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On a Problem of Daubechies

M. Bownik

Abstract. We solve a problem posed by Daubechies [12] by showing the nonexistence
of orthonormal wavelet bases with good time-frequency localization associated with
irrational dilation factors.

1. Introduction

The aim of this paper is to give a complete answer to a problem posed by Daubechies
[12, Chapter 1]: “it is an open question whether there exist orthonormal wavelet bases
(not necessarily associated with a multiresolution analysis), with good time-frequency
localization, and with irrational a.” Here a wavelet is a function ψ ∈ L2(R) such that
the system of functions {a j/2ψ(a j x − bk) : j, k ∈ Z} is an orthonormal basis of L2(R).
Without loss of generality, we can assume that b = 1 by a simple change of variables.

We are going to show that the answer is negative for any irrational a. Chui and Shi
[10] have shown this for almost all irrational dilation factors a.

Theorem 1.1. Suppose a dilation factor a > 1 is such that a j is irrational for all
integers j ≥ 1. If ψ is an orthogonal wavelet associated with a, then ψ is a minimally
supported frequency (MSF) wavelet, i.e., |ψ̂ | = 1K for some measurable K ⊂ R.

Theorem 1.1 can be easily deduced from Theorem 3.2, also due to Chui and Shi [10], or
by a direct calculation based on the orthonormality, see Lemma 2.1. For a generalization
of Theorem 1.1, see [4]. Therefore, a remaining difficulty in answering the Daubechies
question lies in the set of “exceptional” irrational dilations a such that a j0 is rational for
some integer j0 ≥ 2.

We note that there are (multi-)wavelets with rational dilation factors which are well-
localized both in time and frequency, i.e., in the Schwartz class, as was shown by Auscher
in [1].
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Definition 1.2. We say that � = {ψ1, . . . , ψ L} ⊂ L2(R) is a multiwavelet associated
with the dilation factor a, |a| 
= 0, 1, if the affine system

X (�) = {ψ l
j,k : j, k ∈ Z, l = 1, . . . , L}

forms an orthonormal basis for L2(R). Here, for ψ ∈ L2(R), we set ψj,k(x) =
|a| j/2ψ(a j x − k) for j, k ∈ Z.

Without loss of generality, we also assume that the dilation factor |a| > 1. In this work
we consider more general multiwavelet bases, since for certain dilation factors there could
be no well-localized single wavelets, but there are well-localized multiwavelets. Indeed,
Auscher [2] has shown that if a is an integer, |a| ≥ 2, and L is not divisible by |a| − 1,
then any multiwavelet � = {ψ1, . . . , ψ L} has to be poorly localized. Hence, if a is
an integer and |a| ≥ 3, then there are no (single) wavelets with good-time frequency
localization, but there are well-localized (e.g., in the Schwartz class) multiwavelets �
with L = |a| − 1.

Our main goal is to show the following fact which answers Daubechies’ question. For
a more precise statement see Theorem 4.1.

Theorem 1.3. If� = {ψ1, . . . , ψ L} is an orthonormal multiwavelet associated with a
(positive) irrational dilation factor, then at least one of theψ l ’s has a poor time-frequency
localization.

2. The Orthogonality Condition

In this section we are going to give necessary and sufficient conditions for {ψ l
j,k : j, k ∈

Z, l = 1, . . . , L} to be an orthonormal system (not necessarily complete) in terms of
equations in the Fourier domain. These conditions take two different forms depending
on whether some power of a is rational or not.

Lemma 2.1. Suppose |a| > 1 is such that a j is irrational for all integers j ≥ 1. Then
{ψ l

j,k : j, k ∈ Z, l = 1, . . . , L} is an orthonormal system if and only if

∑
k∈Z

ψ̂ l(ξ + k)ψ̂ l ′(ξ + k) = δl,l ′ a.e. ξ ∈ R,(2.1)

ψ̂ l(ξ)ψ̂ l ′(a jξ) = 0 a.e. ξ ∈ R,(2.2)

for all l, l ′ = 1, . . . , L and all j ∈ Z\{0}.

