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It is shown that for any expansive, integer valued 2×2 matrix, there exists a
(multi-)wavelet whose Fourier transform is compactly supported and smooth. A
key step is showing that for almost every equivalence class of integrally similar
matrices there is a representative A which is strictly expansive in the sense that there
is a compact set K which tiles the plane by integer translations and such that
K … A(K°), where K° is the interior of K. © 2002 Elsevier Science (USA)
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1. INTRODUCTION AND PRELIMINARIES

A common thread in the theory of wavelets has been to ask for which
dilations A do there exist (multi-)wavelets Y={k1, ..., k l}, usually with
some additional properties. Gröchenig et al. [18, 19], and Lagarias and
Wang [25–27] studied, for example, which dilations A yield Haar type
wavelets. This subject turns out to be intimately connected with the theory
of self-affine lattice tilings which has been studied, among others, by Bandt
and Gelbrich [3], Kirat and Lau [24], Lagarias and Wang [28–30], and
Zhou [37]. Strichartz [34] was able to show that for each dilation which
admits a Haar type wavelet, there is also an r-regular wavelet, a result that
was extended to all integer valued, expansive matrices in [8]. On the



Fourier transform side, Dai and Larson [12] and Hernández et al. [21, 22]
initiated the study of minimally supported frequency wavelets, which were
also studied in [6, 13, 14, 17, 33]. It is known that all expansive, integer
valued matrices admit minimally supported frequency wavelets. Gu and
Han [20] proved that all determinant two integer valued expansive matri-
ces admit MRA wavelets, a result that was extended to arbitrary expansive,
integer valued matrices in [2, 7]. More recently, the question of extending
Daubechies [15, 16] construction to higher dimensions has been con-
sidered by Ayache [1] and independently by Belogay and Wang [5].
Calogero [10, 11] has studied the construction of Meyer type wavelets for
the quinconx matrix in R2. The purpose of this paper is to solve the general
existence problem for Meyer type wavelets in two dimensions. That is, we
will show that for all expansive, integer valued 2×2 matrices, there exists a
(multi-)wavelet Y such that for each i, k̂ i is smooth and compactly
supported.

A matrix is said to be expansive if all of its eigenvalues have modulus
bigger than one. Such a matrix is often referred to as a dilation. We restrict
our attention to dilations A which preserve a lattice C=PZn, i.e., AC … C,
where P is some n×n non-degenerate matrix. By standard considerations,
see [24], we will assume that C=Zn and hence A has integer entries. We
say that the matrices A and B are integrally similar if there is an integer
matrix C of determinant ±1 such that A=CBC−1.

Given an expansive matrix A, a (multi-)wavelet (with respect to A) is a
collection of square integrable functions Y={k1, ..., k l} such that
{k ij, k : i=1, ..., l, j ¥ Z, k ¥ Zn} is an orthonormal basis for L2(Rn). Here,
for k ¥ L2(Rn) we let

kj, k(x)=DAjTkk(x)=|det A| j/2 k(A jx−k), j ¥ Z, k ¥ Zn,

where Tyf(x)=f(x−y) is a translation operator by the vector y ¥ Rn, and
DAf(x)=`|det A| f(Ax) is a dilation by the matrix A.

To fix notation, the Fourier transform we will use in this paper is

f̂(t)=F
R
n
f(x) e−2piOx, tP dx.

Given a subset X … Rn, conv X denotes the convex hull of X,
sym conv X=conv(−X 2X), and X° is the interior of X.

A minimally supported frequency (MSF) wavelet is a wavelet k such that
|k̂|=1W, for some measurable set W. For the purposes of this paper, we
will say that the matrix A admits a Meyer type wavelet if there is a (multi-)
wavelet Y such that each k̂ i is smooth and compactly supported.

50 BOWNIK AND SPEEGLE



It is easy to see that whenever A=CBC−1 with C an integer matrix of
determinant ±1 and Y is a (multi-)wavelet with respect to B, then
{k1(Cx), ..., k l(Cx)} is a (multi-)wavelet with respect to A. Moreover, if A
and B are integrally similar, then A admits a Meyer type wavelet if and
only if B admits a Meyer type wavelet.

Finally, for any measurable setW … Rn that satisfies

C
j ¥ Z

1W(A jt)=1 for a.e. t ¥ Rn(1.1)

(in particular, for the support of any MSF wavelet associated to AT), we
define the dilation projection dA : P(Rn)QP(W) by

dA(S)= 0
.

j=−.
(A j(S) 5W) for S ¥P(Rn),(1.2)

where P(W) is the power set ofW.
The remainder of the terminology in this paper is standard, as can be

found in [23, 31, 36].

2. THE DETERMINANT TWO CASE

In this section, we prove that every expansive, 2×2 matrix of determi-
nant ±2 admits a Meyer type wavelet. Most of the work for this has been
done by previous authors, so this section will consist of theorem quoting
and one example.

The following follows from a theorem due to Latimer and MacDuffee
(see [32]), or an elementary argument as presented in [24].

Proposition 2.1. Let A be an expansive matrix with determinant ±2.
Let C0=(

0
−2

1
0), C1=(

0
−2

1
1), C2=(

0
−2

1
2), and D=(

0
2
1
0). Then A is integrally

similar to one of the following six matrices: D, C0, ±C1, ±C2.

