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viii ANISOTROPIC HARDY SPACES AND WAVELETS

Abstract

In this paper, motivated in part by the role of discrete groups of dilations in
wavelet theory, we introduce and investigate the anisotropic Hardy spaces associ-
ated with very general discrete groups of dilations. This formulation includes the
classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy
space theory of Calderén and Torchinsky.

Given a dilation A, that is an n X n matrix all of whose eigenvalues X\ satisfy
|A| > 1, define the radial maximal function

Mgf(x) = ilellz) [(f * or) ()], where @ (2) = | det A|_kg0(A_k:v).

Here ¢ is any test function in the Schwartz class with [ ¢ # 0. For 0 < p < co we
introduce the corresponding anisotropic Hardy space HY as a space of tempered
distributions f such that Mg f belongs to LP(R™).

Anisotropic Hardy spaces enjoy the basic properties of the classical Hardy
spaces. For example, it turns out that this definition does not depend on the
choice of the test function ¢ as long as [ ¢ # 0. These spaces can be equivalently
introduced in terms of grand, tangential, or nontangential maximal functions. We
prove the Calderén-Zygmund decomposition which enables us to show the atomic
decomposition of HY. As a consequence of atomic decomposition we obtain the
description of the dual to HY in terms of Campanato spaces. We provide a de-
scription of the natural class of operators acting on HY, i.e., Calderén-Zygmund
singular integral operators. We also give a full classification of dilations generating
the same space H'} in terms of spectral properties of A.

In the second part of this paper we show that for every dilation A preserving
some lattice and satisfying a particular expansiveness property there is a multi-
wavelet in the Schwartz class. We also show that for a large class of dilations
(lacking this property) all multiwavelets must be combined minimally supported in
frequency, and thus far from being regular. We show that r-regular (tight frame)
multiwavelets form an unconditional basis (tight frame) for the anisotropic Hardy
space HY. We also describe the sequence space characterizing wavelet coefficients
of elements of the anisotropic Hardy space.
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1. INTRODUCTION 1

CHAPTER 1
Anisotropic Hardy spaces

1. Introduction

In the first chapter of this monograph we develop the real variable theory of
Hardy spaces HP (0 < p < o0) on R™ in what we believe is greater generality than
has ever been done.

Historical Background. The theory of Hardy spaces is very rich with many
highly developed branches. A recent inquiry in MathSciNet® (the database of
Mathematical Reviews since 1940) revealed a fast growing collection of more than
2800 papers related to some extent to various Hardy spaces. Therefore, we can
sketch only the most significant highlights of this theory.

Initially, Hardy spaces originated in the context of complex function theory and
Fourier analysis in the beginning of twentieth century. The classical Hardy space
HP? where 0 < p < 00, consists of holomorphic functions f defined on the unit disc
such that

1 ) 1/p

il = sup | [ e pas] <,
0<r<1 0

or on the upper half plane such that

[e%} 1/p

[|f||ze := sup [/ |f(:c+iy)|pdx} < 0.
O<y<oo — 00

If p = oo we replace the above integrals by the suprema. For a systematic exposition

of the subject see books by Duren [Du], Garnett [Ga], and Koosis [Ko].

The possible generalizations of these spaces to higher dimensions include Hardy
spaces on the unit ball in C", on the polydisc or on the tube domains over cones, see
books of Rudin [Rul, Ru2], and Stein and Weiss [SW2]. Another possibility is to
consider spaces of conjugate harmonic functions f = (ug,... ,u,) on R x (0, 00),
satisfying certain natural generalizations of the Cauchy-Riemann equations and the
size condition

1/p
il i= s [ [ 17 oo o] < o
0<y<oo n
see Stein and Weiss [SW1, SW2]. In this development the attention is focused on
the boundary values of the harmonic functions, which are distributions on R™. The
harmonic functions can be then recovered from the boundary values by Poisson
integral formula. The resulting spaces H?(R"™) are equivalent to LP(R™) for p > 1.
However, for p < 1 these spaces differ from LP(R™) and are better suited for the
purposes of harmonic analysis than LP(R™). Indeed, singular integral operators and
multiplier operators turn out to be bounded on HP?, see Stein [St1].

The beginning of the 1970’s marked the birth of real-variable theory of Hardy
spaces as we know it today. First, Burkholder, Gundy, and Silverstein in [BGS]
using Brownian motion methods showed that f belongs to the classical Hardy space
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H? if and only if the nontangential maximal function of Re f belongs to LP. The
real breakthrough came in the work of C. Fefferman and Stein [FS2]. They showed
that H? in n dimensions can be defined as the space of tempered distributions f
on R™ whose radial maximal function Mg or nontangential maximal function M,
belong to LP(R™), where

M f(x) : S |(f * @i) ()],

Myf(z):= sap sup |[(f*pt)(y)l,
0<t<oo |z—y|<t

and ¢(x) := t "p(x/t). Here o is any test function in the Schwartz class with
[ ¢ # 0 or the Poisson kernel () = (1 + |z[?)~("*1/2 (in this case f is restricted
to bounded distribution) and the definition of H? does not depend on this choice.
To prove this impressive result C. Fefferman and Stein introduced a very important
tool, the grand maximal function, which can also be used to define Hardy spaces HP.
The real analysis methods also played a decisive role in the well-known C. Fefferman
duality theorem between H' and BM O—the space of functions of bounded mean
oscillation.

Further insight into the theory of Hardy spaces came from the works of Coifman
[Co] (n = 1) and Latter [La] (n > 1) where the atomic decomposition of elements in
HP(R™) (p < 1) was exhibited. Atoms are compactly supported functions satisfying
certain boundedness properties and some number of vanishing moments. The Hardy
space HP(R™) can be thought of in terms of atoms and many important theorems
can be reduced to easy verifications of statements for atoms.

Other developments followed. Coifman and Weiss in [CW2] introduced Hardy
spaces HP for the general class of spaces of homogeneous type using as a definition
atomic decompositions. Since there is no natural substitute for polynomials, the
Hardy spaces H? on spaces of homogeneous type can be defined only for p < 1
sufficiently close to 1. Another approach started in the work of Calderén and
Torchinsky [CT1, CT2] who developed theory of Hardy spaces H? (0 < p < 00) on
R™ for nonisotropic dilations. The theory of Hardy spaces was also established on
more general groups than R™. For the Heisenberg group it was done by Geller [Ge]
and for general homogeneous groups by Folland and Stein [FoS]. We also mention
the development of Hardy space on subsets of R™ by Jonsson and Wallin [JW] and
weighted Hardy spaces on R™ by Stromberg and Torchinsky in [ST1, ST2].

Parabolic Hardy spaces. Calderén and Torchinsky initiated the study of
Hardy spaces on R™ with nonisotropic dilations in [CT1, CT2]. They start with a
one parameter continuous subgroup of GL(R",n) of the form {4, : 0 < ¢t < oo}
satisfying A; As = Ays and

tz| < |[Awx| < tP|lz|  for all z € R™,t > 1,

for some 1 < o < B < 00. The infinitesimal generator P of A, = t¥ := exp(P1Int)
satisfies (Pz,z) > (x,x), where (-,-) is the standard scalar product in R™. The
induced nonisotropic norm p on R™ satisfies p(A.;x) = tp(x). The parabolic Hardy
space HP (0 < p < o0) is defined as a space of tempered distributions f whose
nontangential function M, f belongs to LP(R™), where

M, f(x) := S [(fre@)],  wela) =t P47 ),
plr—y)<t
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¢ is any test function with [ ¢ # 0. Calderén and Torchinsky also obtain equivalent
formulations of parabolic Hardy spaces using the grand maximal functions, Luzin
functions, and Littlewood-Paley functions. The atomic decomposition for theses
spaces was done by Calderén [Ca, Ga] and Latter and Uchiyama [LU]J.

It is worth noting that the general setup for defining Hardy spaces on homo-
geneous groups developed by Folland and Stein [FoS] presupposes that the dilation
group {A; : 0 < t < oo} is of the form A; = exp(PInt), where P is a diagonaliz-
able element of GL(R™,n) with positive eigenvalues. In general, such a matrix P
need not satisfy (Px,z) > (z,z). Conversely, generators P allowed in [CT1, CT2]
need not even be diagonalizable. Therefore, on the formal level, dilations structures
considered in [CT1, CT2, FoS] do not in general overlap. As a consequence some
Hardy spaces procured in one theory do not appear in the other, and vice versa.

The optimal solution would be to relax even further the assumptions on the
group of dilations {A4; : 0 < t < oo} by merely assuming that lim; o+ ||A:|| = 0.
This is the approach we adapt in our work with the exception that we allow even
more general discrete dilation structures which have originated in the theory of
wavelets.

Description of the chapter. The scope of this chapter is an introduction
and investigation of the real variable theory of Hardy spaces associated with a
general group of dilations. By a group of dilations we mean a one parameter,
discrete subgroup of GL(R,n), i.e., {A* : k € Z}, where A is a generating n x n
matrix whose all eigenvalues A satisfy |[A| > 1. We investigate the properties of
the space of homogeneous type induced by this group of dilations in Section 2.
In the next section we define the anisotropic Hardy space HY(R™) as a space of
tempered distributions f whose grand maximal function belongs to LP(R™). The
most straightforward definition of these spaces is obtained using the radial maximal
function. That is, for a dilation A and 0 < p < co we introduce the corresponding
anisotropic Hardy space HY as a space of tempered distributions f whose radial
maximal function Mg f given by

Mf(x) = sup (£ oi)(@)],  where i (x) = | det Al oA ),

belongs to LP. Here ¢ is any test function in the Schwartz class with [¢ # 0.
By virtue of the main theorem in Section 7 this definition does not depend on
the choice of ¢ as long as [ # 0. In Section 4 we introduce anisotropic Hardy
spaces by means of atomic decompositions. In Section 5, one of the longest and
most technical sections, we carefully derive the Calderéon-Zygmund decomposition.
In Sections 6 and 7 we prove that various definitions of Hardy spaces in terms
of grand, radial, tangential, and nontangential maximal functions and in terms
of atomic decompositions are all equivalent. In the next section we describe the
duals of anisotropic Hardy spaces. In Section 9 we develop the theory of Calderén-
Zygmund operators acting on anisotropic H spaces. Finally, in the last section we
classify dilations which yield equivalent anisotropic Hardy spaces.

We want to emphasize that the presentation of Sections 3—7 is greatly influenced
by the excellent exposition of Hardy spaces on homogeneous groups in the book of
Folland and Stein [FoS].
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2. The space of homogeneous type associated
with the discrete group of dilations

The concept of a dilation is a fundamental one in our work.

DEFINITION 2.1. A dilation is n x n real matrix A, such that all eigenvalues A
of A satisfy |A| > 1.

It is clear that A is a dilation if and only if [|[A77|| — 0 as j — oo. We could
alternatively define a dilation as a matrix whose all eigenvalues A satisfy 0 # || < 1.
The inverse of this matrix becomes then a dilation in the sense of Definition 2.1.

For any dilation A we consider the corresponding discrete group of linear trans-
formations {A7 : j € Z} which induces a natural structure of a space of homoge-
neous type on R™. Unless the dilation A is very special (to be made precise later)
this structure is different than the usual isotropic structure of R™. In this section
we present the underlying ideas.

To start we suppose Ap,..., A, are eigenvalues of A (taken according to the
multiplicity) so that 1 < [A| < ... < |A,]. Let A_, Ay be any numbers so that
1 < A < M| € |A] < Ax. Then we can find a constant ¢ > 0 so that for all
x € R™ we have

(2.1) 1/eN |z| < |Alx| < eNojz|  for j >0,
(2.2) 1/eN || < |Alz| < eM|z|  for j <0,

where | - | is a standard norm in R™. Note that (2.2) is a consequence of (2.1)
and vice versa. Furthermore, if for any eigenvalue A of A with |\ = |A{| (or
[A| = |An|) the matrix A does not have Jordan blocks corresponding to A, i.e.,
ker(A — AI) = ker(A — A\I)? then we can set A_ = || (A+ = |A\,]).

A set A C R™ is said to be an ellipsoid if

(2.3) A={zeR":|Pz| <1},
for some nondegenerate n X n matrix P, where | - | denotes the standard norm in
R™.

In general, we can not expect that the dilation A is expansive in the standard
norm, i.e., |Az| > |z| for all x € R™. Nevertheless, by [Sz, Lemma 1.5.1], there
exists a scalar product with the induced norm |- |, and r > 1 so that

(2.4) |[Az| > r|z|. for x € R™.

We present the proof of this result for the sake of completeness.

LEMMA 2.2. Suppose A is a dilation. Then there exists an ellipsoid A and
r > 1 such that

(2.5) A CrA C AA.

PROOF. Define the inner product (-, ). by

(,y)s = () + (A7 2z, A7 ly) + . 4 (A Rz, A™Fy),
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where k is an integer satisfying £ > 2Ine¢/InA_, and ¢, A_ are as in (2.1). We
claim that the norm |z|, = <x,x>}k/2 satisfies (2.4). Indeed, by (2.1) and (2.2)
Az = [Aaf® + |2 + ..+ [AT M2 = [off + [Azf? — |47 af?
> [af2 + 1/af? = EATHaf? = (a2 + (72 = AT |of2)
2 2N\ D e

14...+ "2k

c

_ .2 2
22+ ...+ |[A—Fz]? = rlel

=lalZ|1+

|x|2} > Jof? [1 n

where r is the square root of the last bracket. By a simple application of the Riesz
Lemma there is a matrix @ so that (Qz,y) = (z,y).. Clearly, @ is self-adjoint and
positive definite. If we take P = Q/? then |Pz|?> = (Qz,2) = |z|.. Define A by
(2.3), ie., A = {z € R" : |z|, < 1}. Since |[A7 2|, < |z|«/r then A7TA C r~tA
and hence (2.5) holds. O

By a scaling we can additionally assume that ellipsoid A in Lemma 2.2 satisfies
|A| = 1. We define a family of balls around the origin as the sets

(2.6) By, := AFA  for k € 7Z.
By (2.5) we have
(2.7) By CrBy, C Bry1, |Bi|=0",  whereb:=|det 4] > 1.

Even though the choice of the expansive ellipsoid A is not unique, from this point
we fix one choice of A, and consequently the By’s, for a given dilation A.

Next we introduce the natural concept of a quasi-norm which generalizes the
usual norm on R™. A quasi-norm satisfies a discrete homogeneity property with
respect to A and a triangle inequality up to a constant.

DEFINITION 2.3. A homogeneous quasi-norm associated with a dilation A is a
measurable mapping p : R™ — [0, 00), so that
(i) pla) =0 < z =0,
(i) p(Az) = bp(z) for all x € R™,
(iii) there is ¢ > 0 so that p(x +y) < c(p(z) + p(y)) for all z,y € R™.
It turns out that all quasi-norms associated to a fixed dilation A are equivalent.

LEMMA 2.4. Any two homogeneous quasi-norms pi, p2 associated with a dila-
tion A are equivalent, i.e., there exists a constant ¢ > 0 so that

(2.8) 1/cp1(x) < pa(z) < cpi(x) for x € R™.

PRrROOF. It suffices to show that for every quasi-norm p we have

(2.9) 0< inf p(z) < sup p(z) < 0.
z€B1\Bo z€B1\Bo

Suppose on the contrary that sup,¢p,\ g, P(¥) = co. Then we can find a sequence
(x;) C R™ such that |z;| — 0, p(x;) — 00 as i — co. Choose M > 0 so that the set

Q={zxe B\ By:plx)< M}

has measure strictly bigger than (b — 1)/2. Choose N, so that p(z;) > 2c¢M for
i > N. Since

p(x) > 1/ep(xi) — p(x; — z),
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FIGURE 1. THE FAMILY OF DILATED BALLS {Bj : k € Z}.

we have p(z) > M for x € z; — Q, i.e,
(i —Q)NQ=0.
Since —Q) C By \ By and z; — 0 we have
[(z; = Q)N (B1\ Bo)| — |9 > (b—1)/2 as i — oo.

Hence,
b—1< |(CE1 —Q)ﬂ(Bl \Bo)| + |Q| < |Bl \Bo| =b—1,
for sufficiently large 4, which is a contradiction.
Finally, suppose on the contrary that inf,cp\ 5, p(7) = 0. Then we can find a
sequence (z;) C By \ By such that p(z;) — 0 as i — co. By selecting a subsequence
we can assume (x;) converges to some point x # 0. Since

p(x) < c(p(x —xi) + p(zi)) =0 asi— oo,
we have p(z) = 0 which is a contradiction. Therefore (2.9) holds. O

The natural question is whether for two distinct dilations A; and As, the corre-
sponding quasi-norms p; and py are equivalent, i.e., (2.8) holds for some ¢ > 0. One
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may wish to state the classification theorem in terms of eigenvalues and eigenspaces
corresponding to Jordan blocks, which we postpone until Section 10, see Theorem
10.3. Instead, we consider the simplest situation.

EXAMPLE. Suppose A = dId for some real |d| > 1. It is clear that p(x) = |z|™
satisfies properties of the quasi-norm. Therefore all matrices of this form induce
equivalent quasi-norms. Here it becomes clear why we impose p(Ax) = bp(z) with
b = |det A|. Tt is not hard to see that any matrix A without Jordan blocks and
whose all of eigenvalues A satisfy |A| = d for some fixed d > 1 has the corresponding
quasi-norm p which is equivalent to |- |™. And vice versa, any other matrix whose
all of eigenvalues are not equal in absolute value or with Jordan block(s) has a
quasi-norm which is not equivalent to | - |*. Equivalently, a quasi-norm induced
by a dilation A is equivalent to |- | if and only if A is diagonalizable over C
with all eigenvalues equal in the absolute value. This provides the classification of
dilations inducing the usual isotropic homogeneous structure on R™ announced in
the beginning of this section.

For a fixed dilation A we define the “canonical” quasi-norm used throughout
this chapter.

DEFINITION 2.5. Define the step homogeneous quasi-norm p on R™ induced by
the dilation A as

2.10) pla) = { W oifae B\ B

0 ifxz=0.
Here By = A*A, where A is an ellipsoid from Lemma 2.2 and |A| = 1.

Indeed, p clearly satisfies (i) and (ii) of Definition 2.2. Let w be the smallest
integer so that 2By C A“By = B,. The existence of w is guaranteed by (2.5).
Suppose z,y € R", p(z) = b, p(y) =’ for some i,j € Z. Thus, v+y € B;+ B; C
2Bmax(i,j) C A¥ Brax(i,j)- Therefore

pla +y) < bbm 0D <5 (6 4+ b7) = b (p(x) + p(y)),

and (iii) holds with the constant ¢ = b.
Therefore, we can summarize that for each i € Z we have

r€B;, and ye B, = x+y € Bitw,

(2.11)
¢ Biy, and ye B, — x+y¢ B,

We also record two useful inequalities

(2.12)
max(1, p(z +y)) < b max(1, p(z)) max(1, p(y)) for all z,y, € R™,

(2.13) max (1, p(A7z)) < b max(1, p(z)) for j > 0,z € R".

REMARK. The notion of a quasi-norm put forth in Definition 2.3 seems to be
missing in the literature. Lemarié-Rieusset in [LR] considered a closely related
quasi-norm satisfying (i) and (ii) of Definition 2.3 which is C* on R™ except at
the origin. He also gives a construction of such a quasi-norm for an arbitrary
dilation A, see [LR]. Quasi-norms of Lemarié-Rieusset automatically satisfy the
triangle inequality up to a constant. In our definition, which was motivated by
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[LR], we give up the smoothness of quasi-norms to include the important class of
step homogeneous quasi-norms used throughout this chapter.

We need two covering lemmas which hold in arbitrary spaces of homogeneous
type, see [CW1, CW2]. However, we present them in a form adapted to our setting.

LEMMA 2.6 (WIENER). Suppose Q@ C R"™, and r : Q — Z is an arbitrary
function. Assume that either (a) § is bounded, or (b) Q is open, |Q] < oo, and
T+Br(z) C S for allx € Q. Then there exists a sequence (x;) C S (finite or infinite)
so that the balls xj + B.(,) are mutually disjoint and Q C Uj (T + Brz;)+w)-

PROOF. In case (a), if sup,cqr(xz) = oo then we can find z € Q so that
Q C x + B,(y), and we are done. Thus, we can assume sup,.q 7(x) < co. In case
(b), since |©2] < co we also must have sup,cq () < co. Pick z; € Q such that
r(x1) = sup,eqr(z). If Q C 214 B, (3,)4. then we are done. Otherwise, we proceed
inductively. Assume we have picked z1,... ,z;, set Q" = Q\ U/_; (2i + Br(s;)4w)-
If @ = 0 we are done. If not, pick z;41 € ' such that r(zj41) = sup,cq 7(2).
Suppose i < j and (2; + By(q,)) N (zj + Bre,)) # 0 then 25 — 2 € By(y,) —
Bi(;) C 2Bp(2;) C Br(a;)+ws since r(x;) > r(z;). Thus, z; € B, (4,)44, Which is a
contradiction. Therefore, balls z; + B,.(,;) are mutually disjoint.

If the sequence (z;) is finite then clearly Q C U;(zj + By(s;)+w)- If not we
have r(x;) — —oco as j — oo since ) has finite measure and balls z; + B,(.,)
are mutually disjoint. Suppose on the contrary that there exists z € Q such that
z & U;(zj + Br(a;)+w)- For sufficiently large j we have r(z) > r(z;), which is a
contradiction of the choice of x;’s. g

LEMMA 2.7 (WHITNEY). Suppose @ C R™ is open, and |Q| < co. For every
integer d > 0 there exists a sequence of points (z;)jen C Q, and a sequence of
integers (1;)jen C Z, so that
(i) Q= U(IJ + Blj)7
(i) x; + By, are pairwise disjoint for j € N,

(ii) for every j € N, (xj + By, 4q) N Q¢ =0, but (x; + By, ya41) NQ° # 0,
() if (x; + Bi4d—2w) N (x; + Blj.;_d_gw) # 0 then |l; — lj| < w,
(v) for each j € N, the cardinality of {i € N : (x4 By, 4-a—20) N (2 + B, 4a—20) 7 0}

is less than L, where L is a constant depending only on d.

PRrROOF. For every z € () define function
r(z) :=sup{r € Z: x + Bridtw C Q}.

Since 2 is open and has finite measure the supremum is always finite. By the
Wiener Lemma applied to the function r(z) we can find a sequence of (z;) C £ so
that (x; + B,(,,)) are mutually disjoint, and (z; + By(z,)4w) C 2 cover the set (2.
Therefore, if we define I; := r(z;) —w then (i) and (ii) hold. Clearly (iii) also holds
by the choice of r(z). If d > 1 then we have

Q= U(CC] + Blj) = U(xj + Blj—i-l) D U(:E] + T‘Blj),
J J J

where r is the same as in Lemma 2.2, and therefore the sequence (z;) is necessarily
infinite.
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To show (iv), suppose y € (2; + By, 4a—2w) N (25 + Bl +a—20) and I; > l; +w+1.
Then
T — x5 €Y — Bliyd—20—Y+ Bl1d—20 C Bl1d—w-
Since
T + Biyar1 = (v —xj) + 5 + Bi,pay1 C %5+ Biyra—w + Bi,rar Cxj + Bijya,
we have by (iii)
0 # (xi + B, +at1) NQ° C (x; + Biy4a) N O,

which is a contradiction of (iii). Therefore l; < l; + w, and by symmetry we obtain

(iv).

Fix j € N and consider
I'={ieN:(z;+ Bi,1a-20) N (xj + Bi,ya—20) # 0}.
If i € I then by (iv)
xi+ By, C (x5 —xj) +2;+ Bl,—w Cxj + B, pa—2w + Bljya—20 + Bi,—w
Czj+ Bi4dw+ Bijta—20+ B, Cxj+ Bi1diw-

Since for i € I, 2; + By;—2., C x; + By,—, we conclude by (ii) that the cardinality
of I is less than
|Bi,+a+wl/ 1By 20| = 0" =L. O
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3. The grand maximal definition of anisotropic Hardy spaces

DEFINITION 3.1. We say that a C*° complex valued function ¢ on R™ belongs
to the Schwartz class S, if for every multi-index « and integer m > 0 we have

(3.1) l1e]la,m = sup p(x)™|0%p(x)] < oco.
TeR™

The space S endowed with pseudonorms || - ||o,m becomes a (locally convex) topo-
logical vector space. The dual space of bounded functionals on S, i.e., the space of
tempered distributions on R™, is denoted by S’.

If f eS8 and ¢ € S we denote the evaluation of f on ¢ by (f,¢). Sometimes
we will pretend that distributions are functions by writing (f,¢) = [ f(z)¢(x)dz.
Convergence in 8" will always mean weak convergence, i.e., f; — f in & if and
only if (f;,¢) — (f, ) for all ¢ € S. For fundamentals on distributions, see [Ru3].

The Schwartz class S given in the above definition overlaps with the usual one
by virtue of the lemma essentially due to Lemarié-Rieusset, see [LR].

LEMMA 3.2. Suppose p is a homogeneous quasi-norm associated with dilation
A. Then

(32) 1/C/p(x)ln>\,/lnb < |$| < Clp(x)ln>\+/lnb fO'l“ p(x) > 1,
(33) 1/C/p($)ln>\+/lnb < |$| < Clp(x)lnk,/lnb fO'l“ p(x) <1,
where ¢ is some constant, and A_, Ay satisfy (2.1) and (2.2).

PROOF. By Lemma 2.4, without loss of generality we can assume p is the step
homogeneous quasi-norm. For every integer j > 0 we have by (2.1)

sup |z|= sup |ATATIz|<c sup |9c|)\ﬂr =c sup |z BN/ Inb
IEBj+1\Bj LEEBj+1\Bj LEEBl\BO IEBl\BO

and analogously

inf |z|>1/c inf |z|]A =1/c inf |z| p/A-/Inb,
:EGB]‘+1\BJ' IGBl\BQ IGBl\Bo
Therefore, (3.2) holds for # € Bj;+1 \ B, where j > 0, so for all € (By)°.
Considering € Bjt1 \ Bj, where j < 0 and using (2.2) we obtain (3.3) for
T € By. O

An important role in our investigation is played by the unit ball with respect
to a particular finite family of pseudonorms of S. It is critical that we use (3.1) to
alter the standard definition of the pseudonorms in §. Otherwise the grand maximal
function introduced below would not behave nicely with respect to dilations and
many results in Section 5 could not hold. A posteriori, we see that this is only a
technical issue by virtue of Lemma 3.2.

DEFINITION 3.3. For an integer N > 0 consider family
(3.4) Sy ={ve S |¢|lam < 1for |a]| < N,m < N}.

Equivalently

(3.5) p €SN <= ||l¢||lsy := sup sup max(l,p(az)N)|8°‘<p(3:)| <1.
z€R™ |a|<N
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For ¢ € S, k € Z define the dilate of ¢ to the scale k by
(3.6) pi(x) = b (A" ).

DEFINITION 3.4. Suppose ¢ € S, and f € §’. The nontangential mazimal
function of f with respect to ¢ is defined as

(3.7) M, f(x) :=sup{|f * or(y)| : . —y € By, k € Z}.
The radial mazimal function of f with respect to ¢ is defined as
(3.8) Mgf(ac) :=sup |f * i ().
kezZ
For given N € N we define the nontangential grand mazimal function of f as
(3.9) My f(z) := sup M,f(z).
YESN

The radial grand mazimal function of f is

(3.10) MY f(x) := sup Mgf(x).
YESN

Finally, given N > 0 we define the tangential mazimal function of f with respect
to ¢ as

Ty f(x) = sup{|f * px(y)|/ max(1, p(A~" (@ —y)))" 1y €R™, k € Z}.

REMARK. It is immediate that we have the following pointwise estimates be-
tween radial, nontangential, and tangential maximal functions

Mgf(ac) < M, f(x) gTéVf(:v) for all x € R".

Moreover, radial and nontangential grand maximal functions are pointwise equiva-
lent by virtue of Proposition 3.10. In Section 7, we will also see that for sufficiently
large N (depending on N) and ¢ € S with [ ¢ # 0, the tangential maximal function

Té,\? f(z) dominates pointwise the grand maximal function My f(z), see Lemma 7.5.

PROPOSITION 3.5. For f € &', let M f denote any of the maximal functions
introduced in Definition 3.4. Then Mf : R™ — [0,00] is lower semicontinuous,
function, i.e., for all A\ >0, {x € R™ : M f(x) > A} is open.

PROOF. If ¢ € S and f € &’ then f x ¢ is a continuous (even C°°) function on
R™. Note that

My f(x) =sup{|f *or(y)|: 2 —y € By NQ", k € Z}.

Furthermore, since the Schwartz class S is separable with respect to pseudonorms
[| “ lla,m, we can substitute Sy by a countable, dense subset in the definition of
the grand maximal function. Therefore, in each case M f can be computed as a
supremum of a countable family of continuous functions. Therefore, M f is lower
semicontinuous. (]

We start the investigation of maximal functions with the fundamental Maximal
Theorem 3.6. This and the following results are relatively mechanical conversions of
the well-known classical results which also hold for homogeneous groups, see [FoS].
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FIGURE 2. THE NONTANGENTIAL MAXIMAL FUNCTION M, f(z)
IS COMPUTED BY TAKING SUPREMA OF |f *¢(y)| OVER ELLIPSES
T + Br AT ALL SCALES k € Z.

The biggest novelty is the use of discrete (instead of continuous) dilations of fairly
general form.

THEOREM 3.6 (The Maximal Theorem). For a fized s > 1 consider family

(3.11) Fi={pe L*[R") : |p(x)] < (1 + p(z)) "}

For1<p<oo and f € LP(R™) define the maximal function

(3.12) Mf(z) = Mg f(x) = sup M, f(x).
peF

Then there exists a constant C = C(s) so that
(3.13)

{o: Mf(x) > M < ClIflli/x for all f € LYR™), A>0,
(3.14) IMfll, < Cp/(p=VIfllp,  for all f € LP(R"), 1 <p < oo.

PROOF. For A\, R > 0 consider Qf = {z : Mf(z) > A\, || < R}. For every
z € QF take y = y(x) € R", k = k(z) € Z, and p € F such that z — y € By and
[f*er(y)] > A

s<lieol < [ 1ot =wldz =0 [ iplleat - s

sty | £l - )z

=1 Y+Br+i\Brtj—1

<ot sp el [ 1 @i+ s ool [ Ife]
By Y k+3j

z€By j= 1Z€B]+1\B



3. THE GRAND MAXIMAL DEFINITION OF ANISOTROPIC HARDY SPACES 13

< [1 L3 swp |p<z>|ﬂ supt 0 [ (o)t
j=1 #€Bj+1\B; j=20 y+Br+j
< Z p1=%) sup p=k— / |f(2)|dz.
=0 Jj=0 Y+ Bi+tj
Thus, there is jo > 0 so that

=)
‘ F(2)ldz > \/C,
bk+jo v+ Brtio

where C' = Z;io b11=9) Since x — y € By,

Y+ Biyjo Cx+ B + Biyj, Cx+2Brtj, C 2+ Bitjo+w-
So for each z € QF there is r = r(z) = k + jo + w, such that
[ eld> gib
a+B, cb

By the Wiener Lemma there is sequence (z;) in Q% so that + B,.(z,) are mutually
disjoint and z;j + B, ()4, cover Qf. Therefore,

Cwa
— 117l

|Q§| < Z |BT(zj)+w| < wa|Br(m])| <
J J

By letting R — oo we obtain (3.13).
Since C' =[5, (1 + p(z)) *dz < oo, we have ||M f|lo < C||f||o for f e L.
By the Marcinkiewicz Interpolation Theorem we obtain (3.14). O

As a consequence of Theorem 3.6 we conclude that the Hardy-Littlewood maz-
imal function M = Mpyy, given by

1
(3.15) Mpypf(z) :=sup sup —
ez yext By, |Bkl JytB,

|f(2)ld=

satisfies (3.13) and (3.14). Naturally, this is also a consequence of general results
for spaces of homogeneous type, see [St2, Theorem 1 in Chapter 1].

THEOREM 3.7. Suppose ¢ € L>(R") satisfies |p(x)| < C(1+p(x))~* for some
s>1, and let c= [ . Then for f € LP(R™), 1 < p < oo,

(3.16) Jim - f er(y) = cf (x) for a.e. x € R™.

yEx+ By

PROOF. Suppose p = 1 and f € L'(R"). By the Luzin (Jysun) Theorem
given € > 0 we can find a continuous function g with compact support such that
[lf —gll1 <e. Clearly

Jim g« or(y) = cg(x) for all x € R™.

yEx+ By,
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Since

limsup |f * pr(y) — cf (2)] = limsup | f + o1 (y) — g * ou(2) + g * ou() — cf ()]

yEx+ By yEx+ By

<sup sup |[fxpr(y) —g* (@) + |c|lg(z) — f(2)]
k€Z yex+By,

< My(f = g)(@) + el f(z) — g(2)],

by Theorem 3.6 and the Chebyshev (Uebumes) inequality we have for any A > 0

[ :limsup | £+ pr(y) — cf ()] > A}

< Ha: Mo(f = g)(x) > A2} + Ha = |el|f(2) — g(x)] > A/2}]
< Clf —gllh/A < Ce/A

Since A > 0 is arbitrary we have (3.16).
Suppose p > 1 and f € LP(R"). Given j € Z let g = f1p,. Since g € LY(R"),

Jim g op(y) = cg(z) = cf (x) for a.e. z € Bj.
veat By,

If x € B; we can choose K € Z so that x + B4, C B;. If y € x 4 By, for some
k< K and z € (B;j)° C « + (Bk+w)® then y — 2z € (Bg)® by (2.11). Hence by

Hélder’s inequality, 1/p+1/q =1,
1/q
|<f—g>wk<y>|—\/(3) F()only - 2)dz §||f||p</(B) |<pk<y—z>|qclz)

1/q - 1/q
< ||f||p< / |sak<z>|qdz) < I fllb /q( / |<p<z>|qdz)
(Bk)© (Br—k)°

1/q
< bk+k/q||f||p</ |p(z)|qsd2) < Cp~F+k/ap(K—k)(=s+1/q)
Bk k)¢

= OpK(=st1/apk(s=1) _, as k — —oo.

