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ABSTRACT. The notion of a quasi-affine system, originally introduced by Ron
and Shen [20] for integer expansive dilations, is extended to the class of rational
expansive dilations. It is shown that an affine system is a tight frame if and
only if its quasi-affine counterpart is also a tight frame. As a consequence it
is shown that for a large class of dilations (including all one dimensional real
dilations) an orthonormal affine system is complete if and only if the Calderén
condition holds.

1. Introduction

The main goal of this work is to show the following fact that was conjectured
by G. Weiss in 1999.

THEOREM 1.1. Suppose a € R, |a| > 1, ¢ € L%(R"*). If the affine system
{4 k(x) = |al?Y(a’z — k) : j, k € L} is orthonormal in L*(R), then it is complete
if and only if

(1.1) S W(@oP =1 forae E€R
JEZ

Moreover, Theorem 1.1 still holds if (1.1) is replaced by a weaker condition

M(E)(2
(1.2) /]RW'(;)' d¢ =2ln|al,

which is an immediate consequence of (1.1). The formulae (1.1) and (1.2) are often
referred to as a Calderdn condition, see [7, 8], [15, §7.1], [18, §3.12].

There is also a natural higher dimensional version of Theorem 1.1, where the
dilation factor a is replaced by an expansive dilation matrix A. Theorem 1.1 was
initially shown in the case of expansive dilations preserving lattice Z™ by the author
[4]; shortly after that an alternative proof of this fact was also given by Z. Rzeszotnik
[21]. However, it was not clear whether any of these two approaches extend to
dilation matrices that do not necessarily preserve the lattice Z™, or some other (full
rank) lattice I'. Nevertheless, we are going to show that the methods developed
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in [4] and based on quasi-affine systems can be extended to a much larger class
of expansive dilations including, e.g., all one dimensional real dilations. In order
to achieve this we must extend the concept of a quasi-affine system to a class
of rational expansive dilations, which was originally introduced only for integer
expansive dilations by Ron and Shen [20].

Recently, a third approach showing Theorem 1.1 has been devised. R. Lauge-
sen [16], independently from the author, has also shown Theorem 1.1, i.e., Weiss’
conjecture in one dimensional case, and later in multidimensional case [17]. In con-
trast to the approach presented in this paper and based on shift invariant spaces
and quasi-affine systems, Laugesen’s methods involve almost periodic functions and
semi-continuous wavelet systems; these are affine systems in which discrete trans-
lations are substituted by continuous ones. Laugesen’s methods are quite versatile
and can be applied not only to all expansive dilations but also to certain non-
expansive dilations, i.e., a dilation A amplifying for the wavelet 1.

This paper is organized as follows. In Section 2 we recall some basic results
about shift-invariant systems. We also introduce an oversampling procedure which
is subsequently used to define quasi-affine systems for rational dilations. In Section 3
we show the equivalence of affine tight frames and quasi-affine tight frames. Finally,
in Section 4 we use these results to show our main result.

We start by establishing some necessary terminology. The translation by y €
R™ is Ty f(x) = f(z — y); the dilation by n x n non-singular matrix B is Dpf(z) =

/[det B[f(Bz).

DEFINITION 1.2. Suppose ¥ = {¢!,... 9L} C L?(R") and A is an n x n
expansive matrix, i.e., all eigenvalues A of A satisfy |A| > 1. The affine system
X (¥) associated with the dilation A is defined as

X(®)={Yjr:J €L, k€L, € T}
Here for ¢ € L?(R") we set ¢, 1 (x) = |det A[P/2¢(Aix — k) for j € Z, k € Z™

DEFINITION 1.3. Suppose B is m X n non-singular matrix. We say that a
measurable subset E of R" is B-multiplicatively invariant if B(E) = E modulo sets
of measure zero. Given such E we introduce the closed subspace L?(E) C L*(R™)
by

L(BE) = {f € L*(R") :supp f = {£: f(£) # 0} C E}.
We say that & = {¢!,... ,¢r} C L*(E) is a multiwavelet for L?(E) associated
with A, where E is A*-multiplicatively invariant, if X (¥) is an orthonormal basis
of L*(E).

