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ABSTRACT.  Given a dilation matrix A and a natural number r we construct an associated r-regular
multiresolution analysis with r-regular wavelet basis. Here a dilation is an n x n expansive matrix A (all
eigenvalues ). of A satisfy |A| > 1) with integer entries. This extends a theorem of Strichartz which assumes
the existence of a self-affine tiling associated with the dilation A. We also prove that regular wavelets have
vanishing moments.

1. Introduction

The main aim of this article is the construction of r-regular wavelet family with an associ-
ated r-regular multiresolution analysis for an arbitrary dilation matrix A preserving some lattice I.
Strichartz [31] achieved this goal for a wide class of dilations having a Haar type wavelet basis, or
equivalently a self-affine tiling, see [17].

Theorem 1 (Strichartz).
Assume the existence of a self-affine tiling. For every r there exists an r-regular multiresolution
analysis and an associated wavelet basis.

We extend this result by removing the assumption of the existence of a self-affine tiling. This
assumption is highly non-trivial and it was studied by many authors, see [13, 16], [191-[25], [32].
Using methods of algebraic number theory classes of dilations without self-affine tilings have been
recently found in dimensions n > 4, see [22, 30]. The simplest example is a 4 x 4 dilation matrix
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that does not have a self-affine tiling and thus does not have a Haar-type wavelet basis, see [22].
Therefore it is of interest to extend Strichartz’s construction to such cases.
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The wavelets constructed in this article are not compactly supported nor of exponential decay,
as is the case with Strichartz’s. Nothing is known about the existence of compactly supported or
exponential-type regular wavelets for a general dilation. In fact, it is not even known whether there
are any compactly supported orthogonal wavelets associated with the above 4 x 4 dilation matrix.
The compactly supported regular wavelets have been constructed only for very specific dilations
in higher dimensions. One method is to use a tensoring technique to obtain separable wavelets
from Daubechies wavelets. There are other methods for the construction of nonseparable wavelets,
see [3, 4]. However, r-regular wavelets are a sufficient tool for the study of function spaces as is
evidenced by the book of Meyer [28] in the isotropic setting and [8] in the case of anisotropic Hardy
spaces. Furthermore, as a special benefit, all the moments of the constructed wavelets vanish.

In Section 3 it is shown that all r-regular wavelets must necessarily have a certain number of
vanishing moments depending on r and the spectral properties of a dilation A. This was previously
observed for the dilation A = 2/d in [5, 15, 28].

Wavelet preliminaries. We are going to assume that we have a lattice I' (I' = PZ" for
some nondegenerate n x n matrix P) and an expansive matrix A preserving I', i.e., all eigenvalues
A of A satisfy |A| > 1, and AT C I". Without loss of generality, we will assume that I" = Z".

Definition 1. Let W be a finite family of functions ¥ = {1, ..., L} ¢ L3(R"). We say that
¥ is a wavelet family (or a multiwavelet) if {wj., «.J€Z,keZ" l=1,...,L}isan orthonormal

basis for L2(R"). Here, for ¢ € L%(R") we use the convention
Vik(0) = Dyuy () = |det A2y (Alx — k) jeZkeZ",
where 7, f(x) = f(x — y) is a translation operator by the vector y € R”, and D4 f(x) =

| det A| f(Ax) is a dilation by the matrix A.

Definition 2. By a multiresolution analysis (MRA) we mean a sequence of closed subspaces
(Vi)iez C L2(R™) associated with a scaling function ¢, satisfying:
() Vi C Viy fori € Z,
(i) Vi=D,VyforieZ,
(i) ez Vi = L*®"),
) Miez Vi = {0},
(v) {trplrezn is an orthonormal basis of Vj.

A wavelet family ¥ = ... vk} “generates” MRA, if

Vi=@W;,  whereW; =5pa (v}, kez’l=1,..L]. (L.1)

j<i

This happens precisely when Vj as a shift invariant subspace of L2(R") has dimension function
dimy,(&§) = 1 for ae. & € R". For the definition of the dimension function for general shift
invariant spaces, see [7]. However, the dimension function of Vj is given by the explicit formula,

dmy© =350 Y v (B + )] (12)

I=1 j=1keZ®

where B = AT, see [9]. Since

/( iy SOV AE = 1/6 1)2 [ (L3)
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a wavelet family ¥ = {¢!,..., ¥} can be associated with MRA only if L = b — 1, where
b=|detA|.

Definition 3. We say that a function f on R” is r-regular, if f is of class C",r = 0,1,...,00
and

|0 F ()| < cap 1+ 1XD7F, (1.4)

for each k € N, and each multi-index «, with o] < r. A wavelet family ¥ = {y!,..., ¢L}is
r-regular, if ¢!, ..., ¥l are r-regular functions. An MRA is r-regular if the subspace Vy given
by (1.1) has an orthonormal basis of the form {z;¢ : k € Z"} for some r-regular scaling function ¢.