From Proposition 2.1, it follows that in order to show that all integral
matrices of determinant ±2 admit Meyer type wavelets, it suffices to show
that Meyer type wavelets exist for the six matrices listed in Proposition 2.1.
The matrices D and C0 follow from taking tensor products of one dimen-
sional wavelets as explained, for example, in [36]. The existence of Meyer
type wavelets for the quinconx matrix (11

−1
1) was shown by Calogero in

[10, 11]. Since the quinconx matrix is integrally similar to C2 and the same
argument works for −C2, it suffices to prove that Meyer type wavelets
exist for ±C1. Since our construction is going to be symmetric with respect
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to the origin, we will focus solely on C1 (actually, we will focus on the
matrix ( 0−1

2
1), which is integrally similar to C1). We begin with an easy

Proposition 2.2. Let A be an n×n expansive matrix and W … Rn0{0}
be a compact set that is bounded away from the origin and satisfies (1.1). Let
m0 be a function with L=supp(m0)={t ¥ Rn : m0(t) ] 0} and K=Rn0L.
If there exist E, N > 0 such that B(0, E) … L and dA(B(0, N) 5K)=W, then
<.

j=1 m0(A
−jt) converges and is compactly supported. Moreover, if m0 is

smooth and m0(0)=1 then<.

j=1 m0(A
−jt) converges to a smooth, compactly

supported function.

Proof. Note that since W and K 5 B(0, N) are bounded and bounded
away from the origin, there is an R ¥N such that whenever | j| > R,
A j(K 5 B(0, N)) 5W=”. For | j | [ R let Ej=K 5 B(0, N) 5 A j(W).
Consider the set E :=AR(1R

j=−R A
−jEj) and note that dA(E)=A−R(E)=W.

Moreover, if j > R and t ¥ A j(W), then t ¥ A j(A−R(E))=1R
k=−R A

j−k(Ek).
Therefore, t ¥ A l(K) for some l > 0 and <.

j=1 m0(A
−jt)=0. Since W is

compact and bounded away from zero and A is expansive, 1j ¥ Z A j(W) 2
{0} is closed. By (1.1) this implies that 1j ¥ Z A j(W)=Rn0{0} and
thus supp(<.

j=1 m0(A
−jt)) …1R

k=−. A
k(W) 2 {0}. Since A is expansive,

1R
k=−. A

k(W) is bounded.
Now, assume that m0 is smooth and m0(0)=1. Since m(t)=1+O(t) as
tQ 0 the product <.

j=1 m0(A
−jt) converges pointwise. Furthermore, by

standard considerations involving the infinite product rule, see the proof of
[7, Theorem 3], this product defines a smooth function.

Example 2.3. There exists a Meyer type wavelet for the matrix
A=( 0−1

2
1).

Proof. We note here that the set

W=conv{(0, 12), (−1,
1
2), (−1, −

1
2)} 2 conv{(0, −12), (1,

1
2), (1, −

1
2)}(2.1)

is the support of an MSF wavelet with low pass filter the Z2 periodization
of 1T, where T=sym conv{(0, 12), (

1
2 , 0)}. The scaling set for W is

sym conv{(−1, −12), (0, −
1
2)}.

We will now smooth the low pass filter associated with W. Let
D={(0, 0), (1, 0)} be the set of representatives of different cosets
of Z2/AZ2. Hence the Smith–Barnwell equation for A is |m0(t)|2+
|m0(t+(

1
2 ,
1
2))|

2=1. We smooth the low pass filter in such a way that
the support of the new filter is the interior of the Z2 periodization of
sym conv{(0, 12), (

1
2 ,
1
8), (

1
2 , −

1
8)}).

Let g: RQ [0,.) be a C. function such that

supp g :={g ¥ R : g(g) ] 0}=(−., 1/4).
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Let v1=(3/8, 1/2), v2=(3/8, −1/2), v3=(−3/8, 1/2), v4=(−3/8,
−1/2). Define a C. function h: R2Q [0,.) by

h(t)=D
4

j=1
g(Ot, vjP).

Clearly

supp h=(conv{(±2/3, 0), (0, ±1/2)})°.

Let f be Z2 periodization of h, i.e., f(t)=; k ¥ Z
2 f(t+k). Finally define

the function m0 by

m0(t)=`f(t)/(f(t)+f(t+(1/2, 1/2))) .

Since the denominator is always positive and f ‘‘vanishes strongly’’ (see the
proof of Claim 3.3), m0 is C., Z2 periodic function satisfying |m0(t)|2+
|m0(t+(1/2, 1/2))|2=1 for all t ¥ R2, and m0(0)=1.

Now, we show that Cohen’s condition is satisfied for this set. The
natural first guess for K is the scaling set K1=sym conv{(−1, −12),
(0, −12)}. This set almost works; the points ±(1, 12) get mapped under A−1

to the points ±(0, 12), which are not in the support of m0. However, letting
B1 be a small neighborhood of (1, 12) intersected with K1, the set
K=K1 0(B1 2 −B1) 2 (B1+(−1, 0)) 2 (−B1+(1, 0)) satisfies Cohen’s
condition. Therefore ĵ(t)=<.

j=1 m0(A
−jt) is the scaling function for the

multiresolution analysis (Vj)j ¥ Z associated to the dilation AT defined by

Vj=span{D(AT)jTlj : l ¥ Zn} for j ¥ Z.

Finally, it suffices to show that ĵ is compactly supported by verifying the
hypotheses of Proposition 2.2 with W given by (2.1). A direct computation
shows that the images of the zero set in Fig. 1 under various powers A j line
up as pictured in Fig. 2.

Clearly, all of W is covered by the union of these sets. Furthermore, k
given by

k̂(t)=m0(A−1t+(1/2, 1/2)) epi(t1+t2)ĵ(A−1t) for t=(t1, t2) ¥ R2,

is a Meyer type wavelet associated to the dilation AT. By Proposition 2.1,
A is integrally similar to AT and thus there exists a Meyer type wavelet
associated to A.

We have thus proven.
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FIG. 1. Zero set of m0.