We will use the following theorem characterizing affine systems X (¥) being
tight frames, which is a generalization of a well-known characterization theorem
for dyadic dilations [15, §7] and integer dilations [2, 9]. In the case of arbitrary
(non-integer) expansive dilations and E = R"® Theorem 1.4 has been shown in one
dimension in [11] and in higher dimensions in [10]. The general case of Theorem
1.4 follows verbatim by an easy adaptation of the argument given in [10].

THEOREM 1.4. Suppose that ¥ = {y',... L} C L*(E). Then X(¥) is a
tight frame with constant 1 for L2(E) if and only if

13) S Y (AVOS(AI(E + ) = baolp(E)  for ae EERT,

YEW (i,m)ELXI™,
a=(A*)"Im
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and for all o € A. Here A denotes the set of all A*-adic vectors, i.e.,
(1.4) A={a€eR":a=(A*)"7m for some (j,m) € Z x Z"}.

2. SI systems and oversampling

In this section we recall some basic results about shift invariant (SI) systems
and then we describe a simple procedure of oversampling a SI system that is not
necessarily SI with respect to the standard lattice Z".

DEFINITION 2.1. Suppose that T is a (full rank) lattice, i.e, T' = PZ™, where
P is an n x n non-singular matrix. We say that a closed subspace W C L2(R™) is
shift invariant (SI) with respect to the lattice I, if f € W implies T, f € W for all
v € T. Given a (countable) family ® C L?(R") and the lattice ' we define the SI
system E' (®) and SI space ST (®) by

(2.1) E'(®)={T,p:pe @, yeT}, St (®) = spanE" (®).
When I' = Z™ we often drop the superscript I', and we simply say that W is SI.

Given a SI system E' (®) we are often interested in determining whether E' (®)
forms a frame for ST (®). One possible way of achieving this is to consider a dual
Gramian G(¢) of E' (®) introduced by Ron and Shen [19]. For simplicity we restrict
our attention to the case of I' = Z™, since this will be sufficient for our work.

Suppose that X is some subset of a Hilbert space H. Define an operator
F :H — 1*(X) by F(h) = ((h,z)),cx- We say that X is a Bessel family if F is
bounded. In addition, if F' is bounded from below then we say that X is a frame.
The frame operator of X C H is G : H — H defined as G = F*F. The lower
and upper frame bounds of a frame X C # are defined as ||G~||~*/? and ||G||*/2,
respectively. If the lower and upper bounds of a frame X C H are equal then we
say that X is a tight frame.

DEFINITION 2.2. Suppose ® C L%(R™) is a countable set such that

(2.2) Z |@(6)? <o for a.e. £ € R™.

ped

The dual Gramian of E(®) is a map G from the fundamental domain T" =
(—1/2,1/2]™ into self-adjoint infinite matrices (gx i)k ez~ defined for a.e. £ € T" by

(2.3) GOk =) pE+k)@pE+1)  fork,l ez

p€eD

Note that if a matrix G(§) = (G(£)k,)k,iczn defines a bounded operator on
I12(Z™) for some ¢ € T, by (G(£)er, er) = G(€)k.1, where (er)rezn is the standard
basis of 12(Z™), then {(P(£ + k))rezn : @ € ®} C I2(Z™) is a Bessel family and G/(€)
is the frame operator of the set {(P(€ + k))rezn : ¢ € ®} C I2(Z™). Obviously, the
converse to this is also true. Furthermore, it follows from [19, Theorem 3.3.5] that
(2.2) is a necessary (but no sufficient) condition for E(®) to be a Bessel family.