If a wavelet family W is -regular for r sufficiently large, or more precisely || are continuous
and [l/}l (&)l < C(1+|g])™/?~ for some ¢ > 0, then the sum (1.2) converges uniformly on compact
subsets of R”\ Z" to the continuous function dimy, (&) on R”\ Z". Since dimy, (§) is Z"-periodic and
integer-valued therefore dimy, (§) is constantly equal to d for some d € N. If d = 1 then r-regular
wavelet family ¥ comes from some MRA (more generally, ¥ comes from MRA with multiplicity
d). This was essentially shown by Auscher {1, 2]. In general, we can not expect that this M RA is
also r-regular; for a counterexample see [29, Proposition 2, p. 88]. Conversely, having an r-regular
MRA we cannot, in general, deduce the existence of r-regular wavelet family associated with it,
see [34, Theorem 5.10 and Remark 5.6]. Nevertheless, we can deduce the existence of r-regular
wavelet family by using the following result [34, Corollary 5.17].

Proposition 1 (Wojtaszczyk).

Assume that we have a multiresolution analysis on R" associated with an integral dilation A,
|det A| = b. Assume that this MRA has an r-regular scaling function ¢(x) such that ¢(&) is real
for some integer r > 0. Then there exists a wavelet family associated with this MRA consisting of
(b — 1) r-regular function.

2. Regular Wavelets

Our goal is to construct r-regular wavelets for an arbitrary expansive matrix A with integer
entries. Strichartz [31] has shown how to achieve this under the assumption of the existence of a
self-affine tiling of R” given by A.

Self-affine tilings. Suppose A is an n x n dilation matrix and D = {d1, ..., dp} is any set
of representatives of different cosets of Z"/AZ", where b = | det A|. Any such set D is called a
standard digit set in [24, 25]. Tt follows from [17, 23] that for any choice of (A, D) there exists a
unique (non-empty) compact set @ = Q(A, D) satisfying the set-valued functional equation

A= J@d+9),
deD

which is given explicitly by

o
O0=Q0A,D)={xeR":x =ZA‘jsj, where ¢; € D
j=1

The set Q(A, D) is called a self-affine tile. For properties of self-affine tiles we refer the reader

to [19, 23, 32]. Here we only mention a fundamental Lattice Tiling Theorem due to Lagarias and
Wang [25].
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Theorem 2 (Lagarias—Wang).
Every self-affine tile Q(A, D) gives a U-tiling of R"* for some lattice T C Z7, i.e, {y +
Q(A, D) : y € I'}is a partition of R" (modulo null sets).

If the lattice " = Z" in Theorem 2, which is easily seen to be equivalent with |Q(A, D)| =1,
then we simply say that Q (A, D) gives a self-affine tiling of R”. Grochenig and Madych have shown
that there exist self-affine tilings of R” given by the dilation A if and only if there exist Haar type
wavelets associated with A, see [17].

The natural question is whether every dilation matrix admits a self-affine tiling. Lagarias and
Wang have shown that all dilations in the dimensions < 3 possess this property, see Proposition 2
below, whereas in the dimensions > 4 there are dilations for which every choice of D yields the
corresponding tile Q(A, D) with measure bigger than 1, see [21, 22]. The simplest example is
4 x 4 matrix presented in the Introduction. It requires some knowledge of algebraic number theory
to understand why this matrix does not have a self-affine tiling. Even though Proposition 2 has
not been explicitly stated by Lagarias and Wang for n = 3, it does follow directly from their
work [21, 22, 25].

Proposition 2 (Lagarias—Wang).
Suppose n < 3. If A is an n x n dilation matrix then there exists a digit set D C Z" such that
Q(A, D) gives a self-affine tiling of R".

Proof. The 1-dimensional case is trivial, see [16]. The case n = 2 was shown by Lagarias and
Wang, see [20, Theorem 1.1]. Finally, the 3-dimensional case is outlined below.
Suppose that A is a 3 x 3 dilation matrix. Assume first that A is reducible, i.e., A is integrally
similar to a matrix A of the form
~ (A1 O
A= (C Az) ’

where Aj, Az arer x r and (3 — r) x (3 — r) expansive integer matrices, respectively, and C is an
(3 — r) x r integer matrix, r = 1 or 2. Since Proposition 2 holds for n = 1, 2, we can find a standard
digit set D; for the dilation matrix A; satisfying |Q(A4;, D;)} = 1fori = 1,2. It is easy to verify
that

T): {(Z;) 1d €D1,d2€D2} CZ3

is a standard digit set for A. Furthermore, by an argument involving Fubini’s theorem, see the proof
of [25, Theorem 5.1],

o (4.5)| - Q((%’ /fz),ﬁ)’= 10 (A1, D) x Q (42, Dp) | =1.