Therefore, (3.16) holds for a.e. € B; and since j is arbitrary it holds for a.e. z €
R™. O

The next lemma is a basic approximation of identity result for the space of
tempered distributions &’. Since it is a more general variant of the result common
in the literature we include its proof.

LEMMA 3.8. Suppose o € S and [ ¢ =1. Then for any ¢ € S and f € S’ we
have

(3.17) Yrpr—1 inS ask — —oo,
(3.18) fropr—f inS ask — —oo.

In Lemma 3.8 we can relax the condition that ¢y ’s are given by (3.6). Instead,
we only need to assume that ¢i(z) = |det Ag|o(Arz) for some nondegenerate
matrices A, such that ||A; || — 0 as k — —oo.
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PROOF. Tt is clear that 9 * pr(x) — t(z) pointwise as k — —oo. Since
0% (W * pp)(x) = (%) * pi(x) — 0%Y(x) pointwise as k — —oo for every multi-
index «, it suffices to show

(3.19) sup |z|V |y * or(z) —¥(z)] = 0 as k — —oo,
TER™

for every integer N > 0.
Given € > 0 find § > 0 so that ||V |[¢(y — x) —¥(x)| < e for all |y| < 6. Let K
be such that
L+ Iy len(y)ldy < for k< K.
ly|>6
Ifk<K

10 s ou(o) = w(@)l =| [ (0t - 2) - vloher o)

S/yq |$|N|w(y_x)_Q/J(.’L')Hspk(y)ldy_i_/

o 2N (y — z) — v (2)||er(y)|dy

<= [ lowldy+ suw oM@ [ foutwldy
R TERN ly|>5
w0 b))l
y|>

<Cerc [ @) lenlldy < 20
ly[>3

This shows (3.19) and thus (3.17). (3.18) follows from (3.17) since (f * g, ) =

(f, ¥ * @r), where &r(x) = @i (—1). .

The next theorem can be thought as a converse to the Maximal Theorem 3.6
for p > 1.

THEOREM 3.9. Suppose f € S', p €S, [0 #0, and 1 < p < oo. If Mf €
LP(R™) then f € LP(R™).

ProOF. Without loss of generality we can assume that [¢ = 1. Suppose
p > 1. Since the set {f * ¢ : k € Z} is bounded in LP, by the Alaoglu Theorem
there is a sequence k; — —oo such that f * g, converges weak-* in LP, and hence
in §’. By Lemma 3.8 this limit is f and thus f € LP.

Suppose now p = 1. By [Wol, Theorem III.C.12] the set {f * o : k € Z} is
relatively weakly compact in L' and by the Eberlein-Smulian (IImyasa) Theorem
there is a sequence k; — —oo such that f x ¢, converges weakly in L', and hence
in &’. By Lemma 3.8 this limit is f and thus f € L*. Alternatively, we could think
of the set {f * ¢ : k € Z} as a bounded set in the space of finite complex Borel
measures on R™ and use Alaoglu Theorem to find a sequence k; — —oo such that

[ * @k, converges weak-* to an absolutely continuous measure. This measure is
f(z)dx by Lemma 3.8. O

REMARK. Theorems 3.6 and 3.9 together assert that for p > 1 the subclass
of regular LP integrable distributions in &’ is invariant with respect to maximal
functions introduced in Definition 3.4. Indeed, it follows from Theorems 3.6 and
3.9 that for 1 < p < oo the following are equivalent for a distribution f € &',
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f is regular and belongs to LP,

Mgf € L? (or M, f € LP) for every ¢ € S,

Mgf € LP (or M, f € LP) for some ¢ with [ ¢ # 0,
MY, f € L? for some (or every) N > 2.

The next result asserts that radial and nontangential grand maximal functions
are pointwise equivalent.

PROPOSITION 3.10. For every N > 0 there is a constant C = C(N) so that
forall f €8,

(3.20) MY f(x) < Myf(z) <CMYf(x)  for x € R™.

PROOF. The first inequality is obvious. To see the second inequality, note that

My f(z) = sup{|(f * px)(x + A*y)| : k € Z,y € By, p € Sy}

(3:21) = sup{|(f +6)(@)| : k € Z,6(2) = (= +y) for some y € Bo, € S}
= sup{Mg(x) o ¢(2) = o(z +y) for some y € By, € Sn}.

By (2.12) if ¢(x) = ¢(z + y) for some y € By then

16llsy = sup sup max(L, p(z)™)|0%p(z +y)]
z€R™ |a|<N

(3.22) = sup sup max(L, p(z —y)")[0%p(z)|
TER™ |a|<N

<N sup sup max(l,p(m)N)|8acp(x)| = b”N||go||3N.
z€R™ |a|<N

Combining (3.21) and (3.22) we have
My f(z) < sup{MJf(z): ¢ € S,[|0llsy <0V} <b"NMY f(x),
which shows (3.20). O

We are now ready to state the definition of anisotropic Hardy spaces.

DEFINITION 3.11. For a given dilation A and 0 < p < oo we denote

N { |[(1/p—1)Inb/InA_|+2 0<p<1,
Pl 2 p>1.

For every N > N, we define the anisotropic Hardy space associated with the
dilation A as

(3.23) HP(R™) = HY(R") = {f € §': M f € L},
with the quasi-norm || f||g» = |[|Mn f||p-

Since the dimension n and the dilation A remain constant throughout this
chapter (except Section 10) we are going to denote the anisotropic Hardy space by
HP? or H é” N): Even though quasi-norms on H? depend on the choice of N, it follows
from Theorems 4.2 and 6.4 that the above definition of H? does not depend on
the choice of N as long as N > N,,. To escape possible ambiguity and to fix the
attention the reader can think that N = N, in (3.23).

By the above Remark we have HP = LP for p > 1 irrespective of the dilation
A. Moreover, by Theorem 3.9 we have H' C L'. Therefore, only for 0 < p < 1 do
anisotropic Hardy spaces HP merit further investigation.
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ProrosITION 3.12. The space HP is complete.

PRrROOF. Since HP = LP for p > 1 we only need to consider p < 1.

For every ¢ € S and every sequence (f;)ien in S’ such that )", f; converges in
S’ to the tempered distribution f, the series >, f; * ¢(z) converges pointwise to
f = p(x) for each z € R™. Thus,

3

My f(z)? < (ZMNfi(iv)>p < Z(MNfi(:v))p for all z € R",

and we have ||f11%, < 5, |17 -

To prove that HP is complete, it suffices to show that for every sequence (f;)
such that ||f;||g» < 27 for i € N, the series ), f; converges in H?. Since partial
sums ), f; are Cauchy in H?, hence they are Cauchy in &', and ), f; converges
in & to some f, because S’ is complete. Therefore,

j o0 o0 o0
W=D Fillte =11 )0 Filll < Y2 WAl < Y. 277 -0 asj— oo
=1

i=j+1 i=j+1 i=j+1
This finishes the proof. O
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4. The atomic definition of anisotropic Hardy spaces

DEFINITION 4.1. We say a triplet (p,q,s) is admissible (with respect to the
dilation A) if 0 < p<1,1<¢g<o0o,p<q,s€N,and s > [(1/p—1)Indb/InA_]|.
A (p, g, s)-atom (associated with the dilation A) is a function a such that

(4.1) suppa C Bj + xo for some j € Z,xg € R",
(4.2) llally < [Bj]/a=4/P,
(4.3) / a(x)z®dx =0 for |a] < s.

The rationale behind the conditions imposed on atoms is revealed in the next
theorem.

THEOREM 4.2. Suppose (p,q,s) is admissible and N > N,. Then there is a

constant C depending only on p and q such that for all (p,q,s)-atoms a we have
|Myall, < C.

PROOF. Since Sy C S, we have Mya(z) < My, a(x), and we can assume

that N = N,. By Proposition 3.10 it suffices to show ||Mal|, < C, where M = M%
is the radial grand maximal function. It also suffices to consider only (p, g, s)-atoms
a with minimal value of s = [(1/p — 1)Inb/In A_].

Suppose an atom a is associated with the ball xg 4 B; for some g € R", j € Z.
We estimate separately on x¢ + Bt and (2o + Bj+w)©.
Case I. On B, we use the Maximal Theorem 3.6 for ¢ > 1 and Holder’s inequality

r/q
/ Ma(z)Pdx < (/ Ma(a:)qdz> |Bj |t P/
I+Bj+w CEJFB]'«HIJ

< Ollally| B;|*~*1 < C.
If ¢ =1, take A > 0, and consider Q) = {z : Ma(z) > A}. Then
€02 N Bjto| < min([Q],|Bj1w) < min(Cllal|1/A, |Bjtw)
— min(C|B, [ Y/7 /0, 5| Byl) < Cmin(|B, |17/, |By).

We have equality between the two terms in the last minimum if A = |Bj|71/ P,
Therefore,

Ma(z)Pdx :/ pAPTHQ N By |d)
Bjtw 0

|B;| /P o0
< c/ |B;[pAP~dA +/ |B;|'~/PpAP=2d) = C.
0 |B;|=1/»

Case II. Take z € (2o + Bj+w)®, ¢ € Sn, and k € Z. Suppose P is a polynomial
of degree < s to be specified later. Then we have

(@ pp)(x)| = b~"

[ atmetata -]

=pk

/ a(v)(p(A* (@ — 1)) — P(A~(z — y)))dy
xo+B

J
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, /¢
<o ¥all( [ et = P e )

1/¢
< bk (/a=1/p)pk/a </ le(y) — P(y)|? dy>
A~k (z—20)+Bj_k

(4.4)
< pkpi(/a=1/p)pk/d pli=k)/d' sup lo(y) — P(y)]
yEA~F(2—w0)+B;_k
= b I/Pp =k sup lo(y) = P(y)l,

yEAF(2—20)+B; i

where ¢’ denotes the conjugate power to ¢, 1/¢+ 1/¢' = 1. Even though the above
calculation holds for ¢ > 1 it can be easily adjusted for the case ¢ = 1 to yield the
same estimate.

Suppose & € o + Bjtw+m+1 \ Bjtwtm for some integer m > 0. Then A=*(z —
20)+Bj 1 C A *(Bjwtmi1\Bjtwim)+Bj—k = A7 ((Bugymi1 \ Butm)+Bo) C
AV*(B,,)¢ by virtue of (2.11). We consider two cases. If j > k then we choose
polynomial P =0, and

(4.5) sup le(y)] < sup min(1, p(y) ) < b~ N,
yEA*’“(z—z(,)-i-Bj,k yEA*’“(ac—aco)-i—Bj,k

If j < k then we choose polynomial P to be the Taylor expansion of ¢ at the point
A7F(z — z0) of order s. By the Taylor Remainder Theorem and (2.2) we have

sup le(y) — P(y)]
yEAik(I—IU)-’-ijk
<C sup sup |8o‘<p(A_k(3: —x0) + z)||z|5Jrl
(46) 2EBj_k |a|=s+1
< CAETDOR sup min(1, p(y) =)
yEA*k(w—wg)-i—Bj,k

< C/\£S+1)(j_k) min(1, biN(j*ker)).

Combining (4.4), (4.5) and (4.6) we have for © € 2o + Bjt+wt+m+1 \ Bjtw+m, m > 0,

Ma(x)? = sup sup|(a* @) (x)[P < b~J max ( sup HPUTRIp=Np(G—hktm)
wESN keZ k€Z,k<j

+C'  sup bp(jk))\g(sﬂ)(jk)min(l,pr(ijrm))).
kEZ, k>

Note that the supremum over k < j has the largest value for k = j. Since N > s+2
we have bA*T! < bV, and the supremum over k > j is attained when j —k+m = 0.
Indeed, it suffices to check for the maximum value in the range j < £ < j +m and
k > j 4+ m. Therefore,

Ma(x)? < b~ max(b~NP™, C(bAST)™P™) < ChI (bASTH) P
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again by bA*T'0~N < 1. Since s = [(1/p — 1)Inb/In)_]|, we have s > (1/p —
1)Inb/InA_ — 1, and thus A***p*=1/7 > 1. Therefore,

/( : Ma(z)Pdx = Z |Bjtw+m+1 \ Bjtwsml| sup Ma(z)?
m0+Bj c

"m0 2EX0+Bjtwt+m+1\Bjtwtm

<C Z bj+w+m+1b7j(b)\s_+l)fpm — Oyt Z (bpfl/\(_s-i-l);ﬂ)fm = < .

m=0 m=0

Combining case I and IT and we see that ||[Mal|, < C for some constant C
independent of the choice of a (p, ¢, s)-atom a. O

The proof of this result could be simplified by virtue of Theorem 7.1, since it is
easier to estimate M, 3 f than My f. We are now ready to introduce the anisotropic
Hardy spaces in terms of atomic decompositions.

DEFINITION 4.3. For a given dilation A and an admissible triplet (p,q,s) we
define the atomic anisotropic Hardy space HY , associated with dilation A as the
set of all tempered distributions f € S of the form .7, k;a; with convergence in
S', where >"77, |k4]P < 00, and a; is a (p, ¢, s)-atom for each i € N. The quasi-norm
of f € HY ; is defined as

o 1/p 0o
[f|lgz, = inf { <Z |Iii|p> cf= Zmai, a; is a (p, ¢, s)-atom for i € N}.
i=1 i=1

It follows from Theorem 4.5 that the series Y., k;a; converges in 8’ for every
choice of k; and (p, ¢, s)-atoms a; with Y .=, |k;|[P < co. The representation of f €
S’ in this form Y ;7| k;a; is referred as an atomic decomposition of f. Furthermore,
if || f||zz, = 0 then necessarily f = 0.

PROPOSITION 4.4. Suppose the triplet (p,q,s) is admissible. Then the space
HY ; is complete.

The proof of Proposition 4.4 is a routine, see Proposition 3.12.

THEOREM 4.5. If the triplet (p,q,s) is admissible and N > N, then HY, C
H? C &', where HP is defined using mazimal function My. Moreover, the inclusion
maps are continuous.

PROOF. Suppose f € HY  has an atomic decomposition f = o2, kia;. Then

1180 = / My (3 ma) @)z < 3 al? / Myai(Pdz < G af?,
" i=1 i=1 " i=1

where C' is the constant in Theorem 4.2. Since we can choose (3200, |ri[P)'/?
to be arbitrarily close to ||f|[gz, thus ||f||m» < (Nl'l/p||f||Hg;’s7 and the inclusion
HY?  — H? is continuous.

Suppose next f € HP, and p € S.

(s @)l = [ *@(0)] < Mgf(x)  forz € By,
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where @(x) = p(—xz). Therefore,

(£ )" = |Boll{f, )" < i Mg f(x)Pde < o Mg f(x)"dx

< IIBII%, / My fa)dz = 3|15, £ -

If a sequence (f;) converges to f in HP, then (f;,) — (f, ) as i — oo, and the
inclusion H? — &’ is continuous. O
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5. The Calderén-Zygmund decomposition
for the grand maximal function

In this section we define and investigate extensively the Calderén-Zygmund
decomposition. The excellent exposition of this decomposition in the setting of
homogeneous groups is in [FoS]. Even though we work only in R™ we allow much
more general dilation structures than in [FoS] and therefore we need to build the
machinery from scratch. We try to follow as closely as possible the skeleton of the
construction in [FoS] to give the reader familiar with this book a comfortable path
through numerous technical nuances.

Throughout this section we consider a tempered distribution f so that

{z: Mf(z) > A} <o0 for all A > 0,

where M = My for some fixed integer N > 2. Later with regard to the Hardy
space HP (0 < p < 1) we restrict attention to N > N, := |(1/p—1)Inb/InA_ | +2.
For a fixed A > 0 we set Q = {x : M f(x) > A\}. The Whitney Lemma applied to §2
with d = 4w yields a sequence (z;)jen C €, and a sequence of integers (;);en, S0
that

(5.1) Q=+ By),

JEN
(5.2) (i + B,—w) N (2 + B;—w) =0 fori# j,
(5.3) (5 + Bij4y—1)NQ° =0, (xj 4+ Bi,44)NQ°#0 for j €N,
(5.4) (@i + Bl 120) N (25 4+ Biyqow) 0 = |li = lj| < w,
(5.5) #{J € N: (¥ + Bii20) N (zj + Bijq20) #0} < L fori €N,

where v :=d+ 1 = 4w + 1, and L is some constant independent of ().
Fix 6 € C*°(R") such that suppf C B,, 0 < 0§ < 1, and § = 1 on By. For
every j € N define

(5.6) 0;() = 0(A™ (x — ).

One should think of #; as the localized version of § to the scale [; centered at x;,
and corresponding to the ball z; + B, in the Whitney decomposition. Clearly
suppf; C x; + By, yu, 0; =1 on x; + By, and by (5.1) and (5.5)

(5.7) 1<) 0i(x) <L forzeQ.
jEN
For every ¢ € N define
0:(z)/ 32, 0;(x) z €,
0 x & Q.
We have ¢; € C*(R"), supp(; C @ + Bi4w, 0< ¢ <1, =1on a; + B, by

(5.2), and >,y ¢ = 1a. Therefore, the family {(;} forms a smooth partition of
unity which is subordinate to the covering of Q by the balls {x; + By, 1. }-

(58) o) = {
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Let Py denote the linear space of polynomials in n variables of degree < s,
where s > 0 is a fixed integer. For each ¢ € N we introduce the norm in the space
Ps by setting

1/2
(5.9) 1P| = (f% /R |P(x)|2§i(x)dx) for P € P,

which makes Py a finite dimensional Hilbert space. The distribution f € S’ induces
a linear functional on Py by

Qr ﬁ@f, Q) forQeP.,

which is represented by the Riesz Lemma by the unique polynomial P; € P, such
that

FE 00 =75 P00 = 7z [ P@OWGEr  forall Qe

For every ¢ € N define distributions b; := (f — F;)¢;.
We will show that for a suitable choice of s and N the series ), b; converges
in §’. Then we can define g := f — 3. b;.

DEFINITION 5.1. The representation f = g + > b;, where g and b; are as
above is a Calderdn-Zygmund decomposition of degree s and height A\ associated
with MNf

Intuitively, one should think of g as the good part of f and of b;’s as the bad
parts of f. For a suitable choice of s and N, the good part g behaves very nicely.
In particular, g is in L' and, in addition, it is in L> whenever f is in L', see
Lemma 5.10. On the other hand, the bad parts b;’s are well-localized on the balls
coming from the Whitney decomposition; they have a certain number of vanishing
moments, and thus they can be nicely controlled in terms of the grand maximal
function of f, see Lemma 5.7.

The rest of this section consists of a series of lemmas. In Lemmas 5.2 and 5.3
we show properties of the smooth partition of unity {¢;}. In Lemmas 5.4, 5.6, 5.7,
and 5.8 we derive the estimates for the bad parts b;’s using Lemma 5.5, which is a
result about Taylor polynomials of independent interest. Lemmas 5.9 and 5.10 give
controls for the good part g. Finally, the culmination of this section is Corollary
5.11 showing the density of L' N HP functions in H? spaces.

LEMMA 5.2. There exists a constant Ay > 0 depending only on N, so that for
allieNandl <

(5.10) sup sup [0%((z)| < Ay, where ((z) == (;(Alz).
la| <N zeRn

PROOF. For a given i € N consider J = {j € N: (2; + By, yo,) N (z; + Bl 40) #
0}. Since supp ¢; C x; + By, 1, thus supp ¢ € A~'a; + By, ;4. Therefore, we need
to consider only z € A~'x;+ By, _;1,, in the supremum in (5.10). If Alx € z;+ By, 1.,
then 0;(Alz) = 0 for j € N\ J and we have
0;(Alz) 0;(Alz) G(A iy — A ligy)

@) = Gi(4'a) = 2 jen b5(Alz) B 2 jes b5(Alz) B 2jes (A — AZliay)
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By (5.7) the denominator is > 1 and has at most L terms by (5.5). Furthermore,
for j € J we have l —1; < l; —1; < w by (5.4). The estimate (5.10) follows now
from the iterative application of the quotient rule combined with

(5.11) sup sup sup [0%(8(A7.))(z)| = C < .
2ER™ j<w [a <N

To finish the proof we must show (5.11).

For a given C* function © on R™ and an integer k > 0, D*O(z) denotes the
derivative of © of order k at the point = thought of as a symmetric, multilinear
functional, i.e., D¥O(z) : (R")* = R” x ... x R® — R. The norm is given by

D*6@)| = s DO ).

Suppose {e1,...,e,} is the standard basis of R, and ¢ is any mapping from
{1,...,k} to {1,... ,n}. Then

o™ o
@(m)(eg(l), .. 7ea(k)) = 8x—‘13‘1 . 8x—%n®(x) = a(oq,... ’a”)(")(.’li),
where o; = #{i : (i) = j}. If O(z) = 6(A/z) then by the chain rule for any
integer k > 1
DFO(x)(v1,... ,v) = DFO(AT ) (ATvy, ..., Aluy),

for any vectors vy,... ,v; € R".
For an integer j < w denote O(z) = §(A’z). Then

sup sup [0°0(x)| < sup sup ||DI*O(z)|| < sup sup ||DIl6(ATz)]||| A7

TER™ |a|<N TER™ |a|<N z€R™ |a|<N
< (sup ||[A])Y sup sup |[DFO(z)|| = C < oo.
J<lw xeR™ k=0,... ,N

Indeed, the above suprema are finite since for j < w we have [|A7]| < ¢(\4)¥ by
(2.1) and (2.2), and 0 is C*° with compact support. Thus, (5.11) holds and hence
(5.10). O

LEMMA 5.3. There exists a constant As > 0 independent of f € S', i € N, and
A >0 so that

(5.12) sup [P (y)Gi(y)| < Az
yeR™
PROOF. Let 71,...,7, (m = dimPs) be an orthonormal basis of Py with

respect to the norm (5.9). We have

(5.13) P = i ( flci / f(x)m(x)@(x)czz)w—k,

where the integral is understood as (f, m(;). Hence

1= | m@Pa@ > (@) i)
(5.14) ' P

- b“”/ 17 (2) [2d,

—w
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where 7 (z) = T (z; + Aliz). Since P; is finite dimensional all norms on P; are
equivalent, there exists C7 > 0 such that

1/2
sup sup |[0%P(z)| < C4y (/ |P(z)|2dz> for all P € Ps.

|a|<szE€Bu
Therefore by (5.14),

(5.15) sup sup |9%7k(2)| < C10¥/2 fork=1,...,m

|a|<s zE€B.

For k=1,...,m define

Py ( fC m(z — Aly)Gi(z — Aliy),
where z is some point in (z; + By, 4~) N Q€ by (5.3).

We claim there exists a constant Cy > 0 such that 1/Co®y € Sy for all k =
1,...,m. Indeed, if y € supp ®;, then z — Aliy € x; + By, v, —Aliy € 7 — 2 +
B, 4w C =Bj,4~ + Bi;4w, so y € By — B,,. Hence supp ®;, is bounded.

We can write

bli pli
(I)k(y) fC ‘T1+Z_Al )Cz(xz+Z_Al ) IC —liz— )Cz( Zz—y)a

where 7y () = mp(z; + Aliz), Gi(x) = ¢(z; + Abiz) and z = z; + Z. Consider

Oi(x; + Aliw) o(x)
Z 0;(z; + Aliz) a Zj O(A=b (2 — xj) + Ali=lix)

Gi(r) = <1($1+Al T) =

Clearly supp CNZ C B, and by Lemma 5.2

sup sup |6O‘é(2)| < A;.
|a|<N z€Rn

By the product rule, (5.15) and supp 51- C B,, we can find a constant C3 so that

sup sup [0%(7x(2)(i(2))| < Cs.
|a|<N z€Rn

Since b'i/ [ ¢; < bli/bli=% = b supp @, C B, + B, by the above estimate and the
definition of @, we can find a constant Cy so that ||Pg]|sy < Co.

Since
(f + /f b0y (AT (2 — y))dy
B ﬁ /f(y)m(z — A (AT (2 = y)Gi(z — AN (AT (2 — y)))dy
- i / fW)me(y)Gi(y)dy,
we have

2 [ fomcma) < MpGimdls, <o
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By (5.13), (5.15) and the above estimate

(5.16) sup  |Pi(2)] < mCyAC1b4/2,
2€xi+By, 4w
and therefore we have (5.12) with Ay = mb*/2C,Cs. O

LEMMA 5.4. There exists a constant Az > 0 such that
(517) MbZ(I) < Ang({E) fOT xr € x; + Bli+2w-

Proor. Take ¢ € Sy, and = € z; + Bj, 420
Case I. For | < I; we write

(5.18) (i pu) () = (f + i) (2) — (PiGi) * @1) (),
where ®(z) := ¢(2){;(z — A'2). Define {;(z) := (;j(x — A'z). By Lemma 5.2 we have

sup sup |60‘§~}-(2)| < A
|a|<N z€R

By the product rule there is a constant C' depending only on N so that

|1®|sy = sup max(1, p(2)") sup [97®(z)|
z€ERM la|]<N

= sup max(1, p(2)") sup |0°(G)(2)|

z€R™ \a|§N
< C sup max(1, p(2)V) sup [0%(z)| sup [8%Ci(2)| < A;C.
zER™ la| <N || <N

Note that for N > 2 there is a constant C’ > 0 so that ||¢|[1 < C' for all ¢ € Sy.
Therefore, by Lemma 5.3 and (5.18), we have

[bi % i ()| < ||®[|sy M f(x) + A2l < A1CM f(2) + A2C'X
< (A1C + ACNM f (),

since M f(x) > X for z € Q.
Case II. For | > [; by a simple calculation we can write

(b * @1)(w) = 0" (f @) (2) = ((PiG) * 1) (@),
where ®(z) 1= @(Ali~12)(;(x — Al z). Define ¢(z) := @(Ali~'2) and Gi(2) := Ci(x —
Aliz). If z € supp @ then x— Aliz € x;+ By, 1, 50 Aliz € x—2;+ By, 1, C By 120+
B, 1w C By, y3,. Hence, supp® C Bs,. By Lemma 5.2 and since [|A%~!|| < ¢ by
(2.2) we can find a constant C' > 0 independent of [ > [; so that

sup sup |[0%¢(z)| < C, sup sup |6O‘é(2)| < A
|a|]<N z€R™ |a| <N z€R™

By the product rule and the boundedness of the support of ® we can find a constant
C" so that ||®||sy < C”. Let C' be the constant such that ||¢|l1 < C’ for ¢ € Sy
for N > 2. As in the case I

(b % @) (@)] <V |@llsy M f(2) + Aol < (C" + A2C")M f ().
By combining both cases we arrive at (5.17). O
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LEMMA 5.5. Suppose @ C R"™ is bounded, convex, and 0 € @Q, and N is a
positive integer. Then there is a constant C' depending only on Q@ and N such that
for every ¢ € S and every integer s, 0 < s < N we have

(5.19) sup sup [0“Ry(z)| < C sup sup  |0%¢(2)],
z€Q |a|<N 2€y+Q s+1<|a|<N

where R, is the remainder of the Taylor expansion of ¢ of order s at the point
y € R™.

PrOOF. We write the Taylor expansion of ¢ of order s at the point y

&
oly+z) = Z 4 ny)zﬁ + Ry(2).
1B]<s

For any multi-index |a| < s we have

66 aa-{-ﬁ
O%Ry(z) = 0%(y +z) — Z L(y)'zﬁ—a = %(y +2) — Z ?(y) 2
<s (6 - a)' ~ J61
i |8l<s—al
BZa
where (a1,...,an) =a < B=(01,...,0,) means o; < G; forall i =1,... ,n. We
used here
L 26 a {Zﬁ_“/(ﬁ—a)! o < B,
—0Pz% = .
gl 0 otherwise.

Therefore, 9*R,, is the Taylor remainder of 9*¢ of order s — |a| expanded at y and
by the Taylor Remainder Theorem

|0“Ry,(2)] < C  sup sup |8a+3¢(w)||z|s_|a‘+1,
wely,y+z] |Bl=s—|al+1

where [y, y + 2] is the line segment connecting y and y + z. Thus,

sup |0°Ry(2)| < C" sup  sup [0%p(w)|.
zZEQ wEY+Q |a|=s+1

If s < |a] < N then 0%°Ry(z) = 0%p(y + z), and the estimate (5.19) follows
immediately. (I

LEMMA 5.6. Suppose 0 < s < N. Then there exists a constant A4y > 0 so that
for i € N and all integers t > 0

(520) sz(ft) S A4>\)\:t(s+l) fOT T € x; + Bt+li+2w+1 \ Bt+li+2w-

PROOF. Suppose ¢ € Sy, and [ € Z. Pick some w € (x; + B, +~) N Q°.
Case I. For [ < [; we have

(5.21) bi*x pi(x) = f* Q(w) — (PiGi) * (),

where ®(z) := p(z+A" (z—w))(; (w—Al2). If 2 € supp ® then z € supp ¢;(w—A!),
ie, w— Az € x; + AVB,, s0 2 € A "Y(B, + A7V (w — x;)) € A""Y(B, — B,) C
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A“_lBWJW. Suppose & € x; + Biii;420+1 \ Biti; 42, for some integer ¢t > 0. If
z € supp @ then z € A4~'B, + A~Y(w — z;) and by (2.11)

24+ Az —w) € ATIB, + A (w — x;) + A7z — w)
(5.22) = ATIB, + AN @ — a;) € ATY(By, + Bigows1 \ Biiow)
C Ali_l((Bt-‘r?w)c +B,) C Ali_l((Bt-i-w)c) = (Bitt,—14w)®-

By Lemma 5.2 the partial derivatives of (;(w — A'-) of order up to N are bounded
by A;. Using supp® C Bi,—14v+w; ||¢llsy < 1, (5.22) and the product rule we
have

|®llsy = sup sup max(1, p(2)")[0%®(2)|
z€supp @ |a|<N

< (bliflJr’Yer)NAlC sup sup |6a(p(Z+Ail(J: _w))|
(523) |a| <N z€supp @

< A, CpN e sup max(1, p(z + Az —w)))™N
2€AL—I B+ A (w—=x;)

SAlObN(li7l+’y+w)b7N(t+li7l+w) :AICbN'ybet'

This enables us to estimate the first term in (5.21). For the second term, note
that if x € x; + (B4i,420)¢ for some integer ¢ > 0, and y € z; + By, 4, then
A7z — y) € AU(Biyau)® = Bu) C (Biit,—140)° by (2.11). Since [[ollsy < 1

(PGi) * oa()] = \ / (PG ()b (A (& — ))dy
< b / (PG (W)l |(A™ (& — v)ldy
Ti+B, 1w

S bR AN TN < Ap b
Combining the above, (5.21) and (5.23) we obtain
[b; % p1(x)] < ||®]|sy M f(w) + A2 A~ N < (A1 CBNT + Ax)Ab~ N,

Case II. For fixed [ > I; and ¢ € Sy define ¢(z) = p(Al~!2). Suppose x €
2; + Biti;+2w+1 \ Biti; 420 for some integer ¢ > 0. Consider the Taylor expansion
of ¢ € S of order s at the point y := A7l (z — w),

sy+2)= 3 SOy Ry (o),

laf<s

where R, denotes the reminder. Since the distribution b; annihilates polynomials
of degree < s we have

(b + 1) () = / (oA (& — 2))dz = b / bi(2) (A (z — 2))dz
(5.24) =b" l/bl 2)Ra-1i (g (A" (w0 — 2))dz

— pli l( >k (I)l )( )—|— b~ /Pi(z)gi(Z)RA*li(m_w)(A_li(w — Z))dZ,
where

(5.25) D(2) == Rp—ti (p—w)(2)Gi(w — Aliz).
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If z € supp ® then w — Az € x; + Bj,4u,50 z € B, + B, and supp® C B, 1..
Apply Lemma 5.5 to ¢(2) = p(Al'2), y = A7l (2 — w) and Q = By4,,. First
assume t > v+ w and & € ; + Biyi;420+1 \ Byl +20. Since

Y+ By C AT ((Brgtigawtt \ Bittit2w) + Biisn) + Byt
= (Bit2w+1 \ Bitow) + Bytow C (Biyow)® + Biyw C (Biw)©,

we have
sup  sup [0"Ry(2)| <C  sup sup  |0%¢(2)]
2E€EBytw |a|<N z2€y+Bytw s+1<|a|<N
<C sup sup  AGTDIEDIgepalty)
2€Y+Bytw s+1<|a|<N
< oAlmDERD sup sup  [0%p(A )|

2E€Y+Bytw s+1<|a|<N

< CABTDERD g max(1, p(Allz)) N
ZG(Bt+w)c

= Al pin(1, p= Nt

Since A>T~ < 1 the last expression is maximized over | > ; if [; — |+t +w = 0,
ie., Il =1; +t+4 w. Therefore, we have for t > v+ w

sup sup |[0°Ry(z)| < CAZHETD),
2€B 4w || <N

If0<t<~vy+4wand x € Biyy,+20+1 \ Biti,+20 we can estimate as before

sup  sup [9°Ry(2)] < CALTIETY T gup sup  [0%p(Ab )| < C.
2€Bytw [a|<N 2€Y+Bytw s+1<|a|<N

Therefore, we have for all £ > 0

5.26 sup sup O°R. (2 SO}\(;Y-l-w)(s-i-l)/\:t(s-i-l)'
( Y

2€By 1o [a|<N

By (5.25), (5.26), Lemma 5.2 and the product rule we can find a constant C’
so that
1@lsy < AT for ¢ > 0.