The following result due to Ron and Shen [19] characterizes when the system of
translates of a given family of functions E(®) is a frame (or Bessel family if a = 0)
in terms of the dual Gramian, see also [3, Theorem 2.5(ii)].
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THEOREM 2.3. Suppose ® C L?(R") is countable and ® satisfies (2.2). The
system E(®) is a frame for a SI space S(®) with frame bounds 0 < a < b < o0,
i.€.,

alfI* < D2 D KETep) <BlIFIP for all f € 5(),

©ED ke
if and only if the dual Gramian G(€) satisfies

(2.4) allv|* < (G(€&)v,v) < bljv]|? forve J(§), forae £€Tm,
where
(2.5) J(€) == span{(@({ + k))kez» : ¢ € P},
is the range function of S(®).
Recall that, in general, a range function is a mapping
J : T" — {closed subspace of I*(Z™)},

and there is one-to-one correspondence between SI spaces of L2(R") and measurable
range functions due to a classical result of Helson [1, 3, 14]. Recall also that
whenever the dual Gramian G(€) is bounded it represents the frame operator of
{(P(E+K))kezn : ¢ € ®} C I?(Z™), and hence G(£) is always a self-adjoint operator
satisfying

(2.6) ranG(€) = J(€) and  kerG(€) = J(€)* for a.e. £ € T,

where J(£) is given by (2.5).

In this section we are primarily interested in rational lattices T, i.e., I' = PZ",
where P is an n x n non-singular matrix with rational entries. In this situation
define T, the integral sublattice of T by I = Z" N T. We introduce two quotient
groups:

— I/ I is called an eztension group,
— Z"/f‘ is called an oversampling group.

Intuitively, the extension group measures how much the rational latice I' ex-
tends beyond Z™, whereas the oversampling group determines how much oversam-
pling is needed to obtain a minimal superlattice of I' containing the standard lattice
™.

DEFINITION 2.4. Suppose ® C L2(R") is a countable set and T is a rational
lattice. Define O (®) the oversampled system of E' (®) by

@) OF (®) = deg/f Ty (EF (W@)) ;

where the union runs over representatives of distinct cosets of the oversampling
group Z"/T, T is an integral sublattice of T, and |Z™/T| is the order of Z"/T.

By the above definition O' (®) is always SI with respect to Z". Indeed, by (2.7)

1 n e
o''(®) = {Wnﬂwmpe@, dezZ"T, 7e1“}

(2.8)
— Er+z” (7{ <I>).
|Zn/]_"|1/2
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Note that if Z™ C T' then no oversampling occurs, and the oversampled system
OV (®) = E'(®). The following lemma gives an explicit formula for the dual
Gramian of O (®).

LEMMA 2.5. Suppose ® C L?(R") satisfies (2.2), and T = PZ" is a rational
lattice. The dual Gramian of OF (®) is given for k,1 € Z" as

29) GO - { 7 Soco 96+ MFETT ifk—1eT",
0 otherwise.
Here, I'™* is the dual lattice of T, i.e.,
IM'"={nelR":(n,v)€Z foryel}.
That is, if [ = PZ™ then I'* = (P*)~1Z"™.

PRrROOF. The proof is purely computational. Note that by (I'+Z")/Z™ ~T/ I,
and (2.8),

O (@) = dEUF/de (EZ" (W@)) — g2 <d€UF/f {WZ@}).

Hence, by the definition of the dual Gramian

~ 1 — —
G(ry = Zn T SN Tup(€ + kB)Tup( +1)
|Z" /T $€® ger/T
1 (ke . N
= (3 ) 5 ek mEE T,
A
Using [T'/T|/|Z"/T| = 1/| det P| and Lemma 2.6 this yields (2.9). O

LEMMA 2.6. Let T be a rational lattice and T = Z™ N T its integral sublattice.
Then for any m € Z™,

(2.10) Z e—2mi(m,d) _ { |F/f| for m € T*,

Py 0 form &T

PrROOF. Fix m € Z" Note that the map o : T/T = S' = {z € C: |2| = 1}
given by o(d) = e 2"im:d) for d € T/T is a well-defined group homomorphism.
Since the quotent group I'/T has a finite order, o(T'/T) is a finite subgroup of S'.
However, any finite subgroup of S' consists of roots of unity of a certain order N.
Hence, o(I'/T) = {e~2"/N .k =0,... N — 1}, where N = N(m) depends on the
choice of m € Z"™. Clearly, N(m) = 1if m € T, and N(m) > 1 if m ¢ I'*. Since
o1 (e=2mik/NY) has the same cardinality for each k € Z and Y ' e~ 27k/N = §,
for N > 1 we obtain (2.10). O
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3. Quasi-affine systems for rational dilations

The goal of this section is to introduce and study a class of quasi-affine systems
for rational expansive dilations. Originally quasi-affine systems have been intro-
duced and investigated only for integer expansive dilation matrices by Ron and
Shen [20]. Their importance stems from the fact that the frame property carries
over when moving from an affine system to its corresponding quasi-affine system,
and vice versa. Furthermore, quasi-affine systems are shift invariant and thus much
easier to study than affine systems which are dilation invariant.