FIG. 2. Verification of Proposition 2.2.
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Theorem 2.4. Let A be a 2×2 expansive integer matrix of determinant
±2. Then, A admits a Meyer type wavelet.

3. GENERAL FACTS

The main goal of this section is to give a simple sufficient condition on a
dilation A which guarantees the existence of Meyer type wavelets asso-
ciated with A. This condition says that A is strictly expansive; i.e., there
exists a lattice tiling of Rn such that the dilate of a tile contains some
neighborhood of this tile. Even though we do not require that our tile is
self-affine, the existence of strictly expansive tillings appears to be con-
nected with the existence of self-affine tilings [3, 24–30, 37]. Since the strict
expansiveness condition is meaningful regardless of the dimension, we will
work on Rn. An application of this condition to R2 is given by Corollary 3.6.

Definition 3.1. We say that an n×n integral dilation B is strictly
expansive if there exists a compact set K … Rn such that

C
k ¥ Z

n
1K(t+k)=1 for a.e. t ¥ Rn,(3.1)

K … BK°, where K° is the interior of K.(3.2)

When (3.1) and (3.2) hold, we say that B is strictly expansive with respect
to K.

We shall prove the following existence theorem.

Theorem 3.2. Suppose A is a n×n integral dilation matrix. If B=AT is
strictly expansive then there exists a multiresolution analysis with a scaling
function and an associated wavelet family of (|det A|−1) functions in the
Schwartz class.

Proof. Suppose the compact set K satisfies (3.1) and (3.2). Given e > 0
we define

K−e={t ¥ Rn : B(t, e) …K}

K+e={t ¥ Rn : B(t, e) 5K ]”}.

Note that K−e is closed, K+e is open, and the interior of K satisfies
K°=1e > 0 K−e. Hence there exists e > 0 such that

K+e … B(K−e).(3.3)
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Pick a function g: RnQ [0,.) in the class C. such that >Rn g=1 and

supp g :={t ¥ Rn : g(t) ] 0}=B(0, e).

Define a function f by

f(t)=(1K f g)(t).

Clearly f is in the class C., 0 [ f(t) [ 1, and

supp f={t ¥ Rn : f(t) ] 0} …K+e,(3.4)

{t ¥ Rn : f(t)=1}=K−e.(3.5)

Moreover, by (3.1)

C
k ¥ Z

n
f(t+k)= C

k ¥ Z
n
(1K f g)(t+k)=1 for all t ¥ Rn.(3.6)

Finally define a function m: RnQ [0, 1] by

m(t)== C
k ¥ Z

n
f(B(t+k)) .(3.7)

Claim 3.3. The function m given by (3.7) is C., Zn-periodic, and

C
d ¥D

|m(t+B−1d)|2=1 for all t ¥ Rn,(3.8)

m(t) > 0S t ¥ Zn+B−1(K+e),(3.9)

m(t)=0 for t ¥ (B−1Zn0Zn)+B−1(K−e),(3.10)

where B=AT, and D={d1, ..., db} is the set of representatives of different
cosets of Zn/BZn, where b=|det A|.

Proof of Claim 3.3. To guarantee that m is C., the function f must
‘‘vanish strongly,’’ i.e., if f(t0)=0 for some t0 then “af(t0)=0 for any
multi-index a. It is clear that if nonnegative function f in C. ‘‘vanishes
strongly’’ then `f is also C..

The condition (3.8) is a consequence of

C
d ¥D

|m(t+B−1d)|2= C
k ¥ Z

n
C
d ¥D

f(B(t+B−1d+k))

= C
k ¥ Z

n
C
d ¥D

f(Bt+d+Bk)=1,

by (3.6).
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To see (3.9), take t such that m(t) > 0. By (3.4) and (3.7), B(t+k) ¥K+e

for some k ¥ Zn, and hence (3.9) holds.
We claim that (3.10) follows from (3.8) and

m(t)=1 for t ¥ Zn+B−1(K−e).(3.11)

Indeed, if t ¥ B−1d+k+B−1(K−e) for some d ¥D0BZn and k ¥ Zn, then by
(3.11) we have m(t−B−1d)=1. Hence by (3.8) m(t)=0 and (3.10) holds.
Finally, (3.11) is the immediate consequence of (3.5) and (3.7). This ends
the proof of the claim.

We can write m in the Fourier expansion as

m(t)=
1

`|det A|
C
k ¥ Z

n
hke−2piOk, tP,(3.12)

where we include the factor |det A|−1/2 outside the summation as in [7].
Since m is C., the coefficients hk decay polynomially at infinity, that is, for
all N> 0 there is CN > 0 so that

|hk | [ CN |k|−N for k ¥ Zn0{0}.

Since m satisfies (3.8) and m(0)=1, m is a low-pass filter which is regular
in the sense of the definition following [7, Theorem 1]. By [7, Theorem 5]
j ¥ L2(Rn) defined by

ĵ(t)=D
.

j=1
m(B−jt),(3.13)

has orthogonal translates, i.e.,

Oj, TljP=dl, 0 for l ¥ Zn,

if and only if m satisfies the Cohen condition, that is there exists a compact
set K̃ … Rn such that

• K̃ contains a neighborhood of zero,
• 1l ¥ Z

n (l+K̃)=Rn,
• m(B−jt) ] 0 for t ¥ K̃, j \ 1.