The condition (2.2) can also be written as

|a j S ∩ S| = 0 for all j ∈ Z\{0},(2.3)

where

S =
L⋃

l=1

supp ψ̂ l .(2.4)
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Proof. The orthonormality of {ψ l
j,k : j, k ∈ Z, l = 1, . . . , L} can be stated as

δl,l ′δj,0δk,k ′ = 〈ψ l
j,k, ψ

l ′
0,k ′ 〉 = |a| j/2

∫
R

ψ l(a j x − k)ψ l ′(x − k ′) dx(2.5)

= |a| j/2
∫

R

ψ l(a j x + a j k ′ − k)ψ l ′(x) dx,

for all j ∈ Z, k, k ′ ∈ Z, l, l ′ = 1, . . . , L . By Plancherel’s formula

δl,l ′δj,0δk,k ′ =
∫

R

ψ̂ l ′(ξ)ψ̂ l(a− jξ)e2π ia− j ξ(a j k ′−k) dξ(2.6)

=
∫

R

ψ̂ l ′(ξ)ψ̂ l(a− jξ)e2π iξ(k ′−a− j k) dξ.

By the standard periodization argument the above identity becomes (2.1) when j = 0.
Since Z− a− jZ is dense in R for all j ∈ Z\{0}, the above identity becomes (2.2) by the
Fourier inversion formula.

An immediate consequence of Lemma 2.1 is Theorem 1.1. Indeed, suppose that
X ({ψ}) is an orthonormal basis and let Wj = span{ψj,k : k ∈ Z}. Since Wj ⊂ Ľ2(a j S)
and

⊕
j∈Z

Wj = L2(R) we must have Wj = Ľ2(a j S), see Definition 3.1. Since the
dimension function of the shift-invariant space W0 satisfies

1 = dimW0(ξ) = dimĽ2(S)(ξ) =
∑
k∈Z

1S(ξ + k) for a.e. ξ,

see [3], [5], the support of ψ̂ has measure |S| = 1, i.e., ψ is an MSF.
Suppose next that the dilation factor a does not satisfy the assumptions of Lemma 2.1,

i.e., a j ∈ Q for some j ∈ Z. In this case the orthogonality conditions take a slightly
more complicated form.

Lemma 2.2. Suppose |a| > 1 is such that a j is rational for some integer j . Let j0 be
the smallest integer ≥ 1 such that a j0 ∈ Q. Let a j0 = p/q for some relatively prime
integers p, q . Then {ψ l

j,k : j, k ∈ Z, l = 1, . . . , L} is an orthonormal system if and only
if

∑
k∈Z

ψ̂ l(a j (ξ + q j/j0 k))ψ̂ l ′(ξ + q j/j0 k) = δl,l ′δj,0(2.7)

a.e. ξ ∈ R, j ∈ j0Z, j ≥ 0,

ψ̂ l(ξ)ψ̂ l ′(a jξ) = 0 a.e. ξ ∈ R, j ∈ Z\ j0Z,(2.8)

for all l, l ′ = 1, . . . , L .

The condition (2.8) can also be written as

|a j S ∩ S| = 0 for all j ∈ Z\ j0Z,(2.9)

where S is given by (2.4).
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Proof. As in the proof of Lemma 2.1 the identity (2.6) reduces to (2.8) since Z−a− jZ is
dense in R for all j ∈ Z\ j0Z. By the scaling, the orthonormality of {ψ l

j,k : j, k ∈ Z, l =
1, . . . , L} can be stated as (2.5) with the j’s restricted to all integers≤ 0 (or, alternatively,
≥ 0). If j ≤ 0 is a multiple of j0, then Z−a− jZ = Z+ p− j/j0 q j/j0Z = q j/j0Z. Therefore
for j ≤ 0 being a multiple of j0, condition (2.6) becomes∫

R

ψ̂ l ′(ξ)ψ̂ l(a− jξ)e2π iξq j/j0 k dξ = δl,l ′δj,0δk,0.