Our goal is to introduce the notion of a quasi-affine frame for rational expansive
dilations that overlaps with the usual definition in the case of integer dilations. The
main idea of Ron and Shen [20] is to oversample negative scales of the affine system
at a rate adapted to the scale in order for the resulting system to be shift invariant.
Even though by doing this the orthogonality of the affine system is not carried
over to the corresponding quasi-affine system, however, it turns out that the frame
property is preserved.

In order to define quasi-affine systems for rational expansive dilations we need
to oversample both negative and positive scales of the affine system (at a rate
proportional to the scale) which results in a quasi-affine system that in general
coincides with the affine system only at the scale zero. Hence, it is less clear than
in the case of integer expansive dilations (where both systems coincide at all non-
negative scales), whether there is any relationship between affine and quasi-affine
systems. Nevertheless, it turns out the frame property still carries over between
affine and quasi-affine systems.

DEFINITION 3.1. Suppose ¥ = {¢!,... 9L} c L?(R) and 4 is an n x n
rational expansive matrix. The quasi-affine system X7(¥) associated with the
dilation A is defined as

(3.1) x1(®) = | 0472 (D 0).
JEZ
Remark that the affine system X (¥) can be equivalently introduced as
(3.2) X(¥) = |J B4 (D 0).
jez

ExAMPLE 3.2. Note that if A is an integer expansive matrix then Definition
3.1 overlaps with the usual definition of a quasi-affine system, i.e.,

X9(0) = {¢jr:j €L, k€L, ¢ € T},
where for 1) € L2(R") and j € 7, k € Z™ we set
| det A[7/2p(ATx — k) if j >0,
|det Ay (Ai(z —k)) if j <O.
Indeed, if A has integer entries then by (2.8)

bin(e) = {

EAT'Z™(D 4; W) for j >0,

OA7'2" (D 4, T) = ) ,
Du®) {EZ (|det AP/2D 4;¥) for j < 0.
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ExAMPLE 3.3. The quasi-affine system has a relatively simple algebraic form
also in one dimension. Suppose a = p/q € Q is a dilation factor, where |a| >
1, gcd(p,q) = 1, p,q € Z. Then we claim that the quasi-affine system X?(¥)
associated with a is given by

Xq(‘I’) = {%Z],k :jak S Z; ¢ € \I’}
Here for v € L?(R) and j, k € Z we set
/2

pJ

~ 7 ¢(a3$ - q_Jk) lfj Z 0;
wj,k(.’ll') = qj ) . .
q?/Q (z—p'k) ifj<O.

Note the above convention for 9, in the case when a is an integer is consistent

with Example 3.2. To show the claim not that by (2.8),
. EP'Z(q=i/2D ;¥ = q=9/2D ; (B4 Z(¥)) for j > 0,

0o Z(Daj\Il)z ) (q i ¥) .q aj( (¥)) forj >
ETZ(pi2D ;W) = pI/? D ; (EP' 7(¥)) for j < 0.

THEOREM 3.4. Suppose A is an n X n rational expansive matriz and ¥ =
{¥Y, ... .Y ¢ L*(E), where E is A*-multiplicatively invariant subset of R™.
Then the affine system X () is a tight frame with constant 1 for L*(E) if and only
if its quasi-affine counterpart X1(¥) is a tight frame with constant 1 for L*(E).