The first guess for K̃ to be K is in general incorrect, e.g., if K has isolated
points. Instead we claim that there is 0 < d < 1 so that

K̃={t ¥K : |B(t, e) 5K| \ d |B(t, e)|}(3.14)
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does the job. Clearly, if t ¥ K̃ then f(t) ] 0 and thus m(B−1t) ] 0. By
(3.3), B−1K̃ … B−1K+e …K−e … K̃ and thus m(B−jt) ] 0 for all j \ 1. Since
0 ¥K° by (3.2) thus 0 ¥ (K−e)° by (3.3) and hence 0 ¥ K̃°. Finally, it suffices
to check that

C
k ¥ Z

n
1K̃(t+k) \ 1 for all t ¥ Rn.(3.15)

By the compactness of K there is a finite index set I … Zn such that

C
k ¥ I

1K(t+k) \ 1 for all t ¥ [−1, 1]n.(3.16)

Take any t ¥ [−1/2, 1/2]n and integrate (3.16) over B(t, e) to obtain

C
k ¥ I
|B(t+k, e) 5K| \ |B(t, e)|.

Therefore, if we take d=1/#I then there is k ¥ I such that |B(t+k, e) 5K|
\ d |B(t, e)| and hence t+k ¥ K̃. Thus (3.15) holds and K̃ given by (3.14)
satisfies the Cohen condition. Therefore j is a scaling function for the
multiresolution analysis (Vj)j ¥ Z defined by

Vj=span{DAjTlj : l ¥ Zn} for j ¥ Z.

It remains to show that j is in the Schwartz class. We are going to prove
that j is band-limited, i.e., ĵ is compactly supported. By (3.9) and (3.13)

ĵ(t) ] 0 S t ¥ BZn+K+e.(3.17)

On the other hand, by (3.10), m(B−jt)=0 for t ¥ B j−1Zn0B jZn+
B j−1(K−e). Since

0
.

j=2
(B j−1Zn0B jZn)=BZn0{0},

and

K+e … B(K−e) … B j−1(K−e) for j \ 2,
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we have

ĵ(t)=0 for t ¥ BZn0{0}+K+e.(3.18)

Combining (3.17) and (3.18) we have ĵ(t)=0 for t ¥ (K+e)c. Therefore
supp ĵ …K+e and therefore j is in the Schwartz class. To conclude the
proof of Theorem 3.2 it suffices to use Proposition 3.4 due to Wojtaszczyk,
see [36, Corollary 5.17] which also holds for r=..

Remark. It is widely known (see [35]) that for every dilation B there is
an ellipsoid D and an s > 1 such that D … sD … BD. If one uses this fact to
construct wavelets, the wavelets obtained do not have compactly supported
Fourier transforms, see [8] for details. It is thus crucial to our considerations
that the set K in the definition of strictly expansive matrices be compact
and tile the plane by translations.

Proposition 3.4. Assume that we have a multiresolution analysis on Rn

associated with an integral dilation A. Assume that this MRA has a scaling
function j(x) in the Schwartz class such that ĵ(t) is real. Then there exists a
wavelet family associated with this MRA consisting of (|det A|−1) Schwartz
class functions.

The remainder of this section consists of finding a computationally con-
venient form of Theorem 3.2 in the two-dimensional case. The following
proposition can be found in [3].

Proposition 3.5. A 2×2 integer matrix A is expansive if and only if
(a) |det(A)| \ 2, (b) |tr(A)| [ det(A) when the determinant is positive, and
(c) |tr(A)| [ −det(A)−2 when the determinant of A is negative.

Corollary 3.6. Let A=(ac
b
d) be an expansive, integer valued matrix. If

there exists u ¥ R such that

gu(A) :=max{|−uc+a|, |−(u+2) c+a|, |ud−b+(−1−u)(−uc+a)|,

|(u+2) d−b+(−1−u)(−(u+2) c+a)|} < |det(A)|,

then A is strictly expansive.

Proof. Let X be the (2-dimensional) Banach space with unit ball

BX=conv{±(u, 1), ±(u+2, 1)}.
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Under this norm, ||(x, y)||X=max(|x−(u+1) y|, |y|). Consider A: R2Q R2

as a linear map on X. Then

|det(A)| ||A−1||= sup
(x, y) ¥ BX

>1 d
−c

−b
a
2 1x
y
2>
X

=max 1>1 d
−c

−b
a
2 1u
1
2>
X
, >1 d
−c

−b
a
2 1u+2

1
2>
X

2

=gu(A).

Thus, under the hypotheses of the corollary, ||A−1|| < 1 and BX … A(BX)°.
Hence A is strictly expansive with respect to the compact set K=1

2BX
which satisfies (3.1) and (3.2).

Remarks. (i) If we set u=−1 in Corollary 3.6, then we obtain that the
matrix A is strictly expansive if the a1 norm of each column is less than the
absolute value of the determinant of A.

(ii) When the u in gu(A) is understood, we simply write g(A).

4. A REDUCTION

The goal of this section is to prove

Theorem 4.1. Let A be a 2×2 dilation matrix with integer entries that is
not integrally similar to (0f

1
f). Then, A is strictly expansive.

We will investigate in Section 5 which of the matrices of the form (0f
1
f)

are strictly expansive.
Suppose we are given an arbitrary dilation matrix A=(ac

b
d). Although

there are algorithms [4] for determining when A is integrally similar to
(0f

1
f) based on the theorem of Latimer and MacDuffee (see [32]), these

techniques do not seem to be well-suited for our purposes. Therefore, we
will devise an ad hoc procedure of reducing a dilation matrix to a matrix
which is either strictly expansive or integrally similar to a matrix of the
form (0f

1
f). (Note that by the theorem of Latimer and MacDuffee, there

are (many) 2×2 dilation matrices which are not integrally similar to
matrices of the form (0f

1
f).)
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The proof of Theorem 4.1 will consist of a breaking down into many
cases, but before we begin with the listing of cases, we note the following
elementary transformations:

1−1
0
0
1
2 1a
c
b
d
2 1−1

0
0
1
2=1 a

−c
−b
d
2 ,(4.1)

10
1
1
0
2 1a
c
b
d
2 10
1
1
0
2=1d

b
c
a
2 ,(4.2)

and

11
0
l

1
2 1a
c
b
d
2 11
0
−l
1
2=1a+lc

c
−l2c+l(d−a)+b

−lc+d
2 .(4.3)

For the purposes of this paper, we will call a 2×2 integer matrix (ac
b
d) of

type:

(I) if |b|, |c| \ |a−d|,
(II) if b=0 and |c| \ |a−d|,
(III) if b=c=0.