Therefore by the standard periodization argument

δl,l ′δj,0δk,0 =
∫ q− j/j0

0

(∑
m∈Z

ψ̂ l ′(ξ + q− j/j0 m)ψ̂ l(a− j (ξ + q− j/j0 m))

)
e2π iξq j/j0 k dξ

for all j ∈ j0Z, j ≤ 0, k ∈ Z, l, l ′ = 1, . . . , L . This in turn is equivalent to (2.7).
Note also that condition (2.7) can be equivalently stated as

∑
k∈Z

ψ̂ l(a− j (ξ+ p j/j0 k))ψ̂ l ′(ξ + p j/j0 k)=δl,l ′δj,0 a.e. ξ ∈R, j ∈ j0Z, j ≥ 0,

for all l, l ′ = 1, . . . , L .

3. The Characterization of Affine Tight Frames

If the dilation factor is an integer, then a great deal is known about the properties of the
affine system X (�). For example, one can give different characterizations for X (�) to
be a tight frame or an orthonormal basis, see [6], [9], [11], [13], [15]. For noninteger
dilation factors significant progress has been made recently by Chui and Shi [10] who
gave a characterization of pairs of dual frame wavelets. Their method of proof yields in
fact a slightly stronger result which is of great importance in this work. The motivation
behind this development is Auscher’s proof [2] of the nonexistence of well-localized
wavelets in H2(R) = Ľ2(0,∞), see also [13, Chapter 7.6].

Definition 3.1. Suppose a is real and |a| > 1. We say that a measurable subset E of
R is a-multiplicatively invariant if aE = E modulo sets of measure zero. Given such E
we introduce the closed subspace Ľ2(E) ⊂ L2(R) by

Ľ2(E) = { f ∈ L2(R) : supp f̂ = {ξ : f̂ (ξ) 
= 0} ⊂ E}.

We say that � = {ψ1, . . . , ψ l} ⊂ Ľ2(E) is a multiwavelet for Ľ2(E) associated with a
if {ψ l

j,k : l = 1, . . . , L , j ∈ Z, k ∈ Z} forms an orthonormal basis for Ľ2(E).

Suppose |a| > 1 and E is an a-multiplicatively invariant set. If ψ ∈ Ľ2(E) then,
clearly, ψj,k(x) = |a| j/2ψ(a j x − k) ∈ Ľ2(E) for any j, k ∈ Z. Hence, it is meaningful
to say that X (�) forms an orthonormal basis (Bessel family or frame) for Ľ2(E).
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Theorem 3.2. Suppose that � = {ψ1, . . . , ψ L},� = {ϕ1, . . . , ϕL} ⊂ Ľ2(E). If
X (�) and X (�) are Bessel families which satisfy

L∑
l=1

∑
( j,m)∈Z×Z,

α=a− j m

ϕ̂l(a jξ)ψ̂ l(a j (ξ + α)) = δα,01E (ξ) for a.e. ξ ∈ R,(3.1)

and for all α ∈ �, then X (�) and X (�) form a pair of dual frames in Ľ2(E). Here �
denotes the set of all a-adic numbers, i.e.,

� = {α ∈ R : α = a− j m for some ( j,m) ∈ Z × Z}.(3.2)

Conversely, if X (�) and X (�) are a pair of dual frames in Ľ2(E), then (3.1) holds.

In fact, we are going to be interested in Theorem 3.2 only if the dilation factor a
is rational. Chui and Shi [10] have also shown that, for a ∈ Z, condition (3.1) can be
rewritten as

L∑
l=1

∑
j∈Z

ϕ̂l(a jξ)ψ̂ l(a jξ) = 1E (ξ) for a.e. ξ,(3.3)

L∑
l=1

∞∑
j=0

ϕ̂l(a jξ)ψ̂ l(a j (ξ + t)) = 0 for all t ∈ Z\aZ, a.e. ξ.(3.4)

If a ∈ Q\Z, a = p/q for p, q ∈ Z with gcd(p, q) = 1, then (3.1) can be stated as (3.3)
and