PRrOOF. Theorem 1.4 gives a characterization of X (¥) being a tight frame with
constant 1 in terms of the equation (1.3). Note that (1.3) can be reduced to the
form

(33) Y D D(AVOB(AV(E+K) = brolue)  forae €R,
YEW (5,m)em TN,
k=(A*)"im
and for all k € Z™. Tt is clear that (1.3) implies (3.3). To see the converse implication
take any o = (A*)" "k € A, jo € Z, k € Z",

S Y A ONA)IE +a)
YEW (§,m)ELXI,
a=(A*)"Im

e Z Z zz((A*)j—jo(A*)jo5)1&((141;':)]-_]-0((A*)].OE_|_k))
PYeEW  (j,m)€rxzn,
k=(a*)~(=i0)m

= S0l ((A%)°€) = 60,01 (€).

On the other hand, since the system X ?(¥) is shift invariant we can characterize
X1(P) to be a tight frame using Theorem 2.3 and Lemma 2.5. Our goal is to show
that the resulting condition is precisely (3.3). Indeed, let G;(€) denote the dual
Gramian of 042" (®) for j € Z. By Lemma 2.5, for j € Z and k,l € Z" we have

G(€)rs = { |det AP Yy Darb(E + W)Dap(E+1) k=1 € (AVZ,
’ 0

otherwise,

_ { S pew PUA)T(E+RNP(A)F(E+1) k—1€ (4*)Z,

0 otherwise,
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since (A~IZ™)* = (A*)IZ". Let G(£) denote the dual Gramian of X?(¥). By (3.1)
and the additivity of dual Gramians

GOri =) GOk

JEZ
~ . —— 1 k—1€ (A*)izn,
=5 DU RI) (w))x{o o

=3 Y A IEFRD(A)IE+D)

YEW (3, m)ELXIM,
k—l=(A*)Im

By Theorem 2.3 and (2.6) it follows that X(¥) is a tight frame with constant
1 for L?(E) if and only if the dual Gramian G(§) of X¢(¥) satisfies

(G(&)v,v) = ||v||? for v € J(£), and for a.e. £ € T,

where J(£) is the range function corresponding to L?(E). In other words, X4(¥)
is a tight frame with constant 1 for L?(E) if and only if the dual Gramian G () is
an orthogonal projection onto J(£) for a.e. £. Recall that the range function J(£)
of L?(E) is given by

(385)  J(E) = {v = (uk)kez € E(Z") : v(k) £0 = £+ € B},

Therefore, X9(¥) is a tight frame with constant 1 for L?(E) if and only if its dual
Gramian G(£) satisfies
1 ifk=landé+k€eE

: ¢ = for a.e. £ € T™.
(3.6) GO { 0 otherwise orae. £ €

By (3.4) we conclude that (3.6) is equivalent with

S GAYE+R)G(ANV(E+k+ (I — k) = dhoroLu(€ +F),

YEW (§,m)ELXIT,
k—l=(A*)—im

for a.e. £ € T", and k,l € Z". However, this in turn is (3.3), which was shown to be
equivalent with X (¥) being a tight frame with constant 1 for L2(E) by Theorem
1.4. This completes the proof of Theorem 3.4. O

Theorem 3.4 can be generalized to the case of general (dual) frames. For
example, as it is in the case of integer dilations [12, 20], one can show that X (¥)
is a tight frame with constants a and b if and only if its quasi-affine counterpart
X1(P) is a frame with the same constants. However, in this work we will only need
the following simple fact.

LEMMA 3.5. Under the assumptions of Theorem 3.4, if X (V) is Bessel with
constant 1 then X9(¥) is also Bessel with constant 1.

PRroOF. For j € Z define

K;(f) = > (ol Ki(f)= > I(f, o).

$€EATIZY(D ;W) pe0A™IZ™(D ;W)
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Given any J > 0 define

r,= () 4z",
i<
which is a full rank sublattice of Z™. We claim that for any J > 0,
1 .
(3.7) Ki(f) = e 2 Ki(Tuf)  forljl <,
1Z7/Ta| ez
J

where the sum runs over all representatives of distinct cosets of Z™/T;. Indeed,
pick any |j| < J and let T' = Z™ N A~JZ™ be the integral sublattice of A=/Z". By
(2.7),

K!(f) = > |(f, o)

PEOATIZN(D ;W)

1 1
= = ,T 2 = — KJ T .
iz > > I(f: Tap)| ZT > Kj(Tuf)

dezZn /T peEATIZ™(D ;W) ezn/T
Therefore,
1 1 1
1z > Ki(Tuf) = | > iz T > Kj(TdTyf)
T qeznr, Tl pef/r; dezn )T
1 1
= Y KNTf)=—— > KN =K!),
IT/T;] £ T/ <
nef'/r; nel /T,

which shows (3.7). By (3.7),

1
q — 1i q — 1 .