Therefore by (5.24),
(b % 1) ()] < O f 5 @y, (w)] + b7 / |Pi(2)Gi(2) Ra-t: (g (A" (w — 2))|d2

SO TIMf(w)||®]]sy + 07T AN sup [Ry—t; (o (2)]-

2€By 1w

Thus
(b % @) (@) < CONZ T for & € Byygqowin \ Beatqw, t > 0.
This ends the proof of case II. Combining the two cases we arrive at the estimate
(b + @) ()] < AN forall 1 € Z.
Hence we have (5.20). O
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The above proof also works in the case s > N and yields the estimate
Mbl(I) S A4AA:tN for z € x; + Bt+li+2w+1 \Bt+li+2w;
for all ¢ € N and all integers ¢ > 0.

LEMMA 5.7. Suppose 0 < p < 1, s > [lnb/(plnA_)|, N > s and f € HP,
where HP is given by (3.23). Then there exists a constant As independent of f €
HP i eN, and A > 0 such that

(5.27) Mb;(x)Pdx < As / M f(z)Pdz.
R™ zi+Bi; 20

Moreover, the series ). b; converges in HP, and

(5.28) / (Zb) pd:c<LA5/Mf Pdz,

where L is as in (5.5).
Proor. By Lemma 5.4

i+ By, 42w

M f(x)Pdx +/ Mb;(x)Pdz.

Rm (zi+DBi;+20)°

By Lemma 5.6

/ Mb;(x)Pdx =
(zi+Bi1;+24)°

< Z bt+li+2w+1(A4)p)\p/\:t(5+1)17 < (A4)pbz bt/\:t(s-i-l)P/ Mf(:z)pda:
t=0 i+ By, 420

i / Mb;(x)Pdx

t—0 7 Tit Bttt 420+1 \Bit1; 42w

<c / Mf(x)da,
zi+Bi, +2w

because M f(x) > X for x € x; + By, 12, and A"’ (s+Dp o, Combining the last two
estimates we obtain (5.27).
Since HP is complete and

Z Mby(z)Pdx < As Z / (z)Pdzx < LAs | M f(z)Pdz,

R™ i+ Bl 42w Q

>, bi converges in HP. Therefore, ), b; converges in &’ and as in the proof of
Proposition 3.12 we obtain M (}", b;)(x) < >, Mb;(x) and thus (5.28) holds. [

LEMMA 5.8. Suppose s >0, N > 2, and f € L*(R™). Then the series D ien bi
converges in L*(R™). Moreover, there is a constant Ag, independent of f, i, \, such
that

(5.29) Il > (ol < Ao | Iy
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Proor. By Lemma 5.3

[ @iz = [ 1) - Pt

< / (@)l dz + / 1Py ()i ()] dr < / (@)l + Ap\D.
zi+Bi, +w e = zi+Bi, tw
Therefore, by (5.2) and (5.5)

Z/ x)|dx <L/ |f(2)|dz + Ab® N9 <A6/ |f (z)|dz,

€N

by the Maximal Theorem 3.6. ([l

LEMMA 5.9. Suppose 0 < s < N and ), yb; converges in S'. There is a
constant Az, independent of f € S8', A > 0, such that

(5.30) Mg(x) < ApA Y AT 4 M f(a)1ge (2),

where

t if v € Biqi, 420 Bit1, 42w for some t > 0,
(5.31) ti = ti(x) = { f 2041 \ Bigi+20 f

0 otherwise.

ProoF. If x € Q then as in the proof of Proposition 3.12 we have

Mg(z) < Mf(z)+ Y Mbi(x) < Mf(z)+ Y AT,
€N 1EN

by Lemma 5.6—which is exactly what we need.
If z € Q choose k € N such that z € xp+ By,,. Let J:={i € N: (2; + Bj,420) N
(2 + Bl +20) # 0}. By (5.5) the cardinality of J is bounded by L. By Lemma 5.6

we have
(5.32) ST Mbi(x) < ANY D ATHETD,
igJ igJ

It suffices to estimate the grand maximal function of g+ 3,5 ;b = f — >
Take p € Sy and | € Z.
Case 1. For [ < [}, we write

(f =D _bi)xpu(@) = (fn) x pulz) + O PG) * il

i€J e

ZEJ

5.33
( ) - f (I)l ZP<1 *@l

JjEJ
where w € (z + By, 14) N Q% n=1-3%"._,¢, and
(5.34) B(2) =@z + A7z —w))n(w — Alz).

By the definition of J, n = 0 on xx + B, +2,. Thus, if z € supp® then
w— Az € (z + Biyt20)S and 2z + A7 o —w) = AN (A2 —w+z) € A7 (—21 +
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(Blk+2w)c + Tk + B[k) C A_l(Blk_,_w)c = (Blk—l-i-w)c by (2.11). Since A_l(;v - w) C
A_l(Bl,c — Blk"l"Y) = Blk—l — Blk_l"l")’ C Blk—l-i-'y-i-w we have

(5.35) p(z) <b(p(z + A7z —w)) + p(=A7(z — w))) < 'p(z + A7 (& —w)),

for z € supp ®, where ¢/ = 2077, By (5.4) l; > Iy — w hence | < [; +w. By Lemma
5.2 applied for every i € J, the chain rule, and (5.5) the derivatives of n(w — Al
of order < s are bounded by some universal constant C. For z € supp ® by the
product rule, (5.34), and (5.35)

max(1, p(2)) sup |9°®(2)| < Cmax(1,p(2)N) sup |0%(z + A~ (z — w))|
la| <N lo| <N
< C'max(1, p(2)™)/ max(1, p(z + A"z —w))N) < C()N,
and therefore ||®||s, < C(c/)V. Hence
|(f * @) (w)] < Mf(w)[|®]|sy < C()VA.
Since for N > 2 there is a constant C’ > 0 so that ||p||1 < C’ for all ¢ € Sy and

Lemma 5.2
(ra) )

icJ

< LA;C'\.

By the two estimates above and (5.33) we have |(f — ;o bi) * pu(z)| < (C(¢)N +
LACH\.
Case II. For [ > [}, we let ®(z) := (2 + A~ (z —w)), where w € (z} + By, 1) NQC.
Since A~!(x — w) € Bj,—; — Bi,—14~ C Bo — By C B4, we have [|®||s, < b2,
Therefore,

(f % @) (@)] = |(f * @) (w)] < Mf(w)]|®]|sy < b2,

By Lemma 5.6
1) @) =Y (0% 1) (w)] < [|Bllsy D Mbs(w) < 5 H2LALN,
icJ icJ i€J

because w & x; + Bj, 19, for all i € N. By the two estimates above we have
(f = Xics bi) * u(@)] < 072 (LA + 1)

Combining cases I and II we have M (f — > .., b;)(xz) < CA, where C is the
maximum of the two constants in these cases. Since tp = 0 the kth term in the
sum (5.30) takes care of the estimate of the maximal function of f —>"._ . b; and
by (5.32) we obtain (5.30). O

icJ

LEMMA 5.10. (i) Suppose 0 <p <1, s> |lnb/(plnA_)], N > s, and Mf €
LP. Then Mg € L', and there exists a constant Ag (independent of f and \) such
that

(5.36) Mg(z)dr < Ag\'™P M f(x)Pdx.
]Rn R'Vl

(ii) Without an assumption on N (N >2), if f € L' then g € L™ and there exists
a constant Ag (independent of f and \) such that ||g||ec < AgA.
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PRrROOF. (i) By Lemmas 5.7 and 5.9

Mg(z)dz < A2 / AZH@E gy [ M f(2)de,

R ieN Qe

where t;(z) is defined as in Lemma 5.9. For fixed i € N

o0

/ )\:ti(z)(erl)dx:/ dgH'Z/ ATHEHD) g
" i+ By, 42w t=0 Y TitBit1;+20+1\Btti;+20

<l N AR\ T e [1 + bZ(bA:S‘l)t] = O|By 420,
t=0 t=0

where C' represents the value of the expression in the bracket. Taking the sum over
all ¢ € N we obtain

Mg(z)dz < AZACH* > " |B,_u|+ | Mf(x)dw
€N e

< AZACH* Q| + M f(z)dx
Qe

< ANCYNTP [ M f(2)Pdx 4+ NP M f(x)Pdx
Q Qe

< AgA\tP M f(z)Pdx.
R'Vl

Rn

(ii) If f € L' then g and b;’s are functions and ), b; converges in L' by Lemma
5.8 (and thus in §’). Since

g=1=Y bi=f1=> G)+> Pl =floc+) P,

ieN ieN ieN ieN
by Lemma 5.3 and (5.5) for € Q we have |g(x)| < LA\. Since |g(z)| = |f(x)] <
M f(x) < X for a.e. x € Q°, therefore ||g||cc < LA = AgA. O

COROLLARY 5.11. If 0 <p <1, H? N L' is dense in HP, where HP is given
by (8.23) for N > |lnb/(plnA_)].

PROOF. If f € HP and A > 0, let f = ¢g* + >, b} be the Calderén-Zygmund
decomposition of f of degree s, [Inb/(plnA_)| < s < N, and height A associated
to M f = Mpyf. By Lemma 5.7,

dobM| < LAs / M f(z)Pdx.
iEN HP {x:Mf(x)>X}

Therefore, g* — f in HP as A — oo. But by Lemma 5.10, Mg* € L', so by
Theorem 3.9, g* € L. O
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6. The atomic decomposition of H?

We will continue to closely follow the proof of atomic decomposition as pre-
sented by Folland and Stein in [FoS]. The proofs of Lemmas 6.1 and 6.2 still require
some technical arguments, whereas the proofs of Lemma 6.3 and Theorems 6.4 and
6.5 are copied almost verbatim from [FoS], see also [LU], since all the necessary
preparatory work is already done.

Suppose f is a tempered distribution such that M f = Myf € L? for some
O<p<land N >s:=|lnb/(plnA_)]. Thus N > N,. For each k € Z consider
the Calderén-Zygmund decomposition of f of degree s and height A = 2* associated
to M f,

f=g"+ be, where
i€N

(6.1) OF = {x: Mf(z) > 2%}, b= (f = PF)CE, B =af + By

Recall that for fixed k € Z, (v; = 2F)ien is a sequence in QF and (I; = IF);en a
sequence of integers such that (5.1)—(5.5) hold for Q = Q¥ (; = ¢F is given by (5.8)
and P; = PF is the projection of f onto Ps with respect to the norm given by (5.9).

Define a polynomial PZ;H as an orthogonal projection of (f — Pf“)g‘f on Ps
with respect to the norm

1

(6.2 IPIF = e [ 1P@RG @i
Y

that is PZ;H is the unique element of Py such that

[ (@ - @@ @) = [ PEH@Q@ (@)

Here the first integral is understood as {(f — P;”l) k QCJ’?H} in the case that f is

not a regular distribution. For convenience we denote BF := 2% + B .
K

LEMMA 6.1. (3) IfB;?HﬂBf # () then l;?"'l <I*+w, and B]]-H'l C a¥+ B g
(i) For each j € N the cardinality of {i € N : B;?'H N BE # 0} is bounded by 2L,
where L is the constant in (5.5).

PRrROOF. The proof of (i) follows along the lines of the proof of (iv) in Lemma
2.7. Suppose y € Bf“ﬂBf = (;E?H+Bl5+1+w)ﬁ(xf+Blk+w) and l;”'l > IFw+l.
5 i

Then

k k+1
T — T €Y= By, —y+ Bpy, C By,

K2

Since7:4w+1andlf—i—vﬁl?“—i—w—w?

k (ko ket k+1 k+1
zi + By, = (@i =2 ) + 27 + Bpy, Cai + Blj+1+2w + By
c ‘T?Jrl + Bijy-1,

by (2.11). Therefore, by (5.3) and Q1 C QF,
) N QMY

] #+ (xf + Bler'y) N (Qk>c C (x?“ + Bl?+1+’7_1
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which is a contradiction of (5.3). Hence lf"’l < 1¥ + w. Clearly, by (2.11)

Akl _ k1 (kL K k
Bj =T; + Bl?+l+w = (:Ej — ZEZ) +x; + Bl?+1+w
k
Cai +(y = Bpsr g, =y + Bipgy) + Brva g,
k k
C i + By o, + Bit g C i + Bir g
Moreover, if 157! < Ii —w then clearly B¥*! C o + B o0
To show (ii) fix j € N and consider

Ilz{iEN:BJkJrlﬂEf;é@ and lelé_chl_i_w}-

By the above I; C {i € N: Bf"’l Caf+Bp,y,} C{ieN: x?"’l €z + By gy}
and by (5.1) and (5.5) the cardinality of I; is at most L. Finally, consider

L={ieN:B"'nBf#0 and 1f <I"' 4w}
As in the proof of (v) in Lemma 2.7, if ¢ € I, then
of + Bp_, C (af — 2t + 2™ + B, ol + By, + By, + B,
K k2 k2 J K
C $§+1 + Bl?“+2w + Bl§+1+w + Bl?+1 C $§+1 + Bl?“+3w'

Since for i € Iy, z¥+Bjr1_,, C a¥+By_,, we conclude by (5.2) that the cardinality
J K

of I, is less than

|Bl§“+3w|/|Bz§“—2w| =0 < L.

O

The proof of (ii) in Lemma 6.1 could be slightly shortened and simplified if we
use the Whitney Lemma with d = 6w + 1 throughout Sections 5 and 6 instead of
d=4w+1.

LEMMA 6.2. There exists a constant Ayg independent of i,j € N, and k € Z,
such that

(6.3) sup [P () (y)] < Arg2F T
yeR™
PrOOF. Let 71,...,7m, (m = dimPs) be an orthonormal basis of Py with

respect to the norm
1
IPIP = orer [ 1P@RG @
J
We have

- 1
Y <f<—+ / (F(2) = PFH @) (@)m ()¢ (I)dﬂv)ﬁ.

By Lemma 5.3 applied for A = 281 (5.15) and (5.16)

(6.5) PF ()] < 2, m(y)| <€, fory € BT
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Hence

(6.6) [P >m<y><f<y><;f“<y>dy\ < 02+,

‘fck-i—l
Therefore, by (6.4), (6.5), and (6.6) we need to show

’kaJrl /f m(y )C]H_l( )dy’ = |f*<1>l?+1(w)| < C2k+1,

for some constant C, where w € ( ktl Blk+1 ) N (QF 1) and

k+1
bL

To see (6.7) it suffices to show that ||®||s, < C. However, we need only consider
those values of ¢ and j such that Bf“ N B # (), since otherwise Cf(f“ vanishes
everywhere. Define

fi(z) = m@H 4 AL 2), B () = BT R AL ), (2) = Fw—-AET 2,

k+1

(6.8) P(z) = (MGt ) (w— Al 2),

Since supp CJ’?H C B., by (5.15), Lemma 5.2, and the product rule, the partial

derivatives of ﬁlffﬂ of order < N are bounded by some universal constant. Since
"1 < 1% + w by the chain rule and Lemma 5.2, the partial derivatives of Cf of
order < N are also bounded by some universal constant. Hence, the function ®

can be written as

A e i
®(2) = g (MGTAT T (w—2f™) = 2)(E (2).
JG
Since the above fraction is < b and supp ® C B+ B, we can find another universal
constant independent of i, j, k, I so that ||®||s, < C. This shows (6.7). O

LEMMA 6.3. For every k € Z, 3 (> jen PZ;JFICJ]?JA) = 0, where the series
converges pointwise and in S'.

PRrROOF. By (5.5) the cardinality of {j € N : g’”l(x) # 0} < L. Moreover,
Pt = 0if Bf*' N BF = 0. By Lemma 6.1(ii) for fixed 2 € N the series

ZlGN > jeN Pk+1( )gjl-”l(x) contains at most 2.2 nonzero terms. By Lemma 6.2

(6.9) SO IPET (@) ()] < 202 Ap028
i€N jeN

k+1<k+1

Hence, by the Lebesgue Dominated Convergence Theorem ), Z;eN p

converges unconditionally in §’. To conclude the proof it suffices to show that
ZPZ-];H = ZPZ-];H =0 for every j € N,
ieN icl
where I = {i € N: B¥" n BF # 0}. Indeed, for fixed j € N, 3,y
an Orthogonal projection of (f — P;H_l) Ziel <lk onto Py with respect to the norm
(6.2). Since Y., ¢F(z) =1forz € Ef“, Y ieN PkJr is an orthogonal projection

Pk+1 :
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of (f — Pf"’l) with respect to the norm (6.2) which is zero by the definition of
pr+l 0
fR

THEOREM 6.4 (The atomic decomposition). If 0 <p <1, s> [lnb/(plni_)],
and N > s. Then H? C HE, , where H? is given by (3.23). The inclusion map is
continuous.

PROOF. Suppose first f € H? N L. Consider the Calderén-Zygmund decom-
position of f of degree s > |Inb/(plnA_)| and height 2% associated to My f,
f=g"+ Y ieN b¥. By Lemma 5.7 (5.28), g — f in H? as k — oco. By Lemma
5.10(ii), ||g¥||oc — O as k — —oo. Therefore,

oo

(6.10) f=> =g s

k=—o0

By Lemma 6.3 and , Ckb =1, b;?“ — bé?“j

=(f=>_ W —(r=->0h

JEN JEN
= Zbk Zbk+1 +Z ZPkJrl k1)

JjeN JEN i€eN jeN
= N (e Pk+1 k+1 > B,

where all the series converge in &' and

BE = (F = PI)CE = ST = PEFGE = PEIE,

JEN

By the choice of P* and Pi’;"’l

(6.11) / h¥(z)P(x)dx =0  for all P € P,.

: k+1 _ o pk
Moreover, since » -,y (" = lgr+1 We can write by as

h —fl(Qk+1 C Pk<k+ZPk+lC <k+1+ZP7€+1 k+l'
JEN JEN

By Theorem 3.7, |f(x)] < C1 My f(z) < 2+ for a.e. z € (2¥+1)° and by Lemmas
5.3, 6.1, and 6.2

(6.12) W5 ]| < 2FFTY 4 A92F 4+ 2L A92M 4 20 A28+ = Cy2F.

Recall that Pg}“ # 0 implies B;“H N sz # 0 and hence supp CJI-“H C Ef“ C
z¥ + By 4. Therefore

(6.13) supp hf C aF + B4,
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By (6.11), (6.12) and (6.13), h¥ is a multiple of a (p, 0o, s) atom aF, i.e., hF = Ky, ;a¥

7 7

where iy = Co2¥| By, |/P = Co2kbi+49)/p = Cy2kpli /P, By (5.2)

DD )P = (Ca)P D D 2MH|BE | < (Ca)PbY Y 2R
k=—o00 i€N k=—o00 i€N k=—o0
6.14) <y Y pR oDt
' k=—o0

s@/’m%mmMmﬂ@>&w
0
— Cul| M, FII = Callf1[Ese.

Therefore, f =377 > . nhF =300 3 cnFkal defines an atomic decom-
position of f € HP N L',

If f is a general element of H? then by Corollary 5.11 we can find a sequence
{fm}men C HP N L' so that || fo/, < 22| fl|%e and f =", o fm. For every
m € Nlet f,, = ZZ—GN Ki,m@y, be an atomic decomposition constructed above with
the summation enumerated over one index i. By (6.14)

SN Rim)? S Ca D Nl < Callfllfe D 227 = 4Cul|£I1%,

meN ieN meN meN

and f =3 N ien Kimal, defines an atomic decomposition of f € H?. O

The next theorem shows that different choices of N > N, in Definition 3.11
and admissible triplets (p, ¢, s) in Definition 4.3 yield the same Hardy space HP.

THEOREM 6.5 (The equivalence of norms). Suppose 0 < p < 1. If the triplet
(p,q, s) is admissible then H? = HY ; and the quasi-norms || - |[g» and || - ||gr  are
equivalent. That is, for any N > Ny, there are constants Cv,Cy > 0 so that

(6.15)  |IMn, fllp < Cullfllmz, < Cullfllaz, < CollMnfll for f € HP.

PrOOF. Note that if N > M > N, then H(pM) C HfN), where the subscript
corresponds to the choice of the grand maximal function in Definition 3.11. By
Definition 4.1 every (p, o0, s) atom is also a (p, ¢, s) atom, and hence HE, . C HP .
Therefore, if we take N > s then by Theorems 6.4 and 4.5 we have

p P p
(6.16) Hiyy C HE CHJ  C Hiy ) C Hiy,.

Thus, H(pN) = Hpr) = HY for all N > N, and all admissible triplets (p, g, s).

Furthermore, since the inclusion maps in (6.16) are continuous we have (6.15). O

Theorem 6.5 encompasses fundamental properties of anisotropic Hardy spaces.
As a first application of this theorem, we prove that smooth functions with certain
number of vanishing moments are dense in HP.

LEMMA 6.6. Suppose ¢ € S. For any N € N, there exists C > 0 such that for
all f € 8" we have

(6.17) SlugMN+2(f x ) (z) < CMp f(2) for all x € R™.
€
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PrOOF. We claim that for any N € N there exists a constant C' > 0 so that

618) s [lesvlls, < Cllgllsyallvllsy  forany pv s,
€Ll

Indeed, take any multi-index «, || < N, 1 € Z,1 <0, and z € R". By (2.12)
max(1, p(2))N 0% (o1 % ) ()| = max(1, p(x))™ |(pr ¥ 0*¢) ()]

<N | max(lp(@ - )10y (x — y) | max(L, p(y)) ™ | (y)ldy

Sb‘”NIWIISN/ max (1, p(y))™ max(1, p(A~') "N 207 || sy 0 dy
RTL

< b‘”N||¢||sN||<P||‘<>‘N+2b_l/]R max(L, p(A~"y)) 2dy = Cll¢llsyl[¥l]sy-

For any f € §', ¥ € S, ¢ € Sn42, and € R™. By (6.18)

ksyel-@zl(f*wz) * ()| < sup |f* (1 % or) ()] + sup |f * (P * 1) ()]

< sup [fx (Vxpr—)i(@)] + sup |f * (Yr—x * 0)r ()]
k€T k,l€EZ
k—1<0 1—k<O0

< Ol[YllsyllellsnsoMn f(@) + CllY||sy s llellsy M f(2)
< 2C||¢||SN+2MNf(x)7

which shows (6.17). O

As an immediate consequence of Lemma 6.6 we obtain
COROLLARY 6.7. If f € H? and p € S then f*p € HP.
A less immediate consequence of Lemma 6.6 is

THEOREM 6.8. Suppose 1) € S and [ =1. For any 0 <p < oo and f € H?
we have

(6.19) f*x,— f in H? asl — —oo.

PROOF. Suppose first that f € L' N HP. By Lemma 6.6 and the Lebesgue
Dominated Convergence Theorem it suffices to show

(6.20) My(f*i— f)(x) —0 for a.e. z € R" as | — —o0,
where N = N, + 2. Note that if g is continuous with compact support then

[[Mn(g* %1 — 9)lloc < Cllg* it —glloc =0 asl— —oc.

For any € > 0 we can find a continuous function g with compact support such that
[lf — g]l1 < e. By Lemma 6.6

I}msupMN(f x P — f)(x)

< Sup Mn((f —g) =) (z) + ligl_sup Mn(g =+ —g)(x) + Mn(f — g)(2)

< OMpy,(f = 9)(x)
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By Theorem 3.6 for any A > 0
[{z: limfupMN(f x P — f)(z) > A}
<z Mn,(f —9)(@) > N CH < C'||f —glli/A < C'e/A.

Since ¢ > 0 is arbitrary we have (6.20) for every f € L' N HP.

Recall that L'NHP is dense in HP. This follows from Corollary 5.11 (0 < p < 1)
and the fact that L' N L? is dense in LP (1 < p < 00). Alternatively, we could use
the fact that finite linear combinations of atoms are dense in H? by Theorem 6.4.
Moreover, by Lemma 6.6 the convolution operators R;(f) = f * ¢, are uniformly
bounded on H? for all [ € Z.

Hence, if f is an arbitrary element of H? then for every € > 0 we can find
g € L' N H? such that ||f — g||%, < e. Therefore,

limsup || f * ¢ — fl|%»

l——o0

< sup||(f — 9) * tllf + I1f = gll, + limsup lg « 1 — g,
c ——00

< ClIf - gl < Ce.

Since € > 0 was arbitrary we obtain (6.19). O

Finally, we prove that smooth functions with compact support are dense in HP.

THEOREM 6.9. HP? N C§° is dense in HP, where C§° denotes C§° functions
with compact support.

PROOF. Suppose f is a finite linear combination of atoms. Take ¢ € C§°.
Clearly, f « 1, € C§° for every | € Z and f*1; — f in H? as | — —oo by Theorem
6.8. This finishes the proof since finite linear combinations of atoms are dense in
HP. O

REMARK. C§° is not a subset of H? for p < 1. It is not hard to see that
¥ € C§° with [ # 0 does not belong to any H? for p < 1. However, if ¢ € C§°
has vanishing moments of order s, i.e., fz/JP = 0 for all P € Py, where s >
[(1/p—1)Inb/InA_|, then ¢ is a constant multiple of a (p, 0o, s) atom and hence
1 € HP.
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7. Other maximal definitions

The goal of this section is to prove the characterization of Hardy spaces using
the radial and nontangential maximal functions of a single test function ¢ € S,

Je#0.

THEOREM 7.1. Suppose p €S, [¢@ #0, and 0 < p < co. Then for any f € S’
the following are equivalent:

(7.1) feH?,
(7.2) M,f € L?,
(7.3) MJf € LP.

In this case

1fllzze = 1M fllp < CLlIM fllp < Col MG £,
for sufficiently large N, C1, Co independent of f € HP.

We start with a very useful result about maximal functions with different aper-
tures. Suppose F' : R™ x Z — [0,00) is an arbitrary (possibly nonmeasurable)
function. In our cases F is going to be (at least) Borel measurable. For fixed | € Z
and K € Z U {co} define the maximal function of F' with aperture | as
(7.4) Fr(z) = FX(2) = sup  sup  Fly,k).

kEZ
KSR yex+By 4

Note that F}* : R™ — [0, 00] is lower semicontinuous, i.e., {z : Fj*(z) > A} is open
for all A > 0. Indeed, if Fj*(z) > X for some x € R”, i.e., there is k < K and
Yy € & + Bj4q so that F(y, k) > A, then y € 2’ + By for 2/ in a sufficiently small
neighborhood of . Thus F;*(2') > A. Here we need that the balls B; are open for
all j € Z.

LEMMA 7.2. There exists a constant C > 0 so that for all functions F : R™ x
Z—1[0,00), A\>0,1>1l' €Z, and K € ZU {co} we have

(7.5) {a: FrE(z) > A} < 6V [{o: () > A},
In particular,
(7.6) / FE(z)de < Cb / FiR (z)dx.

PRrROOF. Let Q = {z: F;j(z) > A}. Suppose F}*(z) > X for some € R". Then
there exist k < K, y € x+ Bj4; such that F(y, k) > A. Clearly, y+ By C Q. Also
Y+ By C x4 Brqi + Byt C &+ Bpyiqw. Hence y+ By C QN (2 + Bryiyw)
and

|Q N (.I + Bk+l+w>| > bk+ll _ bk+l+wbllfl7w.
Therefore, My, (1g)(x) > b'~1=% where My is the centered Hardy-Littlewood

maximal function Mgy f(y) := sup,,czb~™ fy+Bm |f(2)|dz. By Theorem 3.6

{2 B () > A < [ : Mur(la)(z) 2 679 < OO 10] L = 08119,
hence (7.5) holds. Integrating (7.5) on (0, 00) with respect to A yields (7.6). O

The following result enables us to pass from one function in S to the sum of
negative dilates of another function in & with nonzero mean.
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LEMMA 7.3. Suppose ¢ € S with [ ¢ # 0. For every i) € S there is a sequence
of test functions (n’ )20 7 € S such that

(7.7) p=> e,
j=0

where the convergence is in S.
Furthermore, for any integers L, N > 0 there exist a constant C' and an integer
M > 0 (depending on L and N, but independent of the choice of 1) such that

(7.8) 17]lsy < CO™H|[¢llsy,  for all j = 0.

PROOF. For the purpose of the proof we will work with the standard definition
of Sy, that is

Inllsy = sup sup (1+ [z])¥[9%n(z)].
z€R™ |a|<N

By Lemma 3.2 this implies the corresponding result for the usual homogeneous Sy .
We claim that for every integer N > 0 there is a constant C so that

(79) ||ﬁ||51\7 < O||77||$N+n+1'

Indeed, for any multi-indices |al,|3] < N we have

(2mi)gP0%() = (~2m)/*! [ &m0 (e da,

n

Hence, by multiplying and dividing the right hand side by (1 + |z|)"*! we have

|§ﬁaaﬁ(§)| < (27T)|a\*\5| Suﬂg (1+ |x|)n+1|aﬁ(xan(x))| A 1+ |$|)7n71d$,
reR™ n
which implies (7.9).
Let A be an expansive ellipsoid for the dilation B = AT ie., A CrA C BA,
guaranteed by Lemma 2.2. By scaling of ¢ and A we can assume that f @ =1 and
|p(€)] > 1/2 for € € BA. Consider a C* function ¢ such that ¢ = 1 on A and

supp ¢ C BA. Define a sequence of functions (¢;)32 by ¢o = ¢,
G =¢(BTE —¢(BTE)  forj>1.

Clearly,
DG =1 forall ¢ €R"
=0
Thus
) =S e =S G sevo(pi
b(€) = Z:joc (©)P(E) = z::o S OB,
For j > 0 define 1’ by
ey G -
(7.10) V) = 5 VO

Then, by the choice of 77’s, (7.7) holds. Moreover, the convergence in S of the
series (7.7) is a direct consequence of (6.18) and (7.8). Therefore, it remains to
show (7.8).
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To show (7.8), take M = N+2(n+1)+ L[Inb/In A_], where A_ is the same as
n (2.1). Our goal is to show that there exists a constant C' (independent of ¥ € S)
such that

||ﬁj||sN+n+1 < Cb_jLH'@[J”SM for Jj=0.

Let C(§) = (¢(6) — ¢(BE))/#(€). Since supp( C BA and [¢(€)] > 1/2 for
§ € BA we have supg sup|qj<nint1[07C(§)] < C for some constant C. Since

C(B7I€) = ¢j(€)/¢(B7IE) by the chain rule we have

sup sup  [9%(G;(-)/@(B77))(€)| < C.

§ Ja|<N+n+1
By (7.10), the product rule and since ¢;(¢) = 0 for € € BI~'A

17l sxnn <C sup sup (14 [E)NF O (6]
¢gBi—1A |a|<N+n+1

<C sup (1+|§|)—L[lnb/ln>\,] sup (1+|§|)N+n+1+L[Inb/ln>\,]|aa,¢;(§)|
£¢BI-1A |a| <N+n+1

< Cb_jLH'JJ”SanA < Cb_jL”wHSMv
because for £ & A, (1 + |BI~1¢|) > 1/0)\j_711nf5€A |¢]. This finishes the proof of
(7.8). Since our choice of N is arbitrary in (7.8) the series in (7.7) converges in S§.0

We now introduce maximal functions obtained from truncation with an addi-
tional extra decay term. Namely, for an integer K representing the truncation level
and real number L > 0 representing the decay level, we define radial, nontangential,
tangential, radial grand, and nontangential grand maximal functions, respectively
as

MOFD) f(z) = sup |(f * o) ()| max(1, p(A~Ka))~L(1 + b+ K)~L,

k<K

MY f(z) = sup sup  |(f % r) (y)| max(L, p(A~5y)~H (1 +b75)7F,

kezZ
wE yEx+ By

N(K.L) £ () — |(f * o) (Y)] (b5~
LI ) = S o (L (A (@ — )Y max(L, p(A )T

MJ?,(K’L) (x) = sup Mg(K’L)f(x).

pESN
M](\,K’L)f(:z) = sup MéK’L)f(:E).
YESN

The next lemma guarantees the control of the tangential by the nontangential
maximal function independent of K and L.

LEMMA 7.4. Supposep >0, N > 1/p, and ¢ € S. Then there exists a constant
C so that for all K € Z, L >0, and f € &,

(7.11) T ED f1p < CUMESD £
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PRrOOF. Consider function F' : R™ x Z — [0, 00) given by

Fy k) = |(f * o) (y)[? max(1, p(A~Fy))7PE(1 + b=F ) 7PE

Fixx e R". If k < K and & — y € Bj41 then
F(y, k) max(1, p(A™"(z — y))) " < Fg™ ().
If £ —y € Bitj+1 \ Bi+; for some j > 1 then
F(y, k) max(1, p(A™"(x — y))) 7PN < E; 5 ()b~ 7M.

By taking supremum over all y € R", k < K we have

YD @) < 37 FF (@i,

Therefore by Lemma 7.2,
TS < 3 b | @
< ch JNPbJ/ FgX(a)de < C'||MISP f|2,

7=0

where C' = C Y72 /07NP) < oo,

Lemma 7.5 gives the pointwise majorization of the grand maximal function by

the tangential one.