L∑
l=1

s∑
j=0

ϕ̂l(a jξ)ψ̂ l(a j (ξ + qst)) = 0 for a.e. ξ,(3.5)

for all s = 0, 1, 2, . . . and all t ∈ Z not divisible by p nor q (p, q 
 | t), see [10].
As a special case of Theorem 3.2 we obtain the following corollary:

Corollary 3.3. Suppose that � = {ψ1, . . . , ψ L} ⊂ Ľ2(E) and X (�) forms a tight
frame with constant 1 for Ľ2(E), where E ⊂ R is some measurable a-multiplicatively
invariant set. Then

L∑
l=1

∑
j∈Z

|ψ̂ l(a jξ)|2 = 1E (ξ) for a.e. ξ ∈ R.(3.6)

Since we do not need the full strength of Theorem 3.2, and since the original argument
of Chui and Shi [10] appears to be incomplete, we will present the proof of Corollary 3.3
in some detail. Consider

D = { f ∈ L2(R) : f̂ ∈ L∞(R), supp f̂ ⊂ K for some compact K ⊂ R\{0}},
which is a dense subspace of L2(R). We will use the following result, see [7, Lemma 3.1]
which was originally shown for dilations with integer entries.
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Lemma 3.4. Suppose ψ ∈ L2(R). Then∑
j∈Z

|ψ̂(a jξ)|2 ∈ L1
loc(R\{0}) ⇔

∑
j∈Z

∑
k∈Z

|〈 f, ψj,k〉|2 <∞ for all f ∈ D.

If this is the case, then, for any f ∈ D,∑
j∈Z

∑
k∈Z

|〈 f, ψj,k〉|2 = M( f )+ R( f ),

where

M( f ) =
∑
j∈Z

|a| j
∫

R

| f̂ (a jξ)|2|ψ̂(ξ)|2 dξ,

R( f ) =
∑
j∈Z

∑
m∈Z\{0}

|a| j
∫

R

f̂ (a jξ) f̂ (a j (ξ + m))ψ̂(ξ)ψ̂(ξ + m) dξ.

The convergence in R( f ) is absolute in the sense that the above series converges
if we take absolute values inside the integrals. Therefore, we can freely exchange the
summation with integration. The proof of Lemma 3.4 follows verbatim the proof of [7,
Lemma 3.1] with the help of the following elementary lemma, see [7, Lemma 2.4].

Lemma 3.5. Suppose g ∈ L∞(R) is such that supp g ⊂ (ξ0 − |a| j0/2, ξ0 + |a| j0/2)
for some ξ0 ∈ R and j0 ∈ Z satisfying 2|ξ0| > |a| j0 . Then

∑
j∈Z

∑
m∈Z\{0}

|a| j |g(a jξ)g(a j (ξ + m))| ≤ 2|a| j0

⌈
log|a|

(
2|ξ0| + |a| j0

2|ξ0| − |a| j0

)⌉
‖g‖2

∞1ϒ(ξ),

where ϒ = ϒ(ξ0, j0) =
⋃

j< j0
a− j (ξ0 − |a| j0/2, ξ0 + |a| j0/2).

Proof of Corollary 3.3. Given k ∈ Z, let Hk = (−|a|k/2, |a|k/2). Let 0 
= ξ0 ∈ E be
an arbitrary point of density of E . By the Lebesgue differentiation theorem almost every
point of E is its point of density. We will show that

lim
k→−∞

1

|Hk |
∫
ξ0+Hk

L∑
l=1

∑
j∈Z

|ψ̂ l(a jξ)|2 dξ = 1.(3.7)

By the Lebesgue differentiation theorem this would imply (3.6). To show (3.7) consider
the sequence of test functions ( fk)k<0 ⊂ Ľ2(E) given by

f̂k(ξ) = |Hk |−1/21(ξ0+Hk )∩E (ξ).

Since

lim
k→−∞

L∑
l=1

∑
j∈Z

∑
m∈Z

|〈 fk, ψ
l
j,m〉|2 = lim

k→−∞
‖ fk‖2

2 = 1,
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by Lemma 3.4, it suffices to show that R( fk)→ 0 as k → −∞, where

R( f ) =
L∑

l=1

∑
j∈Z

∑
m∈Z\{0}

|a| j
∫

R

f̂ (a jξ) f̂ (a j (ξ + m))ψ̂ l(ξ)ψ̂ l(ξ + m) dξ.