E Kj(f) = Jim 2 Kj(f) = Jim o §n: K;(Taf)

JEZL 171<J dezn /Ty

1
< lim —— 2 _ 2
< Jim gy 2 TP =111

dezn /Ty

since X (¥) is Bessel with constant 1. This completes the proof of Lemma 3.5. O

4. The Calderén condition and completeness of affine systems

In this section we show that the Calderén condition

(4.1) SN (AP =1 forae. £ €R,

YEW JEZ

characterizes completeness of orthonormal affine systems for a large class of expan-
sive dilation matrices including, e.g., for all one dimensional real dilations. This
fact was conjectured by G. Weiss and it was originally shown in the case of integer
expansive dilations by the author [4] and Rzeszotnik [21]. Here we extend the meth-
ods developed in [4] and based on quasi-affine systems to show this conjecture for
a large class of expansive dilations. A different approach based on semi-continuous
wavelet systems was used by R. Laugesen [16, 17] to show this conjecture for arbi-
trary expansive dilations.

We start with a result extending [4, Theorem 2.5] to the case of rational ex-
pansive dilations.
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THEOREM 4.1. Suppose A is an n X n rational expansive matriz and ¥ =
{¥1, ... .Y ¢ L*(E), where E is A*-multiplicatively invariant subset of R™.
Assume that X () is a Bessel family with constant 1. Then the following are
equivalent:

(i) X(¥) is a tight frame with constant 1 for L?(E),
(ii) the discrete Calderdn formula holds

(4.2) YD W(AYOP =1p()  forae E€RY,

YeEW jEZL

(%) for any (some) quasi-norm p associated with A*,

(1. > [ O oy = [ 1204

PeEW

where D C E is any measurable set such that {(A*)ID : j € Z} partitions E
(modulo sets of measure zero).

Recall from [6] that a quasi-norm associated with an expansive dilation B is a
measurable mapping p : R" — [0, 00) satisfying
(i) p(§) =0 <= £=0,
(ii) p(BE) = |det B|p(§) for all £ € R™,
(iii) there is ¢ > 0 so that p(& + ) < c(p(&) + p(¢)) for all £, ¢ € R™.

In the case when E = R", k(p, E) is referred to as a characteristic number of a
quasi-norm p, and it can be shown that x(p, E) does not depend on the choice of
D, see [4].

ProOOF OF THEOREM 4.1. The proof of Theorem 4.1 follows closely [4, The-
orem 2.4]. The implication (i) = (ii) is a consequence of Theorem 1.4. The
implication (ii) = (iii) is a consequence of

2 dé- * 2 dé-
| (A7) )l
2L RO = R ,,,%,/ Z e

%(p, E).

pew /D

Finally, we need to show the implication (iii) = (i). Since X(¥) is a Bessel
family with constant 1, X?(¥) is also a Bessel family with constant 1 by Lemma
3.5. Let G(&) be the dual Gramian of X9(¥). By Theorem 2.3, (2.4), and (2.6) we
have ||G(€)|| < 1 for a.e. & € T". In particular, for any k € Z™,

44) 12D 1GQrl> = 1GEril>+ D [G(©ral>  forae £eTm
lezn 1€Z 1%k
By (3.4) for any k € Z™ and for a.e. £ € T",

ke =D D DAV E+R)P,

YeV jEZ

and hence by (4.4),
SO (ATYOP <1 forae R

YEVY JEZ
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Since
e [ de
;@/ L= > [, Z R s < [ i = o

where D is the same as in (iii), we actually have

SO (AP =1 forae (€D,

YEW jeZ
and thus for a.e. £ € E. The above combined with (4.4) shows (3.6), which implies
that X () is a tight frame with constant 1 by the proof of Theorem 3.4. O

Even though Theorem 4.1 works nominally for rational dilations, however, it
enables us to show the conjecture of Weiss for a much larger class of dilations.
Theorem 4.2 extends the main result of [4, Theorem 2.4].