Since, A = PAP™! for some invertible integer matrix P we have Q(A, PZ~)) = P(Q(/i, 15)).
Therefore, |Q(A, D)| = 1 for the digit set D = PD.

Assume next that A is irreducible, i.e., A is not integrally similar to a matrix of the form A
as above. Notice that every 3 x 3 dilation matrix A has a primitive standard digit D, for the proof
see [21, Theorem 1.5] with corrections in [22]. We say that a digit set D is primitive (for A) if
Z[A,D] = Z", where Z[ A, D] is the smallest A-invariant lattice containing D — D, i.e.,

Z[A, D] =Z[:D—D, A(D—D),‘..,A"_I(D—D)] .

By [25, Corollary 6.2] for every irreducible dilation A with primitive digit set D the corresponding
self-affine tile satisfies |Q(A, D)| = 1. This completes the proof of Proposition 2. ]
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The construction. Lack of a self-affine tile Q with |Q| = 1 is a major obstacle in the
construction of an r-regular MRA and a wavelet family. In the case when such a Q exists, Strichartz
constructs r-regular scaling function by convolving the indicator function of @, 1¢, with itself

and appropriately normalizing it. This works because of the minimal decay of iQ. Instead, our
construction is based on the careful construction of a smooth low-pass filter m and a scaling function
@ satisfying ¢(&) = m(B~1£)@(B~1£), B = AT, such that m is equal to 1 on some prespecified
closed neighborhood of the origin. This guarantees that all partial derivatives of ¢ have some minimal
decay at infinity, of order O(|&{™*) for some ¢ > 0, independent of the order of the differentiation.
This in turn yields another scaling function with desired order of regularity.

A set A C R” is said to be a (closed) ellipsoid if

A={teR":|Pg| <1}, 2.1

for some nondegenerate n x n matrix P, where | - | denotes the standard norm in R”. By [32,
Lemma 1.5.1], for any dilation matrix B there exists an ellipsoid A, and r > 1 such that

ACrAcCBA. 22)
By a scaling we can additionally assume that

Ac(-1/2,1/2)", (2.3)

o
U B1=1/2, 1721 | n((Z"\{0}) + A) = 8. (2.4)

Jj=0
Indeed, since B~/{—1/2, 1/2]* C [—1/2, 1/2]" for sufficiently large j, the set K = U?‘;O
B[—-1/2,1/2)" is compact and K NZ" = {0}, because the matrix B preserves the lattice Z".
Therefore § = dist(K, Z" \ {0}) > 0, and it suffices to take A C B(0, §) := {§ € R” : [§] < §}.

The interior of A is denoted by A°.
The following result extends Strichartz’s Theorem [31], see also [34, Theorem 5.25].

Theorem 3.
Suppose A is an integral dilation matrix on R" with b = |det A|. For every r € N there exists
an r-regular multiresolution analysis and an associated r-regular wavelet family of (b — 1) functions.

Proof. Choose an ellipsoid A satisfying (2.2)—(2.4). Pick a function & : R* — R = [0, 00) in
the class C*°, such that

[EeR":h(E)=0}=A. (2.5)
To see that such a function exists, consider & : R” — R, in the class C* such that
(eR":h(E)=0}=B@O,1).

It suffices to take h(£) = h(P~1£), where the matrix P defines the ellipsoid A in (2.1).
For a given R > /n}| B}, choose a C™ function g : R* — R such that

suppg = {&§ € R" : g(§) #0} = {¢ eR" : |£| <R} =B(O, R).. (2.6)
Define

o) =e®[[rE-h, @7

keZ
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where Z := {k € Z" \ {0} : (k + A)NB(O, R) # @}. Clearly g is C*, and

[£ €BO,R): () =0} =B, R) N (Z"\ {0} + A) . (2.8)
The function f given by
)
— e 2-9
O S ee+h @

is well defined by (2.3) and (2.8) It satisfies the following properties:
(i) f:R" > [0, 1]is in the class C* and supp f C B(0, R),

() D pezr FE+K) =1,
(ii) fE)=1 < £ ecA,
(iv) if|§] < Rand f(§) =0then& € Z" + A.

Indeed, (i) follows from supp g C B(0, R), (ii) is a consequence of (2.9). (iii), and (iv) follow
from (2.8) and (2.9).
Finally, define function m : R* — [0, 1] by

m@E) = | fBE+K). (2.10)
keZ?

