinite atomic decompositions in Hp, 0 < p ≤ 1,
are not equivalent.

1. Introduction

The intended purpose of this work is not only of research, but also of pedagogical
nature, since it is based on an already published, but quite possibly not well-known,
example of Y. Meyer.

In this note we give a rather surprising example of a linear functional defined on a
dense subspace of H1, which maps all atoms into bounded scalars, but yet it cannot
be extended to a bounded functional on the whole space H1. As a consequence of
this example, it follows that in general it does not suffice to check that an operator
from a Hardy space Hp, 0 < p ≤ 1, into some other quasi-Banach space X maps
atoms into bounded elements of X to verify that this operator extends to a bounded
operator on Hp. An untrained reader might inadvertently draw such a conclusion
by reading literature on atomic decompositions of Hardy spaces. Here we list a few
references, which could potentially lead someone into this not fully justified belief
[3, Proof of Lemma II.2], [5, Corollary 6.3], [8, Lemma 5.1], [10, Chapter 6.7.c], [14,
Chapter 6.3], [16, Chapter III.3.3], [17, Chapter 1], and [18, Proposition 6.13].

Despite this, it is important to emphasize that to verify boundedness for many
important classes of operators defined on Hp spaces, it is indeed sufficient to check
that atoms are mapped into bounded elements of X. Probably the best known ex-
ample of a class with this property are Calderón-Zygmund operators. The complete
proof of this fact (based on atomic decomposition of Hp spaces) can be found, for
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example, in [9, Chapter III.7] or [10, Theorem 6.7.1] for convolution-type Calderón-
Zygmund operators and in [1, Chapter 1.9] or [15, Lemma 1 in Chapter 7.3] for
non-convolution operators.

A rudimentary set of facts about real-variable theory of Hardy spaces can be
found in [4, 7, 8, 9, 10, 16]. Here, we limit ourselves to the basic definition of
real-variable Hp spaces due to Fefferman and Stein [7].

Definition 1. We say that a tempered distribution f ∈ S ′(Rn) belongs to the
Hardy space Hp(Rn), 0 < p < ∞, if its radial maximal function M0

ϕf (or equiva-
lently non-tangential maximal function Mϕf) is in Lp. Here, ϕ is any test function
in the Schwartz class S(Rn) with

∫
ϕ �= 0, and

M0
ϕf(x) = sup

t>0
|f ∗ ϕt(x)|,(1)

Mϕf(x) = sup
t>0

sup
|y−x|<t

|f ∗ ϕt(y)|,(2)

where ϕt(x) = t−nϕ(x/t).

A fundamental result of Fefferman and Stein asserts that this definition does
not depend on the choice of ϕ ∈ S (as long as

∫
ϕ �= 0) and Hp(Rn) with the

quasi-norm ||f ||Hp = ||M0
ϕf ||Lp (or ||f ||Hp = ||Mϕf ||Lp) is a quasi-Banach space.

Moreover, Hp(Rn) = Lp(Rn) for p > 1. For proofs of these facts we refer to [16,
Chapter III.1].

2. Example of Meyer

In this section we present an example of an atom in Hp whose norm is not
achieved by its finite atomic decomposition. The first example of this kind for H1

was exhibited by Y. Meyer [13]; see also [9, Section III.8.3]. Here, we merely adapt
this example to a more general Hp(Rn), 0 < p ≤ 1, case.

We start by recalling a definition of an atom for Hp spaces. For the sake of
simplicity, we will use only L∞ normalization for our atoms and we will limit
ourselves to the classical isotropic Hardy spaces Hp(Rn) given by Definition 1.

Definition 2. We say that a function a is a p-atom, where 0 < p ≤ 1, if

supp a ⊂ B(x0, r) for some x0 ∈ R
n, r > 0,(3)

||a||∞ ≤ |B(x0, r)|−1/p,(4) ∫
Rn

a(x)xαdx = 0 for all |α| ≤ �(1/p − 1)n�.(5)

Here, B(x0, r) = {x ∈ R
n : |x − x0| < r}.

Let Θk(Rn) be the space of all (finite) linear combinations of p-atoms, that is,

Θk(Rn) = {f ∈ L∞(Rn) : supp f is bounded and
∫

Rn

f(x)xαdx = 0 for |α| ≤ k}.

It is well known that Θk(Rn) is a dense subspace of Hp(Rn), 0 < p ≤ 1, for
sufficiently large k, that is, for k ≥ �(1/p − 1)n�. In fact, an even smaller space
Θk(Rn) ∩ C∞(Rn) is also a dense subspace of Hp(Rn) for the same range of k’s.
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On the space Θk(Rn) we consider two quasi-norms corresponding to finite and
infinite atomic decompositions:

(6) ||f ||Hp,∞ = inf
{( ∞∑

i=1

|λi|p
)1/p

: f =
∞∑

i=1

λiai, ai is a p-atom for i ∈ N}.