LEMMA 7.5. Suppose ¢ € S and [ ¢ # 0. For given N,L > 0 there exists an
integer M > 0 and a constant C > 0 so that for all f € S' and integers K > 0 we

have

(7.12) My fa) <CTYED f(z)  for all z € R™

ProoOF. Take any 1 € S. By Lemma 7.3 there exists a sequence of test func-
tions (17)32, so that (7.7) holds. For a fixed integer k¥ < K and z € R",

|(f * i) (@)| = ‘( xy (0 *Sﬁj)k)(ﬂi) = '<f*2(77j)k *sﬁj+k)(l’)
=0 =
<SOUF 5 0Pk * g |<Z/ £ % pmian)@ =l )ew)ldy
7=0
<TG

Z max (1, p(A7~ )" max(1, p(A™" (& = y)) (1 + ") (0P i (y) | dy.

7=0
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Therefore
M) f(a) < TYUSD) f(x) sup > i max(1, p(A7~ )N
k< j=0"R"

max(1, p(A K (x — )N (1 + pi—F-K)L
e e S (N0

Using the inequalities (2.12), (2.13) and the change of variables we can estimate
the last sum by

o0

> max(1, p(A7Fy)NbF max(1, p(AKy)) 2R bR (A7 Fy)|dy
j=0/R"

< 28p N YN[ max(1, p(y) N (y)|dy < 2560 Y VN ||, -
=0 Rn =0

By Lemma 7.3 there exists an integer M > 0 so that
17 llsx 4 < COTNHED [y,

and hence

M](\)/}K’L) (x) = sup Mg(K’L)f(:v) < okpwl Z ChI Tév(K’L)f(x)
PESMm =0

=C'TY R f(a).

This shows (7.12). O

LEMMA 7.6. Suppose p >0, o €S, and f € S'. Then for every M > 0 there
exists L > 0 so that

K,L -M n
(7.13) MSE; ) f(x) < Cmax(1, p(x)) for all z € R™,
for some constant C' = C(K) dependent on K > 0.
PrOOF. There exists an integer N > 0 and a constant C' > 0 so that
7 #0(@)] < Clligllsy max(l,pl@))¥  forall € R, g € S.

If £ < 0 then by the chain rule

lpkllsy = sup sup max(1, p(2))Nb~*|0%p(A*)(2)|
z€R™ |a|<N
<b7" sup sup max(1,p(2))N[0%p(A7*2)[CI[ ATV < CbTFATN |l |sx -
z€R™ |a|<N
If 0 < k < K then by the chain rule

lerllsy <C sup Sup max(L, p(2))V0%p(AF2)| < COFN|pl|sy -
z€R™ |a|<N
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Therefore, if we take L = N + M, then for any k¥ < K and y € x + By,

|/ pi(y)| max(1, p(A™ y)) (1 + 57 F)7F
< Omax(lvp(y))NH%HsNbKL max(lvp(y))be(kJrK)L

< Cmax(1, p(y)) N LOB3ELTEN] oI5

< CpFFIMPREAEN max(1, p(x)) ™™ ||| |5y -

This shows (7.13) and finishes the proof of Lemma 7.6. O

Note that the above argument gives the same estimate for the truncated grand

maximal function M]%(K’L) f. As a consequence of Lemma 7.6 we have that for

any choice of K > 0 and any f € 8’ we can find an appropriate L > 0 so that
the maximal function, say Mé,K’L) f, is bounded and belongs to LP(R™). This
becomes crucial in the proof of Theorem 7.1, where we work with truncated maximal
functions. The complexity of the preceding argument stems from the fact that a
priori we do not know whether Mg f € LP implies M,f € LP. Instead we must
work with variants of maximal functions for which this is satisfied.

PROOF OF THEOREM 7.1. Clearly, (7.1) = (7.2) = (7.3). By Lemma
7.5 applied for N > 1/p and L = 0 we have pointwise estimate M](\J/}K’O)f(x) <

CTNEO) f(z) for all f € S” and integers K > 0. By Lemma 7.4 we have another
constant C' so that

My V1|l < ClIMEEOf|[,  for f e S K >0.

As K — oo we obtain ||MY, f||, < C||M,f||, by the Monotone Convergence The-
orem. It remains to show (7.3) = (7.2).
Suppose now MJf € LP. By Lemma 7.6 we can find L > 0 so that (7.13)

holds, i.e., MéK"L)f € LP for all K > 0. By Lemmas 7.4 and 7.5 we can find M > 0

so that ||M](\)}K’L)f||p < Cl||M§,K"L)f||p with a constant C; independent of K > 0.
For given K > 0 let

(7.14) Q = {z e R : My f(2) < Co MIED f ()},
where Cy = 2V/PC,. We claim that

(7.15) i MYD) f(z)Pde < 2 i ML) f(z)Pda.
" K
Indeed, this follows from

[ mtnpepar < e [ MY j@pa < @gop [ Mg @,
Q

c c n
K QK

and (Cl/Cg)p = 1/2
We also claim that for 0 < g < p there exists C3 > 0 so that for all integers
K>0

(7.16) MUSE) f () < Cs(Mpr(MAFD) f()0)(2))/9 for x € Q.
Indeed, let
F(y, k) = |(f * @) (y)| max(L, p(A~Fy))~H(1 +07FF)~F,
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Suppose = € Q. There is k < K and y € x 4+ By, such that

Fly, k) > F§ (2)/2 = MES f(2) /2.
Consider ' € y + Bi_; for some integer [ > 0 to be specified later. We have
Frou(@) = fronly) = F+@ry),  where ®(2) = p(z + A7 (@' —y)) — p(2).
By the Mean Value Theorem
@15y < sup [lol-+B) = )l

-1

= sup sup sup max(1,p(2)M)[0%(z 4+ h) — 0%p(2)]
heB_; z€ER" |a|<M

<C sup sup sup max(1,p(z 4+ h)M)|0%(z +h)|- sup |h| < CuAT!,
h€B_; z€ER™ |a|<M+1 heB_;

where C; does not depend on L. Since max(1, p(A~%2")) < ¥ max(1, p(A~EKy))
we have

WEF (' k) 2 (If * or(y)] = |f * r(y)) max(L, p(A™Fy)~H (1 + 07 F)~F
> Fly,k) = My " f@) 1@y, > MY f(@)/2 = 022 My f @) Can!
> MUCE) f(2)/2 = bMCONZ CoM D) fz) > MESD) f(2) /4,
if we choose for [ the smallest integer [ > 0 so that b”MC4)\:ng < 1/4. Here

we used the fact that z € Qx and the pointwise majorization of nontangential by
radial grand maximal function,

M{ED f(@) < oM a8 f(a),

see Proposition 3.10. Therefore for x € Q,

4apta
MED f(z)1 < B F(z,k)1dz
kfl| y+Br_1
warl
<qapela _—_ Mg(K’L)f(z)qdz < CgMHL(Mg(K’L)f(')q)(fE)a

|Bk+w| 24+ Brtw
which shows (7.16). Finally, by (7.15), (7.16), and the Maximal Theorem 3.6
K,L K,L
- Mé ) f(z)Pdax < 2 ; Mé ) f(x)Pdx
K

§20§/q A MHL(Mg(K’L)f(-)q)(I)p/qd:Z?§C5 : Mg(K’L)f(I)pdCC,
K n

(7.17)

where the constant Cs depends on p/q > 1 and L > 0, but is independent of K > 0.
This inequality is crucial as it gives a bound of nontangential by radial maximal
function in LP. The rest of the proof is immediate.

Since MSE,K’L) f(x) converges pointwise and monotonically to M, f(x) for all
z €R" as K — o0, M, f € LP(R™) by (7.17) and the Monotone Convergence The-
orem. Therefore, we can now choose L = 0 and again by (7.17) and the Monotone
Convergence Theorem we have || M, f||} < Cs||MQf|[5, where now Cs corresponds

to L = 0 and is independent of f € §’. This concludes the proof of Theorem 7.1.00
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8. Duals of H?

In this section we provide the description of the duals of anisotropic H? spaces,
0 < p <1, in terms of Campanato spaces. This description is a consequence of
the atomic decomposition of H? and some functional analysis and approximation
arguments.

The dual of HP space of holomorphic functions on the unit disc for 0 < p < 1
was first identified with a Lipshitz space by Duren, Romberg, and Shields [DRS].
For the classical Stein-Weiss H? space on R™ this result is due to Walsh [Wal.
The identification of the dual of H' as the space of BMO is a famous result of
C. Fefferman [Fe, FS2|. Characterizations of (H?)* in terms of BMO, Campanato,
and Lipschitz spaces in various setting, other than isotropic H?(R™), were obtained
by many other authors; for example, the dual of parabolic HP spaces was determined
by Calderén and Torchinsky [CT2].

We start with the definition of Campanato spaces [Cm] which are defined in
terms of approximations by polynomials on dilated balls, generalizing the BMO
(bounded mean oscillation) space introduced by John and Nirenberg [JN].

DEFINITION 8.1. Let B denote the collection of dilated balls associated to the
dilation A, i.e., B={o+Br:x e R" k€ Z}. If1 >0,1<g<oo,and s =0,1,...,
we define the Campanato space C};,s to be the space of all locally L? functions g on
R™ so that

1/q
1
8.1 := sup inf Bl<—/ z) — Pz qd:c) < 00, < 00
1) laley, = sup ot 81" (57 [ lot@) = Pla) (g < o)

(8:2)  lgllce, , == sup inf [B|™"ess sup,ep |g(z) — P(z)| <oo.  (¢=o0)
’ BeB PePs

Here P denotes the space of all polynomials (in n variables) of degree at most s.

We identify two elements of Cclz.,s if they are equal almost everywhere.

One may easily verify that: || - ||Cé,s is a seminorm, Py C C’fbs, and ||g||C},,s =
0 <= g € Ps;. Therefore, Cé)s /Ps is a normed linear space. Moreover, the
standard arguments show that this space is also complete; hence C};,s /Ps is a Banach
space.

The conditions (8.1) and (8.2) can be also written in terms of a quasi-norm p
associated to a dilation A. For example we can equivalently define Ccll-,s as the space
of all locally L? functions g on R™ so that

1/q
(8.3) llglle: == sup Pin7f) ! (rl/ lg(z) —P(:C)|qd:v> < 00.
EPs pla—0)<r

xgER™
>0

Indeed, this exactly the case when p is the step homogeneous quasi-norm; the
general case follows from Lemma 2.4.

The main goal of this section is to prove that the dual of anisotropic Hardy
space HY is isomorphic to the Campanato space C;,/Spil/PS, where (p,q,s) is an
admissible triplet in the sense of Definition 4.1, see Theorem 8.3. As a consequence,
this shows that Campanato spaces C’é)s depend effectively only the choice of [ and
not on g or s, see Corollary 8.6. Analogous results for Hardy spaces on homogeneous
groups were obtained by Folland and Stein [FoS, Chapter 5. However, careful
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examination of the arguments in [FoS] reveals a gap in the first part of the proof

of [FoS, Theorem 5.3]. The problem is with [FoS, Lemma 5.1] which does not hold

unless we assume that a functional L is bounded. Hence, an additional argument

is needed. This gap can be filled in the setting of anisotropic Hardy spaces by

applying a rather subtle approximation argument inspired by [GR, Chapter II1.5].
We start with a basic lemma.

LEMMA 8.2. Suppose L is a continuous linear functional on HP? = HY ., and
(p,q, s) is admissible. Then

(8.4) LIz, == sup{ILSf]: | fll, <1} =sup{|Lal : a is (p, g, s)-atom}.
PROOF. Since every (p, g, s)-atom a satisfies ||a|[gz , <1 it suffices to show

5 swllLf]: [Ifllg, <1} < sup{|Lal : @ is (p,q, 5)-atom}.

Take any f € H? with |[f||gr < 1. For every ¢ > 0 there is an atomic decomposi-
tion f =), kia; with >, |k;[? <1+ e. Therefore

1/p

|Lf] < Z |k:||La;| <sup{|La| : ais (p,q, s)-atom}(Z |I€i|p>
<(1+4¢e)Y?sup{|La| : a is (p,q, s)-atom}.

Since € > 0 is arbitrary we have (8.5). O

Clearly, || - [|(gz )+ is a norm on (HP)* (= space of continuous functionals on
HP) which makes (H?)* into a Banach space.

THEOREM 8.3. Suppose (p,q, s) is admissible. Then
(8.6)  (HP)*=(HE)* =CL /P, where 1/q+1/¢ =1, l=1/p—1.

Ifg € O(lz/,s and f is a finite linear combination of (p,q,s)-atoms, let Lyf = [gf.
Then Ly extends continuously to HP, and every L € (HP)* is of this form. More-
over,

(5.7) loller, = WEallgm.- for all g€ Cl,

PROOF. For any B € B define mp : L'(B) — P the natural projection defined
using the Riesz Lemma

(8.8) /B(wa(;v))Q(x)dx = /B f(2)Q(x)dz for all f € L*(B),Q € Ps.

We claim that there is a universal constant (depending only on s) such that

(8.9) sup |75 f(z |B|/ |f(x)|dx.

zeB

Indeed, if B = By then we find an orthonormal basis {Q, : |a| < s} of P, with
respect to the L?(By) norm. Since

T f =) <

lal<s

f(I)Qa—(x)dar> Qu.

Bo
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the claim follows for B = By. Since mp, f = (Da-+ 0w, © Dax)f and myyp, f =
(ry omp, o T—y)[f the claim (8.9) follows for arbitrary B = y + Bj.

For 1 < ¢ < oo and B € B we define the closed subspace L{(B) C LY(B)
by L{(B) = {f € LY(B) : m7gf = 0}. We will identify L9(B) with the subspace
of L4(R™) consisting of functions vanishing outside B. With this identification, if
f € LY(B) then |B|Y4=/?||f||=1 f is a (p, q, s)-atom.

Suppose L € (HP)* = (HP [)*. By Lemma 8.2

(8.10) LA < WLl - | BV~ fllg, - for f e LE(B).

Therefore, L provides a bounded linear functional on Lg(B) which can be extended
by the Hahn-Banach Theorem to the whole space L(B) without increasing its
norm. Suppose, momentarily, that ¢ < co. By the duality LY(B)* = Lq,(B), where
1/q+ 1/q' = 1, there exists h € L9 (B) such that Lf = [ fh for all f € Li(B).
In particular, L>(B) C L9(B) implies there is h € L7 (B) c L'(B) such that
Lf = [ fhfor all f € Lg(B). Therefore, also for ¢ = oo, there exists h € LY (B)
such that Lf = [ fh for all f € L4(B). If h’ is another element of L9 (B) such that
Lf = [fW for all f € LI(B) then h — k' € Ps. We can say even more. Suppose
that for some h,h’ € L'(B) we have Lf = [, fh = [5 fh/ for all f € L§°(B) then
h — k' € Ps. Indeed, for all f € L>®(B)

0= [ t=mof)h=1)= [ $0=1) = [ (mos)math 1)
/fh By — /fth 1Y) /f (h— 1) —wp(h— 1)),

hence (h — h')(z) = mg(h — W')(x) for a.e. x € B. Therefore, after changing values
of h (or h') on a set of measure zero we have h — h' € P,. Hence, the function
h is unique up to a polynomial of degree at most s regardless of the exponent
1 < g < oo. Therefore, h € (N, L9(B) for p=1, and h € L>(B) for 0 <p < 1.

For k =1,2,... let g be the unique element of L (By,) such that Lf = [ fgx
for all f € L§(By) and wp,gr = 0. The preceding arguments show that gx|s, = g;
for j < k. Therefore, we can define a locally L7 function g on R™ by setting
g(x) = gi(x) for x € By. If f is a finite linear combination of (p, ¢, s)-atoms then
Lf=]fg

By (8.10), for any B € B the norm of g as a linear functional on L{(B) satisfies

(8.11) llollzgmy- < IIZllqap -1 B2,
We claim that
(8.12) l9llzgm)- = Juf llg = PllLe (5)-

This is, at least for ¢ < co, an immediate consequence of an elementary fact from
functional analysis

LY(B)* = LU(B)*/L§(B)* = LY (B)/P.,

where L(B)t = {h € LY(B)* : hlpas)y = 0} denotes the annihilator of the sub-
space L{(B) C L%(B). The special case of (8.12) for ¢ = oo requires similar
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arguments and the fact that g € L*(B) and ||g — P||r(p)- = ||g — P||11(p) for any
P € P,. Combining (8.11) and (8.12) we have for l =1/p—1

(8.13) lgller, = sup [BI™Y|gl|zace)- < IE|caz,)-
7,8 BeB

which completes the first part of the proof of Theorem 8.3.
Conversely, suppose g € sz,)s. Our goal is to show that functional Lyf = [ gf
defined initially for f € ©%, where

(8.14) ©1={f € LYR") : supp f is compact and [, f(x)zdx = 0 for |a| < s},

extends to a bounded functional on H? ; and ||Lg|| (g ) < ||g||03, K

Suppose a is (p, g, s)-atom associated to the dilated ball B = 11:0 + By. Since
J ga= [(g— P)a for all P € P, we have

L.al = = inf - P
|Lgal ‘/ga Plgps‘/(g )a

1/q , 1/q
. < q i _ ple
(5.15) < (L) (g f1a-r17)

1/q'
< |B|1/q71/p|B|l+1/q (#Qf:/'g_ p|tI) = ||g||cé,15,

At this moment the reader might be tempted to use Lemma 8.2. That is we can
try to define L, f for arbitrary f € HP by using the atomic decomposition of f,

(8.16) Lyf = Z/@iLgai, where [ = Z KiQ;.
i=1

=1

Since for every e > 0 we can choose a decomposition so that Y .o, |r;|P < (1 +
e)llfIlyr  we have
q,s

oo o 1/p
817) 1271 < 3 llZyard < lalley, (S 1el?) < 1+ laley, 1l

i=1 i=1

This may seem to show that L, is bounded with the appropriate constant.

The problem with this argument is the issue of well-definedness of L,. Namely,
given g € Cé,ﬁs, we ought to make sure that if f € ©7 has an atomic decomposition
[ =2, Kia; then necessarily

/fgzi;f%/aig-

As we will see this fact is very non-trivial and it requires a rather subtle approxi-
mation argument. For the classical isotropic case, the interested reader is directed
to [GR, Section IIL.5], where detailed exposition of this fact can be found. Note
that there is no problem if g belongs to the Schwartz class, since the atomic de-
composition of f converges in the sense of distributions.

The following lemma comes to the rescue.
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LEMMA 8.4. Suppose that (p,q, s) is admissible and f € ©1, where ©% is given
by (8.14). Suppose g € 02,75, 1/g4+1/¢ =1,1=1/p— 1. There exists § > s so
that if f is decomposed into f = Y oo, Kia;, where Y oo, |ki|P < oo and a;’s are

(p,q, 5)-atoms, then
(8.18) Lyf = /fg = Z/@i/aig — Z“iLgai-
=1 i=1

Given Lemma 8.4 the rest of the proof is immediate. Suppose f € ©4. By
Theorem 6.5 we can find an atomic decomposition of f =32, k;a;, where

(Z s P)V/P < 2[fllar, < Cllflag.,

i=1

and a;’s are (p, ¢, §)-atoms. By (8.15) and (8.18)

o o 1/p
819 1Lf1 < 3l <lllley, (S 1eil?) < Cllaley, 11l
i=1

i=1

Therefore, L, extends uniquely to a bounded functional on H? ;. Furthermore, by
Lemma 8.2 and (8.15) |[Lg||(zr )~ < [|gllc:, . This finishes the proof of Theorem
) q’,s

8.3. (]

REMARK. As a consequence of Theorem 8.3 we conclude that if we write f =
Yo kia; € ©1, where Y ° |k < oo and a;’s are (p,q,s)-atoms then (8.18)
still holds. As an indication why this result is non-trivial we recall the following
observation due to Meyer, see [GR, MTW].

In Definition 4.3 of the atomic norm |[|f||gz , it is not legitimate to take the
infimum only over finite linear combinations of atoms even in the case when f admits
such a finite decomposition, e.g., when f is itself an atom. Indeed, such infimum
may be much larger than || f|| gz, which is evidenced by an example due to Meyer,
see [GR, Chapter II1.8.3]. Therefore, even though finite linear combinations of
atoms are dense in H?, in order to compute their H?P norm, it is not enough to look
only at finite decompositions.

To show Lemma 8.4 we need the following approximation lemma.

LEMMA 8.5. Suppose g € Cf;/,s: where | > 0,1 < ¢ <oo, s=0,1,... There
exists § > s, a constant C' > 0 independent of g, and a sequence of test functions
(9k)ken C S so that

(8.20) llgrllct, < Cllgller, ~ forallk €N,
and (1/¢+1/¢' =1),

(8.21) m f(@)gr(x)de = f(x)g(z)dx for all f € ©1,.
RTL

li
k—o0 R™
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We are going to use two simple observations about Campanato spaces. Firstly,
note that if Dag(z) = g(Ax) then

) _ 1 , 1/‘1/
1Dagller, = sup nt 1B (g [ lgta) = Pl o)
)8 xgER™ s

0 ez |Bk| zo+ B

8.22 1
( ) = sup inf b|Bk+1| l<—

sqein PEPs |Bt1| Jazo+Brsa

= #liglles,

, 1/q'
9(z) — P@)|? d:c)

Secondly, we can define an equivalent norm on O(lz/,s by setting
. 1 , 1/q
— !
829 llalles,, = s 181 (7 [ o0) = mwg(o)faz) (14 <),
7 BeB 1Bl Jp

(8.24) lalllez,, = sup | B ess sup,ep l9(a) — mpg(z)] (4" = o0).
€

where mpg is the natural projection on Py given by (8.8). Indeed, for any B € B
and P € P, by the Minkowski inequality we have

(|B|/'9 ~ (s )|‘1’da:>1/ql
<|B|/|g I d"’”) (|B|/ |P(x) - mpg(a )|‘1’da;>l/ql
<|B|/ lg(x )4 d:c) +CE/B|Q(QC)_p($)|dz
<(C+1) <|B|/ lg(= )|‘1da:>1/q,,

using P(z) — mpg(x) = mp(P — g)(x) and (8.9). Therefore we have

(5.25) loller, < lllgllles, < (C+Dllglles, forallge Ch,

PROOF OF LEMMA 8.5. Suppose g € Cf],ys. Take a nonnegative function ¢ €
C* with compact support and [ ¢ = 1. Let ¢y(z) = b=%p(A7Fz). If ¢’ < oo then

gxpp — g qu

loc

(R™) as k — —o0.

Indeed, it suffices to apply Theorem 6.8 in L7 for truncations 9180, for sufficiently
large » > 0. Therefore

(8.26) f(@)(g * ¢r)(z)dz — f(x)g(x)dr ask — oo forall fe L
]Rn R’Vl

If ¢’ = oo we use Theorem 3.7 applied for truncations glg(o,) for sufficiently large

r > 0 to obtain

(9% vr)(x) — g(x) ask — —oco fora.e xeR™
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By the Lebesgue Dominated Convergence Theorem (8.26) holds also for ¢’ = oo.
Clearly, g * ¢), € C°° and moreover

(8.27) lg*oellcs, < Nglller,  forall ke .

Indeed, for every B € B and k € N define a function P}, by

Py (z) = /n T_y+B9(T — y)Pr(y)dy.

Since we can write 7y 4+ 5g(z —y) = 3_, <5 Ca(y)(x —y)* and the coefficients cq(y)
are continuous functions of y, Py is a polynomial of degree < s. By the Minkowski
inequality

(ﬁ /B |(g * or)(z) — Pk($)|q/d;c) 1/q'
(|B| l , dx>1/q
/Rn <|B| / o) gl y>|Q'dx>l/q lon(y)ldy

1/q
~Ja \[=y+B] T "d dy < Bl
/n <| —y+ B[ ,.5 l9(2) = m—y+B9(2)] Z> or(y)dy < |||9|||c;,YS| |

This shows (8.27).
Formulae (8.26) and (8.27) suggest that it is enough to show the lemma for
€ C’é,)s N C*. That is indeed the case. Let ¢ € C'° be such that supp ¢ C By,
0<¢(zx) <1, and ¢(x) =1 for x € B_;. We claim that there is a constant C' and
5§ > s such that

(g(:r —y) = m—y+59(x —y))pr(y)dy

(828) 9= 7pug)dlles, , < Cllglles,  forall ge Cl NC>,

Indeed, take any g € Cl, , N C> with |||g|||cf,/,s < 1. For brevity, we only consider

the case ¢ < oo; the case ¢ = co uses a similar argument. Let G = g — 7p,g.
Since supp ¢ C Bo, [y, |[Gol? < Iz, |G|9 < |Bo|l@'*! = 1. Therefore, if we take
ball B € B, B =z + By and k > 0 then

1/q
B! /|G ol dr) | <1,
|B] B

Hence, to show (8.28) we can restrict to balls B = g + By with & < 0. Let
P, =7pg =7pG. By (8.9)

1 , 1/‘1/ 1 , 1/‘1/ ,
(8.29) (—/ Py (2)]f d:c) gc(—/ |G(x)|qu) <kl
|B| /B |B| JB

Let P2(x) be the Taylor polynomial of ¢ at x¢ of degree r (to be specified later),
Le, Pa(x) = X 1<, 0%¢(20)(x — 20)*/al. By the Taylor Theorem the remainder
satisfies |p(x) — Po(z)] < C'|z — zo|"*! with the constant C’ independent of x.
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Finally, let P(x) = P;(z)Py(z) be a polynomial of degree at most § = s+ r. By
the Minkowski inequality and (8.29)

(/B |G(x)¢ () —P(:c)|q/dx>1/ql <
(/ |G(z)p(x) —P1(:c)¢(w)|q/dx) (/ e P )P2($)|q'dx) "
< ||¢||°°</ G(x ()] d;c)l/q +sup|¢ </ Py dx) I

< |B|l+1/q Ly R o sup |x — a:0|r+1 < |B|l+1/q 4y R/ C"(c)\li)T+1
r€x0+Bg

< B[V 4 Oy pR2/d) — (O 4 1)| B

Here we need to choose r large enough such that X" ™! > bl+2/q/, ie., take r =
[Il+2/¢)Inb/InA_|. Since B € B is arbitrary this shows (8.28) with § = s + 7.

We are now ready to define a sequence (gi)ren C S for g € C(lz’,s NC>. Let
gk = Drg and g, = D+ ((gr — TB,Gk)$)- By (8.22) and (8.28)

1@r = 7B,31)ellcr, < Cllgllcr, = Cllgller,
Therefore (8.20) holds, since
(8.30) llgeller, . =~ 1l(@k = mogi)éllcr, - < Clldlle, -
Moreover,

(8.31) gi(z) = g(x) — (Dp-romp, 0 Dyr)g(x) = g(x) — 7B, 9(x) for x € Bj_1.

Thus (8.21) also holds.

To end the proof we must relax the assumption that g € C°°. Suppose g € Cé/,s
is arbitrary. Define the sequence (gi)ren C S by g = D -+ ((gr — 7B, gk )®), where
gk = D4 (g * pr). Combining (8.27) and (8.30) yields (8.20), whereas (8.26) and
(8.31) yield (8.21), completing the proof of Lemma 8.5. O

To completely finish the proof of the duality of HP spaces we must establish
Lemma 8.4.

PRrOOF OF LEMMA 8.4. Suppose [ € ©% is decomposed into f = Y o2, Kiai,
where Y % |ki[P < oo and a;’s are (p,q, §)-atoms, where § > s is the same as
in Lemma 8.5. Suppose also that g € Cé,ﬁs, 1/¢+1/¢ =1,1=1/p—1. Let
(gk)ken C S be a sequence guaranteed by Lemma 8.5. For every k € N we have

(8'32) Lgkf: /fgk :Z/ﬂ/@igk = ZHiLQkaiv
=1 =1

since convergence in H? implies convergence in &’ by Theorem 4.5. By (8.21)

lim a; () gr(z)dx = / a;(x)g(x)dz for all i € N.

k—o0 R™



56 1. ANISOTROPIC HARDY SPACES

By (8.15) and (8.20) we have |Lg, a;| < ||g;€||cz/ < C||g||cz/ . Since Y2, |k <

(32, [KilP)/P < 0o we can take limit as k — oo in (8.32) by the Lebesgue Dom-
inated Convergence Theorem applied to the counting measure on N. This shows
(8.18). O

As an immediate consequence of Theorems 6.5 and 8.3 we have

COROLLARY 8.6. Suppose that 1 > 0,1 < q,¢' < o0 (q,¢ < o0 if I =0), and
s,s' > [llnb/InA_]. Then Cl = Cll], o and the seminorms || - ||lct , || - ||c
s s q,s q',s!

are equivalent. If I = 0 then Cg)s = C?,o is the space of BMO (bounded mean
oscillation).

The following simple proposition is very useful.

PROPOSITION 8.7. Suppose g € CN(R™) is bounded and all partial derivatives
0%g of order N, |a| = N, are bounded. Then for every 0 <1 < NlnA_/Inb and
s> [IInb/InX_|, geCL .

ProoF. The case N = 0 is trivial. If V > 1 then by Corollary 8.6 it suffices
to show that ¢g € C(l)oﬁNfl. We need to show that there exists a constant C' such
that for every dilated ball B € B,

8.33 inf — P(x)| < C|B|".

(8.33) panl  suplg(z) - Pz)| < C|5|

Since g is bounded, (8.33) trivially holds for large balls with |B| > 1. Take any
B = zy + By € B, where zp € R™ and k < 0. Let P(x) € Py—_1 be the Taylor
polynomial of g at the point xg of order N — 1. By the Taylor Remainder Theorem

lg(z) — P(z)] < C sup ||0%]|eo sup |2|¥ < CA)NF for all x € B.
la|=N 2E€DBy

Since (A_)N > b!, we obtain (8.33). O

There are redundant alternative ways of defining Campanato spaces. Let Aj
denote the difference operator by a vector h € R"™, i.e., Apg(x) = g(z + h) — g(z).
Suppose that I > 0 and s > 1. Define by C! the space of all continuous functions
g on R™ such that

|An - Ang(@)] < c(p(hy) + ...+ p(hs))! for all € R", (hq,... ,hs) € (R")®

for some constant c¢. The infimum over all constants ¢ satisfying the above de-
fines the seminorm of g in C!. Some effort is needed to show that wa = C! for
sufficiently large s and 1 < g < oo, see [Gr, Ja, JTW, Kr| for the isotropic case.

EXAMPLE. The best known example of Campanato spaces occurs when the
dilation A defines the usual isotropic structure on R™, for example if A = 21d. In
this case the Campanato spaces C}, (R") coincide with the homogeneous Holder
spaces C7(R™) (sometimes also called Lipshitz spaces A (R™)) with v = nl, for the
proof see [GR, Section IIL5].

The space C7(R™) for v > 0 is defined as follows. Let v = [y] + 7/ — 1,
0 <+ < 1. The space C7(R") consists of all functions g in CM1=1(R™) ([y] — 1
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times continuously differentiable) with the norm

lollengn = swp sup B[ A0%lle iy <1,
la|=[~]-1heR™\{0}

9llenny = sup sup [ATH|AROYll  if ' =1
jal=T~1-1 heRm\{0}

For example, if 0 < 7 < 1 then C7(R") is the usual Holder space consisting of all
functions g satisfying

lg(x + h) —g(z)| < c|h|” for all x,h € R",

and if v = 1 then CY(R") is the Zygmund class [Zy] consisting of all functions g
satisfying

l9(x +2Rh) — 2g(z + h) + g(z)| < c|h|  forall z,h € R".
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9. Calderén-Zygmund singular integrals on H?

In this section we present the theory of Calderén-Zygmund singular integrals
on the anisotropic HP spaces for 0 < p < 1. For p > 1 this theory reduces
to studying LP spaces and therefore follows from the general theory of Calderén-
Zyegmund singular integrals on the spaces of homogeneous type, see [St2, Chapter
1.5].

We start with some preliminaries. Let T : S(R") — S’(R™) be a continuous
linear operator. By the Schwartz Kernel Theorem there exists S € S'(R" x R™)
such that

(9.1) (T(f),9)=(S,g@f)  forall f,geSR").
Let Q = {(z,y) € R® x R" : x # y}. We say that a distribution S is regular on 2
if there exists a locally integrable function K (z,y) on €2 such that

(9.2) S(G) = / K(z,y)G(x,y)dzdy for all G € S(R™ x R"), supp G C .
Q

DEFINITION 9.1. Let T : S(R") — S’(R™) be a continuous linear operator.
We say that T is a Calderdn-Zygmund operator (with respect to a dilation A with
a quasi-norm p) if there are constants C' > 0, v > 0 such that
(i) a distribution S given by (9.1) is regular on  with kernel K satisfying

(9:3) [K(z,y)] < C/p(x —y),
(ii) If (z,y) € Q and p(2’ — z) < p(z — y)/b* then

p(z’ —x)7
plx —y)+r’

(iii) If (z,y) € Q and p(y’ —y) < p(z — y)/b** then

(9-4) [K(2',y) = K(z,y)| < C

(9.5) K (z,y) — K(z,y)| < C%’

(iv) T extends to a continuous linear operator on L?(R") with ||T|| < C.

A few remarks are needed. It can be shown that operators in the above class are
bounded from L! to weak-L!. This follows from the general theory of Calderén-
Zygmund operators defined on arbitrary spaces of homogeneous type, see [St2,
Chapter 1]. By the Marcinkiewicz Interpolation Theorem they are bounded from
LP? into LP? for 1 < p < 2. By taking duals they are also bounded for 2 < p < o0,
hence in the range 1 < p < co. To obtain these conclusions, conditions (ii) and (iii)
in Definition 9.1 can be relaxed to the weaker Hormander integral conditions [HG).