@
OO
OO

& & @

FIGURE 1 The low-pass filter m is constantly 1 in the shaded ellipses, constantly O in the unshaded ellipses and strictly
between O and 1 elsewhere.

Claim 1.
The function m given by (2.10) is C*°, Z"-periodic, and
1 2
Zym(ngB- d>‘ =1 forall £ eR", @.11)
deD

mE)=0 <& B 1Z"\Z"+ B~IA, (2.12)
mE)=1<teZ'+BA, (2.13)
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where the matrix B := AT, and D = {d, .. ., dp} is the set of representatives of different cosets of
7" /BZ", where b = | det A|.

Proof of Claim 1. To guarantee that m is C™, the function f must “vanish strongly,” i.e., if
f(&0) = 0 for some & then 3* f(&§p) = O for any multi-index «. Since h, g and g have this property
thus f has it, too. It is clear that if some nonnegative function in C® “vanishes strongly” then its
square root is also C*.

For simplicity assume that d; = 0, i.e., 0 represents the coset BZ". (2.11) is a consequence of

ZIm(S-FB_Id)‘Z: 3 Zf(B(E+B“d+k))= NN fe+d+Bo=1,

keZr deD keZr deD

by property (ii). To see (2.12), take £ € R” such that m(£)? = Y, .zn f(B( + k)) = 0. Choose
ke Z", sothaté +k € [—-1/2,1/2)". Since

(B + k)| < [IB[§ + kI < [IBllv/n/2,
and R > || B||/n, thenby property (iv) B(§+k) € Z"+A,benceé € B~'Z"+ B~ A. Furthermore,
if€ €Z"+ B1A,ie., & € k4 B~!A for some k € Z", then

L=fBE-k) <Y FBE+D) <mE? <1,

leZ?

therefore m(&) = 1 for £ € Z" + B~LA. By (2.11) m vanishes precisely on B~17"\ 7" + B 1A.
This shows (2.12) and one implication of (2.13). To see other implication of (2.13) supposem(§) =1
for some & € R". By (2.11) we have m(¢ + B~!d) = 0ford € D\ {0}. By 2.12) &£ + B ld e
B~1Z"\Z"+B~'A,andhence ¢ € B~'Z"+ B! A. Therefore by (2.12) we have & € Z" + B71A.
This ends the proof of the claim. 0

‘We can write m in the Fourier expansion as

1 X
mE) = ——— Y hpe  TiIKE) (2.14)
® = = kgw ’

where we include the factor [det A|~!/2 outside the summation as in [6]. Since m is C®, the
coefficients ki decay polynomially at infinity, that is for all N > 0 there is Cy > 0 so that

lhe] < Calkl™  for k e Z"\ {0} .

Since m satisfies (2.11) and m(0) = 1, m is a low-pass filter which is regular in the sense of the
definition following [6, Theorem 1]. By [6, Theorem 5] ¢ € L(R") defined by

o) = ﬁ m(B7¢) | 2.15)
j=1

has orthogonal translates, i.e.,
(p,up) =68, forleZ”,

if and only if m satisfies the Cohen condition, that is there exists a compact set K C R” such that
* K contains a neighborhood of zero,
« IKN{+K)|=éforl e,
e m(Big)#£0forE ek, j>0.
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It is clear that K = [—1/2, 1/2]* does the job. Indeed, consider K = ?io B~/K. By (2.4)
and (2.12), we have

o= (B8)n ((B7'2\(0)) + B7'A) > (B7'R) n{s e R" : m(®) =0} .
Therefore ¢ is a scaling function for the multiresolution analysis (V) jz, defined by
Vj=span[DAj1:1<p:leZ”} for jeZ.

It follows from a modification of a lemma due to Strichartz in [31] that ¢ possesses some
minimal smoothness. However, we also need to estimate the derivatives of ¢, because in general ¢
does not have compact support.

Lemma 1.
Suppose m is a real-valued, 7" -periodic function of class C*®°. Assume that m satisfies (2.11)—
(2.13) as in Claim 1. Then there exists ¢ > 0 such that ¢ given by (2.15) satisfies

[0°¢(&)| < C@)(1 +1EN)™°  for £ eR", (2.16)
Jfor some constant C(«) depending on a multi-index o.

Proof of Lemma 1. Note that the product (2.15) in the definition of ¢ converges uniformly on
compact sets.