By Lemma 3.5, for k sufficiently small,

|R( fk)| ≤
L∑

l=1

∑
j∈Z

∑
m∈Z\{0}

|a| j

2

∫
R

| f̂k(a
jξ) f̂k(a

j (ξ+m))|(|ψ̂ l(ξ)|2+|ψ̂ l(ξ + m)|2) dξ,

L∑
l=1

∫
R

∑
j∈Z

∑
m∈Z\{0}

|a| j

2
(| f̂k(a

jξ) f̂k(a
j (ξ + m))|+| f̂k(a

jξ) f̂k(a
j (ξ − m))|)|ψ̂ l(ξ)|2 dξ

≤
L∑

l=1

4|a|k‖ f̂k‖2
∞

∫
∪j<k a− j (ξ0+Hk )

|ψ̂ l(ξ)|2 → 0 as k → −∞,

by the Lebesgue dominated convergence theorem. Therefore, M( fk)→ 1 as k → −∞
which shows (3.7) and completes the proof.

4. The Main Result

We are now to ready to show the main theorem which completely answers the question
posed by Daubechies.

Theorem 4.1. Suppose a is an irrational dilation factor a > 1. If � = {ψ1, . . . , ψ L}
is an orthonormal multiwavelet associated with a, then at least one of the ψ l ’s is poorly
localized in time. More precisely, there exists l = 1, . . . , L such that, for any δ > 0,

lim sup
|x |→∞

|ψ l(x)||x |1+δ = ∞.(4.1)

Proof. By contradiction, suppose there is an orthonormal multiwavelet� = {ψ1, . . . ,

ψ L} associated with an irrational dilation factor a and satisfying

|ψ l(x)| = O(|x |−1−δ) as |x | → ∞,(4.2)

for all l = 1, . . . , L . Note that by (4.2) we can assume that each ψ̂ l(ξ) is continuous
on R.

For the sake of simplicity, and to better illustrate the idea of the proof, let us assume
in addition that

|ψ̂ l(ξ)| = O(|ξ |−δ) as |ξ | → ∞,(4.3)

for all l = 1, . . . , L . Later we will show how to eliminate this assumption using some
facts about Sobolev spaces.
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If a is such that a j is irrational for all j ≥ 1, then by the work of Chui and Shi [10]
for L = 1 and [4] for general L ≥ 1, � has to be a combined MSF multiwavelet, i.e.,
the union of the supports of the ψ̂ l’s has minimal (Lebesgue) measure. This means that

L∑
l=1

|ψ̂ l(ξ)|2 = 1K (ξ) for a.e. ξ,(4.4)

for some multiwavelet set of order K , i.e.,
∑

j∈Z
1K (a jξ) = 1 and

∑
k∈Z

1K (ξ +k) = L

for a.e. ξ . However, since the ψ̂ l’s are continuous (4.4) cannot hold. Indeed, it suffices
to consider an open set {ξ : 1

3 <
∑L

l=1 |ψ̂ l(ξ)|2 < 2
3 }.

Suppose now that a is such that a, . . . , a j0−1 are irrational and that a j0 is rational for
some j0 ≥ 2. Let E = ⋃

j∈ j0Z
a j S, where S = ⋃L

l=1 supp ψ̂ l . By Lemma 2.2 the sets
E, aE, . . . , a j0−1 E are pairwise disjoint (modulo sets of measure zero). Furthermore,
they are a j0 -multiplicatively invariant and (modulo sets of measure zero)

E ∪ aE ∪ · · · ∪ a j0−1 E = R.(4.5)