Clearly, these types are not mutually exclusive.

Lemma 4.2. Every integer matrix is integrally similar to a matrix of
type I, type II, or type III.

Proof. Suppose A is a given dilation matrix. Let (ac
b
d) be an integrally

similar matrix to A with the minimal sum of the diagonal entries, i.e.,
a2+d2. Since the sum of the diagonal entries of a matrix obtained by the
transformation (4.3) is equal to a2+d2+2lc(lc+a−d) we must have

lc(lc+a−d) \ 0 for all l ¥ Z.(4.4)

By taking l=±1 we see that 0 ] |c| < |a−d| would contradict (4.4).
Therefore, either |c| \ |a−d| or c=0. Likewise, using transformations (4.2)
and (4.3) we have that either |b| \ |a−d| or b=0. This finishes the proof of
Lemma 4.2.

The following lemma (stated without proof) will be used to reduce the
general case to the case tr A \ 0.

Lemma 4.3. (a) A dilation matrix A is integrally similar to a matrix
that is strictly expansive with respect to a centrally symmetric set if and only
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if −A is integrally similar to a matrix that is strictly expansive with respect
to a centrally symmetric set.

(b) A dilation matrix A is integrally similar to (0f
1
f) if and only if −A

is integrally similar to (0f
1
f).

We turn now to studying strict expansiveness for the three types of
matrices introduced in this section. Clearly, expansive matrices of type III
are strictly expansive with respect to the unit square. Lemma 4.4 guarantees
that expansive matrices of type II are strictly expansive with respect to
some centrally symmetric set. Finally, Lemmas 4.5 and 4.6 cover the case
of expansive matrices of type I which are not integrally similar to (0f

1
f).

Lemma 4.4. Let A be a type II dilation matrix with tr A \ 0. Then A is
strictly expansive.

Proof. Case 1. a ] d. Let u=−1+b/(d−a). It is easy to check that
Corollary 3.6 is satisfied with this u.

Case 2. a=d. Let A be a matrix of the form

A=1a
0
b
a
2 ,

where a \ 0 and b ¥ Z. By Proposition 3.5, A is expansive if and only if
a \ 2. We will show that for any a \ 2, a, b ¥ Z, A is strictly expansive with
respect to a centrally symmetric set Kh of the form (4.5).

By elementary transformation (4.1), it suffices to consider the case b \ 0.
Let Kh be a subset of R2 given by

Kh={(x, y) ¥ R2 : h(y)−1/2 [ x [ h(y)+1/2, |y| [ 1/2},(4.5)

where h: [−1/2, 1/2]Q R is an odd function. Clearly, if h is continuous
then Kh is closed and

C
k ¥ Z

2
1Kh (t+k)=1 for a.e. t ¥ R2.

Moreover, since h is odd, Kh is centrally symmetric, i.e., Kh=−Kh. Our
goal now is to choose a continuous odd function h such that Kh … A(K°h).

First, notice that

A(Kh)={(x, y) ¥ R2 : a(h(y/a)−1/2)+by/a [ x [ a(h(y/a)+1/2)

+by/a, |y| [ a/2}.
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Therefore, Kh … A(Kh) if and only if

|ah(y/a)+by/a−h(y)| [ (a−1)/2 for all |y| [ 1/2.

Suppose that h is odd and continuous, and

|ah(y/a)+by/a−h(y)| < (a−1)/2 for all |y| [ 1/2.(4.6)

We claim that this implies that Kh … A(K°h). Indeed, by (4.6) and uniform
continuity of h there exists d > 0 such that

|ah(y/a)+by/a−h(y0)| < (a−1)/2−d

for |y−y0 | < d, |y|, |y0 | [ 1/2.

Consequently, Kh+(−d, d)2 … A(Kh) and thus Kh … A(K°h). It now remains
to construct an odd continuous h satisfying (4.6).

Let e > 0 be sufficiently small, say e=1/(2b) if b ] 0 and e=1 other-
wise. Define a piecewise linear h initially on the interval [0, e] by

h(y)=˛0 for 0 [ y [ e/a,
b(y− e/a)/(a−1) for e/a [ y [ e.

Clearly,

|ah(y/a)+by/a−h(y)| [ be/a, for 0 [ y [ e,

since h(e)=be/a. Hence, h(y)=ah(y/a)+by/a for y=e. We extend h to
[0,.) by the iteration. If h is defined on [0, ane] for some n=0, 1, ... we
extend h by

h(y)=ah(y/a)+by/a for y ¥ (ane, an+1e].

It is easy to see that h is continuous everywhere except possibly points of
the form ane, n=0, 1, ... . However, h is continuous at e and thus h is also
continuous at every point ane. Finally, we can extend h on R by defining
h(y)=−h(−y) for y < 0.

Hence we have constructed an odd continuous and piecewise linear
function h such that

|ah(y/a)+by/a−h(y)| [ be/a for all y ¥ R.

Therefore, (4.6) holds and by the above argument, A is strictly expansive
with respect to the centrally symmetric set Kh given by (4.5).
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Lemma 4.5. Let A be a type I dilation matrix with tr A \ 0 which is not
integrally similar to (0f

1
f). If

|a| < |b| and |d| < |c|,(4.7)

then A is strictly expansive. In particular, if a < 0 or d < 0, then A is strictly
expansive.