For a given integer k > 0, let D¥m (&) be the derivative of m of order k at the point & thought
of as a symmetric, multilinear functional, i.e., O*m(£) : (R")* = R" x --- x R* — R. That s,

C)ka(‘f) (ej(l), e ej(k)) = 3%m(&), where « = e;(y +---+ ¢k ,

and ef, . .., e, is the standard basis of R”. The norm is given by
H@"m(s)ll = swp ‘,’ka(f) o) @.17)
vieR", |v;[=1,
i=

ceny

We will first show that there exists ¢ > 0, so that for all integers N > 0 there is a constant
C = C(N) > 0 so that

[ [m (877%)| < canere forg %0, 2.18)
j=1

for every sequence of nonnegative integers (k J')?il all of which except a finite number are zeroes,
Indeed, let

p=max{m@): & ¢ A+Z"} =max{m(): & eR"\ (A° +Z")}, (2.19)

where A° denotes the interior of A. Since m is Z"-periodic, and by (2.2) and (2.13) {§ € R" :
m() =1} = B~'A+ 7" c A° + Z", we conclude p < 1.
Define ¢ > O so that [[B|{*p = 1,i.e., ¢ = —In(p)/ In(||B||). Finally, define
M =max{”©km(§)” e Rk =o,...,N} .

Since 0 < m(§) < 1forall & € R” we have

[T [oom (7e)| <™ forg e 220
j=1
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Furthermore, the above product equals zero, if B—/¢ € Z" \ {0} + A° for some integer j > 1.
Indeed, if B/& € I + A°, for some ! € Z* \ {0}, then ! = B[y, where jo > 0,and ly € Z* \ BZ".
Clearly

B~/h—lg ¢ B~y + B=I0~1A° « B-lly+ B~1A°,

thus ||5Dkf+f0“m(B—j =gy =0 by the virtue of (2.12). Therefore the product in (2.18) equals
zero for & € Z, where

Z:= G BI ((z*\{0}) + &°) .

j=1

Forany & € Z, |&] > r := /n/2, find a minimal integer jo > 1, so that [B~#f| < r. Forsuchag
we have by (2.3)

J = {j >1:B g ¢Z”+A°}= {j >1: Bk ¢A°] 5 {jz 1: iB‘fgl zr] . (2D
The cardinality of J is at least jo — 1. Note also that

61 < |BloB~ig

B—jOS‘ < ||B||j°r ,
therefore
I€17° = ||BII™0r = = por=*. (2.22)

Hence by (2.19), (2.21), and (2.22) for € ¢ Z and |§| > r

1 |o#m (B7€)| < M [T m (B78) < MY o2~V < /o) (/) 617"
j=1 jelJ
kj=0

Combined with (2.20) and the property of the set Z this shows (2.18). '
To finish the proof of Lemma 1 define, for j > 1, functions m j(§) = m(B~/£). By the chain
rule for any integer k > 1

Dfm(E) vy, ..., w) = D¥m (B‘f§> (B‘jvl, o B—fuk) , (2.23)

for any vectors vy, ..., v € R®. Let « be a fixed multi-index. Let ' = () consists of all
sequences 8 = (B j)?o=1 of multi-indices B;, such that 8; = 0 for all but finitely many j’s, and

3321 Bj = a. By the infinite product rule

0@ = Y [ 2 ® ”"1(5) , @24)

pel’ j=1

provided the above series converges uniformly and absolutely. Indeed, by (2.23) and (2.18)

1m0l = ] ot (54)] [

Bel j=1

181

lerl

= C(laDlg]™ Y ]o_o[ s P < cllahigen i i
j=1

geT j=1

Since ¢(£) = 1 for &£ € A°, by the above estimate applied for § ¢ A° we obtain (2.16). O
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For a given integer N > 0 define function ¢1, by ¢ (§) = (@)Y, By Lemma 1 and the
product rule we have

|0°¢1(&)| < Cl)(1 + )™M for £ e R”, (2.25)

for some constant C(«) depending on a multi-index ««. Therefore, for sufficiently large N, ¢ is
r-regular.
Since ¢ is a scaling function, by the orthonormality of the system {1z : k € Z"} we have

Y leE+bP =1 forae &eR". (2.26)
keZ®

By [6, Corollary 1] the above series converges uniformly on compact sets and we have equality for
all £ € R". We remark that the uniform convergence on compact sets in (2.26) does not follow
from the estimate (2.16). Rather, it is a consequence of ¢ being in the appropriate Sobolev space.
Therefore we can find a finite subset S C Z” so that

Yo +0fP>1/2  forsel(-1/2,1/2]". 2.27)

keS

Since we sum over a finite set of indices there exists a constant ¢ > 0 so that

Nae+ol =Y o€ +o" >c  for s e[-1/2,1/21".