The condition (iv) immediately implies that T': S — &’ is bounded. We adopt
this seemingly redundant definition because in many situations the boundedness of
T on L? is not automatic. The operators satisfying all the conditions in Definition
9.1 except (iv) are sometimes called generalized Calderdn-Zygmund operators. The
famous T'(1) Theorem of David and Journé [DJ] gives a necessary and sufficient
condition for such T to be bounded on L?. This result was further generalized by
David, Journé and Semmes [DJS] to the setting of spaces of homogeneous type and
to the more general T'(b) Theorem, where b belongs to the special class of admissible
functions, see also [Dv].
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Since we are interested in boundedness results on H? spaces, 0 < p < 1, we must
require much stricter conditions on the kernel K (x,y) than those given by (ii) and
(iii). These conditions are known in the case when the dilation A is diagonalizable
over R and they involve the appropriate decay of the directional derivatives taken
with respect to the eigenvectors of A, see [St2, Chapter 13.5] and [FoS, Chapter
6]. For general dilations we must be more careful, requiring smoothness estimates
which hold uniformly after rescaling to the scale zero.

DEFINTION 9.2. We say that T is a Calderon-Zygmund operator of order m if
T satisfies Definition 9.1 with K (z,y) in the class C™ as a function of y. We also
require that there exists a constant C' such that for every (z,y) € Q2

(96)  |OyIK(, A%))(x, A y)| < C/plx —y) = Cb™F  for |a| <m,
where k € Z is the unique integer such that © —y € By \ Bi. More formally,
O [K (-, AF)])(z, A~"y) means 83K (x, A~*y), where K (z,y) = K (z, AFy).

In short, we say that T is (CZ-m) and the smallest C fulfilling conditions
(i)—(iv) of Definition 9.1 and (9.6) is denoted by [|T'||().

EXAMPLE. In the case when A is an isotropic dilation, in particular, if A is a
multiple of the identity, then (9.6) takes the familiar form

|0, K(z,y)| < Clz — y|~nlel for |a] < m.

More generally, suppose A is a diagonal matrix with diagonal terms e, ...  e%",
where a1,...,a, > 0 and a = a1 + ... + a,. Then p given by p(z1,...,z,) =
maxi<i<n |a:l-|“/‘“ is a quasi-norm associated with A. Pick any x,y € Q with
|det Al¥ < p(x —y) < |det A|**! for some k € Z. Since

|05 1K (-, A% (@, A™Fy) = eblerarttanen)|ghs (¢, y)| < Cple —y) ™,
where a = (a1, ... ,ay), the condition (9.6) takes a more familiar form
0 K (2,)] < Cpla — ) '~ totonsle for o] < m,

see [St2, Chapter 13.5]. However, if A has some non-trivial blocks in its Jordan
decomposition then (9.6) does not have a more explicit form due to the complexity
of the action of A on R™.

The following basic fact provides a sufficient condition for a function to belong
to HP.

LEMMA 9.3. Let (p,q,s) be admissible and § > max(1/p,slnA;/Inb + 1).
Suppose that f is a measurable function on R™ such that for some constant C > 0
we have

1/q
(9.7) (ﬁ |f(:1c)|qu) < C|Bg|7V? for some k € Z,
k| JB,
(9.5) @) < CIB P p(A*2)*  forw e B,
(9.9) f(z)x%dz =0 for o] < s.
RTL

Then f € HP with ||f||gz, < C’, where C" depends only on C.
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We remark that (9.9) is meaningful since |f(z)|(1 + |z|*) is integrable by (9.7)
and (9.8). Indeed, by Lemma 3.2

|f($)||:17|s < Cp(Aka)féc/p(x)sln)\+/lnb _ Cclbkzsp(x)sln)\+/lnb76 for p(I) > 1.

PROOF. Given a ball B € B consider the natural projection 7 : L*(B) — Ps
given by (8.8). Define the complementary projection 75 = Id — 7p, i.e., Tgf =
f—mpf. By (8.9) 7p is bounded on L%(B), i.e.,

(9.10) 7B fllaBy < CollfllLa(m),

with the constant Cy independent of B € B. Moreover,

/ 7pf(z)x® =0 for |a| <'s.
B

We want to represent f as a combination of atoms. To do this define the
sequence of functions (g;)52; by g; = 75, (f)1p;. Clearly, suppg; C B; for j > k.
Since ||gx|lq < Col|f1B,|lq < CoC|Bx|*/27 /P and gy has vanishing moments up to
order s, gy is at most CoC multiplicity of some (p, ¢, s)-atom (namely (CoC)~tgy).

We claim that g; — f in L' (and hence in §’) as j — oo. It suffices to show
that ||7p; fl|L1(B,) — 0 as j — oo. Indeed, let {Q, : |a] < s} be an orthonormal
basis of Ps with respect to the L?(Bp) norm. By the argument used to show (8.9)
we have

7B, f =(Da-iomp,0Dai)f = Z (

lal<s

-5 () s,

loaf<s

DAa'f(l’)Qa(x)dI> Dy-iQa
Bo
(9.11)

where Do f(x) = f(Az). We also have ||Da-iQallr1(B,) = V1|QallL1(B,) < P’ and
[ @QuaATm e = - [ f@)QaA T 0 asj - o
B; Be

by (9.9) and the uniform boundedness of coefficients of the polynomials Q. (A7 z)
for j > 0. This shows

(9.12) f=g+ Z(ng - 95) with convergence in L'(R™).
j=k

In fact, we will prove that we also have convergence in H? by showing that g; 1 —g;
are appropriate multiples of (p, 00, s)-atoms supported on Bj;1. Indeed,
||gj+1 - gj”OO :||7~T-Bj+1 (f)lBj+1 - 7~TBj (f)lBj ||OO
(9.13) =[f1p,,\B, = 1B,.. "B, [ + 1B,7B; [l
S||lej+1\Bj||Oo + ||]-Bj+17TBj+1f||OO + ||]-Bj7Tij||OO'

By (9.8)
f15,,\B,llc < Cp~F/ppd(k=i) — op=i/pp(6—1/p)(k—j)
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Since [[1B,D4-iQalloo = |[QalB,llee < C1 for all |a| < s, by (9.9) and (9.11) we
have

F(2)Qa(A T2)da].

B

115,75, flloe < C1b77 >

laf<s

Since |Qq(x)| < Calz|® for x € B for some constant Ca > 0

F@) QA7) de| < G / @) | A7 2] de
B]‘? B;

< Cq C|Bk|_1/pp(A_k$)_6p(A_j$)51“A+/1Hbdx
B

_ Czcbfk/pbé(kfj) / p(Aij)féJrs ln)\+/lnde
Be
J
< C2Cb—k/pb5(k—j)bj/ p(x)—t?-i-sln Ap/Inb g C3bj(l—1/p)b(6—1/p)(k—j)'
B3
Inserting the last three inequalities into (9.13) we conclude that
lgi+1 — gjlloo < Cab™UTV/PpE=L/DIE=D) for j > k.

for some constant Cy. Since g;’s have vanishing moments up to order s, g;+1 — g;
is a k; multiple of a (p, 0o, s)-atom a; supported on Bj 1, where gj1+1 — g; = kja;,
Kkj = Cyp0=1/P)(k=3) By (9.12)

oo 1/p 0 ) 1/p
||f||H§,s < ((Coc)p + Z |/$j|17> = ((Coc)p + Cf Zb(:ﬂﬁ—l)(k—ﬂ) =,
j=k j=k
which ends the proof of the lemma. O

REMARK. Since translations are isometries in H? we can immediately gener-

alize Lemma 9.3 to functions centered at arbitrary o € R™. Conditions (9.7) and
(9.8) can be substituted then by

1 1/‘1
010 ([ W) <cm,
|Bk| o+ Bg
(9.15) |f(x)| < C|Bg|~YPp(A~F (x — 20))~° for z € xo + Bj.

A function f satisfying (9.9), (9.14), and (9.15) with C = 1 is refferred to as
a molecule localized around the dilated ball zy + By € B. Hence, a molecule
satisfies all the properites of an atom as in Definition 4.1 with the exception of
compact support condition, which is replaced by a suitable decay condition (9.15).
Therefore, Lemma 9.3 says that, for fixed (p,q,s) and decay exponent J, every
molecule f belongs to HP with the H? norm bounded by some constant depending
only on (p,q,s) and 6. Moreover, by examining the arguments of Lemma 9.3, one
can easily see that, for fixed 0 < p < 1, this constant depends only on §.

We also remark that our definition of molecule is more restrictive than what

normally is understood as a molecule. For properties of molecules we refer the
interested reader to [BS, CW2, GR, TW].
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Our next goal is to show that Calderén-Zygmund operators map atoms into
molecules. Generally, we can not expect this unless we also assume that our opera-
tor preserves vanishing moments. The precise meaning of this is given in Definition
9.4.

DEFINITION 9.4. We say that a Calderén-Zygmund operator T' of order m sat-
isfies T*(2%) = 0 for all |a| < s, where s < mInA_/In A, if for every f € L? with
compact support and [ z®f(z)dz = 0 for |a| < m, we also have [z°T f(z)dz =0
for all |a| < s.

Note that we require that s < mInA_/In A4 in Definition 9.4 to guarantee that
the integrals [ z®T f(z)dx are well defined for all |a| < s. Indeed, it follows from the
proof of Lemma 9.5 that |Tf(x)| = O(p(x) "' ~™A-/b) a5 |z| — oo, and hence
ITf(x)| = O(p(x)~|z|~mA-/I0A4) a5 |z| — co. We also remark that Definition
9.4 overlaps with analogous property in the isotropic setting investigated by Meyer
in [MC, Chapter 7.4]. Furthermore, the condition 7™*(z*) = 0 is automatically
satisfied when T is a convolution singular integral operator, which explains why
this condition does not appear in this simpler situation, see [GR, Chapter II1.7].

LEMMA 9.5. Suppose that (p, 2, s) is admissible and an integer m satisfies m >
max((1/p—1)Ind/InA_,;sln Ay /InA_). Assume T is (CZ-m) and T*(z*) =0 for
|a] <'s. Then there exists a constant C, depending only on the Calderdn-Zygmund
norm ||T|| ¢y of T, such that ||Ta||H§YS < C for every (p,2,m — 1)-atom a.

PROOF. Suppose a (p,2,m — 1)-atom «a is supported in the ball zg + B,. We
estimate T'a separately around and away from the support of an atom a.

(9.16) / |Ta(z)?dz < / |Ta(x)|?dz < Cla||? < |B|*2/7.
To+Brtw R™

Suppose © € xo + Bititw+1 \ Bktitw for some I > 0 and y € x9 + Bg. Then

& — Y € Bititowt1 but  — y € Byyy. Hence, by (9.6) and the chain rule

(9.17) O [K (-, AP (2, A7) < C'/p(x —y) = C'bF1 for |al <m,

where C’ depends only on the constant C' in (9.6). Away from the support of the
atom a, we estimate T'a by

(918)  [Ta(x)| = \ /. K(%y)a(y)dy‘ - \ [, A aa),

where f{(x, y) = K(z, A¥*ly). Now we expand K(x, y) into the Taylor polynomial
of degree m — 1 (only in y variable) at the point (z, A=*~'zq). That is,

8;‘[((3:, A7k =lgg)

a!

(9.19) Ky)= > (' — A7 leg)* + R ().

jal<m—1

Here we think that y' = A~%~!y and that y ranges over x + By, as in (9.18). Since
we are going to apply (9.19) for 3’ € A=*~!zy + B_;, the remainder R, satisfies

[Ru(y)| <C sup sup |0 K (z,2)|ly’ — A7 o™
zEAk—lgo+B_; |a|=m

<O sup 2™,
zeB_;

(9.20)
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because the partial derivatives of K (x,y) in the variable y of order m satisfy (9.17).
Combining (9.18), (9.19), and (9.20) and using the moment condition of atoms we

have

[Ta(z)| =

[ R ] < [ R4ty
o+ Bg xo+ By

<C'vF sup |z|m/ la(y)|dy < C'b~ 7 (eAZhmpk—k/p
ze€B_; xo+ By

— C//bfk/pbfl)\:lm _ Cv//bfk/pbflé7

where 6 = mInA_/Inb+ 1. Therefore, Ta satisfies (9.14) and (9.15). Furthermore,
we have T*(z*) = 0 for |a| < s meaning T'f has vanishing moments up to order
s whenever f € L? with compact support has vanishing moments up order m — 1,
i.e., f is a multiple of a (p,2,m — 1)-atom. By Lemma 9.3 this implies that there
is a constant C' independent of a so that ||Tal|zz < C. O

Lemma 9.5 strongly suggests that any Calderén-Zygmund operator T of order
m extends to a bounded operator on the Hardy space H?, where m is sufficiently
large and depends on 0 < p < 1. This requires a careful proof since potentially there
could be a problem with the well-definedness of T on HP, due to the non-uniqueness
of atomic decompositions. This problem is similar to the one we encountered when
dealing with the duals of HP. To overcome this difficulty we need to use an ap-
proximation of a given Calderén-Zygmund operator T' of order m by a sequence of
(CZ-m) operators with nonsingular kernels.

In the following theorem we impose the same constraints on integers m and s
as in Lemma 9.5.

THEOREM 9.6. Suppose T' is a (CZ-m) with kernel K(z,y). Then there is a
sequence (T})icz of uniformly bounded (CZ-m), i.e., for any i € Z, ||Ti||(m) < C,
with nonsingular C*° kernels K;(x,y) such that

(9.21) Tif(x) = / Ki(e.9)f(w)dy  forz € R,

where f € L? has compact support, and
(9.22) Tif = Tf inL? asi— —oco for all f € L*.

Furthermore, if T*(z*) = 0 for |a| < s then also (T;)*(x®) = 0 for all |o| < s and
1€ N.

One possible approximation technique for Calderén-Zygmund operators in-
volves the truncation of the kernel. Given a C'*° function ¢ such that p(x) = 0
for © € B_1, p(x) = 1 for © € (By)® we can define kernels K; by K;(z,y) =
K(x,y)p(A~%(x — y)). By adapting arguments of Meyer in [MC] it is possible to
show, though it is not automatic, that the family of the corresponding operators
(T}) is (CZ-m) with uniform constants. Furthermore, T;,’s (after taking a subse-
quence) converge weakly to My, + T as i; — —oo, where M}, denotes the operator
of multiplication by a function h € L%, see [MC, Chapter 7, Proposition 3]. How-
ever, if K(z,y) is not a convolution kernel then in general the T;’s might not pre-
serve vanishing moments. Therefore, this approximation is not suitable for showing
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boundedness of T': HP — HP. It can be used, though, to show boundedness of
T:HP — LP.

Instead we are going to use an approximation based on smoothing by a convo-
lution with a compactly supported smooth function ¢. Indeed, suppose ¢ is C'*,
supp¢ C By and [ ¢ = 1. For any i € Z define a convolution operator R; : &' — &,
by

(9.23) Rif = f* ;.
By Lemma 6.6 for every 0 < p < oo we have

(9.24) Rif|l» < C|If| e,

and by Theorem 6.8,

(9.25) Z._l)ir_moo |Rif — fllu» =0 for every f € HP.

We are now ready to present the proof of Theorem 9.6.

PROOF OF THEOREM 9.6. We define operators T; by T; = R;T R;, where R; is
given by (9.23). Since T; : S — S’ it has a kernel K; € §'(R"™ x R™) by the Schwartz
Kernel Theorem. We claim that K is a regular distribution which is identified with
the function K; given by

(9'26) Kl(xvy) = <T(Ty(pi)77-195i>a

where ¢;(2) = ¢i(—2). Indeed, recall that for any f € &', R;f = f * ¢; is a regular
distribution identified with R;f(z) = f(7,%;). For any ¢ € S, R;,TR;(¢) is also
regular distribution and

(RioT o Ri)Y(z) = (TRi(Y), i) = (T(pi %), Tupi)

- <T(/¢(?J)S"i(- —y)dy),TmSZ’i> </¢ T(rypi)( )dy,mﬁi>
/w T (7ypi), T Pi)dy.

The next to last equality is justified by approximating the integral in L? by finite
linear combinations of functions (- — y) for y € R™. This shows (9.26). Moreover,
if v —y ¢ 2B; C Byt then supports of 7,¢; and 7,¢; are disjoint and

Ki(z,y) = (T(1yi), Tapi) = / K (u,v)pi(v — y)dvpi(z — u)du
(9.27) IR

= / K(z —u,y+v)p;(u)e;(v)dudv.
n R'Vl

Fix (20,y0) € Q and suppose that g — yo € Bjtaw+1 \ Bitaw for some [ > 3.
Since u and v range over B; in (9.27) g —u — (yo+v) = g — Yo —u —v €
Bf 5, + Biyw C Bf,,,. Also xg —yo —u — v € Biy3,41. Note that for [a| <m

(9.28) DK (-, A2 )] (2, y) = / / O (+—u, A2 1) ()i ()i (v)dudl,

by moving the differentiation inside the integral. By the chain rule and (9.6) there
is a constant C’ so that

(9.29) 051K (-, A2 (w0 — u, A7 (yo +v))| < C'b 712
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for all || < m and u,v € B;. Combining (9.28) and (9.29) we obtain
(9-30) |0 [ (-, ATF2)] (o, A™'729y0)| < C'b717% = C"plao — yo) ™

Suppose next that o — yo € Bi41 \ B; for some | < i+ 2w. We claim that there
is a constant C’ such that

(9-31) |05 [ (- A ()] < €070 < C'b* plag — yo) ™!

for all (z,y) € R* xR" and |a| < m. In particular, by choosing (x,y) = (z0, A~ yo)
we obtain the estimate (9.6) for the kernel K;. To see (9.31) for o = 0 we use (9.26)
and the Cauchy-Schwarz inequality

Kz, )| < 1T lleallz = IT]ll1307" = C'b".

For a # 0 we need an additional argument. Define the mapping H : R® — L2(R")
by H(y) = Tar,pi. Clearly, H is a C*° function on R™ with values in the Hilbert
space L?(R™). Moreover, T'o H is also C*° and 9%(T'o H) = T'0c 9“H for any multi-
index «, since bounded linear maps commute with the differentiation. Consider
also the function h(z,y) = Ta1,pi(z). For fixed y € R™, supp h(-,y) C Aly + B;.
Also for |a| <m

105 h(z,y)| = b~ 95 o(A™" (2 = AM))(y)| = b 0y p(A™"x — AT5)(y)] < C"b7

by the chain rule since ¢ is C'*° with compact support and [ — ¢ < 2w. Therefore,
for any y € R",

032 0rHOIE = [ oghePde= [ jogh(y)Pde <
R~ Aly+B;

Therefore, by (9.32) and the Cauchy-Schwarz inequality

|05 (Ko (-, AT)](2, y)| = [(0°(T o H](y), 72%3)| < |ITIIKOH(y), 72 27)]
< TNy Hw)ll2leill2 < CIITI]loll2b7",

which shows (9.31). The estimates (9.30) and (9.31) cover the whole range of
(w0,y0) € Q and they imply that the T;’s are (CZ-m) with norms ||T'||¢y,) inde-
pendent of i € Z. Clearly, T;’s are uniformly bounded on L? since the R;’s are
uniformly bounded on L? by (9.24). Moreover, (9.22) holds by (9.25). Moreover,
K;(z,y) is a smooth kernel function on R™ x R™ by (9.26). Hence, T; has a nonsin-
gular kernel K;(z,y) satisfying (9.21) initially for f € S. By a density argument,
(9.21) holds for all f € L? with compact support.

Finally, we ought to show that given a function f € L? with compact support
and [ f(z)z® = 0 for |a| < m — 1 we have [T;f(xz)z™ = 0 for |a| < s. This is a
consequence of Lemma 9.7. Indeed, R;f is also in L? with vanishing moments up
to order m — 1, hence it is a multiplicity of some (p, 2, m — 1)-atom. By Lemma 9.5,
TR, f satisfies the decay estimate (9.15) and has vanishing moments up to order s.
Therefore, by Lemma 9.7, R;T' R, f has also vanishing moments up to order s. This
ends the proof of Theorem 9.6. O

LEMMA 9.7. Suppose f satisfies f(z)(1+ |z|™) € L' and [ f(z)z*dz =0 for
la| <. Then we also have [ R;f(z)z*dz =0 for |a| < m.
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PROOF. For any |a| < 7 by the Fubini Theorem
/R e R, f(z)de = / / a f(x = y)pi(y)dyde
= [ ] wrwrs@etsy <o

because the integrand belongs to L!(R™ x R™) since the support of ¢ is bounded.(]

We are now ready to prove the main result of this section.

THEOREM 9.8. Suppose T is a Calderon-Zygmund operator of order m. If p
satisfies
2
(InA_) m.
Inbln A4

then T extends to the continuous linear operator T : HP(R™) — HP(R™) provided
T*(z*) =0 for |a| <s=[(1/p—1)Inb/In A_].

(9.33) 0<1/p—1<

PROOF. Note that (9.33) guarantees that p and m satisfy the assumptions of
Lemma 9.5 and Theorem 9.6, i.e., m > max((1/p — 1)Inb/InA_,slnA;/InA_).
Let (T})iez be the sequence of operators with kernels K;(x,y) given by Theorem
9.6. We claim that for any (p, 2, m — 1)-atom a we have

(9.34) T;a — Ta in H? as i — —oo.

Indeed, if a is supported in the ball 2y + By then R;a is supported in z¢ + Byt
for i < k. Since ||a — R;al|z — 0 as i — —oo, therefore a — R;a is a x; multiple of
some (p,2,m — 1) atom for ¢ < k by Lemma 9.7. Furthermore, x; — 0 as i — —o0.
By Lemma 9.5, |[T'(a — R;a)||gz  — 0 as i — co. By (9.24) and (9.25),

||Ta — R,TR;a||%, < ||[Ta— R;Tall%, +||Ri(Ta — TR;a)||y, — 0 asi— —oo,

which shows (9.34).

The kernel function K;(z,y) of T;, given by (9.26), is C*°. Furthermore, by
the Cauchy-Schwarz inequality all partial derivatives of K;(x,y) of order < N are
uniformly bounded for any natural number N. By taking N > (1/p—1)Inb/InA_
we conclude by Proposition 8.7 that K;(z, ) belongs to the Campanato space Céo)s
with [ = 1/p — 1 for any fixed € R™. Furthermore,

(9.35) [ Ki(z, )| A1/o-1 < C(3) for all z € R™,

e

and for some constant C' = C(i) depending only on i € Z.

Take any f € L? with compact support and vanishing moments up to order
m—1, that is f € ©% _,. Let f = > jen fija; be an atomic decomposition of f into
(p,2,m — 1) atoms with >, [r;[P < 2||f[|},» . By the duality Theorem 8.3,

2,m—1

K;(z,-) defines a bounded functional on H? and by (8.18) and (9.35),
(9.36) T;f(x) = Z k;iTa;(z) for every = € R™.
JEN
Furthermore, the convergence in (9.36) is uniform on R™ by (8.15) and (9.35), and
hence the series in (9.36) converges in &’. By Theorem 9.6, T;’s are uniformly
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bounded (CZ-m) and hence by Lemma 9.5, ||T;a,||gr < C for some constant C
independent of ¢ and j. Therefore,

(9.37) T;f = Z kiTia; convergence in H?,

JEN
Moreover,

Tl < 3 Iy PITia B < 2070710y
jeN '

Combining this with (9.34), (9.37), and letting ¢ — —oo, we obtain
(9.38) ITflle < C'l|fllae for fe 7,
for some constant C’ independent of f. Moreover,
(9.39) Tf= Z kiTa; convergence in H?.

JEN

Since ©2,_; is a dense subspace of HP, T extends uniquely to a bounded operator

in HP by (9.38). O

As a consequence we conclude that for any f € HP with f = ZJEN
> jen |RjP < oo and a;’s are (p, 2, s)-atoms, we can compute T'f by applying the
formula (9.39).

In the case when T does not necessarily satisfy T*(z*) = 0 for |a| < s, we still
have a boundedness result which is analogous to Theorem 9.8.

kjaj;, where

THEOREM 9.9. Suppose T is a Calderon-Zygmund operator of order m. If p
satisfies (9.33) then T extends to the continuous linear operator T : HP(R™) —
LP(R™).

PRrROOF. The proof follows along the lines of the proof of Theorem 9.8 with
the exception that (9.34) may not hold, since T'a may not even belong to H? for a
(p,2,m—1) atom a. Nevertheless, T'a(z) satisfies the same size estimates (9.14) and
(9.15) as in Lemma 9.5. Therefore, ||Tal|» < C for some constant C' depending on
||| (m), but independent of an atom a. Moreover, (9.36) still holds for f € ©F,_;
and consequently ||T;f||Lr < C||f||g» for all i € Z and f € ©2,_,. By (9.22)
we have T;f(z) — Tf(z) for a.e. © € R™ as i — —oo (possibly after taking a
subsequence). Therefore, by Fatou’s Lemma ||Tf||» < C||f||m» for all f € ©2,_;.
Therefore, T' has a unique extension from H? into L?, which concludes the proof
of Theorem 9.9. g
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10. Classification of dilations

In this section we investigate the question when two different dilations generate
the same anisotropic Hardy space H? for some 0 < p < 1. We give a necessary and
sufficient condition for this to happen in terms of the spectral properties of these
dilations. We start with two basic lemmas.

LEMMA 10.1. Suppose D is an n x n matriz. If ||D|| < ¢1 and |det D| > ¢y
for some ¢1,ca > 0 then there is a constant cs = c3(c1,c2) > 0 independent of D
such that |Dz| > cs|z| for all z € R™. Similarily, if |Dz| > c1]z] for all z € R™
and |det D| < ¢ for some c1,co > 0 then there is a constant cg = c3(c1,c2) > 0
independent of D such that ||D|| < c3.

LEMMA 10.2. Suppose we have two dilations A1 and Az on R™. Let p1 and
p2 be the quasi-norms associated to Ay and As, respectively. Then p1 and ps are
equivalent if and only if

. . k lek]
(10.1) zenégf{o} inf |A12|/]45 2] > 0,

or
(10.2) sup sup|AFz|/|AL* 2| < oo,
2€R™\ {0} kEZ
where
(10.3) e =¢(A41,As) =1In|det A;|/In|det As|.
PRrROOF. Note that for every k € Z

1 = |det A1|*| det Ax|~F < | det A1|*| det Ag|~LeF

o et Ay¥]det Ap|* < [ det Ay det Ay

= | det(AF A7 M) < | det Ay |F| det Ag| =R = | det As.

By Lemma 10.1 applied to A% A; ) we obtain (10.1) is equivalent to (10.2).

Assume that (10.1) and hence (10.2) holds. Let ¢ and d denote the values of
(10.1) and (10.2), respectively. Fix r > 0 so that for every z € R™\ {0}, and i = 1, 2,
there exists k € Z such that 1 < |[AFz| < r. Clearly, r = max(||A1||, ||Az2||) works.
Denote

cp =inf{p1(2):1 < |z| <}, dy =sup{p1(z) : 1 < |z| <r},
co =inf{pa(z) : 1/d < |z| < r/c}, dy = sup{p2(z) : 1/d < |z| < r/c}.
Fix € R™\ {0} and choose k € Z such that 1 < |[A¥z| < r. Clearly
(105) |det A1|7k01 S P1 ({E) S |det Allikdl.
By (10.1) and (10.2)
1/d < |AL* 2] < v/,
thus by (10.4) and (10.5)
pa(z) = | det A2|_L6kjp2(A£€ka) < | det Ao|~L* sup{pa(2) : 1/d < |2| < r/c}
S |det A1|7k| det A2|d2 S pl(I)Cfldﬂ det A2|
Similarily

p2(z) > pl(x)dfl inf{pa(2) : 1/d < |z| < r/e} > pl(;v)dflcg.
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Since x € R™ \ {0} was arbitrary the quasi-norms p; and py are equivalent.
Conversely, assume p; and p2 are equivalent, i.e., there is a constant C' > 0 so
that 1/Cpz2(x) < p1(x) < Cpa(x). For any z € R™ with |z| = 1 we have by (10.4)
Qo6 AT ) = [det Ao (4,12 < Cldet i[*pa(4 M)
< C|det Ay |F| det Ag| "L py(2) < €| det Ag| sup{pa(z) : |2| = 1} = D.

Clearly, for any r > 0, {x : p1(x) < r} is a bounded set in R™ if p; is a step
homogeneous quasi-norm. By Lemma 2.4 the same is true for any quasi-norm.
Hence there is a constant d > 0 so that {x : p1(z) < D} C {x: || < d}. Therefore

by (10.6), |A¥ A, L6sz| < d. Since z was arbitrary we obtain (10.2). This finishes
the proof of the lemma. O
Our next goal is to show the following theorem.

THEOREM 10.3. Let p1 and py be the quasi-norms associated to dilations A;
and Aa, respectively. Then p1 and p2 are equivalent if and only if for all r > 1 and
allm=1,2,...

(10.7) span U ker(A; — M d)™ = span U ker(As — A\ d)™,
[A|=re IAl=r
where € is given in (10.8). In (10.7) we think of A1 and Az as linear maps on C™.
Since A; (i = 1,2) is a real matrix then the complex subspace
span(ker(A4; — A\[d)™ Uker(A; — \Id)™) C C",
is in fact a complexification of the real subspace
span(ker(A; — AMd)™ Uker(A; — XId)™) NR™,

for any A € C, and m = 1,2,... Moreover, the conditions (10.1) and (10.2) are
equivalent to respectively

. . k lek]
(10.8) 265{3{{0} inf|Ayz|/|A3™ 2| > 0,

(10.9) sup sup|A’fz|/|A£6sz| < 00.
2€C™\ {0} k€EZ

LEMMA 10.4. Suppose A is n xn complex matriz. For any z € C*, r > 0, and
m=0,1,...

(10.10) z €E(r,m+1)\ E(r,m), where
(10.11)
E(r,m) = E(A;r,m) =span ( | ker(A—Ad)™ U | ) ker(A - AId)"),
[A|=r [Al<r

if and only if |A*z| ~ k™rk as k — oo, i.e., there is a constant ¢ > 0 and ky € N
so that

(10.12) 1/ck™rk < |AFz| < ck™r* for all k > k.
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PROOF. Suppose J is a j by j Jordan block associated with an eigenvalue A,
ie.,

A1 0
A1 0
(10.13) J =
A 1
A
The kth iterate of J is equal to

po(F)N* pr(R)A=1 pa(k)AF2 pj—1(k)AF—I+1
po(B)NF pr(B)A po(k)AF2 :

(10.14) J* = ' o L } ,

kA pr(R)AE!

po(k)A"
where p;(k) is given by the recursive formula
1 i=0,k=01,...,
pilk) =1 0 i=1, =1, k=0,... i1,

pici(k—D+pi(k—=1) i=1,...,5—-1, k=4i+1,...
In particular, p; (k) =k, p2(k) = k(k — 1)/2, and by induction

k(k—1)...(k—i+1)

!

(10.15) pi(k) =

Take any 0 # z = (21,...,2;) € C7. Let m =0,...,j — 1 be such that
z € ker(J — Md)™™  and 2 & ker(J — AId)™.

Equivalently, m is the unique index which satisfies z,+1 # 0 and z;41 = 0 for all
t>m. If A # 0 then by (10.14) and (10.15)

[T*2] Jzmal

k — oo.
EmAE T Nl BT

This shows Lemma 10.4 in the case when the matrix A is a single Jordan block.

In the general case we can use the Jordan Theorem to write A as A = UBU !,
where U is a nonsingular n x n matrix and B = @le Ji, where J; is a Jordan block
of size j; associated with the eigenvalue A;. We can assume that [A] < ... < |)]
and j; + ...+ jp, = n. For the convenience we define iy =0, [; = j1 + ...+ ji—1 for
t=2,...,p. We define the basis {v; : Il = 1,...,n} of Jordan decomposition by
v = Uey, where {e; : 1l =1,... ,n} denotes the standard basis in C™.