(7) ||f ||Hp,<∞ = inf
{( N∑

i=1

|λi|p
)1/p

: f =
N∑

i=1

λiai,

ai is a p-atom for 1 ≤ i ≤ N, and N ∈ N

}
.

It should be emphasized that the equality f =
∑∞

i=1 λiai in (6) is understood
in the sense of tempered distributions S ′(Rn). This follows from a standard Hp

theory fact stating that for any choice of coefficients (λi)∞i=1 ∈ �p(N) and p-atoms
ai’s, the series

∑∞
i=1 λiai converges in || · ||Hp quasi-norm, and hence in S ′.

The atomic decomposition theorem of Coifman [2] for Hp spaces states that
the converse is also true, i.e., every element f ∈ Hp(Rn) can be decomposed as
f =

∑∞
i=1 λiai for some choice of λi’s and p-atoms ai’s. Moreover,

||f ||Hp � ||f ||Hp,∞ for all f ∈ Hp,

and hence for all f ∈ Θk(Rn), where k ≥ �(1/p − 1)n�.
A less-known result due to Y. Meyer states that the above is not true when the

quasi-norm || · ||Hp,∞ is replaced by || · ||Hp,<∞. Hence, the quasi-norms || · ||Hp,∞
and || · ||Hp,<∞ are not equivalent on Θk(Rn).

Theorem 1. Suppose 0 < p ≤ 1 and k ≥ �(1/p − 1)n�. Then for arbitrarily small
ε > 0, there exists f ∈ Θk(Rn) such that

(8) ||f ||Hp,∞ < ε and ||f ||Hp,<∞ = 1.

Proof. Let a be a p-atom supported on the unit ball B(0, 1) with

(9)
∫

Rn

a(x)xαdx = 0 for all |α| ≤ k,

and such that

(10) |a(x)| ≥ c|B(0, 1)|−1/p > 0 for a.e. x ∈ B(0, 1).

To show that an atom a satisfying (10) exists, let K =
∑k

i=0

(
n−1+i

i

)
be the cardi-

nality of the collection of all multi-indices α with |α| ≤ k. Then, we claim that it
suffices to construct a finite partition {Ei}m

i=1 of B(0, 1) such that the vectors

(11) vi =
( ∫

Ei

xαdx

)
|α|≤k

∈ R
K , i = 1, . . . , m,

span the whole space R
K even if one of them is removed, i.e.,

(12) ∀1 ≤ i0 ≤ m span{vi : 1 ≤ i ≤ m, i �= i0} = R
K .

Indeed, (12) implies that there exist non-zero coefficients c1, . . . , cm such that∑m
i=1 civi = 0. Moreover, by scaling we may also assume that sup1≤i≤m |ci| ≤

|B(0, 1)|−1/p. Then, one can immediately verify that

a(x) =
m∑

i=1

ci1Ei
(x)
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is a required atom satisfying (10) with c = |B(0, 1)|1/p inf1≤i≤m |ci|. Finally, we
remark that a partition {Ei}m

i=1 satisfying (11) and (12) can easily be found by an
inductive partitioning of the ball.

Next, we choose a collection of pairwise disjoint balls {Bi}i∈N such that Bi ⊂
B(0, 1) for all i ∈ N,

U :=
⋃
i∈N

Bi is dense in B(0, 1) and |U | =
∑
i∈N

|Bi| < cεp.

For each i ∈ N, let ai be a dilated and translated copy of the atom a with support
adjusted to the ball Bi. That is, if Bi = B(x0, r), then ai(x) = r−n/pa((x−x0)/r).
As a consequence of (10) each ai is an atom supported on Bi and satisfying

(13) |ai(x)| ≥ c|Bi|−1/p for a.e. x ∈ Bi.

Let

(14) f(x) = c−1/p
∑
i∈N

|Bi|1/pai(x).

Then, it is obvious that ||f ||pHp,∞ ≤
∑

i∈N
|Bi|/c < εp. On the other hand, we claim

that ||f ||Hp,∞ must remain large.
Indeed, suppose that f has a finite atomic decomposition f =

∑N
i=1 λibi, where

each bi is supported on a ball B̃i. Let g be a majorant of f given by

g =
( N∑

i=1

|λi|p|B̃i|−11B̃i

)1/p

.

By (13) and (14)

(15) 1U (x) ≤ |f(x)| ≤
N∑

i=1

|λi||bi(x)| ≤
( N∑

i=1

|λi|p|bi(x)|p
)1/p

≤
( N∑

i=1

|λi|p|B̃i|−11B̃i
(x)

)1/p

= g(x).