Let W̃j = span{ψ l
j+i j0,k

: i, k ∈ Z, l = 1, . . . , L} for j ∈ Z. Since W̃j ⊂ Ľ2(a j E) and

W̃0 ⊕ · · · ⊕ W̃j0−1 = L2(R), we actually have W̃j = Ľ2(a j E) for all j ∈ Z.
In particular,� = {ψ1, . . . , ψ L} becomes an orthogonal multiwavelet associated with

the rational dilation factor ã = a j0 on Ľ2(E). Therefore, by Corollary 3.3,

L∑
l=1

∑
j∈Z

|ψ̂ l(ã jξ)|2 = 1E (ξ) for a.e. ξ ∈ R.(4.6)

We claim that a function

s(ξ) =
L∑

l=1

∞∑
j=−∞

|ψ̂ l(ã jξ)|2(4.7)

is continuous everywhere, except possibly 0. Indeed, it suffices to show that the above
series converges uniformly on compact intervals of R\{0}. By (4.6) we necessarily have
ψ̂ l(0) = 0 for all l = 1, . . . , L . Hence, by (4.2),

|ψ̂ l(ξ)|
|ξ |δ/2 =

∣∣∣∣
∫

R

1 − e−2π i xξ

|xξ |δ/2 |x |δ/2ψ l(x) dx

∣∣∣∣ ≤ C
∫

R

|ψ l(x)||x |δ/2 dx ≤ C ′,

since y �→ |1−e−2π iy |/|y|δ/2 is bounded on R (and without loss of generality 0 < δ < 1).
Therefore

|ψ̂ l(ξ)| = O(|ξ |δ/2) as |ξ | → 0.(4.8)

By (4.3), (4.8), and splitting the summation over positive and negative j’s we conclude
that the series (4.7) converges uniformly on intervals [−R,−1/R] and [1/R, R] for any
R > 1. This shows that s(ξ) is continuous on R\{0}.

Since s(ξ) = 1E (ξ) for a.e. ξ ∈ R we necessarily have that s(ξ) is constantly equal to
0 or 1 for all ξ ∈ (0,∞). The same is true for the interval (−∞, 0). Therefore, E∩(0,∞)

is either ∅ or (0,∞) (modulo sets of measure zero). Also, E ∩ (−∞, 0) is either ∅ or
(−∞, 0). Since a > 0 we have E = aE , which is a contradiction with |E ∩ aE| = 0.
This ends the proof of Theorem 4.1 under the additional assumption (4.3).
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In order to eliminate (4.3) we will need a lemma due to Meyer [14, Chapter 2.4,
Lemma 6] which reduces the “global” Sobolev H m-norm to H m-norms “localized”
about the points k ∈ Z. Recall that, given m ≥ 0, we define the Sobolev space H m(R)

as

H m(R) =
{

f ∈ L2(R) : ‖ f ‖H m =
(∫

R

| f̂ (ξ)|2(1 + |ξ |2)m dξ

)1/2

<∞
}
.

Lemma 4.2. Suppose that w is a C∞-function with compact support. If g ∈ H m(R),
then the sequence (ωk)k∈Z, where ωk = ‖g(·)w(· − k)‖H m , belongs to �2(Z).

The idea of the proof of Lemma 4.2, in the case when m is an integer, is outlined in
[14]. Since we need this result for noninteger m’s we present its proof.

Proof. By a direct calculation,

(g(·)w(· − k))ˆ(ξ) = (ĝ(·) ∗ e−2π ik·ŵ(·))(ξ) =
∫

R

e−2π ikη ĝ(ξ − η)ŵ(η) dη.

By the Poisson summation formula and the Cauchy–Schwarz inequality we have, for
any N > 0,

∑
k∈Z

∣∣∣∣
∫

R

e−2π ikη ĝ(ξ − η)ŵ(η) dη

∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣∣
∫ 1

0
e−2π ikη

∑
l∈Z

ĝ(ξ−η+l)ŵ(η−l) dη

∣∣∣∣∣
2

=
∫ 1

0

∣∣∣∣∣
∑
l∈Z

ĝ(ξ−η + l)ŵ(η−l)

∣∣∣∣∣
2

dη

≤
∫ 1

0

(∑
l∈Z

|ĝ(ξ − η + l)|2
(1 + |η − l|2)N

)(∑
l∈Z

|ŵ(η − l)|2(1 + |η − l|2)N

)
dη

≤ C

(
sup
η∈[0,1]