Note that E(r,m) C E(r',m/) if r < " or if r = " and m < m/, where
E(r,m) is given by (10.11). Also if r # |\;| for all ¢ = 1,...,p, or m = 0, then
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E(r,m) = {0} if r < |A\1] and otherwise E(r,m) = E(|\;|,n), where i is the largest
index so that |A\;| < 7. Since E(|\,|,n) = C™ therefore we can express C" as

(10.16) cr o OE(|)\i|,m+1)\E(|Ai|,m).
i=1 m=0

‘ % 0

If 2 € E(0,n) then (10.10) can not be fulfilled for any r > 0 and |A*z| = 0 for
all k > n. Suppose that z € E(|A\;,|,mo + 1) \ E(| i, |, mo) for some i = 1,... ,p,
[Aig| # 0, and mo = 0,... ,n — 1. Let 43 = min{i : |\;| = |A; |}, and iz = max{i :
IAi| = |A\io|}. Observe that E(|\;,|, m) consists precisely of vectors >_;" | a;v;, where
a; € C, and a; = 0 if either I;, <lorl;+1+m <1 < ;4 j; for some 4, i; < i < is.
Hence, we can write z as Eizl a;v;. By (10.14) we have for k € N,

i Li+Ji i li+ji
AkZZZAk( Z alvl> :ZU< Z aB el>
i=1

=141 i=1 I=l;+1
i2 Li+ji li+Ji ,
—('=1)
(10.17) = g U( g E aypr—i( )
i=1 I=l;+1 I'=l
i li+Ji plit+ga
Z Z Z Z=-n
= aypy— l
i=1 1=l +1 L 1=

Since z € E(|)\10|, m0+1)\E(|/\ZO|, mo), we havea; = 0if [;+14+mo+1 <1 < ll—l—jl
for some i, i3 < i < ip. Also there exists i’, 11 < ¢/ < i3, mg + 1 < ji such that
ap # 0, where I’ = Iy + 1 + mg. Therefore, all the coefficients of the v;’s in
the brackets (10.17) are dominated asymptotically by k™|\o|* as k — oo and at
least one coefficient (the coefficient of v, ;1) behaves asymptotically as k™0 |Xq|*
as k — oo by (10.15). Since the norm |U - | is equivalent to the standard norm |- |,
this shows that there exists a constant ¢ > 0, and kg € N so that

1/ck™ | Xo|* < |AF2| < ck™|Xo|¥  for all k > ko,

i.e., (10.12) holds.
This combined with (10.16) also shows the converse implication. (]

Proor oF THEOREM 10.3. Lemma 10.2 says that the quasi-norms p; and ps
are equivalent if and only if (10.8) and/or (10.9) hold. Assume that this hap-
pens. For » > 0 and m = 0,1,..., let E(A;;r,m) be the linear space given
by (10.11) corresponding to the dilation A;, ¢ = 1,2. By Lemma 10.4, if z €
E(Ay;r,m+1)\E(Ay;r,m) then |A¥z| ~ k™r* as k — oo and by (10.8) and (10.9),
|A£€sz| ~ k™rk so |Akz| ~ k™rk/€ as k — oco. Therefore, 2 € E(Ag; /¢, m +
1)\ E(Ag; 7Y€, m). Since the sets E(A;;7,m+1)\ E(Ag;r,m), r > 1, m=0,1,...
partition C™ \ {0} for ¢ = 1,2, we have E(Ay;7r¢,m) = E(Ag;r,m) for all r >
0, m = 0,1,.... Analogously, by considering matrices Al_1 and A2_1 we have
E(A7Yr,m) = E(AyY;7,m) for all > 0, m = 0,1,... Since E(A;r,m) N
E(A; 771, m) = span U\A|:r ker(A4; — Md)™ for all r > 0, m = 0,1,..., we have
(10.7). By reversing this argument we obtain the converse implication. O

We are ready to state the classification theorem for dilations generating the
same anisotropic Hardy space H?, 0 < p < 1.
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THEOREM 10.5. Suppose we have two dilations A1 and Ay on R™. The follow-

ing are equivalent:

(i) the quasi-norms p1 and p2 associated to Ay and As, respectively, are equivalent,

(i) (10.7) holds for allT >1, m=1,2,...,

(111) the anisotropic Hardy spaces HP associated to Ay and As are the same for some
0<p<l,

(iv) the anisotropic Hardy spaces HP associated to Ay and Ag are the same for all
O0<p<l1.

REMARK. We claim that the atoms introduced in Definition 4.1 can be alter-
natively defined as follows. Suppose A is a dilation and p its associated quasi-norm.
We say a triplet (p,q,s) is admissible (with respect to dilation A) if 0 < p < 1,
1<g<oo,p<qgseNyands> [(1/p—1)Indb/InA_|, where b = |det A|, and A_
is such that (2.1) holds. A (p, g, s)-atom (associated with dilation A) is a function
a such that

(10.18)

suppa C {z: p(xo —z) <7} for some r > 0,29 € R",
(10.19)

lallg < rt/amt/P,
(10.20)

/ a(x)z®dx =0 for |a] < s.

Indeed, if p is the step homogeneous quasi-norm then the above conditions for
r = b, j € Z coincide with Definition 4.1. If p is a general quasi-norm then by
Lemma 2.4 there is a constant ¢ > 0 so that for every atom a satisfying (10.18),
(10.19), and (10.20), ca is an atom in the sense of Definition 4.1. And vice versa.
Therefore, the definition of atoms is independent of the choice of a quasi-norm up
to the equivalence of a multiplicative constant.

We can also replace conditions (10.18) and (10.19) by

(10.21) suppa C xg + AjB(O, 1) for some j € Z,zy € R™,
(10.22) llally < [A7B(0, 1)/~ 1/,
where B(0,1) = {z : |z| < 1}.

PRrROOF. Theorem 10.3 states that (i) <= (ii). (i) = (iv) is a consequence
of the above Remark. (iv) = (iii) is automatic. It suffices to show (iii) = (ii).

Assume that (iii) holds for some 0 < p < 1. Our goal is to show (ii). Denote
the Hardy space associated to the n x n dilation matrix A by H(R™) or simply
HY). We claim that HY = HY implies that there is a constant C' > 0 so that

(1023) 1Ol g, < |fllun, OISl for all f € HY, = HY,.

By Theorem 6.9 and the following Remark, (10.23) is equivalent to the same condi-
tion being satisfied for all bounded, compactly supported functions f with vanishing
moments up to order s, where s is large enough so that triplet (p, 0o, s) is admissible
for both A; and As. The family of such functions consists precisely of scalar mul-
tiples of (p, 00, s)-atoms (associated with A; or Az). It is not hard to see that the
equivalence of norms for atoms implies the corresponding statement for all elements
of HY = HY ,ie., (10.23).
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If (10.23) fails then we could find a sequence of elements (fi)ien in H}, so
that ||fZ||Hf‘1 < 27" and ||fZ||Hf12 =1 for all i € N (or the similar statement with
the norms || - ||H§;17 IE ||H§2 interchanged). For any choice of vectors k; € R™ the
series ),y Tk, fi converges in H) (and hence in &), since ), ||fi||§,}fll < 00,

see Proposition 4.5. Here 7, f(x) = f(x — k) denotes the translation of f by the
vector k € R™. We claim that for some choice of k;’s, ZieN Tk, fi does not belong
to HY,. Indeed, if M denotes the (grand) maximal function associated to As then
find the sequence of numbers (r;);en so that

(10.24) / M fi(x)Pde >1—-2"""1  foralli€N.
B(0,7;)

Choose k;’s so that the balls B(k;,r;) are mutually disjoint. Let f = >,y 7k, fi €
S'. For each j €N, 7 fj = f =32, ; T, fi with convergence in &', hence

1/p
M, (@) < Mf@) + X M f)(@) < (MIP + X M )@ )
i#] i#£]

for all x € R™. In particular
M f(z)P > M (i, fi) ()P = > M(7, fi)(x for z € B(k;,75).
i#£]

Integrating the above and using 7, M = M, we have

/B(kj,rj) Mf(x)pdx ° »/I;(k- r5) (M Tha fJ ZM Th fl >

i#]
:/ M f;(z)Pdx — Z/ M fi(z)Pdx
B(0,r;) i£j B(kj—ki,r;j)
>1-27071 = Z/ Mfi(z)Pde > 3/4—> 2771 =1/4,
i#j B(0,ri)° i€N

by (10.24) and [,, M f;(z)Pd2z = 1. Summing the above over j € N we have
Mf(x pd:z:>2/ z)Pdx = 0.
R jGN (k ’I"])

Hence, f ¢ HY which is a contradiction of (iii). Therefore (10.23) holds.

We remark that if A is a dilation then D 4 f(z) = | det A|'/? f(Az) is an isometry
on HY. More precisely, if f € 8" and ¢ € S then we define D4 f by

(Daf, o) = |det AP, p(AT1)).
Indeed, by a simple calculation we have
Mgf(ACE) = |detA|_1/ng(DAf)(x) for x € R,
and by the definition of the grand maximal function and a change of variables

(10.25) 11l = 1Daflly,  for all f € HE.
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Consider the family of functions f on R™ so that

(10.26) supp f C o + A{lA%ZB(O, 1) for some j1,j2 € Z, 9 € R,
(10.27) [[flloo < |det Ay|771/P| det Ay|~72/P,
(10.28) f(z)x®dz =0 for all |a| < s.

]Rn

We claim that there is a constant C” > 0 so that ||f[|zz < C' for every f satisfying
1

(10.26)-(10.28). Indeed, for any such f, D i

2

A;jz Al_j1 xo + B(0,1), has L norm less than 1, and has vanishing moments up
to order s, hence is a constant multiple of an atom (satisfying (10.20)—(10.22) with
j =0 and ¢ = 00). The claim now follows from (10.23) and the iterative form of
(10.25). Finally, let fo be a fixed function satisfying (10.26)—(10.28) with z¢ = 0,
J1=J2=0,

D i, f has support contained in
1

do for all x € B(3/4ey,1/4),

(10.29) folz) = { 0 for all = ¢ B(0,1/2) UB(3/4e1,1/4).

It is clear that if 9 > 0 is sufficiently small a function fy satisfying the above
constraints exists.

To finish the proof, assume on the contrary that (ii) fails. By (10.2) this means
that either

lim sup ||A]1€A;L€]CJ || =00 or limsup ||AIfA;L€kJ || = 0.

k—oo k— —o0

It is not hard to see the lim sup can be replaced by lim using the idea in the proof
of Theorem 10.3. For any k € Z define d(k) as the smallest integer so that

| A Ay LR <,
Clearly, we have
—lek|—d(k —lek|—d(k _ _
(| AR A R AE | = Ak A L0 4y )| Ag ]| > ] A7

We either have d(k) — oo as k — oo or d(k) — oo as k — —oo. We will fix our
attention on the case when d(k) — oo as k — oo; the other case is identical.

For simplicity denote Qr = A¥ A, Lek)=d(®) et 2, € R™, |zk| = 1, be such that
|Qrzk| = ||Qk|| =: c¢(k). We know that ||As||~* < ¢(k) < 1. Let Uy be a unitary
matrix such that Uge; = z,. Consider function

(10.30) fr = Dy-1g-+fo = Do Dy fo,

The function fj clearly satisfies (10.26)—(10.28) with xo =0, j1 =k, jo = —|ek] —
d(k) Since QkUkB(O, 1/2) - B(O,C(k)/2) and QkUkB(3/4€1, 1/4) = QkB(3/4zk,
1/4) then by (10.29) and (10.30)

z € B(0,c(k)/2)¢ and fi(z) #0 =

(10.31) r € Q1B(3/42,1/4) and fi(x) = O,
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FIGURE 3. THE SUPPORT OF fj IS CONTAINED IN THE SHADED
REGIONS. THE FUNCTION fj IS EQUAL TO §, IN THE DARKER
ELLIPSE.

where 8, = do| det Ay |~*/P| det Ag|Lkl/PHA(R)/P et € S be a nonnegative func-
tion such that
1 for x € B(0,1/8||A2||7Y),

(10.32) pla) = { 0 for x ¢ B(0,3/16]|A2||71).

We claim that [[MQ fi||, — oo as k — co. Indeed, if z € B(3/4Qx2k,1/16||A2|| ™)
then

M fi(2) = | fi  o(2)] = fr(@)e(z — x)dx

Rn
(10:33) = 0y, /Rn 1Q,B(3/42,,1/4) (2) (2 — 2)dx
> 0k [B(2,1/8][A2||71) N Q1 B(3/4zk, 1/4)),
by (10.31) and (10.32) since ¢(z — x) # 0 implies

z € B(0,3/16]| As|| 1) + B(3/4Qrzk, 1/16]| Ao|| 1) = B(3/4Quzw. 1/4|As|| ),

and hence z € B(0,¢(k)/2)°. By (10.33) and Lemma 10.6 applied to P = 1/4Qy
and r = (2c(k)||Az2||) !
M fi(2) = 0k|B(z — 3/4Qrzk, 1/8|A2||71) N PB(0,1)] > dx(r/2)" |PB(0, 1))
> | det Qk||B(0, 1/4)[0x (4| A2[[) ™"
> 8o det Ao |4 =DA/P=11B(0,1/4)|(4]|A2||) ™™ = ¢| det Ap|dFI/P=1)
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by (10.4). Therefore, if p < 1 then

Mz = [ MOfi ()P
B(3/4Qkzk,1/16||A2||~1)

> ¢P|B(0,1/16|| Aa||71)|| det Ap|* P A=P) o6 as k — oo.

R

By Theorem 7.1, ||f||gz — oo as k — oo which contradicts || fi|[gz < C".
1 1

Therefore, (ii) must necessarily hold if p < 1.

The case p = 1 requires a special argument. We have ||fx||1 = ||fo||1 and
supp fr C QxB(0,1) for all £ € N. Since S is a separable space there is a subse-
quence (fx,)ien converging to some f € &', and r = lim;_, o, ¢(k;) exists. Clearly f
is a regular Borel measure with compact support which is singular with respect to
the Lebesgue measure since |supp fi| — 0 as k — oo. Furthermore, f # 0 which
can be verified by testing f with an appropriate (nonnegative, radial) test func-
tion ¢ € S vanishing on B(0,7/2). Let M denotes the (grand) maximal function
associated to A;. By Fatou’s Lemma

M f(z)dx < / liminf M fi, (z)dz < liminf [ M fi,(z)dz

Rn —00 i—00 Rn

RTL
< liminf || fg, ||z < .
i—00 A1

Hence f € H} . But f & L' which is a contradiction of H} (R™) C L'(R™). This
finishes the proof of Theorem 10.5. O

LEMMA 10.6. Suppose I' = PB(0,1) = {z € R" : |P7z| < 1} is an ellipsoid,
where P is some nondegenerate n X n matriz. For any 0 <r < 1/2 we have

[B(z, |[P[[r) N T

T > (r/2)" for all z € B(0,||P]|r/2).

PROOF. Let ¢ = ||P||. For any z € B(0,cr/2), B(0,c¢r/2) C B(z, cr) hence
|B(z,cr)NT| S IB(0,cr/2) N PB(0,1)]  |P7'B(0,cr/2) NB(0,1)]

T 2 |PBO,D) B0, 1)
|B(0,7/2) nB(0,1)| B n
S T e

We close this section with a simple example of a distribution that differentiates
most anisotropic H? spaces. Although this example gives only a necessary condition
for Hzl = HZ2, 0 < p < 1, it motivated the author toward Theorem 10.5.

LEMMA 10.7. Suppose 0 < p <1 and A is a dilation. For fized z € R™\ {0},
let f =09 — 0, €S8’, where §, denotes the point mass at z. Then
(10.34) MO f(z)Pda < 00 <= » _|A7'zP|det A|' P < o0,

R =1

where ¢ € S, [ # 0.
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PROOF. Since M2do(x) ~ 1/p(x), where p is a quasi-norm associated to A,
M4 is locally in LP (0 < p < 1). Therefore, only the behavior of M at infinity is
of importance. For simplicity we choose a nonnegative ¢ € S so that p(x) =1 for
all z € By and suppy C Bj, where B;’s come from Definition 2.5. By the Mean
Value Theorem

/ [(Vo(x), w)|Pdx >0 for any w € R™ \ {0},
Bl\Bo

where Vi is the gradient of ¢. By continuity

inf / [(Vp(z), w)|Pdx > 0.
Bl\B()

lw|=1

Since |p(z) —p(z—w)— (Vo(z),w)|/|w| — 0 as |w| — 0 uniformly over x € By \ By,
there is a constant ¢ > 0 so that

(10.35) / lo(z) — p(z — w)|Pdx > c|w|P for all |w| < 1.
B1\B()

[ et -y

=supb "lp(A7"z) — p(A*(x - 2)),
kEZ

We have

0 k
M, f(x) —supb

(10.36)

where b = | det A|. Without loss of generality we can assume that |z| < 1. Suppose
x € Bj41 \ By for some [ > g, where [ is sufficiently large so that (B;)¢+B(0,1) C
(Bj—1)¢ for alll > ly. Since x—z € (B;—1)° the supremum in (10.36) runs effectively
only for kK > [ — 1, and

Mgf(x) < b sup |[Ve(y)| sup |[A7Fz| < b 1A 2.
yeRn k>1-1
Therefore

/ MO f(z)Pdx < CPHTHIP| AT 2| = CPpU P AT 2P,
Bi41\By
On the other hand by (10.35)

R Y S R e
Bi+1\B;

Bi1\B;

= bilpbl/ lo(z) — p(x — A7 2)|Pde > b P AP,
B1\Bo
Summing the last two estimates over [ > I yields (10.34). O

COROLLARY 10.8. Suppose 0 < p < 1, A is a dilation, and z € R™ \ {0}. The
following are equivalent:
60 — 6z S Hg,
|A 2] det A|/P=DE 0 as 1 — oo,
z € span ( U ker(A — /\Id)”).

[A|>] det A|1/Pp—1
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PRrOOF. Corollary follows easily from Lemmas 10.4 and 10.7. O

EXAMPLE. Suppose A; and A, are dilations. Let A%, ..., \Y be eigenvalues of
A; (taken according to multiplicity) so that [A¢| < ... < |A¢|,i = 1,2. Suppose that
HY = HY forall 0 < p < 1. By Corollary 10.8 this implies (r = |det A;|'/P~1)

span U ker(A; — M d)" = span U ker(Ay — MId)" for all » > 1,
IA[>r I\[>r1/e

where € is given by (10.3). In particular, by counting dimensions we have
(10.37) N[/ I ldet Anl — a3 (1 Inbdet Aol for )] =1, .

Naturally this condition falls short of sufficiency (in comparison with (10.7), for
example). Nevertheless, it does give a quick way of checking whether two dilations
might generate the same anisotropic H? spaces. In fact, (10.37) comes very close
to characterizing those Hardy spaces which are equivalent up to a linear transfor-
mation, as we will see in Theorem 10.10.

DEFINITION 10.9. We say that HY) and HY are equivalent up to a linear
transformation, and write HY = HY) if there is a nonsingular n x n matrix P such
that Dp is an isomorphism between HY and HY . We say that two quasi-norms
are equivalent up to a linear transformation if there is a constant ¢ > 0 and a
nonsingular n X n matrix P such that

1/ep1(x) < po(Px) < cp1(x) for all z € R™.

THEOREM 10.10. Suppose we have two dilations A1 and As on R™. The fol-
lowing are equivalent:
(i) the quasi-norms p1 and ps associated to Ay and As, respectively, are equivalent
up to a linear transformation,
(it) for allr >1 and m=1,2,... we have

(10.38) > dimker(A; — Md)™ = > dimker(Ay — Ad)™,
|X|=re [A|=r

where € is given by (10.3),
(i) HY = HY forall0<p<1,
() HY = HY for some 0 <p<1.

ProoF. Without loss of generality we can assume that the dilations A; and
As have only positive eigenvalues and det A; = det A2 = b by Theorem 10.5.

Assume (i) holds. Note that po(P-) is a quasi-norm associated with the dilation
P~1A,P. Indeed,

pQ(P(P71A2P$)) = | det A2|p2(PI) = | det(P71A2p)|p2(I).
Since the quasi-norms p; and py(P-) are equivalent

ker(A; — rId)™ = ker(P~* Ay P — rId)™ =ker(P~'(Ay — r1d)™P)
=P !(ker(Ay — rId)™),
for any 7 > 1, m =1,2,... by Theorem 10.5. Hence (ii) holds.
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Assume (ii) holds, i.e.,
(10.39) dimker(A; —rId)™ = dimker(Az —rId)™, forallr >1,m=1,2,...

If r is an eigenvalue of A; then the number of Jordan blocks of size > m corre-
sponding to 7 is equal to dim ker(A; — rId)™ — dimker(A; — rId)™~1. If r is not
an eigenvalue of A; this number equals 0 regardless of m. By (10.39) the number
of Jordan blocks of size m corresponding to the eigenvalue r is the same for both
Aq and A, and therefore the matrices A; and A, have equivalent Jordan decompo-
sitions. So there is a nonsingular n x n matrix P such that A; = P~!A,P. Choose
any ¢ € S with [¢ # 0. Let gp(z) = b *p(A7*2) and ¢y (z) = b Fy(A5 ),
where ¢(z) = |det P~1|p(P~'z). Given any f € S’ we have

(f % ox) () = 0" / F)e(P A3 P(z — ))dy
— b*| det P / F(P1y)p(P~1 A (P — ) dy

= /f(Pily)@[Jk(P:v—y)dy: |detP|1/p(Dp71f*¢k)(P:v).

Therefore, ||MJfl, = |[M{)Dp-1 fl|,, where the maximal functions are associated
to A; and Aj, respectively. Thus, ||f||Hf11 ~ ||DP—1f||H£2 for any f, and HY =
HY), for any 0 < p < 1, thus (iii) holds. Since (iii) trivially implies (iv), it suffices
to show (iv) = (i).

Assume (iv) holds, i.e., for some 0 < p < 1, ||f||H£1 ~ ||DP—1f||H£2 for any

feH fh' Consider the family of functions f on R™ such that

(10.40)  supp f C zo + AJ* P~1 A2 PB(0,1) for some j1, jo € Z,x9 € R",

(10'41) ||f||oo < b-j1/P-j2/:D7

(10.42) f(z)x®dz =0 for all |a| < s.
Rn

We claim that there is a constant C” > 0 so that ||f[|z < C' for every f satisfying
1

(10.40)(10.42). Indeed, for any such f, D i,

2

Ay PA; 20 + PB(0,1), has L™ norm less than |det P|~'/?  and has vanishing
moments up to order s, hence is a constant multiple of an atom. The claim now
follows from the hypothesis and the iterative form of (10.25). By the proof of
Theorem 10.5 we conclude that the dilations A; and P~'A,P have equivalent
quasi-norms p; and pg, respectively. Define pa(x) = po(P~1z). Clearly ps is a
quasi-norm associated with the dilation Ay and p; and pa(P-) are equivalent. This
shows (i) and ends the proof. ]

Dp-1D 45 f has support contained in
1
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CHAPTER 2
Wavelets

1. Introduction

In this chapter we present constructions of orthogonal and tight frame wavelets
in the Schwartz class. We investigate the limitations on regularity of orthogonal
wavelets imposed by the form of a dilation. We show that sufficiently regular
wavelets form an unconditional basis for the anisotropic Hardy space associated
this dilation.

Historical background. The theory of wavelets is a relatively new area of
mathematics. The first example of an object now called a wavelet is the Haar func-
tion introduced by Haar [Ha] in 1910. Haar showed that the appropriate translates
and dilates of Haar function form an orthonormal basis of L?([0,1]). The second
example of wavelets has been introduced by Stromberg [S6] in 1981. Stromberg
wavelets can be constructed to be C" smooth with exponential decay at infinity for
any integer r > 1. Stromberg has also shown that they form an unconditional basis
for the Hardy space HP(R™), 0 < p < 1.

The theory of wavelets has taken off with the construction of wavelets in the
Schwartz class by Meyer [Me] in 1985. Soon after Daubechies [Dal, Da2] has
constructed compactly supported wavelets in C” class for any integer » > 1. In the
first few years of its existence the theory of wavelets has grown exponentially and
it is still a very active area of research both in pure and applied mathematics. For
example, wavelets turn out to have many advantages in studying various function
spaces. They form an unconditional bases for a variety of function spaces, e.g. LP,
Hardy, Holder, Sobolov, and Besov spaces. In the applied sciences wavelets are
successfully used in many areas of signal analysis, e.g. image compression, noise
reduction, feature extraction, etc., see [JMR]. Here we are going to discuss only the
part of the theory concerned with wavelets in Euclidean spaces.

Description of the chapter. Dai, Larson and Speegle [DL, DLS] have shown
the existence of orthogonal wavelets (minimally supported in frequency) for all
dilations. However, the construction of more regular wavelets is a complex process
which is apparently impossible for “most” of dilations, see Theorem 3.1.

Our initial goal is the construction of regular orthogonal wavelets for a general
dilation matrix A preserving some lattice I'. Strichartz [Sr] has constructed r-
regular wavelets with an associated r-regular multiresolution analysis for every r
and for a wide class of dilations having a Haar type wavelet basis, or equivalently
a self-affine tiling, see [GM]. This result was extended to all dilations preserving
some lattice in [Bo4].

However, the problem of finding co-regular multiwavelets, i.e., in the Schwartz
class, for a general dilation A preserving some lattice is still open. Nevertheless,
we are able to show the existence of orthogonal wavelets in the Schwartz class
associated with some positive power of A. This is the content of Section 2.
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In Section 3 we show that if move beyond the class of dilations preserving some
lattice, regular wavelets may not exists. In fact, we show that for a large class
of dilations all multiwavelets must be combined minimally supported in frequency.
Nevertheless, in Section 4 we show that co-regular tight frame wavelets exist for
any dilation matrix.

In Section 5 we show that r-regular wavelets associated with a dilation A form
an unconditional basis for the anisotropic Hardy space HY associated with A. This
generalizes the result of Meyer [Me] who showed this in the isotropic case. We
remark that unconditionality of multiwavelets with arbitrary dilations in L space
(1 < p < o0) was shown by Pompe [Po].

In the following section we study the sequence space of coefficients of elements
of HP in the wavelet expansion. In the isotropic case this sequence space was studied
by Meyer [Me] and Frazier and Jawerth [FJ1, FJ2] in the scale of Triebel-Lizorkin
spaces.

Wavelet preliminaries. Throughout Section 2, we are going to assume that
we have a lattice I' (I' = PZ" for some nondegenerate n X n matrix P) and a
dilation matrix A preserving T, i.e., all eigenvalues A of A satisfy |A| > 1, and
AT C T'. Without loss of generality, we will assume that I' = Z".

DEFINITION 1.1. Let ¥ be a finite family of functions ¥ = {y!,... 9L} C
L?(R™). We say that U is a wavelet family (or a multiwavelet) if {1/)é—)k 1j €Lk e
Z" 1=1,...,L} is an orthonormal basis for L?(R™). Here, for ¢ € L*(R") we use
the convention

Yin(@) = Daimiah(z) = |det AP/ 2p(Ale — k) j €L,k e,

where 7, f(z) = f(x — y) is a translation operator by the vector y € R”, and
Daf(z) = +/|det A|f(Az) is a dilation operator by the matrix A.

DEFINITION 1.2. By a multiresolution analysis we mean a sequence of closed
subspaces (V;)icz C L?(R™) satisfying:
(i) Vi C Viqq fori € Z,
(il) V; = D iV for i € Z,
(i) Uz Vi = L2(R™),
)
)

(V ﬂieZV; = {0}7

i
(v) there exists ¢ called a scaling function such that {7yp}rezn is an orthonormal

basis of V.
We say that a wavelet family W = {!, ... 9L} is associated with a multires-
olution analysis (MRA), if the spaces
(1.1) Vi=EPw,;,  where W, =span{y!, : ke Z",1=1,... L},
j<i

form an MRA. This happens precisely when Vj as a shift invariant subspace of
L?(R™) has dimension function Dy (§) = 1 for a.e. £ € R™. For the definition of
the dimension function for general shift invariant spaces, see [BDR, Bo3]. However,
the dimension function of Vj is given by the explicit formula,

(1.2) Dy() => > > [WBIE+R)

=1 j=1 kezZ"
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where B = AT see [Ba, BRS]. Since

L
_ _ 2
(1.3) /(Mn Dy(§)dg =1/(b—1) ;:1 [l

a wavelet family ¥ = {91, ... 9L} can be associated with an MRA only if L = b—1,
where b = | det A|.

DEFINITION 1.3. We say that a function f on R™ is r-regular, if f is of class
C",r=0,1,... ,00 and

(1.4) 0°f (2)] < cap(l+ 27",

for each k£ € N, and each multi-index «, with |a| < r. A wavelet family ¥ =
{h, ... E} is rregular, if 1, ... ¢l are r-regular functions. An MRA is r-
regular if the subspace Vj given by (1.1) has an orthonormal basis of the form
{7k : k € Z"™} for some r-regular scaling function .

If a wavelet family ¥ is r-regular for r sufficiently large, or more precisely
ib1(€)| are continuous and [ (€)] < C(1 + |€])~™/27¢ for some & > 0, then the sum
(1.2) converges uniformly on compact subsets of R™\ Z™ to the continuous function
Dy (€) having integer values. Therefore, by Z"-periodicity Dy is constantly equal
d for some d € N. If d = 1 then r-regular wavelet family ¥ comes from some
MRA (more generally, ¥ comes from an MRA with multiplicity d). This result was
essentially shown by Auscher [Au2, Au3, Theorem 10.1] (under slightly stronger
assumptions on z/;l ’s). In general, we can not expect that this MRA is also r-regular;
for a counterexample see [MC, Chapter 8, Proposition 2]. Conversely, having an
r-regular MRA we can not, in general, deduce the existence of r-regular wavelet
family associated with it, see [Wo2, Theorem 5.10, Remark 5.6]. Nevertheless, we
can deduce the existence of r-regular wavelet family by using the following result,
see [Wo2, Corollary 5.17] which also holds for r = co.

PROPOSITION 1.4 (Wojtaszczyk). Assume that we have a multiresolution ana-
lysis on R™ associated with an integral dilation A with |det A| = b. Assume that
this MRA has an r-regular scaling function ¢(x) such that () is real for some
r = 0,1,...,00. Then there exists a wavelet family associated with this MRA
consisting of a (b — 1) r-regular function.

Starting in Section 3 we relax the assumption that a dilation A has integer
entries and we only assume that A is expansive in the sense of Definition 2.1 in
Chapter 1. In Section 3 we show that in this setting r-regular orthogonal wavelet
bases may not exist in general. Consequently, starting in Section 4 we consider also
tight frame wavelets.
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2. Wavelets in the Schwartz class

In this section we are going to construct an MRA which has a scaling function
© in the Schwartz class and $(€) is real for some special class of dilations satisfying
a kind of expansiveness property. By Proposition 1.4, we can then find a wavelet
family in the Schwartz class associated with this MRA.

DEFINITION 2.1. We say that the integral dilation B is strictly expansive if
there exists a compact set K C R” such that
e 0 € K°, where K° is the interior of K,
o |[KN(I+K)|=d forleZm,
e K C BK°.

DEFINITION 2.2. Given a set Y C R" and € > 0 we define its e-interior Y ¢
and e-neighborhood Y ¢ by
Y ={¢eR":B(,e) CY},
Y ={¢eR":B(e)NY #0}.

Note that Y ¢ is closed, Y ¢ is open, and the interior of Y satisfies Y° =
Usso Y 5. If the dilation B is strictly expansive and the compact set K satisfies
Definition 2.1, then there exists € > 0 such that

(2.1) K™ C B(K™°).
We shall prove the following existence theorem.

THEOREM 2.3. Suppose A is a dilation matriz with AZ™ C Z™ with b = | det A|.
If the dilation B = AT s strictly erpansive then there ewists a multiresolution
analysis with a scaling function and an associated wavelet family of (b—1) functions
in the Schwartz class.

For the sake of completeness, we recall the proof of Theorem 2.3 from [BS1,
Theorem 3.2].

PROOF. Let K and & > 0 satisfy Definition 2.1 and (2.1). Choose a C'*
function g : R" — [0, 00) such that [, g =1 and

(2:2) supp g := {{ € R" : g(§) # 0} = B(0,¢).
Define the function f by

(2.3) f(&) = 1k x g)(§).

Clearly f is in the class C*°, 0 < f(§) <1, and

(2.4) supp f = {£ € R" : f(§) # 0} C K*°,
(2.5) {EeR™: f(O =1} =K""
Moreover,

(2.6) Z fE+k)= Z /]R" 1x(E+EkE—n)g(n)dn=1 for all £ € R™,

kezZm keZn

since ), cyn 1k (§ + k) =1 for a.e. £ € R™ by Definition 2.1.
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Finally, define the function m : R™ — [0, 1] by

(2.7) > F(BE+E)

keZm

CrLAM 2.4. The function m given by (2.7) is C*, Z™-periodic, and

(2.8)
Z |m(¢ + B )| =1 for all £ € R™,

deD
(2.9) m(€) >0 = {€Z"+B (K",
(2.10) m() =0  forée (B'Z"\Z")+ B (K9),
where B = AT, and D = {d, ... ,dy} is the set of representatives of different cosets

of Z" | BZ™, where b = | det Al.

Proor oF CLAIM 2.4. To guarantee that m is C°°, the function f must “van-
ishes strongly”, i.e., if (&) = 0 for some &y then §*f(&y) = 0 for any multi-index
a. It is clear that if nonnegative function f in C* “vanishes strongly” then +/f is
also C*°.

The condition (2.8) is a consequence of

S ImE+BT )P =YY F(BE+BMd+E) =YY f(€+d+Bk) =1,
deD keZm deD keZm deD
by (2.6).

To see (2.9), take & such that m(¢) > 0. By (2.4) and (2.7), B({ + k) € K¢
for some k € Z", and hence (2.9) holds.

We claim that (2.10) follows from (2.8) and

(2.11) m) =1 foré€Z"+ B 1 (K™°).

Indeed, if ¢ € B™'d + k + B71(K~¢) for some d € D\ BZ" and k € Z", then
by (2.11) we have m(¢ — B~'d) = 1. Hence by (2.8) m(¢) = 0 and (2.10) holds.
Finally, (2.11) is the immediate consequence of (iii) and (2.7). This ends the proof
of the claim. O

We can write m in the Fourier expansion as
2.12 m e 2mikO)

where we include the factor |det A|~'/? outside the summation as in [Bol]. Since
m is C*°, the coefficients hy decay polynomially at infinity, that is for all N > 0
there is Cy > 0 so that

|hi] < On|E|™N  for k€ Z™\ {0}.