Proof. Geometrically, (4.7) says that the vertices of the square [−1, 1]2,
i.e., (±1, ±1) are mapped by the dilation A into different quadrants of the
plane. Furthermore, the mapped vertices A(±1, ±1) can not lie on the
axes.

We need to consider several subcases. Assume that exactly two of the
mapped vertices A(±1, ±1) are of the form (±1, ±1). By the symmetry
of the vertices (±1, ±1) and |det A| \ 2, the only remaining possibility is
that none of the mapped vertices A(±1, ±1) is of the form (±1, ±1).
Furthermore, if the dilation A=(ac

b
d) maps exactly two of the vertices

(±1, ±1) into each other, so does a dilation obtained by the trans-
formation (4.1) or (4.2). Hence by applying (4.1) and (4.2) we can also
assume that a, b \ 0. By (4.7) this uniquely determines then the first row,
and A must be one of the matrices below

1 a
d+1

a+1
d
2 or 1 a

−d−1
a+1
d
2 if d \ 0,

1 a
d−1

a+1
d
2 or 1 a

−d+1
a+1
d
2 if d [ 0.

(4.8)

Note that we must have a, |d| \ 1, since our dilation is not integrally similar to
(0f

1
f). The first matrix in (4.8) can not be even expansive by Proposition 3.5.

The second and the fourth matrix are strictly expansive by the remark
following Corollary 3.6, since their determinants are 2ad+a+d+1 and
2ad−a+d−1, respectively. Finally, using that the third dilation in (4.8) is
type I, we must necessarily have that a=1 and d=−1. It is then easy to
show that ( 1−2

2
−1) is strictly expansive by Corollary 3.6 with u=−1.1.

Therefore, we can assume that none of the vertices (±1, ±1) is mapped
by A into (±1, ±1). By (4.7) we have that [−1, 1]2 … A[−1, 1]2. If
[−1, 1]2 … A(−1, 1)2 then A is strictly expansive. By a simple geometry,
the last inclusion may fail only if at least one (and thus two by the symmetry)
sides of the square [−1, 1]2 are contained in the boundary of the parallel-
ogram A[−1, 1]2. This means that the vertices of A[−1, 1]2 must be of
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the form ±(x1, 1), ±(x2, 1) or ±(1, y1), ±(1, y2). But then the matrix A
must be of the form ( f±1

f
0) or (0f

±1
f ), respectively. This would mean that A

is integrally similar to (0f
1
f)—a contradiction.

Now, suppose that a or d is negative. Then, the other must be positive
(since tr A \ 0) and we automatically have (4.7) since A is type I. This ends
the proof of Lemma 4.5.

Lemma 4.6. Let A be a dilation of type I with tr A \ 0 that is not
integrally similar to (0f

1
f). If

a, c, d \ 0, and 2 [ c [ d,(4.9)

then A is integrally similar to a strictly expansive matrix.

Proof. Case 1. det A \ 2. First, if A is of the form (0c
b
c), then b [ −2. If

b=−2 and c=2, then A is strictly expansive by Corollary 3.6 with
u=−1.1, and if either b < −2 or c > 2, then A is expansive by the remark
following Corollary 3.6.

Now, if A is not of the form (0c
b
c), we claim that A is strictly expansive by

virtue of Corollary 3.6 with u=−d/c+d for sufficiently small d > 0.
First take u=−d/c. We claim that the last three expressions appearing

in the definition of gu(A) are (strictly) less than |det A|. If this is the case
then for sufficiently small d > 0 these three inequalities will continue to
hold with u=−d/c+d, and since

|−uc+a|=|−dc+a+d| < tr A [ det A,

A is strictly expansive by Corollary 3.6 with u=−d/c+d.
To prove the claim, set u=−d/c. The second expression appearing in
g(A) satisfies by (4.9)

|−(u+2) c+a|=|−2c+a+d| < tr A [ det A,

where we have strict inequality since either a ] 0 or c ] d. The third
expression in g(A) satisfies

|ud−b+(−1−u)(−uc+a)|=|−b−d−a+ad/c|=|det A/c− tr A| < det A.

Finally, we need to show that the fourth expression in g(A) satisfies

|(u+2) d−b+(−1−u)(−(u+2) c+a)|=|−b−d−a+2c+ad/c|

=|det A/c− tr A+2c| < det A.
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Indeed,

det A(1−1/c)+tr A−2c \ tr A(2−1/c)−2c=(2−1/c)(a+d−c)−1 > 0,

unless a+d−c=0; that is, a=0 and c=d. This shows the claim and ends
the proof of case 1.

Case 2. det A [ −2. We claim that A is strictly expansive by virtue of
Corollary 3.6 with

u=
(a−d)−`(a−d)2+4bc

2c
.

Let l1 < 0 be the negative eigenvalue of A and l2 > 0 be the positive eigen-
value of A. Note that by expansiveness l1 < −1 and l2 > 1. We need to
check that the four expressions appearing in the definition of gu(A) are
(strictly) less than |det A|.

−uc+a=
(d+a)+`(a+d)2−4(ad−bc)

2

=
tr A+`(tr A)2−4 det A

2

=l2 < |det A|,

since |l1 | > 1. Note that the above implies that

cu=−l2+a.(4.10)

Hence we also need to show that

|−(u+2) c+a|=|l2−2c| < |det A|.

Since c > 0 and 1 < l2 < |det A|, it suffices to show that

l2−2c > det A=l1l2.

Since c [ d

l2−2c−l1l2 \ l2−2d−l1l2 \ l2−2 tr A−l1l2=−2l1(−l1−1) l2 > 0.