∑
l∈Z

1

1 + |η − l|2
)∫

R

|ĝ(ξ − η)|2
(1 + |η|2)N

dη = C ′
∫

R

|ĝ(ξ − η)|2
(1 + |η|2)N

dη,

since |ŵ(η)|2 ≤ C(1 + |η|2)−N−1 for some C = C(N ) > 0. Therefore, by a direct
estimate, we have that, for N > m + 1

2 ,

∑
k∈Z

‖g(·)w(· − k)‖2
H m ≤ C ′

∫
R

∫
R

(1 + |ξ |2)m |ĝ(ξ − η)|2
(1 + |η|2)N

dη dξ

= C ′
∫

R

∫
R

(1 + |ξ + η|2)m
(1 + |η|2)N

dη |ĝ(ξ)|2 dξ

≤ C ′′
∫

R

(1 + |ξ |2)m |ĝ(ξ)|2 dξ = C ′′‖g‖2
H m .

Proof of a General Case of Theorem 4.1. To eliminate the additional assumption
(4.3), it remains to show that the function s(ξ), given by (4.7), is continuous every-
where, possibly except 0, i.e., the series

∑L
l=1

∑∞
j=0 |ψ̂ l(ã jξ)|2 converges uniformly on

compact intervals of R\{0}.
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Let w be a C∞-function with compact support such that w(ξ) = 1 for ξ ∈ [0, 1].
By (4.2), we have ψ̂ l ∈ H (1+δ)/2(R) for l = 1, . . . , L . Hence, by Lemma 4.2 and by
Sobolev’s embedding theorem, H (1+δ)/2(R) ⊂ L∞(R),∑

k∈Z

‖ψ̂ l1[k,k+1]‖2
∞ ≤

∑
k∈Z

‖ψ̂ l(·)w(· − k)‖2
∞(4.9)

≤ C
∑
k∈Z

‖ψ̂ l(·)w(· − k)‖2
H (1+δ)/2 ≤ C ′‖ψ̂ l‖2

H (1+δ)/2 <∞.

It now suffices to show that for any R > 1,
∑∞

j=0 |ψ̂ l(ã jξ)|2 converges uniformly
on intervals [−R,−1/R] and [1/R, R]. Indeed, for any ξ ∈ [1/R, R] and integers J
satisfying ã J (ã − 1) > R, by (4.9),

∞∑
j=J

|ψ̂ l(ã jξ)|2 ≤
∞∑

j=J

‖ψ̂ l1[�ã j ξ ,�ã j ξ +1]‖2
∞

≤
∑

k≥�ã J /R 
‖ψ̂ l1[k,k+1]‖2

∞ → 0 as J → ∞,

since (�ã jξ )j≥J is a strictly increasing sequence of positive integers for any ξ ∈
[1/R, R], where �x denotes the greatest integer≤ x . Likewise, we have uniform conver-
gence on [−R,−1/R]. Since R > 1 is arbitrary this shows that

∑L
l=1

∑∞
j=0 |ψ̂ l(ã jξ)|2

and, hence, s(ξ) given by (4.7), is continuous on R\{0}. This completes the proof of a
general case of Theorem 4.1.

We conclude this section with several remarks regarding the applicability of Theo-
rem 4.1 to more general situations.

Remark 1. Note that the proof of Theorem 4.1 also works for all negative dilation
factors a such that both a and a2 are irrational. Indeed, in this case j0, being the smallest
integer j ≥ 1 such that a j is rational, is ≥ 3 and E , being either (0,∞) or (−∞, 0),
is a contradiction with |E ∩ a2 E | = 0. Finally, suppose that a < 0 is irrational and
that a2 is rational. In this case, if � is an orthonormal multiwavelet associated with
a and satisfying (4.2), then � is also an orthonormal multiwavelet associated with a2