ke§ keS

Therefore

pE+b| =1, (2.28)

cx Y mE+b =Y lpE+nlN <>

keZ” keZr keZr

which means that {tz¢; : k € Z"} forms a Riesz sequence. ¢ is also refinable, ie., ¢;(§) =
(m(B~1€)Y $1(B~1&), therefore it defines an MRA with

V; = span {DAjT[(pl ‘e Z"} . (2.29)
Indeed, since ¢ is refinable we have V; C V;;;. By a simple adaptation of [18, Theorem 1.6,

Chapter 2], spaces (V;) ez satisfy [ jez V; = {0}. Since ¢1(0) = 1, and ¢ is continuous we also
have | jeZ V; is dense in L?(R™). Finally, we can pick a scaling function ¢q for Vg by

-1/2
Go(€) = ¢1(6) (Z G +k>|2) .

keZr

By [34, Corollary 5.14] ¢p is also r-regular. Since @ is a real-valued scaling function, we can
apply Proposition 1 to obtain r-regular wavelets {1, ..., ¥*~1} associated with the MRA ( Vidiez
defined by (2.29). This finishes the proof of Theorem 3.

Remarks.
(i) The constructed scaling function ¢y, and the multiwavelet {!, ..., ¥>~1} satisfy scaling equa-
tions

N—’
>
(=]

N

o
I
—
Jre
N—

fo(&) =mo (B~

P& =m (B75) g0 (B7E)  fori=1...b-1, 230
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for all £ € R”, where my, ..., mp_1 are Z"-periodic C* functions. If we write

m§) = for ! =0,...,b—1,

1 )
Bl 2milkE)
JTdet A] D he
keZr
then the sequence of vectors o, ..., hb“l) is a wavelet matrix, as it is defined in [6], where
K= (hi)keZ"- The coefficients of this wavelet matrix decay polynomially fast at infinity because
m;’s are C*°, We also have

b—1
Som(s+B7'd)m E+B1d) =00 ford,deD ek, 3D
1=0

where D is the set of representatives of different cosets of Z" /BZ".

(i) Note that the scaling function ¢g vanishes in the Fourier domain in many places. The zero set
for ¢ contains the set Z, so g vanishes in a neighborhood of every lattice point of Z" except 0.
One can see that as we move off the origin those neighborhoods may only become larger than the
guaranteed ellipsoidal neighborhood A. However, in general there is no guarantee that @y is going
to vanish outside some bounded set. Nevertheless, for some specific dilations we can choose an
ellipsoid A, so that ¢g has a compact support. For example, if the dimensionn = 1, and A = 2, it
suffices to take A = [—4, 8],1/3 < & < 1/2 to obtain supp ¢o = (6 — 1, 1 —4&). Therefore we obtain
a scaling function ¢g (and a wavelet ¥) in the Schwartz class. Naturally, ¢ is a Meyer wavelet,
see [28]. One could hope that by taking more general sets than ellipsoids for A, one could produce
a filter m having “optimized” zero set, so that both ¢ has compact support and m satisfies the Cohen
condition. This is indeed the case in the dimension n = 2, where Speegle and the author [10] have
recently shown the existence of wavelets in the Schwartz class for all 2 x 2 integral dilations. We
do not know whether one can achieve this for general dilations in higher dimensions.

Question. Does there exist an oo-regular multiresolution analysis and an associated oo-regular
wavelet family of (| det A| — 1) functions for any n x r integral dilation A, n > 3?

A partial positive answer is given in [8]. It is shown there, that for any integral dilation A there
exists a natural number m and an oco-regular multiresolution analysis with an oo-regular wavelet
family of (| det A|™ — 1) functions associated with A™.

3. Vanishing Moments

In this section we are going to show that 7-regular orthonormal multiwavelets must automat-
ically have vanishing moments. This fact was previously observed for the dilation A = 2/4. Here
we are going to show this for all dilations, A, preserving some lattice, i.e., for dilations with integer
entries. Before proceeding with the main results two technical lemmas are presented.

Lemma 2.

§upp0se we have a tempered distribution f on R" such that its (distributional) Fourier trans-
form f is a regular distribution. Let L be a partial differential operator with constant coefficients
oforderr, ie.,

Lf =) aad®f, (3.1)

le]<r

where not all coefficients a, are zero. If Lf = Othen f =0.
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Proof.  Apply the Fourier transform to Lf

Y (-2mig)anf =0. (32)

|| <r

Since the distributAion f is regular, there exists locally integrable function (also denoted by f ), such
that f(p) = fR" F(E)p&) dE for ¢ € S in the Schwartz class of test functions. Thus

[ 7© X amierap@ds =0 forges.

| <r
Therefore, f (&) = O for a.e. & outside the zero set ofA the nonzero polynomial as in (3.2). Since the
zero set of a nonzero polynomial has measure zero, f = 0, and consequently f/ = 0. Ol

The second lemma appears in the work of Cabrelli, Heil, and Molter [11, Lemma 4.2], where
the proof can be found. It is also a consequence of [27, Theorem 4.3 on p. 122]. In this lemma we
can relax the assumption that A is a dilation.