THEOREM 4.2. Suppose A is an n X n ezrpansive matrix such that for any
JjEZL,Z"N(A*)IZ™ is either a trivial or a full rank sublattice of Z™. Suppose that
U = {¢',... oL} C L32(R") is such that the affine system X (¥) is orthonormal
(but not necessarily complete). Then the following are equivalent:

(i) X () is complete, i.e., U is a wavelet,
(i1) the discrete Calderdn formula holds

(4.1) Y S WBAVOL =1 for ae €€,
YEW jEL
(#i) for any (some) quasi-norm p associated with A*,
pew 'R”
where k(p) is the characteristic number of p.
Before we start the proof of Theorem 4.2 we need to show Lemma, 4.3.

LEMMA 4.3. Under the assumptions of Theorem 4.2, suppose that for some
jEZL,Z™"N (A*)IZ™ = {0}. Then K and (A*)IK are disjoint (modulo null sets),
where K = Jcq supp¢-

PRrOOF. By the orthogonality of X (¥)

01,005,008 k" = <¢j’,ka¢(l)l,k’) = | det AJ/? /n P (A — k)Yl (x — K')dw
= p//? . YAz + ATk — k)Y (z)de,
for all k,k' € Z™, 1,I' =1,..., L. Thus, by Plancherel’s formula
0= [ @R (AT) e Hge
= [ @) dgemer A,

The condition Z™ N (A*)?Z" = {0} means that the rows of the matrix A’
(treated as vectors in R™) together with the standard basis vectors (1,0, ... ,0),

(4.6)
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.., (0,...,0,1) are linearly independent over Q. By Lemma 4.4 we conclude that
7"+ A~IZ™ is dense in R”. Therefore, by the Fourier Inversion Formula and (4.6),
PV (€)' ((A*)9€) = 0 for ae. £ € R* and 1,1’ = 1,... , L. This completes the proof
of Lemma 4.3. O

LEMMA 4.4. Suppose B is an n x n real matrix such that the rows of B
(treated as vectors in R™) together with the standard basis vectors (1,0,...,0),
.., (0,...,0,1) are linearly independent over Q. Then the set Z™ + BZ™ is dense
mn R™.

PrOOF. The proof of Lemma 4.4 uses an argument involving the Weyl Crite-
rion of uniform distribution mod 1, and it can be found in [6, Chapter 2, Lemma
3.2]. d

PROPOSITION 4.5. Suppose A is an n X n expansive dilation matriz and ¥ =
{t, ..., *} € L2(R™) is such that the affine system X () is a Bessel family with
constant 1. Then

(4.7) SO AP <1 for ace. £ €R.

YEY jEZ

Proor. The argument follows verbatim the proof of the necessity “ = ” part
of Theorem 1.4, see [10]. O

PROOF OF THEOREM 4.2. As in Theorem 4.1 the implications (i) = (ii
and (ii) = (iii) follow in the same manner. The implication (iii) = (ii) is a
consequence of Proposition 4.5 and

B P . _ R R
ko)=Y [ E8de= Y [ Siayorts < X [ o= s

YEW pev ' D jez YET

where D C R™ is such that {(A*)D : j € Z} partitions R". Finally we are left
with (i) = (i).
Assume first that

(4.8) Z"N (A*)Iz™ = {0}  forall j € Z\ {0}.