Since m satisfies (2.8) and m(0) = 1, m is a low-pass filter which is regular in the
sense of the definition following [Bol, Theorem 1]. By [Bol, Theorem 5] ¢ € L?(R™)
defined by

(2.13) Hm —Ig),
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has orthogonal translates, i.e.,
(p,ip) =610  forleZ",

if and only if m satisfies the Cohen condition, that is there exists compact set
K C R" such that
e K contains a neighborhood of zero,
e |[KN(I+K)|=6,forlez,
e m(BI¢)#0foré e K, j>1.
The first guess for K to be K is in general incorrect, e.g. if K has isolated
points. Instead we claim that there is 0 < § < 1 so that

(2.14) K={¢e K:|B(¢e)NK|>3B(e)|}

does the job. Clearly, if £ € K then h(€) # 0, hence f(§) # 0 and thus m(B~1E) #
0. By (2.1) B7'K ¢ B7'K*¢ ¢ K=¢ C K and thus m(B77¢) # 0 for all j > 1.
Finally, it suffices to check that

(2.15) ST 1zE+k) =1 forall¢ eR™
kezZm
By the compactness of K there is a finite index set I C Z" such that
(2.16) D ik(€+k) =1 forall§ € [-1,1]"
kel
Take any £ € [—1/2,1/2]™ and integrate (2.16) over B(§, ) to obtain
> B +ke) N K| > B )|
kel
Therefore, if we take § = 1/#1I then there is k € I such that [B({ + k,e) N K[ >
§|B(&,€)| and hence £ + k € K. Thus, (2.15) holds and K given by (2.14) satisfies
the Cohen condition. Therefore, ¢ is a scaling function for the multiresolution
analysis (V;) ez defined by
V; =span{Dimip : l € Z"} for j € Z.
It remains to show that ¢ € S. We are going to prove that ¢ is band-limited,
i.e., ¢ is compactly supported. By (2.9) and (2.13)
(2.17) P(6)#0 = £€ BZ"+ K™=,

On the other hand, by (2.10) m(B~7¢) =0 for £ € BI=1Z" \ BIZ" + BI~"1(K ).
Since

G (Bi='z" \ Biz") = BZ™ \ {0},

and _

K™ cB(K¢)cB"YK°)  forj>2,
we have
(2.18) o) =0  for e BZ"\ {0} + K*=.

Combining (2.17) and (2.18) we have ¢(§) = 0 for & € (K'¢)¢. Therefore,
supp® C K¢ and ¢ is in the Schwartz class. To conclude the proof it suffices
to use Proposition 1.4 for r = co. ([
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As a corollary of Theorem 2.3 we have the following.

COROLLARY 2.5. Suppose A is a dilation with integer entries with b = | det A|.
Then there exists m € N and a multiresolution analysis with a scaling function
and a wavelet family of (b™ — 1) functions in the Schwartz class associated to the
dilation A™.

PrOOF. It suffices to notice that B™ = (AT)™ is strictly expansive for suffi-
ciently large m € N and K = [-1/2,1/2]"™. O

Even though the number of functions in the multiwavelet in the above corollary
could be much bigger than b—1, Corollary 2.5 still has great significance. By results
of Section 5, a multiwavelet W in the Schwartz class generates an unconditional basis
of HY = HY,, for the whole range of 0 < p < co. This can not be achieved if we
use an r-regular multiwavelet instead. Finally, note that Corollary 2.5 also holds
for a larger class of dilations, e.g., dilations A such that some positive power of A
has integer entries.

It is not known whether there exist orthonormal wavelets in the Schwartz class
for dilations with integer entries that do not necessarily satisfy the strict expan-
siveness property. Speegle and the author [BS1]| showed that one can construct an
oo-regular MRA associated with co-regular wavelet family for all 2 x 2 dilations
with integer entries. Since the case n = 1 is trivial, this problem remains open in
dimensions n > 3.

Nevertheless, one can always show that there exist r-regular multiwavelets for
r < oo and general dilations with integer entries.

THEOREM 2.6. Suppose A is a dilation with integer entries. For every r € N
there exists an r-regular multiresolution analysis and an associated r-reqular wavelet
family of (| det A| — 1) functions.

Theorem 2.6 was shown by Strichartz [Sr] under an additional hypothesis that
A admits a self-affine tiling, see [GM, LW1-LW3]. This assumption was removed
by the author; the proof of Theorem 2.6 can be found in [Bo4].

Finally, we mention that Daubechies’ construction of arbitrarly smooth com-
pactly supported wavelets was extended to certain non-dyadic dilations in higher
dimensions, see [Ayl, Ay2, BW].
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3. Limitations on orthogonal wavelets

The construction of Section 2 applies only when the dilation A has integer
entries, or more generally, A preserves some lattice I' = PZ™, where P is an n X n
nonsingular matrix. If the dilation A does not preserve any lattice then there
could be no well localized wavelets, even 0-regular. Chui and Shi [CS] have shown
that all orthogonal wavelets associated with “almost any” irrational dilation in the
dimension n = 1 must be MSF (minimally supported in frequency). We are going
to show that the analogous statement holds for general multiwavelets.

We say that a multiwavelet ¥ = {t',... %} associated with A is MSF, if
[ip!| = 1y, for some measurable sets W;. By [BRS, Theorem 2.4] these sets are
characterized by

S lwE+R)lw, E+k) =0y ae (R, LU=1,.. L,
kezZm™
(3.1)

L
S D3 1w (B =1 ae LR,

JEZ 1=1

where B = AT. We say that a multiwavelet ¥ = {y!,... 9’} associated with A
is combined MSF if

L
(3:2) DM IHOP =1w(&)  forae. R,
1=1
for some multiwavelet set W of order L, i.e., W = U1L:1 W, for some Wy,... , Wy,

satisfying (3.1). By [BRS, Theorem 2.6] a multiwavelet set W of order L is char-
acterized by

(3.3) Y lw(€+k)=L ac R,
kezm
(3.4) dlw(B) =1 ae £€R",
JEZ
where B = AT

THEOREM 3.1. Suppose that a dilation A is such that for every integer j > 1
the rows of A™J (treated as vectors in R™) together with the standard basis vectors
e1,...,en are linearly independent over Q. Then any orthogonal multiwavelet ¥ =
{t, ... L) associated with A is combined MSF, i.c., (3.2) holds for some set W
satisfying (3.3) and (3.4).

ProOF. By the orthogonality

01,005,008,k = <¢§‘,k= wé’,m = bj/Q/ wl(ij - k)W/ (x —K)dz

Rn

= bj/Q/ YAz + ATE — k)Yl (z)da
Rn
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forall j € Z, k,k' € Z™,1,I' =1,...,L. By Plancherel’s formula
- / P (€U (BIg)ermi S AN =K gg
Rn

(3.5)
= [ @ gener A e

By Lemma 3.2 we conclude that Z" 4+ A=7Z" is dense in R™ for all j > 1. Therefore,
by the Fourier Inversion Formula and (3.5), ¢! (€)' (B~7¢) = 0 for a.e. £ € R and
all j > 1, 1,I' =1,...,L. Let W = |J/, suppt!. We have |W N B/W| = 0 for
j > 1, and hence for all j € Z\ {0}. Now (3.4) holds because the multiwavelet

U satisfies the discrete Calderén formula Y1_ [/(B7€)|2 = 1 for a.e. &, see [Bo2,
CMW]. For j € Z let

W, =span{¢}, ke Z", 1=1,... L}

Naturally we have Wy C {f € L? : supp f € W}. But by (3.4) and @
L?(R™) we must have

JGZ

(3.6) Wo={feL?:suppfc W}
The range function of a shift invariant space W is given by
J() = span{(H(€ + B)hezn 11 =1,... , L} € 2(Z"),
see [BDR, Bo3, Proposition 1.5]. Also by [Bo3, Proposition 1.5] and (3.6),
J(&) = {(sk)rezn € P(Z") : sy =0for E+k & W}

Since the vectors ('(€ + k))gezn, [ = 1,..., L form an orthonormal basis of J(¢)
we have

DHE+m))mezn ) (W E + ) rezn = s for all s € J(&).

Mm

l:l

By taking s = ey € J(£), where £ + k € W and ey’s are the standard basis vectors
of £2(Z™), we conclude that Zle [WH(E + k)2 =1 for €4k € W. This shows (3.2).
(3.3) is a consequence of (3.2) since ), _;n [ (€ + K)|2 =1 for a.e. £ O

It is worth noting that the above argument may be simplified if one applies the
spectral function introduced by Rzeszotnik [BR, Rz].

LEMMA 3.2. Suppose D is n x n real matriz such that the rows of D (treated
as vectors in R™) together with vectors e, ... ,e, are linearly independent over Q.
Then the set Z™ + DZ" is dense in R™.

Since the author does not know an elementary proof of this result we are going
to show something more, namely that that a sequence obtained by a certain ordering
of DZ" is uniformly distributed mod 1. We are going to follow the excellent book
of Kuipers and Niederreiter [KN].
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DEFINITION 3.3. Suppose a = (a1,...,a,), b = (b1,...,b,) € R". We say
thata < b(a < b)ifa; < b; (a;j <b;)forallj =1,...,n. The cube [a,b) is defined
as {x € R" : a < x < b}. The fractional part of x € R" is {z} = ({z1},...,{zn}),
where {z} = x — [z]|. Given a sequence (xx)reny C R", E C I™ = [0,1)", and
N €N, let #(F; N) denote the number of points x; € E, 1 < k < N. We say that
a sequence (x)reny C R™ is uniformly distributed mod 1 if
(3.7) lim w =1 - ap

N—o0 .
Jj=1

for all intervals [a,b) C I™ = [0,1)".

The Weyl Criterion, see [KN, Theorem 6.2, Chapter 1], says that a sequence
(zr)keny C R™ is u. d. mod 1 if and only if for every h € Z™ \ {0},

: 1 Z T
(3.8) Jim = > et
k=1

Therefore, a sequence (xx)reny C R™ is u. d. mod 1 if and only if for every
h € Z" \ {0}, the sequence of real numbers ((h,xx))ken is u. d. mod 1. By the
Weyl Criterion, see [KN, Example 6.1, Chapter 1], given 8 = (64, ... ,6,,) with the
property that the real numbers 1,6;,... ,6,, are linearly independent over Q, the
sequence (k0)ien is u. d. mod 1.

We are now ready to present the proof of Lemma 3.2.

PRrROOF OF LEMMA 3.2. Given k = (k1,...,k,) € R" let ||k||cc = max(|k1],
..y ]knl). Let k1, k2, ... be the ordering of all elements of Z™ such that ||k;||ec <
l|kjlloc implies i < j. It suffices to show that the sequence (x;)ien = (Dk;)ien is
u. d. mod 1. By (3.7) it suffices to show that

o #(a,b); N+ D))
N TGN T O _E(bJ ~ )

for all intervals [a,b) C I™ = [0,1)". Therefore, by the Weyl Criterion (3.8) we
must show that for every h € Z™ \ {0},

1 .
3.9 lim ———— 2mith. Dk} — 0,
(3:9) NI 2N+ 1)m Z ¢
[klloo <N

Fix any h € Z™ \ {0}. By our hypothesis there exists mg = 1,...,n such that
0 = > 1 hjdjm, ¢ Q, where D = (d]m);n::lln" Otherwise we would have
Z?:l hj(d;i,...,djn) € Q" which contradicts the linear independence of the rows
of D together with the standard basis vectors of R™ over Q. Since the sequence

(k) gen is u. d. mod 1, for every € > 0 there is M such that for all N > M

N

Z 1 o2tk
Wy 2N +1

(3.10) <e.




90 2. WAVELETS

We also have

(2N}|-1)n Z o2mi(h.Dk)

kez™

[Iklloo <N
N
E E 27Ti E;‘lzl Z:anl hjdjymk}m
2N 1)»
ki—— N n_fN +
= 7627"i i Zm;smo hjdj mkm e27ri9kmo
D> @N + 1)n 1 2. NI

kiyokmg .o skn=—N kmg=—N

where k,,,, means we omit the index k,,,. Therefore, by (3.10) we have

‘(2Ni—1)n Z o2mi(h.Dk)

kezn
[1Fe]loo <N

<e for all N > M.

Since € > 0 is arbitrary this shows (3.9) and ends the proof of the lemma. O

REMARKS. It is not hard to see that linear independence over QQ of the rows
of A7 together with basis vectors ey, ... , e, is equivalent to B~7Q" N Q" = {0},
where B = AT. This, in turn, is equivalent to B—/Z" N Z" = {0}. Therefore, the
hypothesis of Theorem 3.1 can be written in a short form as

(3.11) (ATYzZ"nzZ" = {0}  forall j € Z\ {0}.

Combined MSF multiwavelets are not well localized in the direct domain. In-
deed, if ! € L' for alll =1, ..., L then z/AJl is continuous and (3.2) can never hold.
Hence, combined MSF multiwavelets are of little use in other spaces than L2. A
notable exception is the Shannon wavelet 1&(5 )= 1_1,—1/2j0[1/2,1], Which generates
an unconditional basis for LP spaces with 1 < p < oo, see [Wo4]. Therefore, The-
orem 3.1 says then that orthogonal multiwavelets associated with “most” dilations
have some limitations in applications to other function spaces than L2.

It also turns out that biorthogonal wavelets are not a good surrogate. Indeed,
a slight modification of the proof of Theorem 3.1 shows that all biorthogonal multi-
wavelets U = {91, ... 9L} associated with a large class of dilations, satisfying the
hypothesis of Theorem 3.1, must necessarily be combined MSF. As a consequence,

alw(€) < Z 1B (©)2 < elw (€) for a.e. £ € R",

for some multiwavelet set W of order L and 0 < a < ¢ < oo. This can be shown by
adapting the proof of Theorem 3.1; for an alternative approach, see [Bo5]. There-
fore, biorthogonal wavelets associated with dilations satisfying (3.11) can not be
well localized in the direct domain.

Moreover, Speegle and the author showed that Theorem 3.1 is sharp in the
sense that it has a converse. For the proof of Theorem 3.3, see [BS2, Theorem 5.4].

THEOREM 3.3. Suppose A is a dilation such that every orthogonal multiwavelet
U associated with A is combined MSF. Then A must satisfy the hypothesis of The-
orem 3.1, i.e., (3.11) holds.
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Another interesting issue is to determine the class of dilation matrices that
allow regular orthogonal wavelets. As we have seen in Theorems 2.6 and 3.1, this
class certainly includes all dilations with integer entries and excludes all dilations
satisfying (3.11) and thus far from preserving the lattice Z™. This still leaves a large
class of dilations for which it is not known whether there exist regular wavelets.

In one dimension, the above problem goes back to Daubechies [Da2] who asked
whether there exist orthonormal wavelet bases with good time-frequency local-
ization for irrational dilation factors a. This question was partially answered by
Chui and Shi [CS]. The complete answer was given by the author who showed
that all orthonormal wavelets associated with irrational dilation factors have poor
time-frequency localization, see [Bo6]. Combining this with the construction of
oo-regular orthogonal wavelets for rational dilations due to Auscher [Aul, KL], we
obtain the complete picture in one dimension.

The higher dimensional version of this problem remains open. It is not even
known whether there are regular wavelets for diagonal 2 x 2 dilations such that one
entry is rational while the other is irrational. Therefore, it is perfectly conceivable
that there are dilations A such that all other dilations with the same quasi-norm

0 2
where a > 0 satisfies the condition that Vr > 0, 2" € Q = a" ¢ Q. By
Theorem 10.5 in Chapter 1, all dilations A’ with HY = H%,, 0 < p < 1, must be

, +a” 0
of the form A" = 0 4or
irrational for all integers j > 1. Thus, it is very likely that there are no regular
wavelets associated with such dilations A’. This shows the importance of having a
substitute for orthonormal multiwavelets.

do not allow regular wavelet bases. A good candidate is the dilation A = @ O) ,

), for some real r > 0. Hence, either a7 or 27 is
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4. Non-orthogonal wavelets in the Schwartz class

The results of Section 3 show the demand for an alternative to orthogonal
wavelets. In the theory of wavelets a natural substitute for an orthogonal basis is a
frame. In this section we show the existence of tight frame wavelets for all dilations.
This fact is probably a part of the folklore.

Frames were originally introduced by Duffin and Schaeffer [DS] to study non-
harmonic Fourier series. More recently, frames have found applications in many
other areas such as wavelets, Weyl-Heisenberg (Gabor) systems, sampling theory,
signal processing, etc. For a good introduction to frames, see [Da2, HeW, Yo|. For
a more extensive treatment of frame theory, see [Cz, HL]. We start by recalling the
notion of a Bessel family and a frame.

DEFINITION 4.1. A subset X of a Hilbert space ‘H is a Bessel family if there
exists ¢ > 0 so that

(4.1) STULEMP < clfIP for f M.

neX

If in addition there exists 0 < a < ¢ such that

(4.2) allfIP< Y KEmP <clfIP for f e L*(R),

neXx
then X is a frame. A frame is tight if a, ¢ can be chosen so that a = c.

Given a Bessel family X C H we define an analysis operator as a mapping ‘H >
= ({fim))nex € £*(X). The dual of this map is the synthesis operator mapping
(ey)pex € C3(X) — >_nex ol € H, where the series converges unconditionally in

H.

DEFINITION 4.2. Let ¥ be a finite family of functions ¥ = {s!,... o} C
L?(R™). We say that U is a tight frame multiwavelet (or a Bessel multiwavelet) if
{1/)9,C cj €L keZ™l=1,...,L}is a tight frame with constant 1 for L?(R") (or
a Bessel family).

It is relatively easy to construct a tight frame multiwavelet for an arbitrary
dilation. Here we present a simple construction of multiwavelet consisting of a
single function v which is in the Schwartz class and z/AJ is C'*° with compact support
based on the example in [Bo2].

THEOREM 4.2. Given an arbitrary dilation A there is a tight frame wavelet
in the Schwartz class.

PROOF. For 0 < a < (4]|BJ|)~! consider n : R™ — [0, 00) of class C* such that
suppn = {§ € R" : a < [¢] < 24||B|[}.

It is not hard to give an explicit example of such function. Since the set {j € Z :
a < ||Bi¢|| < 2||B||a} has at least one element for all { € R™\ {0} we conclude that
77(§) Z ez 77(B €) > 0 for all £ # 0 and 7 is C°° on R™\ {0}. Define ¢ € L*(R")

= /n(&)/7(&). Clearly,
(4.3) Y INBIOP =D n(BE)/i(BE) =Y n(BE)/i(€)

JEZL JEZL JEZL
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By [Bo2, Lemma 3.1] we have

DD IRCHIES ST INTEEIEEGIE

(4 4) JEZ k€L JEZ
+ZbJ/ f(Bi¢) 1&(5){ o FBIE+m)d(E+m)|de,
JEZ meZm\{0}

for any f € D, where
D={feL*R"): feL®R"),supp f C K for some compact K C R"\ {0}},
is a dense subspace of L2(R"). Since suppt € B(0,1/2) C (—=1/2,1/2)" we have
DD Wil =3 foral feD,
JEL keZ™

and hence for all f € L*(R") by (4.3) and (4.4). Therefore, {1} }jez rez forms a
tight frame with constant 1 in L?(R™). Note that this frame is not an orthogonal
basis since |||z < 1. O
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5. Regular wavelets as an unconditional basis for H?

Preliminaries in functional analysis. In this subsection we recall some
basic facts about quasi-Banach spaces.

DEFINITION 5.1. Suppose X is a vector space over K (K is either R or C). We
say that the map || - || : X — [0,00) is a quasi-norm on X if
(i) [[z]] =0 = 2z =0,
(ii) ||az|| =|a| - ||z|| for all « € K, z € X,
(iii) there is ¢ > 0 so that ||z + y|| < cmax(||z]|],]||y]|) for all z,y € X.
We say that (X, ||-]]) is a quasi-Banach space if || - || is a quasi-norm and X
equipped with || - || is complete as a metric linear space.

It is well-known, see [KPR], that the (Hausdorff) topological linear space which
is locally bounded, i.e., it has a bounded neighborhood of the origin, has a quasi-
norm. Conversely, the topology associated with any quasi-norm is locally bounded.

Obviously the condition (iii) is equivalent to the more common
(ili) there is ¢’ > 0 so that ||z + y|| < ¢/(|[z|| + ||y||) for all 2,y € X.

DEFINITION 5.2. For 0 < p <1 we say that the quasi-norm || - || on the vector
space X is p-subadditive if

(5.1) |z +yll” < [le||” +[lyl[" for 2,y € X.

We say that a (X, || -||) is p-convez space if || - || is p-subadditive. If, in addition, X
equipped with || - || is complete we say X is a p-Banach space. A 1-Banach space
is simply called a Banach space.

Naturally, every p-subadditive norm on X is a quasi-norm. Surprisingly, this
has a converse statement. By the Aoki-Rolewicz Theorem (see [KPR]) every vector
space X with a quasi-norm || - || has an equivalent quasi-norm ||| - ||| which is p-
subadditive for some 0 < p < 1. Here p satisfies 21/? = ¢, where ¢ is the same as in
(iii). Therefore, every quasi-Banach space is p-Banach for some 0 < p < 1.

One could define a notion of a basis (sometimes called a Schauder basis) on
any F-space (a complete metric linear space), see [KPR]. Nevertheless, we are only
interested in unconditional bases in quasi-Banach spaces. Here we are following
[KLW, Wo3].

DEFINITION 5.3. Let (e, €%, )menr be a biorthogonal system in a quasi-Banach
space X, i.e., we have e,,, € X, e}, € X*, and
ey (es) = Om.s for m,s € M.

The system (e, €}, )mem is an unconditional basis in X if for every € X the series
> men Em(T)em converges unconditionally to x, that is regardless of the ordering
of index set M. This implies that there exists a constant K such that

(5.2) ’ Z ﬁmefn(x)emH < K sup |Bm]|-||z|] for all x € X.
meM meM
The smallest such constant K is called an unconditional basis constant of the system
(ema e;‘n)mGM-

Since actually the elements (e, )men determine the functionals (e, )mens it is

customary to speak about (e, )mens as being an unconditional basis.
The following fact is going to be very useful.
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LEMMA 5.4. For a series ), .y Tm in a quasi-Banach space X, the following
are equivalent:
(i) the series is unconditionally convergent, i.e., Y\ BmTm converges for any
choice of 3, € {0,1},
(ii) for each permutation o of N the series ), Ty(m) 1S convergent,
(iii) for each bounded sequence (Bm)men of scalars the series Y i BmTm is con-
vergent. Furthermore, there is a constant C' > 0 such that

(5.3) H > f)’mme < Cité%lﬁml-

meN

PRrROOF. The equivalence of (i) and (ii) is a well known fact due to Orlicz, see
[Ro, Theorem 3.8.2]. (iii) = (i) is trivial, whereas (iii) = (ii) follows from an
argument involving binary expansions.

Indeed, let || - || be a p-subadditive quasi-norm defining the topology on X,
0 < p < 1. For a finite subset F C N denote z(F) = > p2m. Without loss
of generality we may assume 0 < 3,, < 1. For each m let B, = 312, B (k)27F,
Bm(k) € {0,1} be a dyadic expansion of 3,,. Since the series ) = is uncondi-
tionally Cauchy, given € > 0 there exists N such that ||z(F)|| < & whenever ' C N
is finite and min F' > N. For any such F' we have

oo

Z BT = Z Z ﬁm(k)2_k:vm = Z2‘kx(Fk),
k=1

meF k=1meF

where Fj, = {m € F : B,,(k) = 1}. Therefore,

H D Bntm } <Y Mlla(E)l| <e Y27
k=1 k=1

meF
Hence, the series )y Bm®n is unconditionally Cauchy. Since the last estimate
is independent of the choice 0 < 8,, < 1 we have (5.3). O

Calderén-Zygmund operators associated with wavelet expansions. In
this subsection we are going to show that a wide class of operators associated with
wavelet expansions are Calderén-Zygmund, and hence they are bounded on HP.
The first result of this type was shown by Stromberg [So] for a particular class
of wavelets with exponential decay at infinity. Meyer extended this result to the
class of (isotropic) dyadic r-regular wavelets by Meyer [Me, Chapter 6]. Our goal
is to show that Meyer’s approach works also for non-isotropic wavelet expansions
for general dilations. The results of this subsection are valid if we replace the
orthogonality condition of wavelets by a Bessel condition.

Suppose that ¥ = {y' ... »*} C L?(R") and & = {¢,..., 0%} are two
Bessel multiwavelets, see Section 4. We assume that ¥ and ® which are r-regular
for some r € N. We will also require that all 9!’s and ¢'’s have vanishing moments
up to a certain, see Theorem 5.6. Define the index set

A={({lj,k):l=1,... ,L,j €L, keZ}.

We consider the operators being a composition of three simple operations of analy-
sis, multiplication of the sequence space, and synthesis. Namely an analysis operator
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is a mapping
(5.4) L*R") 3 f = (£, 956 i men € (D).

A multiplication operator by a sequence of bounded scalars € = (62‘71@)(1,3‘,1@)61\ €
£°(A) is a mapping

(5.5) 62(/&) > (Sé',k)(l,j,k)eA = (eé,ksé‘,k)(l,j,k)eA € 52(A)-

Finally, a synthesis operator is a mapping

(5.6) ?(A) > (Sé‘,k)(l,j,k)eA — Z Sék¢ék € L*(R™).
(1,4,k)EA

Given two Bessel multiwavelets ¥ and ®, and a sequence of bounded scalars

€= (Ezk)l(gzi)ezizn we define the operator T, : L?(R") — L?*(R™) by

(5.7) T(f) = Z 6§',k<f7 §k>¢ék

(Lj,k)eA
The operator T, is bounded as a composition of bounded operators.

LEMMA 5.5. Suppose ¥ and @ are r-reqular Bessel multiwavelets. Then for any
sequence of scalars € = (Eé‘,k)(l,j,k)eA with |eék| <1 the operators T, given by (5.7)
are Calderon-Zygmund of order r with uniformly bounded constants independent of
€. Moreover, the kernels K (x,y) of Te satisfy the symmetric (CZ-r) condition, i.e.,
there exists a constant C' such that for every x #y

(5.8) [0, 97 [Ke(A', A(A™ e, A™ly)| < Cfplx —y) = Cb™" for ], |8 <,

where | € Z is the unique integer such that x —y € Byy1 \ By.
Furthermore, if ® consists of functions with vanishing moments up to order
s<rlnA_/InA; then T)(x*) =0 for all |a] < s.

ProoOF. For the sake of simplicity we are going to present the calculations only
when ¥ and ® consist of a single function. The kernel K. of the operator T, given
by (5.7) is given by

Ke(wy)= Y erdjn(@)n(y)
(4,k)EZXZ™

= > ublp(Al — k)p(ATy — k).

(j,k)eZxZm

(5.9)

The formula (5.9) makes perfect sense if all but finitely many of ¢; 1’s are zeroes. In
general, the above series converges absolutely for all x # y and for any boundedly
supported f € L?(R")

(5.10) T.f(z) = . K(x,y)f(y)dy for x & supp f.

Furthermore, we claim that the convergence in (5.9) is uniform on compact subsets
of Q = {(x,y) € R" x R" : x # y}. Suppose that p(z —y) > V!, ie., z —y € (B))°
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for some [ € Z. By the Cauchy-Schwarz inequality

SN lentie@ i)l = >V Y [p(Ax — k)p(Aly — k)|

j<—Lkezn j<—1 kezn
_ _ 1/2 _ 1/2
SIS bﬂ( T |¢<Aﬂx—k>|2) (Z |¢<Aﬂy—k>|2)
j<-l kezm kezm
< j — b
<C Z b = cb_ 1b
j<—1

Here the constant C' is such that
Z |¥(z —k)]* < C and Z lp(z — k)|* < C for all z € R™.
kezn kezm

To estimate the sum over j > —I we use the inequality
(5.12)  [p(Az — k)p(Ay — k)| < C(L+ Az — k)" 1A+ |4 (z —y)) 7,

for some N satisfying bA~" < 1. (5.12) holds since both ¢ and v decay polynomially
fast and
L+ 2D+ []) =1+ 2= 2 for any 2,2’ € R™.

y (5.12)
Z Z €51 Pk (2 l/fjk( )l
j>—lkezn
SCY VY (e k) 1 A @ -y
(5.13) j>—1 kezn
<CY WAz —y)| N <Oy p/eN )N
g>—l j>—l
<ob™ 'y ANy < ov
j>0

since A7(z —y) € (Bj4;)¢. Combining (5.11) and (5.13) we see that the series in
(5.9) converges absolutely and uniformly in the region p(x — y) > b'. Since | € Z
is arbitrary, we have uniform convergence on compact subsets of (2. Furthermore,
the estimate (5.8) holds for « = 8 = 0. Since (5.10) holds for €’s with all but
finitely many nonzero coefficients it holds for any e by the Lebesgue Dominated
Convergence Theorem.

Suppose now that x —y € Bj41 \ B; for some | € Z. Formally, for any multi-
indices |/, |8| < r we have

OO [K (AL, Al )(A e, Aly)
(5.14) — Z e O [H(ATH . — ) (A~ 2) 02 [ (ATH - — k)] (A Ty).

(j,k)ELXTL™

To justify (5.14) we will show that the above series converges absolutely to some
value smaller than Cb~!. As before we estimate separately the sum over j < —I[
and j > —l. By the chain rule

09 [(ATH - —R)|(AT )| < || ATH[DI M (ATy — k)| < Ol p(ATy — k)],
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for 7 < —I. Since ¢ and 9 are r-regular, by the Cauchy-Schwarz inequality

DoV 10%p(ATT - —R)|(AT ) ][0 [ (AT — k)| (A )|

j<—l kezn

1/2
(515 _ ¢ 3 bj< > ||@|ﬁ¢,(Ajl,_k)||2> < 3 ||@Ia¢(Aa‘y_k)||2>

j<—1 kezn kezn
< vt

1/2

To estimate the sum over j > —I we use the inequality
07 [p(A7 - —R)|(A™'2) (|07 [W(ATH - —K)](A™"y)]
< CPlATH P2 lg(Az — k)| - ||D1*p(ATy — k)]
<OV A4 ATz = k)T A+ A @ - y)) Y,

for some N satisfying b/\i’”/\:N < 1. The above holds since both ¢ and i are
r-regular. Therefore

SOV D 10 B(AT I (AT ) [0 (AT k(A )|

j<—l kezn

2r(j+1) 44 i —n— i _
(5.16) < OIS (14 |ATe — k)T A (- )Y
j<—l1 kezn
<Cb Y ATATNY <o,
7>0

since A7(z —y) € Bjiti+1 \ Bj. Thus, the series in (5.14) converges absolutely
and we have equality there. By (5.15) and (5.16) the estimate (5.8) holds.

Finally, suppose ¢ has vanishing moments up to order s < rInA_/In A, i.e.,
[ ¢(@)z*dx = 0 for |a| < s. Take any f € L? with compact support and vanishing
moments up to order r — 1. Assume that supp f C B, for some [ € Z. Since T, are
(CZ-r) with uniform constants

/ T, f () |dz < C
By

IT.f(x)] < Cp(A~1"%z)=° for x € (Bj4+w)°

(5.17)

by the proof of Lemma 9.5 in Chapter 1, where the constant C is independent
of the choice of €. Here 6 = rInA_/Inb + 1. To guarantee the integrability of
T f(z)(1 + |z|)® we must have § > slnAy/Inb+ 1 and thus s <rlnA_/IlnA;. By
(5.7) we have

(5.18) /Tef(:v)xo‘dx =0 for |a| < s,

if €; 1, = 0 for all but finitely many (7, k)’s. Given a general € = (¢, ;) with |¢; | <1
we define the sequence (€');en by

; { ek if 7], [k] <4,
€ik = .
0 otherwise.
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Since K,i(x,y) converges to K (z,y) as i — oo uniformly on {(x,%) : p(z—y) > b'}
we have

T.f(x) = Tef(x) asi— oo forx € (Biw)©.
Since [T.if(z)z*dz = 0 for all |a| < s, i € N we have (5.18) by the Lebesgue
Dominated Convergence Theorem and (5.17). This ends the proof of Lemma 5.5.00

THEOREM 5.6. Suppose ¥ and ® are r-reqular Bessel multiwavelets for some
r. Suppose also that p satisfies

(InX_)2
5.19 0<1l/p—-1< ——Fr.
(5.19) SUr=l<imman”
If @ consists of functions with vanishing moments up to order s = |[(1/p —

1)Inb/InA_| then for any sequence of scalars ¢ = (eé‘,k)(l,j,k)e/\ with |eé7k| <1
then the operator T. given by (5.7) extends to a bounded operator from HY(R™)
into HY (R™) with the norm independent of e.

PROOF. The proof is an immediate consequence of Lemma 5.5 and Theorem
9.8 in Chapter 1 since s < rlnA_/InA;. 0
We shall need one more result.

LEMMA 5.7. With all the assumptions of Theorem 5.6 we also assume that
we have a sequence (€');en in the unit ball of £>°(A), i.e., |e;lk| <1 forie N,
(1,4,k) € A such that € — € weak-x in (> as i — oo. In other words,

(5.20) e;lk — Eé‘,k asi— oo for all (1,7, k) € A.
Then for any f € HY (R™)
(5.21) T.f—T.f inHY asi— .

PROOF. Suppose first that f € L? is compactly supported with vanishing

moments up to order s, say supp f C B; for some | € Z. By (5.7), (5.17), and
(5.20)

[ 1@ =@~ 0 asi— o,
Bl+w

T f (@), ITef (2)] < Cp(A™"%a) ™ for z € (Bryw)®,
[(Tei —To)f(x)] =0 asi— oo for x € (Bj+w)C.

(5.22)

Furthermore [(T.: — T¢) f(x)z*dxz = 0 for |a| < s. To show that
(5.23) [(Teo =T fllup, — 0 asi— oo,

a slight modification of the proof of Lemma 9.3 in Chapter 1 is required. The proof
proceeds in the same manner, except that we are going to show that g;;1 — g; are
appropriate multiples of (p, 2, s)-atoms. We not only have

lgj+1 — gjll2 < CqbpUTDA2=YPIpO=1/) =D for j > | 4w,
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where g; = 7p, ((Tei — Te)f)1p,, but also ||gj+1 — gjll2 — 0 as i — oo by (5.22)
and the Lebesgue Dominated Convergence Theorem. This shows (5.23) for all
(p,2,s)-atoms f. In particular, for any (p,2, s)-atom a we have

(5.24) Ta) = Y € ula, vl e,
(l,j,k)EA

with the unconditional convergence in HY. Given a general element f € HY we
find its atomic decomposition f = >,y rja; with 37, [r;[P < oo and a;’s are
(p, 2, s)-atoms. By (5.23) and the uniform boundedness of T,:’s

T.f= E kiTeia; — E kilea; =T f asi— oo.
JEN JEN

Therefore (5.21) holds. This ends the proof of Lemma 5.7. O

As a corollary of the above considerations we have for all f € HY

T.(f) = Z kiTea; = Z Ki Z Eé‘,k<ai7 Q/Jé',k> ék

€N €N (1,5,k)EA

(5.25)
DI T IR R SIS
(l,j,k)EA i€N 1,4,k)EN

since the above series converges unconditionally and the 1/)9 S belong to the Cam-
panato space C;c{,p;l. The formula (5.25) is of practical importance because it says

that (5.7) holds also if f € HY for an appropriate range of p’s.