Lemma 3.

Suppose A : C* — C" is a linear map with eigenvalues 11, ..., ,, (taken according to
multiplicity). Let S¥(C") denote the space of homogeneous polynomials of degree k > 0 in n
variables with complex coefficients. Define a linear map

Ap : S*(C") - sk (C), (Agp) (x) = p(Ax), for x e C"
for p € S¥(C"). Then all eigenvalues of A[k) are of the form ii A, - - - Ay for some sequence of
indices1 <ij<ip <<y <n.

Let us enumerate eigenvalues Aq, ..., A, of A according to multiplicity, so that 1 < |A1] <
s Z A

Theorem 4. }
Suppose A is a dilation and ¥, ¥ € L*(R™) are such that

(1/7,‘,6, l//j/,k/> -0 forj#j el kK el (3.3)

Suppose also that ¥ is nonconstant, bounded and of class C”, and |¥ (x)] < C(1+|x DN for some
N >n+r. Then

/ x*Y(x)dx =0 for any multi-index o, |a| <rin|ii|/In|A,}, 3.4)
Rn

where M1 is the smallest and A, the greatest eigenvalue of A (in modulus). Moreover, if the matrix
A is diagonalizable then (3.4) holds for |a] < rIn|A1]/ In|Ay|.
Proof. For a fixed point u € R” consider the Taylor expansion of ¥ of order r, i.e.,

aag'(“) X%+ R(u, x) (3.5)

Va+x) =Y

fel<r

where R(u, x) = o(|x|") as |x| — 0, and |R(u, x)| < C|x|" for some C > 0, since ¥ is bounded.
Let I = {o : o is amulti-index, o] < r}, U = ;7 A’Z". Consider the finite dimen-

sional, complex linear space V := Cl = {(xa)aer : ¥« € C,a € I}. We claim that the vectors

@Y (u))ger € V, where u € U span the whole space V. Indeed, if V' := span{(8*y (u))ger :
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u € U} # V, then there is a linear functional @ : V — C, such that a is not zero, and V' C kera.
Since we can identify a = (ay)qer € V we would have L&(u) = 0 for u € U, where L is given
by (3.1). Since U is dense in R”, and ¥ is C" we have Ly (#) = O for all u € R". By Lemma 2,
¥ = 0 which is a contradiction.

Therefore, for any a = (a4 )acr € C! we can find points u1, . .., u, € U, and complex scalars
cy, ...,y such that
m
ag =) ;%Y (w)/a! forael. (3.6)
i=1
Applying (3.5) to points uy, . . ., #,, and taking linear combination with scalars cy, . .., cm we have
m
Dol Wit x) =) aax +R(), 37
i=l1 le|<r

where R(x) = o(|x|") as |[x] = 0, and |R(x)| < C|x|" for some C > 0. Write u; = AJik;, where
Ji€Z,kieZ fori =1,...,m. By (3.3) for j > max(—j1, .-+ —Jjm)

¥ (i +x) ¢ (A/x)dx =f Y)Y (Aix — Alu;)dx
R» Rr

_ fR T (Alx — ATFik) dx = | det A1 (o0, ¥, aroig,) = 0.

since the dilation A preserves the lattice Z". Therefore, if we multiply both sides of (3.7) by ¢ (Aix)
and integrate we obtain

A; Z an Xy (Alx)dx = - ./]1;" R(x)¥ (Aix)dx

laj<r

After conjugation and a change of variables we have
f Y @ A fx) V(x)dx = ~f R (A—fx) v (x)dx (3.8)
® Jalzr R

where R(x) = o(|x|") as |x]| = 0, and |R(x)| < Clx|".