for either Ľ2(0,∞) or Ľ2(−∞, 0). Without loss of generality, we can assume that �
is a multiwavelet for H2(R) = Ľ2(0,∞). Therefore, the existence of well-localized
multiwavelets for this class of negative dilation factors is equivalent to the problem of
the existence of well-localized multiwavelets for H2(R) posed by Meyer in [14]. This
problem was answered (negatively) by Auscher [2] for all integer dilation factors with
the use of a wavelet dimension function. Recently, Speegle and this author [8] have
shown that the same conclusion also holds for rational dilation factors. We also note
that an easy modification of the proof of Theorem 4.1 shows that there are no well-
localized multiwavelets for H2(R) associated with irrational dilation factors. Therefore,
the Hardy space H2(R) does not admit wavelets with good time-frequency localization
for any (positive) real dilation factor.

Remark 2. Using the ideas in the proof of Lemma 2.2 and Theorem 4.1 it is not hard to
show that even biorthogonal multiwavelets cannot be well-localized in time for (positive)
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irrational dilation factors. Indeed, suppose that a is an “exceptional” irrational dilation
factor, i.e., a ∈ R\Q is such that a j0 ∈ Q for some j0 ≥ 2; the other case is covered in
[4]. If � = {ψ1, . . . , ψ L},� = {ϕ1, . . . , ϕL} is a biorthogonal multiwavelet associated
with a then, necessarily,

E =
⋃

j∈ j0Z

a j

(
L⋃

l=1

supp ψ̂ l

)
=
⋃

j∈ j0Z

a j

(
L⋃

l=1

supp ϕ̂l

)
,

by a biorthogonal variant of Lemma 2.2. Furthermore, E, aE, . . . , a j0−1 E are pairwise
disjoint (modulo sets of measure zero). The rest of the proof is the same as before with
the exception that we consider

s(ξ) =
L∑

l=1

∞∑
j=−∞

ϕ̂l(ã jξ)ψ̂ l(ã jξ),

where ã = a j0 , and use a biorthogonal variant of Corollary 3.3.

Remark 3. The conclusion (4.1) in Theorem 4.1 is optimal in the sense that it may
fail when δ = 0. Indeed, for any real dilation factor a, Speegle has constructed an
MSF wavelet ψ associated with a such that the support of ψ̂ consists of at most three
intervals, see the example below. Therefore, such a waveletψ satisfies |ψ(x)| = O(|x |−1)

as |x | → ∞.

Example (Speegle). Suppose that a dilation factor a > 1. Define the set

K =
[
− la(a3 − 1)

a4 − 1
,− l(a3 − 1)

a4 − 1

]
∪
[

1

a4 − 1
,

l(a − 1)

a4 − 1

]
∪
[

la3(a − 1)

a4 − 1
,

a4

a4 − 1

]
,

where l = !1/(a − 1)" is the smallest integer ≥ 1/(a − 1). An elementary calculation
shows that K is a wavelet set, i.e.,∑

j∈Z

1K (a
jξ) = 1 and

∑
k∈Z

1K (ξ + k) = 1 for a.e. ξ ∈ R.(4.10)

Thereforeψ ∈ L2(R), given by ψ̂ = 1K , is an MSF wavelet associated with the positive
a that satisfies |ψ(x)| ≤ C(1 + |x |)−1 for some constant C > 0. Likewise, if a dilation
factor a < −1, then K̃ = [a2/(1 − a2), 1/(1 − a2)] satisfies (4.10), and hence ψ , given
by ψ̂ = 1K̃ , is also an MSF wavelet associated with a.

Remark 4. Finally we note that Theorem 4.1 easily generalizes to several dimensions
in the case of the isotropic dilations of the form a Id. In this case, we say that � =
{ψ1, . . . , ψ L} ⊂ L2(Rn) is an orthonormal multiwavelet if the affine system

ψ l
j,k(x) = |a|nj/2ψ(a j x − k) for j ∈ Z, k ∈ Zn, l = 1, . . . , L ,

is an orthonormal basis for L2(Rn). Naturally, condition (4.1) has to be replaced by

lim sup
|x |→∞

|ψ l(x)||x |n+δ = ∞.
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