The third inequality

|ud−b+(−1−u)(−uc+a)| < |det A|
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is a consequence of

ud−b+(−1−u)(−uc+a)=uc−a=−l2.(4.11)

Indeed, if we solve the quadratic equation above we have

u=
(a−d)± `(a−d)2+4bc

2c
.

Finally we need to show

|(u+2) d−b+(−1−u)(−(u+2) c+a)| < |det A|.

Note that by (4.10) and (4.11)

(u+2) d−b+(−1−u)(−(u+2) c+a)=−l2+2d+2c+2cu

=−l2+2c+2d+2a−2l2

=−l2+2l1+2c.

To see that −l2+2l1+2c < −det A note that since c [ d [ tr A,

−l2+2l1+2c+l1l2 [ −l2+2l1+2(l1+l2)+l1l2=4l1+l2(1+l1) < 0.

It remains to show

2l1−l2+2c−det A > 0.

If l1 [ −3 then

2l1−l2+2c−l1l2=2l1−(1+l1) l2+2c \ 2l1+2l2+2c=2(tr A+c) > 0.

If −3 < l1 < −1 then using

`(tr A)2−4 det A < 1−det A,(4.12)

we have

2l1−l2+2c−det A=l1−`(tr A)2−4 det A+2c−det A

> l1−1+2c \ 3+l1 > 0,

since c \ 2. Finally, (4.12) is equivalent to (tr A)2 < (1+det A)2 which is a
consequence of |tr A| [ |2+det A| by Proposition 3.5. This ends the proof
of Case 2 and Lemma 4.6.
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We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Let A be an expansive, integer matrix. By
Lemma 4.3, it suffices to prove Theorem 4.1 for matrices with nonnegative
trace. By Lemma 4.2, there are three types of matrices to consider: type I
(|b|, |c| \ |a−d|), type II (c=0 and b \ |a−d|), and type III (b=c=0).
Expansive type III matrices are strictly expansive with respect to the unit
square. Expansive type II matrices are strictly expansive by Lemma 4.4.

For type I matrices, by Lemma 4.5 it suffices to show that every A
satisfying

|a| \ |b| or |d| \ |c|, b, c ] 0, a, d \ 0(4.13)

that is not integrally similar to (0f
1
f) is strictly expansive. So, assume (4.13)

holds. Without loss of generality, |d| \ |c| and c \ 1 by (4.1) and (4.2). If
c=1, then applying (4.3) with l=−d implies A is integrally similar to
(0f

1
f). If c \ 2, then Lemma 4.6 implies that A is strictly expansive. This

completes the proof of Theorem 4.1.

5. SPECIAL CASES

In this section, we prove that there exist Meyer type wavelets for all
expansive matrices of the form ( 0−d

1
t). The determinant two case was

completed in section 2, our main concern in this section is to prove that
every 2×2 dilation A is integrally similar to a strictly expansive matrix with
respect to a centrally symmetric set unless |det(A)|=2 or det(A)=3 and
tr(A)=0.

We proceed again by breaking the theorem down into cases.

Lemma 5.1. Let A be an integer valued, expansive matrix of the form
A=( 0−d

1
t) with t \ 0. Then A is integrally similar to a strictly expansive

matrix with respect to a centrally symmetric set if either (a) d > 3 and t > 2
or (b) d < −3 and t ] −d−2.

Proof. Case 1. d > 3 and t > 3. (Since A is expansive, we can rewrite as
3 < t [ d.) Then

1 1
−2

0
1
2 1 0
−d

1
t
2 11
2
0
1
2=1 2

−4−d+2t
1

−2+t
2 .

This matrix is strictly expansive by Corollary 3.6 with u=−1, since
1+|−2+t| < d and 2+|−4−d+2t| < d.
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Case 2. d > 3 and t=3. Note that

1 1
−1

0
1
2 1 0
−d

1
t
2 11
1
0
1
2=1 1

−1−d+t
1
1+t
2 .

That the resulting matrix is strictly expansive follows from Corollary 3.6
with u=−1 by noting that 1+|t−1|=3 < d and 1+|−1−d+t|=
1+|2−d| < d.

Case 3. d < 0, t ] −d−2, and t ] 0. Then

11
1
0
1
2 1 0
−d

1
t
2 1 1
−1

0
0
2=1 −1

−1−d−t
1
1+t
2 .

We proceed with checking the a1 norms of the columns. First,
1+|1+t|=t+2 < |d| by assumptions. Second, note that 1+|−1−d−t| [
max{1+|−1−d−1|, 1+|−1−d−(−d−2)|}=max{−d−1, 2} < −d.

Case 4. d < 0 and t=0. We can see that ( 0−d
1
0) is integrally similar to

( 2
−4−d

1
−2). Then, 1+|−2|=3 < |d| and 2+|−4−d|=−d−2 < |d|, as

desired.

The remainder of this section focuses on the special cases which are not
covered in Lemma 5.1; namely,

• d > 3 and 0 [ t [ 2,
• d < −3 and t=|d|−2,
• |d|=3.

Lemma 5.2. All matrices of the form A=( 0−d
1
2) are integrally similar to

strictly expansive matrices with respect to centrally symmetric sets, where
d \ 3.

Proof. Apply the transformation

1 1
−1

0
1
2 1 0
−d

1
2
2 11
1
0
1
2=1 1

−d+1
1
1
2 .

We wish to show that there is a u Corollary 3.6 that makes gu(A) < det(A).
We claim that there is an E=E(d) > 0 such that −1 < u < −1+E works.