Since g is continuous everywhere almost everywhere (possibly with the exception
of the union of boundaries of a finite collection of balls

⋃N
i=1 ∂(B̃i)) and U is dense

in B(0, 1), hence g(x) ≥ 1 for a.e. x ∈ B(0, 1). Therefore,

|B(0, 1)| ≤
∫

B(0,1)

g(x)pdx =
N∑

i=1

|λi|p.

Consequently, ||f ||Hp,<∞ ≥ |B(0, 1)|1/p. It is also immediate from (14) that
||f ||Hp,<∞ ≤ c−1/p|B(0, 1)|1/p. Since ε > 0 was arbitrary, by a simple rescaling
we find f satisfying (8), which completes the proof of Theorem 1. �

It is perhaps worthwhile to recall the original example of Meyer, which through
its simplicity better illustrates the idea of the above proof; see also [9, Chapter
III.8].

Example 1. For arbitrarily small ε > 0, we will construct a function f ∈ Θ0(R)
such that

||f ||H1,∞ < ε and ||f ||H1,<∞ = 1.
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Let {Bi}i∈N be a collection of pairwise disjoint intervals ⊂ [0, 1] such that U :=⋃
i∈N

Bi is dense in [0, 1] and |U | < ε. Let ai be a 1-atom supported on Bi,
which equals 1/|Bi| on the left half of Bi and −1/|Bi| on the other half. Let
f(x) =

∑
i∈N

|Bi|ai(x). It is clear that ||f ||H1,∞ ≤
∑

i∈N
|Bi| < ε and |f(x)| = 1

for a.e. x ∈ U .
To see that ||f ||H1,<∞ = 1, consider a finite atomic decomposition f =

∑N
i=1 λibi,

where each bi is supported on the interval B̃i. Then

1U (x) = |f(x)| ≤
N∑

i=1

|λi||ai(x)| ≤
N∑

i=1

|λi||B̃i|−11B̃i
(x) =: g(x).

Since g is discontinuous only on a finite number of points and U ⊂ [0, 1] is dense,
hence g(x) ≥ 1 for a.e. x ∈ [0, 1]. Integrating g(x) over [0, 1] yields ||f ||H1,<∞ ≥ 1.
Since f is itself a 1-atom supported on [0, 1], hence ||f ||H1,<∞ = 1.

3. Unbounded linear functionals on H1

The goal of this section is to show the existence of a linear functional on a
dense subspace of H1, which does not extend to a bounded functional on the whole
H1 despite the fact that it maps all 1-atoms into scalars with universally bounded
absolute values. The existence of such a functional will follow from Meyer’s example
and an application of the Hahn-Banach Theorem.

Theorem 2. There exists a linear functional l on Θ0(Rn) such that

(16) |l(f)| ≤ ||f ||H1,<∞ for all f ∈ Θ0(Rn),

which does not extend to a bounded functional on H1(Rn), i.e.,

(17) sup
f∈Θ0(Rn)

|l(f)|/||f ||H1,∞ = ∞.

In particular, l is uniformly bounded on all atoms in H1(Rn). That is, |l(a)| ≤ 1
for every 1-atom a.

Proof. Suppose {xi}i∈N ⊂ R
n is any sequence such that B(xi, 1)∩B(xj , 1) = ∅ for

every i �= j. For each i ∈ N, let ai(x) be a function in Θ0(Rn) supported on the
ball B(xi, 1) and satisfying

(18) ||ai||H1,∞ < 1/i and ||ai||H1,<∞ = 1.

In addition, from the proof of Theorem 1 we can also assume that

(19) |ai(x)| ≥ c/|B(0, 1)| > 0 for x ∈ Ui, where Ui ⊂ B(xi, 1) is dense.

Here, c is a constant independent of i ∈ N. In fact, we can choose ai’s such that
c = 1 is the largest possible by taking atoms taking only two non-zero and opposite
values as in Example 1.

Let V = span{ai(x) : i ∈ N} ⊂ Θ0(Rn) be the space of all finite linear combina-
tions of the above functions. We claim that

(20) c
∑
i∈N

|ci| ≤ ||f ||H1,<∞ ≤
∑
i∈N

|ci| for all f(x) =
∑
i∈N

ciai(x) ∈ V.

Therefore, V is isomorphic to the subspace of �1(N) consisting of sequences with
finite support.
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To show (20), we proceed as in the proof of Theorem 1. Suppose that f(x) =∑
i∈N

ciai(x) ∈ V has a finite atomic decomposition f(x) =
∑N

j=1 λjbj(x), where
each bj is supported on a ball Bj . By (19)

c

|B(0, 1)|
∑
i∈N

|ci|1Ui
(x) ≤ |f(x)| ≤

N∑
j=1

|λj ||bj(x)| ≤
N∑

j=1

|λj ||Bj |−11Bj
(x) =: g(x).