Let K = ey Supp ). By Lemma 4.3 we have that the sets {(A*)/K : j € Z} are
pairwise disjoint (modulo null sets) and therefore by (4.1),

_ n *\7 2 — n 2 —
(4.9) K| = /K %gw(m)gn dt /K %wn L,

For j € Z let
Wj = span{¢j,k ke Zn, ¢ € ¢}
Since Wy C L?(K), by the basic properties of the dimension function,

L = dimyy, (§) < dimpa g (€) for a.e. £ € T,

since Wy C L?(K); for the definition and properties of the the dimension function
dimy (§) of a SI space W we refer to [1, 3]. Here we only recall that the dimension
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function of a SI space W is a map dimy : T" — N U {0, oo} that measure the size
of W over the fibers R® /Z™. Hence by (4.9),

[ dimpaqro (€1 = 1K1 = L.

and we actually have Wy = L?(K). By (4.1) we also have UjGZ(A*)jK = R" and
thus @, W; = @,z L*(A*) K) = L*(R"), i.e., X(¥) is complete. Moreover,
this argument shows that ¥ has to be a combined MSF multiwavelet, see [5].

Assume next that for some integer j > 1, Z"N (A*)?Z" is a full rank sublattice
of Z™. Let jo be the smallest among such integers. Clearly, Z" N (4*)/Q" = {0}
for 0 < j < jo. Moreover, (A*)’ has rational entries and hence all matrices (A*)7
for j € joZ are rational. Therefore, for any j & joZ,

7N (A*) " =7"N ((A*)j*[j/jOJjo (A*)Lj/jojjozn) cC7Z™N (A*)jij/jonan = {0}
By Lemma 4.3, K and (A*)/K are disjoint for j & joZ, where K = |J,,cq Supp ).
Therefore, the sets E, A*E, ... ,(A*)%~1E are pairwise disjoint (modulo null sets),

where _
E= J AYK.
JEJoZ
Moreover, by (4.1), EUA*EU...U(A*)% 1E =R", and
(4.10) SO (AP =1p(€)  forae. £€R"

YEY jEZ
Therefore, to complete the proof, it suffices to show that the affine system
X() = {DysTip: j € joZL, k €Z", ¢ € T}

associated with the rational dilation A7 is complete in L?(E). Let X () be the
corresponding quasi-affine system, as given by Definition 3.1. Let G(£) be the dual
Gramian of this system as in the proof of Theorem 3.4. By (3.4) for k,l € Z™,

é(g)k,l = Z Z &((A*)jjo(é‘_}_k)),(ﬁ((A*)jjo(f+ D).
PYEW  (3,m)ELXI™,
k—1=(A*)"Ji0m

Therefore, by (4.10), for k € Z",
GOrk =Y D (AP E+R)P =15 +k) forae {eTm

YEY jEZ

Moreover, for k,l € Z",

Gkt =0 forae. £€T", E+kgEor+I¢E.

By Lemma 3.5, X9(¥) is Bessel with constant 1, hence by Theorem 2.3, ||G(€)]| < 1
for a.e. £. Therefore, for £ + k € E,

1> |G =1+ > GO,

lezn l€Zn Ik

hence G (€)y,; = 0 for all [ # k. This shows (3.6) and hence G(€) is an orthogonal
projection onto the range function J(§) corresponding to L?*(E), where J(£) is
given by (3.5). Therefore, X9(¥) is a tight frame with constant 1 for L?(E) and
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by Theorem 3.4, X (¥) is a tight frame with constant 1 for L?(E), and thus X (¥)
is complete in L?(E). This completes the proof of Theorem 4.2. d

As an immediate corollary of Theorem 4.2 we have

COROLLARY 4.6. Suppose that a is real, |a| > 1, and ¥ = {¢',... 9L} C
L2(R) is such that X (V) is orthonormal (but not necessarily complete). Then the
following are equivalent:

(i) X () is complete, i.e., ¥ is a wavelet,
(i1) the discrete Calderdn formula holds

Z Z [h(a?€)? =1 for a.e. £ €R,

Yel jeZ

(#ii) the continuous Calderdén formula holds

n 2
Z/IR—|¢|(§|)| d¢ =2In|al.

PeEW

We remark that the assumption that X (¥) is orthogonal can be relaxed by
X () being Bessel with constant 1 (at least when a is rational by Theorem 4.1, or
when a is positive, see [16]).

Finally, we remark that the equivalence (i) <= (iii) in Theorem 4.2 can be
used to show the completeness theorem of Garrigds and Speegle [13] for a much
larger class of dilations (than with integer entries) satisfying the hypothesis of
Theorem 4.2. The argument follows verbatim [4, §3].
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