For the first expression in g(A), note that if u < 0, then |u(−d+1)+1|=
u(−d+1)+1, which is less than d if and only if u > −1. If we evaluate the
second through the fourth expression at u=−1, we obtain max(2, d−2)
< d. The lemma then follows from the continuity of the expressions in g.
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Lemma 5.3. The matrices ( 0−d
1
1) are integrally similar to strictly expansive

matrices with respect to centrally symmetric sets for d \ 3.

Proof. Consider

A=1 1
−1

0
1
2 1 0
−d

1
1
2 11
1
0
1
2=1 1

−d
1
0
2 .

Let

B=sym conv{(1, 1), (1, −1)}.

Then

A(B)=sym conv{(2, −d), (0, −d)},

as in Fig. 3.

FIG. 3. First try for strict expansiveness.
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FIG. 4. Strict expansiveness for trace 1.

We need to (carefully) move the pieces of B which are not also in A(B).
Let T=conv{(1, 0), (1, 1), (1−1/d, 1)} and TE=conv{(1, −E), (1, 1), (1−
1/d− E, 1)}. Then, A(TE)=conv{(1− E, −d), (2, −d), (2−1/d− E, −d+1+
dE)}. So, for E > 0 and small enough, if we let B −=B0(TE 2 (−TE)) 2
(TE−(0, 2)) 2 (−TE+(0, 2)), then B − … (A(B −))° as pictured in Fig. 4.

Lemma 5.4. For d \ 4, the matrices ( 0−d
1
0) are integrally similar to

strictly expansive matrices with respect to centrally symmetric sets.

Proof. Consider

A=1 1
−1

0
1
2 1 0
−d

1
0
2 11
1
0
1
2=1 1

−1−d
1
−1
2 .

Let B=sym conv{(1, 1), (1, −1)}. Then, A(B)=sym conv{(2, −d−2),
(0, −d)}.

Now, in the case that d is positive, let T=conv{(1, −1), (1, 1),
(1−2/(d+1), 1)} and let

K0=sym conv{(1−2/(d+1), 1), (1, −1)} 2 (T+(0, −2)) 2 (−T+(0, 2)).
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Since A(T)=conv{(0, −d), (2, −d−2), (2−2/(d+1), −d)}, we have K0 …
A(K0). Moreover, for d \ 4, K0 0A(K°0) consists of two line segments
connecting ±(1−2/(d+1), 1) and ±(1, −1). Finally, to show that A is
strictly expansive it suffices to slightly modify the set K0 into a compact set
K satisfying K … A(K°) and ; k ¥ Z

2 1K(t+2k)=1 for a.e. t ¥ R2. Given
e \ 0 define points v1=(1−2/(d+1)− e, 1), v2=(1, −1−(d+1) e), v3=
(1, −3+(d+1) e), v4=(1+e, −3), v5=(1− e, −3), v6=(1−2/(d+1)− e,
−1), and vj=−vj−6 for 7 [ j [ 12. Let Ke be a polygon whose boundary
consists of line segments connected by vertices v1, v2, ..., v12. Note that for
e=0, Ke is just K0 given as above. Finally, it follows by simple (but long)
calculations, that K=Ke satisfies strict expansiveness condition for suffi-
ciently small e=e(d) > 0. Figure 5 shows polygons Ke and A(Ke) when
d=4 and e=0.1.

In the case that d is negative, note that by (4.1) A is integrally similar to
(01

−d
0). One easily checks that this matrix satisfies Corollary 3.6 with u=

−2−d, for d > 0 small enough.

FIG. 5. Strict expansiveness for trace 0, Det \ 4.
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Lemma 5.5. Every matrix of the form ( 0−d
1

−d−2) is integrally similar to a
strictly expansive matrix with respect to a centrally symmetric set when
d [ −3.

Proof. Note that A is integrally similar to (−11
1

−d−1), which satisfies
Corollary 3.6 with u=−1.1. The easy details of verification are omitted.

Theorem 5.6. Every 2×2 dilation is integrally similar to a strictly
expansive matrix with respect to a centrally symmetric set unless |det(A)|=2
or det(A)=3 and tr(A)=0.

Proof. By Theorem 4.1, it suffices to prove Theorem 5.6 for matrices of
the form (0f

1
f). By Lemma 4.3 and Eq. (4.1), we may assume that t \ 0.

Lemmas 5.1 through 5.5 cover the following cases:

Lemma Cases covered

5.1 d < −3 and t ] −d−2
5.5 d [ −3 and t=−d−2
5.1 d > 3 and |t| > 2
5.2 d \ 3 and t=2
5.3 d \ 3 and t=1
5.4 d \ 4 and t=0

Thus, the only dilation matrices with |d| \ 3 that are not covered by the
above lemmas are the matrices ( 0−3

1
3) and ( 0±3

1
0). Notice that ( 0−3

1
3) is

similar to A=(21
−1
1), which has g(A)=2.9 when u=−0.9.

Finally, (03
1
0) is integrally similar to (−11

2
−1), which is strictly expansive by

Corollary 3.6 with u=−1.1. This completes the proof of Theorem 5.6.

The authors do not know whether the remaining matrix ( 0−3
1
0) is

integrally similar to a strictly expansive matrix, nor whether any dilation of
determinant ±2 can be strictly expansive. However, it is easy to see that
there is a Meyer type wavelet for the matrix A=( 0−3

1
0). Indeed, by

Corollary 3.6, there are Meyer type wavelets k1, k2 with scaling function f
for dilation by −3 on the line. One can easily check that the functions
k1 é f and k2 é f are wavelets for the dilation A. Thus, we have proven
the following

Theorem 5.7. Let A be an expansive, 2×2 integer matrix. Then, there
exist Meyer type wavelets {k1, ..., k l}, where l=|det A|−1.
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Proof. Combine Theorem 5.6 with Theorem 2.4, Theorem 4.1, and the
remark immediately preceding this theorem statement.
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