Wavelets as an unconditional basis. We are now ready to harvest the fruit
of our labor.

THEOREM 5.8. Suppose ¥ is an r-reqular multiwavelet consisting of functions
with vanishing moments up to the order |[rInA_/In Ay |. Then (d’é,k)(l,j,k)eA forms
an unconditional basis for HY for all p satisfying (5.19).

Proor. We can apply Theorem 5.6 and Lemma 5.7, since
s=[(1/p=1)Indb/InA_| < |[rInA_/InAy].

By Lemma 5.7 and (5.25)

F= > (F vk,

(L,4,k)eA

and the convergence is unconditional in HY. Therefore, the system (1/)5 k) (L k)EA
is a basis for H, since ¥ is an orthonormal multiwavelet. (I

We remark that the assumption in Theorem 5.8 that W consists of functions
with vanishing moments is, in fact, a consequence of ¥ being an r-regular multi-
wavelet. This is a well-known fact for dyadic wavelets which can be found in [Bt,
Da2, Me]. This result was extended to general dilations with integer entries by the
author [Bo4, Theorem 4].
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THEOREM 5.9. Suppose A is a dilation with integer entries and V is an r-
reqular orthonormal multiwavelet for some r € N. Then

/ Y (z)dx = 0 foralll=1,... L, |a| <rlnA_/InAy.

Therefore, the assumption in Theorem 5.8 that ¥ has vanishing moments is an
automatic consequence of r-regularity of ¥. Even though the proof of Theorem 5.9
in [Bo4] works only for integer dilations, it is very likely that Theorem 5.9 holds
for all dilations. For example, Theorem 5.9 holds trivially for dilations A satisfying
(3.11), since such dilations do not allow r-regular wavelets. Hence, we conjecture
that Theorem 5.9 is valid for all dilations.

By Theorem 5.8 and standard interpolation theory we can also conclude that a
1-regular multiwavelet generates an unconditional basis in L? for 1 < p < co. This
can be shown to hold under fairly minimal decay conditions on ¥, see [Po, Wo4].

What can we say if for some dilation A we cannot find an orthonormal r-regular
multiwavelets, e.g. when A does not preserve any lattice? Even though Theorem 5.8
still holds, it may become a vacuous statement due to the lack of r-regular wavelets,
see Theorem 3.1. Nevertheless, by Section 4 we can always find a non-orthonormal
wavelet 1) € S such that (1) )jez ez forms a tight frame in L?*(R™) and ¢ has
all vanishing moments. We can now show that this wavelet forms a “tight frame”
for HY.

THEOREM 5.10. Suppose VU is an r-reqular tight frame multiwavelet and p
satisfies (5.19). If ¥ consists of functions with vanishing moments up to the order
s=1(1/p—1)Inb/InA_|, then (1/}§7k)(l7j)k)e/\ forms a tight frame for HY, i.e.,

(5.26) F= D2 (fwjws  forall f € HY,
(Lj,k)EA
and the convergence is unconditional in H"}.

The proof follows verbatim the proof of Theorem 5.8.
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6. Characterization of H? in terms of wavelet coefficients

In this section we will characterize the sequence space of wavelet expansion
coefficients ({f, ¢é7k>) for f € HY, where A = {(l,j,k):1=1,... ,L,j € Z,k € Z"}.

Let (Eé‘,k)(l,j,k)eA be the sequence of independent identically distributed (i.i.d.)
random Bernoulli variables with P(eé‘)]C =1) = P(Eé‘,k = —1) = 1/2. In other
words, if we consider the probability space ([0, 1], dt) then we can think of Eé‘,k(t) =
To(i,4.k) (1), where 0 : A — N is a bijection and (r;(t))ien are the Rademacher
functions defined by r;(t) = sign(sin(2'nt)) for ¢ € [0,1].

The fundamental result concerning the means of i.i.d. random Bernoulli vari-
ables is Khinchin’s (Xunuun) inequality.

THEOREM 6.1. For any 0 < p < oo there are positive constants A,, B, such

that

1/2 1 p 1/p 1/2

(6.1) AP<Z|CZ-|2) < </ dt> SBP<Z|01-|2> ,
0 iEN

ieN

Z C;Ty (t)

ieN

for any sequence of scalars (c;).

The inequality (6.1) means that ), ¢;r; converges unconditionally in L? if and
only if >, ¢;r; converges in L?, ie., Y, |c;|* < co. It diverges in the LP norm to
infinity if Y-, |¢;]? = oo.

We shall also need the Fefferman-Stein vector-valued maximal inequality, for a
proof see [FS1, St2]. Here M is the Hardy-Littlewood maximal operator on a space
of homogeneous type.

THEOREM 6.2. Suppose 1 < p < oo and 1 < q < oo. Then there is a constant
Cp,q depending on p and q such that
1/q
(i)

1/q
(62) ()
€N €N

S Cpaq
P

L Lr

Our goal is to show the following lemma.

LEMMA 6.3. Suppose 0 < p <1 and ¥ is an 0-regular Bessel multiwavelet con-
sisting of nonzero functions with vanishing moments up to the order s = |(1/p —
1)Inbd/InA_]. Given a sequence of scalars (Cé‘,;g)(l,j,k)eA7 the following are equiva-
lent:

(6.3) Z cé»)k ;k converges unconditionally in HY,
(1,5,k)eA
1/2
(6.0 (T 1) e,
(1,j,k)eA
1/2
(6.5) < > |C§,k|2l(1Ez)j,k($)l2> € LP(R"),
(Lg,k)EA

for any (or some) bounded measurable sets Ey C R™ with |Ej| >0,1=1,...,L.



6. CHARACTERIZATION OF HP? IN TERMS OF WAVELET COEFFICIENTS 103

Before proceeding with the proof of Lemma 6.3 we need to introduce some
terminology. Let 7 be the family of dilated cubes, i.e.,

I={A(0,1]"+k):j€Z keZ}.
Given I = A7([0,1]" + k) € Z we define the scale of I by scale(I) = j. Let g be the
square function given by (6.5) for E; = [0,1]™,

/2

1 L 1/2
(6.6) g<w>=( 3 |c§-,k|2|<1El>j,k<w>|2) (ZDclIPurlmw)) ,

(1,7,k)EA 1=1I€T

where we use the convention ¢} = cl_j)k for a cube I = AI([0,1]" + k), j € Z,
k ez

DEFINITION 6.4. Suppose Z' C Z. We say that the cube I is stacked below
the cube J within the family Z’, and write I <z, J, if there is a chain of cubes
I=1Iy1,...,I,=J €T such that

scale(l;) < scale(lj+1) and |L;NIit1] #0 foralli=0,...,s—1.

The relation <7/ induces a partial order in Z’. Let max(Z’) be the set of maximal
elements in 7’ with respect to <z.

If a subfamily Z' does not contain arbitrary large cubes, i.e., sup;c7 scale(I) <
00, then for any cube I € Z’ there is always a cube J € max(Z’) with I <7/ J. In
general, a maximal cube is not unique unless, for example, the dilation A = 21d
and we work with nicely nested dyadic cubes. We shall need a simple lemma.

LEMMA 6.5. There is a universal constant n € N such that whenever we have
two cubes I,J € T with I <7+ J = AI([0,1]" + k) then I C AV (B, + k).

In the above lemma a family Z’ does not play any role and can be substituted
by the whole family Z.

PROOF. Suppose first that J = [0, 1]™ + k for some k € Z. For any integer the
diameter of a cube with scale(I) = j is at most

diam(I) = diam(A7[0,1]") < ||A7|| diam([0, 1]") = 2"|| A7||.

Whenever we have a chain of cubes Iy, I1,... ,I; = J € T satisfying Definition 6.4
then
s s 0
diam ( U Ii) <) diam(;) <2" Y [|A7]] < oo
i=0 i=0 j=—00

Therefore, there exists n € N such that I C B, + k£ whenever I <7 J. If J =
A7([0,1]"+k) is arbitrary then [ <7 J <= A1 <7 A=9J. Thus, A1 C B, +k
and hence I C A(B, + k). O

We also need the following elementary lemma.

LEMMA 6.6. Suppose r1,r2 > 0 and P is an nxn real matriz with |Pz| > r1|z|
for all x € R™. Then there is a constant ¢ = ¢(r1,72) depending only on r1 and ro
such that

#(Z" N PB(z,r2)) < c|det P| for any z € R™.
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PRroOOF. Note that

#(Z™" N PB(z,19)) = #(P'Z" N B(2,13))
<#{kez™: P Mk +(0,1)") N B(0,79) # 0}
<#{kezZ™: P Hk+(0,1)") C B(0,72 +2"/r1)}
|B(0, 72 + 2™ /r1)]
o PTH(0, 1))

=|B(0,r2 + 2" /r1)| - | det P|,

since diam P~1((0,1)™) < 2" /ry and the family {P~'(k+(0,1)") : k € Z"} consists
of pairwise disjoint sets. O

PROOF OF LEMMA 6.3. Assume that (6.3) holds. Let (ezk) be a sequence
i.i.d. random Bernoulli variables. By Lemma 5.4 there exists a constant C' such
that for any subset F' C A

(6.7) ‘

Yo e
Hp

(Lik)EF

<C  foranyte[0,1].

The identity on L?(R") is a Calderén-Zygmund operator (of any order) hence it
extends to a bounded operator from HP to LP with norm 1 by Theorem 9.9 in
Chapter 1. If FF C A is finite then by Khinchin’s inequality, the Fubini Theorem
and (6.7)

p/2 1 P
g [ (X EaP@r) ws [ f e 00 04 0)| i
R N gker "0 L keFR
1 p
S/ Z Eé‘,k(t)cé‘,kwé‘,k dtSCp
0 Wasker Lr

Since F' C A is arbitrary, by Fatou’s Lemma we have

p/2
/ ( > |Cl‘,k|2|7/}l‘,k(x)|2> dz < CP/A,,
]Rn

(1,5,k) €A

which shows (6.4). )
Assume now that (6.4) holds. Let ¢ > 0 be sufficiently small so that E; = {x €
R™ : |3!(x)| > 6} has nonzero measure for every [ = 1,..., L. Since

Do ldulPa@ P =0 Y |l )k(@)? forall z € R™,
(Lik)EA (RN

(6.5) holds for some Ej’s. Choose any other bounded E;’s with nonzero measure.
We can then find ¢’ > 0 so that M (13 )(z) > 0’1, (z) for all z € R", where M
is the Hardy-Littlewood maximal operator associated to the dilation A given by
(3.15) in Chapter 1. Since M commutes with translations and dilations by the
power of A we have (M(1,));x(z) = M((IEZ)},C)VT(Q:) for any r > 0. Hence, for
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0 <7 < p by Lemma 6.2

o [ (X s

(L,g,k)eA
I 2 2 v/
<[ (X Mg @) o
B N (1g,k)en
l ) (r/2)(p/7)
—[ (T mdaragawpr)
B N g.k)en
! 2 P2
< Corar?” [ (X 1050 @P)  dn
B® N jk)en

which shows (6.5).

Finally, assume (6.5) holds with E; = [0,1])" for [ = 1,... ,L. We shall show
that after some rearrangement the series in (6.3) is an appropriate combination of
molecules.

For each r € Z define Q, = {x € R™ : g(z) > 2"}, where g(z) is given by (6.6).
Clearly, Q2,41 C £, and

Z2PT|QT| = Z2WZ |Qs+1 \QS| = Z Z 2pT|Qs+1 \QS|

(6.8) rez rezl s=r SEL T:*Of
R S o PR P / lg(@)|Pde.
1—2—p SGZZ 1—-2—»p R™

We also define a subfamily of dilated cubes
I, ={I1€Z:INnQ| > |I|/2 and [T N Q41| < |I|/2}.

Note that for any I € 7 with clI # 0 for some [ = 1,..., L, there is a unique r € Z
such that I € Z,.
For each r € Z, we have

L= |J {eZ :Ixz7 J},
Jemax(Z,)

since the subfamily Z, does not contain arbitrary large cubes by |Q,| < oo. By
induction on J € max(Z,) we can find pairwise disjoint subfamilies Z,. ; satisfying

LyCc{lel.: 1<, J}, ZI.= |J Z.,
(69) Jemax(Z,)

L gNL =10 for J # J' € max(Z,).
We are now ready to rearrange the formal series in (6.3) as a combination of

molecules. Using the convention ¢}, = cl_jyk, Yy =1_jx foracube I = A7([0,1]"+k)
we can write

S gl Y-y Y (Y5 )

(1,4,k)EA 1=1IeT reZ Jemax(Z,) Sl=1I€Z, s
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where Z, and Z, ; are given by (6.9). To show that this series converges in HY it
suffices to show that 3 ;- chyt is an element of HY and

(6.10) >y Z > 011/11

r€Z Jemax(Z,) ' l=1 1€,

< 00,

by the completeness of HY} and p-subadditivity of || - ||a».
Fix r € Z and J = A([0,1]" + ko) € max(Z,). We claim that there is a
constant C' (independent of r and J) such that

Z Z Cﬂ/’[

=112,

(6.11) < C2"|J|MP.

By Lemma 6.5 we have

L L
Yo el <2 > 1PN Qe

1=1I€Z, 1=1I€Z, ;

(6.12) SQZ > / [P 1 (2)d

I=11€Z, AJ0 (By+ko) )\ Qi1
S2/ |g($)|2dx < opiotno2(r+1)
(A90 (By+ko))\ Q41
ngjoJrn22r7

since outside of 2,11 we have g(z) < 21,
Since {¢!} is a Bessel family by (6.12) we have

1 L 2
§ : E : Lol
|B . | ) CIQ/JI (‘T)
Jo+ntw Bjg+n+wt+AI0 ko 1=1 I€T,,
< 2 < 27"
—bjo+n+w Z Z Cﬂ/’[ = bJo+n+w Z Z ler* < €2
l=11€Z, l=11€Z, 4

For any I € Z,; by Lemma 6.5 we have I = A7([0,1]" + k) C A% (B, + ko)
and thus A’k € A%kg + Bj,+y. Therefore, for fixed j < jo the number of such k’s
is bounded by Lemma 6.6

(6.13) H#(Z" (O (A" ko + Bjo—jiy)) < cb/O7IH0.
Also for z € A%k + (Bjy+n+w)® we have
plx — APko) < Wplx — ATk),

since A7 ko— A’k € Bjy4y. Since ¥ is O-regular, for any § > 0 there is C = C(d) > 0
such that |¢!(x)] < Cp(x)~° for all x € R™. In particular, we can take J satisfying
the hypothesis of Lemma 9.3 in Chapter 1. Therefore, for x € Akq + (Bjg+1+w)S,

Wi (@) P =l (@)]? =07 W (A e — k)P < CoIp(A™ o — k)72
<CV**p~I p(A™ (x — AT ko)) 20
:Cb_jb_%(jo_j"'")p(A_jo_77_“’(:v — Ado ko))—%
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Combining the above with (6.12) and (6.13), by the Cauchy-Schwarz inequality we
have

L
SN dwlh@)

I=11I€Z, ;

< <Z ) |c9|2)1/2<i ) |¢5<x>|2)1/2

I=1TI€Z, ;s 1=11I€Z, ;

1/2
< b(jo+77)/22T( Z cbjo—j+an—jb—25(jo—j+77)p(A—jo—77—w (z — Ajoko))—%)
J<jo
1/2
< C2r< Z b(2—25)(jo—j)> p(ATIOT=9 (g — AT k)) 70,
J<jo

for x € A%k + (Bjy+n+w)®. By the Lebesgue Dominated Convergence Theorem
we also have

/ (Z Z hl(x )xo‘dx:O for |a] < s.
=11I€Z,

Therefore, all the hypotheses of Lemma 9.3 in Chapter 1 are satisfied and thus,

Z Z Cﬂ/’[

=11,

This proves (6.11). To show (6.10) we use |J| < 2|JNQ,| for J € max(Z,) to obtain

L
>y ZZCWI <207y N 27N
HP

re€Z Jemax(Z,) ' l=1 1€, r€Z Jemax(Z,)

S O2"|Bjyn ol /P < C27| TP,

207
gl

<207 2|0, < -
reZ

Since the above estimate depends only on a magnitude of coefficients clI’s7 we obtain
the unconditional convergence in (6.3). This ends the proof of Lemma 6.3. O

Note that the assumption that ¥ is O-regular in Lemma 6.3 can be slightly
relaxed. It follows from the proof that it suffices to assume |¢!(z)| < Cp(z)~° for
l=1,...,L with § > max(1/p,sln\;/Inb+ 1) in order to apply Lemma 9.3 in
Chapter 1.

We are now ready to prove the characterization of the sequence space of wavelet
expansion coefficients of elements in HY.

THEOREM 6.7. Suppose p satisfies (5.19), and U is an r-regular tight frame
multiwavelet with vanishing moments up to order s = |(1/p—1)Inb/InA_|. Then
for any f € HY the series Z(z ;i k)€A<f 1/1] k>¢ & converges unconditionally to f in

HY . and
1/2
151l ~ H( (s ,¢;yk>|2|¢§-,k<->|2>

(1,5,k)EA

NH< > |<f,¢é’k>|2|(1E1)j,k(~)|2>1/2

(L,g,k)eN

Lr
(6.14)

)

Lr
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for any (or some) bounded measurable sets E; C R™ with |E;| > 0,1 =1,...,L.
The equivalence constants in (6.14) do not depend on f.

If, in addition, ¥ is an orthonormal multiwavelet then for any (Cz',k)(l,j,k)ez\
satisfying

1/2
(6.4) ( 3 |c§-,k|2|¢§-,k<x>|2) € P®Y),

L3,k e

there is a unique f € HY such that cék = (f, ¢é‘,k> for all (1,5,k) € A and (6.14)
holds.

PROOF. By Theorem 5.10 we have (5.26). By Lemma 6.3 we have (6.14). The
fact that the equivalence constants in (6.14) do not depend on the choice of f follows
by analyzing the proof of Lemma 6.3.

Suppose, in addition, that ¥ is an orthogonal multiwavelet. Given a sequence
(C_lj)k)(l,jJC)eA satisfying (6.4) by Lemma 6.3, Z(l,j,k)eA Cé‘,kwé‘,k converges uncondi-
tionally to some element f € HY. Since 9'’s belong to the dual of HY} we conclude
that for any (I',7/, k") € A

v 1ol 14 l 1 v I
<fawk’,j’>_< Z Cj,k1/}j,kv1/)j/,k'>— Z Cj,k< j,ka¢j/,k/>zcj/,k/-

(UVRDISH (L k)eA

Finally, (6.14) holds by Lemma 6.3. O

Wavelet expansion coefficients for LP. It comes as no surprise that The-
orems 5.8, 5.10, and 6.7 can be extended for exponents p > 1. In fact, orthogonal
wavelets with very mild decay conditions already form an unconditional basis for
LP, 1 < p < oo, see [Po]. Analogously, we can characterize the sequence space of
wavelet expansion coefficients for LP. This sequence space is given by exactly the
same formula, e.g., (6.4) or (6.5). To show this, we will need two simple lemmas
which hold for arbitrary measures, see [Wo2, Corollary 7.10]

LEMMA 6.8. Suppose 0 < p < oo and (fi)ien C LP. If >, .\ fi converges
unconditionally in LP then ||(3;cx | fil)/?||p < co. Moreover,

(6.15) QA1) 2llp < (4p) 77 sup

iEN te[0,1]

> i) fi

ieN

p

ProoOF. By Khinchin’s inequality and the Fubini Theorem we have

(Zw)m :s / s (ZW)W

i€F i€F i€F
for any finite F* C N. If ), fi converges unconditionally in L? then by Lemma
5.4,

p
dt < B,
p

p
A, :

p

> o) f;
i€eN
Hence, Ap|[(X;cx |fil*)'/?|[k < CP. Since F C N is arbitrary this shows (6.15). O

< 00.
p

C = sup
t€(0,1]
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LEMMA 6.9. Suppose 0 < p < 0o and (fi)ien C LP is such that ||fi]l, > ¢ for
some § > 0 and all i € N. Then there is a sequence of coefficients (€;)ien, €, = £1
such that

N

> eifi

i=1

= OQ.
p

(6.16) lim sup

N —o0

PROOF. We claim that it suffices to show
p/2
(6.17) / <Z|fl|2) = o0.
ieN

Assume for the time being that (6.17) holds. We claim that for any 7 € N and

r > 0 there is N > j and a sequence €, ... ,ey with ¢; = £1 such that
N
Zeifi >,
i=j P

Indeed, it suffices to take N such that ||(Zi\;] I£i91l, > r(A4,)"Y/P and apply
(6.15). By a simple induction we can now produce a sequence (¢;)ien, € = *1
satisfying (6.16).

In order to show (6.17) we need to consider two cases. Suppose first that

(6.18) limsup [{z : |fi(z)| > n}[ =0 for every n > 0.

11— 00

If (6.18) holds then there is a subsequence (f;;) and a decreasing sequence of positive
numbers 1 =179 > n; > ..., such that

(6.19) / |fi,[P>d/2  forallj=1,2,...
n<|fij|<mj—1

Indeed, we are going to proceed by induction. Let ¢; be such that ‘flf'il <1 |fi P >
3/46. Choose 11 such that flfil\Sm |fi,|P < 1/46. Hence, (6.19) holds for j = 1.
Assume (6.19) holds up to some j > 1. By (6.18) we can pick ;41 such that
f‘fij+l|<nj | fi, . |P > 3/46. Choose 111 such that flfijﬂlsmﬂ \fi; 1P < 1/46. This

completes the induction step since

/ P > 5/2.
Ni+1<|fijyq [<n;

Define sets S; = {z : nj41 < |fi;;,(x)] < n;}. Again by induction we can find a
subsequence (ji) such that

(6.20) / \fi, IP>06/4 forallk=1,2,...
S \(Sj,U...US *

Jk—1

Indeed, by (6.18) and (6.19) for any set S with |S| < oo,

liminf/ |fi;|P >6/2,
5;\8

Jj—oo
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since n; — 0 as j — co. Therefore by (6.20),

/(Z mF)W >y i P = oo,

ieN keN Y S5 \(S5, U85,y

On the other hand, if (6.18) fails then there exist 1, > 0 such that |{z :
|fi(x)] > n}| > p for infinitely many i’s. After taking a subsequence we can assume
that this holds for all i € N. Let S; = {z : |fi(z)] > n}. If [U;enSi] < o0
then necessarily >, 1s,(z) = oo on a set of positive measure. Therefore, the
square function in (6.17) is infinite on a set of positive measure. Otherwise, if
| Ujen Sil = oo then the square function is at least 7 on a set of infinite measure.
This shows (6.17) and ends the proof. O

The analog of Lemma 6.3 in the range 1 < p < oo is the following lemma.

LEMMA 6.10. Suppose 1 < p < oo and V¥ is an 1-regular Bessel multiwavelet
consisting of nonzero functions. Given a sequence of scalars (Cé-,k)(l,j,k)em the fol-
lowing are equivalent:

(6.21) Z cé—_’kwé-)k converges unconditionally in LP,
(1,5,k)eA
1/2
(6:22) (T aPu@r) e @,
(Lg,k)EA

1/2
(6.23) (T aliama@r) e,

(L,4,k)eA
for any (or some) bounded measurable sets Ey C R™ with |Ej| >0,1=1,...,L.

Before we present the proof we need to introduce the standardized version of
the sequence space under consideration. We also need a description of its dual
which can be found in [NT, Section 9].

DEFINITION 6.11. Given 0 < p < oo, a dilation A, and L € N we define
% = (%, (A) as the space of all sequences ¢ = (¢} ) .j,rea such that

1/2
||C||eg—H< 3 |c§-,k|2|<1[o,1]n>j,k|2>

(13,k) e

L 1/2
- H (ZZ |c9|2|f|111)

=11l

p

(6.24)

< 00.
P

If the dilation A = 2Id and L = 1 then the sequence space ¢%, coincides with
the space £ introduced by Frazier and Jawerth in [FJ2]. Obviously we could
have defined a whole scale of spaces f;? for a general dilation A. However, the
investigation of anisotropic homogeneous Triebel-Lizorkin spaces Fj-? is beyond
the scope of this work. For the isotropic theory we refer the interested reader to

[FJW, Trl, Tr2]; for the function space theory on spaces of homogeneous type, see
[Hn, HS, HW].
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LEMMA 6.12. Suppose A is a dilation and 1 < p < oo. The dual of 0% is
isometrically isomorphic to €%, where 1/p+1/q=1. The duality is given by

L

(6.25) (e,d) = Z cék@ = Z chld_ll forceth,de 9.

(Lj,k)EA =1 IeZ

ProOF. Consider the space LP(¢%) = LP(R", ¢*(Z)®L) of functions f : R® —
2(2)®F. The norm of f = (f1,..., fL), where f' : R® — (2(Z) in this space is

given by
L l ) p/2 1/p
||f||LP<1z2>=(/]R (ZHf(iC)Hé?(Z)) dw) :
"N =1

We can identify ¢ as a subspace of LP(¢?). Indeed, given ¢ € (% consider the

function f = (f!,..., f¥) whose j’th coordinate is given by
(6.26) flx); = Z IV () fori=1,...,L.
Iez

scale(I)=j

This identification defines an isometric inclusion of ¢% into LP(¢?). Functional
analysis tells us that the dual of LP(¢?) is isometrically isomorphic to L7(¢2), where
1/p+1/q = 1. Furthermore, the duality is given by

L
(6.27) (f.9) = /n D (@), g'(x))dz  for fe LP(£%), g € LI(¢).
=1

Also (¢5)* is isomorphic with the quotient of L?(¢?) and the annihilator of ¢%,
which consists of functions f € L?(¢?) with [; f{(z);dz = 0 for alll = 1,... L,
I €7, j =scale(I). Therefore, the dual of %, can be identified with ¢%. Moreover,
the dual of the inclusion ¢%, < LP(¢?) is a projection P : L¢(¢?) — ({%)* given by

(Pf)(a?)j—lz: ) (m-l / fl(y)idy)ll.

Iez
scale(I)=j

The duality (6.25) follows from (6.26) and (6.27). O

PrROOF OF LEMMA 6.10. (6.21) = (6.22) follows from Lemma 6.8. (6.22)
<= (6.23) is shown in the same way as in Lemma 6.3. However, (6.23) = (6.21)
is shown in a different manner since we do not have an atomic decomposition at
our disposal for p > 1.

By Lemma 5.5 for any sequence of bounded scalars € = (fé‘,k)(l,j,k)eA the oper-
ator T, : L2(R™) — L?*(R™) given by

(6.28) T(f) = Z 6§‘,k<fa¢l‘,k>¢é‘,k,

(UVRDISH

is Calder6n-Zygmund of order 1. Hence, T is a Calderén-Zygmund operator in the
sense of Definition 9.1, Chapter 1. Therefore, T, extends to a bounded operator
on LP for 1 < p < co. Furthermore, if |e§7k| < 1 then T.’s are uniformly bounded
on LP. We are going to show that (6.28) holds also for f € L? with unconditional
convergence in LP.
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If the series E(l JR)EA (f, ¢§k>¢§k does not converge unconditionally in LP then

there are pairwise disjoint finite sets F; C A and coefficients Eé‘,k ==1, (I,j,k) € F;
such that
fi= Z e 1 (ol )b ks
(l,3,k)EF;

satisfies || f;||, > ¢ for some § > 0 and all ¢ € N. By Lemma 6.9, there are coefficients
€; = %1 such that limsupy_, || sz\il € fillp = oco. This clearly contradicts the
uniform boundedness of T¢’s. Finally, Z(l,j,k)eA Eé‘,k<fa w§k>¢§k converges to T, f
by considering f € L? N LP. By Lemma 6.8,

/Rn< Z |<f’¢l‘,k>|2|1/Jl‘,k(113)|2)p/2d17

(L,g,k)eA
p
S(Ap)’ltsEpl] Yo x| < /AL,
|0, p

(L k)en

for any f € LP. Therefore, ||({f, zbé. e < Clfllp- In other words, the analysis
’ A

operator is bounded from LP to ¢%. By Lemma 6.12, the dual of analysis operator
is a synthesis operator

Y (Cé’,k)(l,j,k)eA — Z Cé‘,k"/’é‘,k € LY(R"),
(L,j,k)EA

where 1/p+1/q = 1. We also have
| = dus

(Lj.k)EA
This shows (6.23) = (6.21). O

< Cllelle for all ¢ € (4.
a

We are now ready to prove the characterization of the sequence space of wavelet
expansion coefficients of functions in LP.

THEOREM 6.13. Suppose 1 < p < oo, and V¥ is a 1-regular tight frame multi-
wavelet. Then the series Z(l,j,k)eA<f7 w§k>w§k converges unconditionally to f in
L? for any f € LP, and

1/2
il ~ || (X 1 wkariaor)
(Lik)EA Le
(6.29) s
~ H( >N wé’,k>|2|(1E1)j7k(')|2) ,
(1,4, k)EA Ly
for any (or some) bounded measurable sets E; C R™ with |E;| > 0,1 =1,...,L.

The equivalence constants in (6.29) do not depend on f.
If, in addition, ¥ is an orthonormal multiwavelet then for any (Cz',k)(l,j,k)e./\
satisfying

1/2
(6.4) < > |Cl‘,k|2|¢l',k(x)|2) € LP(R"),

(L,4,k)eA
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there is a unique f € LP such that cék = (f, ¢§k> for all (1,j,k) € A and (6.29)
holds.

PROOF. The first part of the theorem follows from Lemma 6.10, see the proof
of (6.23) = (6.21).

Suppose, in addition, that ¥ is an orthonormal multiwavelet. If (Cz-,k)(l,j,k)eA
satisfies (6.4) then by Lemma 6.10, Z(l,j,k)eA Cé‘,kwé‘,k converges unconditionally to
some f € LP. Since 1!’s belong to the dual of LP we must have Cé‘,k = {f, ¢§7k> for
all (I, 7,k) € A. This completes the proof of Theorem 6.13. O
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Notation Index

the standard norm in R™ or the Lebesgue measure of a subset in R™
the Euclidean ball with center z and radius r

the scalar product in R™, L2(R"), or (f,¢) = f(¢) for f€ S, p €S
the standrad orthonormal basis in R"

the Fourier transform of f, f(¢) = Jon fl@)e 2 @8 4y

the support of f, supp f = {x: f(z) # 0}

the derivative of f at the point x thought of as a symmetric
multilinear operator (R")¥ — R"®

the indicator function of the set £ C R"

the dilation, i.e., n X n matrix with all eigenvalues A, [A| > 1

the absolute value of the smallest eigenvalue of A

the absolute value of the biggest eigenvalue of A

the number equal to |det A]

the dilated balls of the form By, = A*A, k € Z, where A is a special
ellipsoid tailored to the dilation A with |A| =1

the family of dilated balls of the form zog + By, xg € R™, k € Z

the smallest integer such that 2By C B,

the quasi-norm associated to the dilation A

the dilate of ¢ to the scale k € Z, pr(z) = b=*p(A Fx)

the dilate and translate of i given by

Vik(z) =|det AJ7/29p(Alx — k) where j € Z, k € Z"

the collection ¥ = {,... ¢t} C L3(R")

the collection of dilated cubes {A7([0,1]" + k) : j € Z,k € Z"}

is i_;x for I = A7([0,1]™ + k) € Z; the exception to this rule is 1;
the index set A = {(l,j,k):l=1,... ,L,j € Z, k€ Z"}

the dilation operator (usually on HP), D f(z) = | det A|'/P f(Az)
the translation operator, 7, f(z) = f(z —y)

an admissible triplet with respect to the dilation A, i.e., 0 <p <1,
1<g<oo,p<q,seNand s > |(1/p—1)Indb/InA_]

the nontangential maximal function of f with respect to ¢

the radial maximal function of f with respect to ¢

the tangential maximal function of f with respect to ¢

the nontangential grand maximal function of f

the radial grand maximal function of f

the Hardy-Littlewood maximal function of f

the space of functions with continuous partial derivatives

up to order r, r =0,1,... ,00

the space of test functions (the Schwartz class)

the space of tempered distributions

the subset of S consisting of all ¢ satisfying

SUP,cpn SUP|o|<N max(1, p(z)V)[0%(z)] <1



Ps
LP
/11y
HP

|| || e
H?,

cl,
e

NOTATION INDEX 115

the space of polynomials of degree < s

the space of functions with [o, |f(z)[Pdz < 00, 0 <p < oo

the quasi-norm in L?, ||f|[, = (fgn |f(z)|Pdz)'/P

the anisotropic Hardy space HY associated with the dilation A
the norm of f € H?, ||f||ar = || Mn fllp

the atomic anisotropic Hardy space associated with the dilation A
for an admissible triplet (p, ¢, s)

the Campanato space for [/ > 0,1 <¢g<o0,s=0,1,...

the space of functions in L? with bounded support and vanishing
moments up to order s
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