Since g is continuous everywhere almost everywhere (possibly with the exception
of the union of boundaries of a finite collection of balls

⋃N
j=1 ∂(Bj)) and each Ui is

dense in B(xi, 1), hence

g(x) ≥ c

|B(0, 1)|
∑
i∈N

|ci|1B(xi,1)(x) for a.e. x ∈ R
n.

Therefore,

c
∑
i∈N

|ci| ≤
∫

Rn

g(x)dx =
N∑

j=1

|λj |.

This shows the lower bound in (20). The upper bound in (20) is trivial by the
triangle inequality and (18).

Define a linear functional l initially on V by

l(f) =
∑
i∈N

ci for f(x) =
∑
i∈N

ciai(x) ∈ V.

By (20), l is a bounded functional on a subspace of V of a normed space Θ0(Rn)
equipped with the norm ||·||H1,<∞. Moreover, the norm of l is at most 1. Therefore,
by the Hahn-Banach Theorem, l extends to a bounded functional on the whole space
Θ0(Rn) such that (16) holds. Since, l(ai)/||ai||H1,∞ ≥ i and i ∈ N is arbitrary, we
also have (17), which completes the proof of Theorem 2. �

Remark 1. We remark that the proof of Theorem 2 can be easily modified to show
the existence of a linear functional l defined on some subspace of V ⊂ Θk(Rn),
where k ≥ �(1/p − 1)n�, 0 < p ≤ 1, which is bounded on V equipped with the
quasi-norm || · ||Hp,<∞, but is unbounded as a functional on V with the quasi-
norm || · ||Hp,∞. However, since the Hahn-Banach Theorem is not valid on general
quasi-normed spaces, there is no guarantee that this functional can be boundedly
extended to the whole Θk(Rn).

In fact, Duren, Romberg, and Shields [6] characterized the duals of classical
Hardy spaces on the unit complex disc Hp(D) for 0 < p < 1 and used it to show
that the Hahn-Banach Theorem fails for these spaces. Furthermore, Kalton [11, 12]
showed that a quasi-Banach space X has the Hahn-Banach Extension property
(continuous linear functionals on a closed subspace extend to the whole space) if
and only if it is a Banach space.

Finally, we discuss how Theorem 2 relates to the problem of showing bounded-
ness of operators on Hardy spaces via atomic decompositions. A typical argument
invoked for that purpose is as follows.

Suppose T is a linear operator defined on some dense subspace D of Hp(Rn),
0 < p ≤ 1, into some quasi-Banach space X, with the property that ||T (a)||X ≤
C < ∞ for all p-atoms a and some universal constant C. Here, we implicitly require
that Θk(Rn) ⊂ D, where k = �(1/p− 1)n� and || · ||X satisfies p-triangle inequality
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||f + g||pX ≤ ||f ||pX + ||g||pX . To show that T extends to a bounded operator from
Hp to X, consider an arbitrary element f ∈ Θk(Rn). By the atomic decomposition
theorem for Hp spaces, we can represent f =

∑
i∈N

λiai, where the ai’s are p-atoms
and

∑
i∈N

|λi|p ≤ C0||f ||Hp for some universal constant C0. Since

(21) Tf = T

( ∑
i∈N

λiai

)
=

∑
i∈N

λiT (ai),

hence

(22) ||Tf ||pX ≤
∑
i∈N

||λiT (ai)||pX ≤ C
∑
i∈N

|λi|p ≤ CC0||f ||Hp .

Since f was arbitrary, (22) shows that T extends to a bounded operator T : Hp →
X.

The main problem with this argument is that in general there is no guarantee
that (21) is valid due the fact that the sum in (21) is infinite. Theorem 2 shows
that this is not only a theoretical possibility, but (21) may indeed fail in certain
situations (at least when p = 1).

The above argument also has a variant, where infinite atomic decomposition
is replaced with a finite one f =

∑N
i=1 λiai, where the ai’s are p-atoms and∑N

i=1 |λi|p ≤ C0||f ||Hp for some constant C0. This time the problem lies with
the fact that C0 cannot be chosen universally for all f ∈ Θk(Rn) as it is evidenced
by Theorem 1.

Therefore, in light of Theorems 1 and 2 we must undoubtedly admit that in
general it is not enough to verify that an operator or a functional is merely bounded
on p-atoms to conclude that it extends boundedly to the whole space Hp, 0 < p ≤ 1.
It is also necessary to verify an identity such as (21), asserting that T behaves well
with respect to infinite atomic decompositions. This in turn is not always a trivial
task, e.g. in the case of Calderón-Zygmund operators it requires use of certain
approximation arguments. For further details, we refer to [1, 9, 15].
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