Let A1, ..., A, be the eigenvalues of A (according to multiplicity), so that 1 < ]Alj <...<
|A,|. By basic lmear algebra this implies that the eigenvalues of A~ 1 are )‘1_ Yo )»“ and thus are
non-zero. Hence for any y > 1 there is a constant ¢ = ¢(y) > 0 such that

’A_jx‘ <c|MTH7 x| for j>0,x € R". (3.9)

Moreover, if the matrix A is diagonalizable, or more precisely, there are no Jordan blocks associated
with the eigenvalues of modulus |A1|, then ¥ can be chosen to be 1.
We claim that

Jim_ AT /R ‘R (A—fx) W(x)‘ dx =0. (3.10)

Indeed, for any & > 0, choose s > 0, so that fIXI>s Ix]"(1 + |x|)"N dx <&, where N > n +r. For
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sufficiently large j, |R(A™7x)| < e|A~/ x| for |x| < 5. Hence by (3.9)

/n R (A—fx) W(x)l dx = fms

sf e|A1rf'/V|xl’|w(x)|dx+f C M= x| ¥ (x) dx
|x|<s

|x[>s
< 777 e’ f

|x|<s

R (A—fx) I/f(x)' dx +[ R (A—fx) Ilf(x)l dx

[x[>s

bl” (L4 D™ dx 4 I |77 C// 21" (1 + 1x)) 7" dx

Jx|>s

< MY e (f x| (1 + |xD"Ndx + 1) .
]Rn

Since & > 0 was arbitrary we obtain (3.10). We are now ready to conclude the proof. Take any integer
0 <k <rln|ri|/In|)r,] (or <if y = 1). Consider the linecar map (A“j)[k] . SK(C") - Sk(C”)?
mapping a polynomial p(x) = 3, @«x* to the polynomial ((A™7)p)(x) = 3y da(A™
x)%. By (3.8) for any choice of complex coefficients (ag )|q|=k, We have

fn Z ay (A_fx)“ Y(x)dx = —/ R (A_jx) v(x)dx, 3.11)

forl=k R"
for some R(x) = o(jx|") as |x| — 0, and |R(x)| < C|x|". Take any eigenvalue A of (A'l)[k]. By

Lemma 3, A is a product of k eigenvalues of Al e, Al_l, R A,jl. Therefore |A| > |A,|7%. We
claim that for any s > 1

dx = — (A s. 12
/R" pX)Y(x)dx =0 for p € ker (A ( ){k]) (3.12)

Indeed, let us proceed by inductionons. Lets = 1, p = p(x) = Zlal:k agx? € ker(A — (A‘l)[k]),
i.e., p is an eigenvector with eigenvalue A. Since ((A_l)[k])f = (A_j)[k], we have by (3.11)

Y fR POV (x)dx = /Rn ((A‘f)[k] p) ()% (x)dx = — /I; R (A-fx) v(x)dx . (3.13)

By our choice of k we can find y > 1 (or y = 1if A is diagonalizable) so that [Anl®|AL7Y < 1.
Therefore by (3.10)

} fR P () dx| < AalY fm |R(a7ix)y @] dx

J .
= (a7 ot [
R»

Suppose (3.12) holds for some s > 1. Take p € ker(A — (A"l)[k])“l‘ Then p = Ap + p’, where
p' €ker(h — (A“l)[k])x. Hence for some p” € ker(A — (A_l)[k])s,

(3.14)

R (A-fx) w(x)l dx — 0as j - 00.

| ((A'f') p) ewwdr= [ (Wp@+p' @) v@ds =i [ peveds,
n [k] R R"

by the induction hypothesis. Thus (3.13) holds, which in turn implies (3.14).
Therefore (3.12) holds for any s > 1. Since A was an arbitrary eigenvalue of (A‘l)[k], we
have

/ p)Y(x)dx =0  forany p € S¥(C") .
Rn
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This completes the proof. ]

As a special case of Theorem 4 we have the following.

Corollary 1.
Suppose W = (Y1, ..., WL} is r-regular wavelet family associated with a dilation A. Then
forl=1,...,L,
f x"l//’(x) dx =0 Sfor any multi-index «, |a| < rin|i;|/In|i,] , (3.15)
Rr

where A1 is the smallest and ), the greatest eigenvalue of A (in modulus). Moreover, if the matrix
A is diagonalizable over C then (3.15) holds for || < rln|i;}/In |Ag].

Our next goal is to investigate the moments of regular scaling functions. The results are a
consequence of anisotropic Strang—Fix conditions introduced and investigated by Cohen, Grichenig,
and Villemoes [12]. First, we need some definitions.

Definition 4. We say that f belongs to the anisotropic Sobolev space associated with A, and write
feH,if

.2 \V?
f(E)} d&) <00. (3.16)

11l = (/Rn<1+p<5)>2‘

Here, p is any quasi-norm associated with B = AT | thatis p : R* — [0, 00) is C* on R" \ {0} and
pE)=0 < §=0,
p(BE) =b/"pE)  forall £ e R*.
Definition 5. Suppose m : R" — C is Z"-periodic. We say that m satisfies the anisotropic
Strang—Fix conditions of order s + 1, if and only if
Im (‘;’ + B*Id)' =o0 (p(s)s) as § > 0 forall d e D\ {0}. (3B.17)
Here D denotes the set of b representatives of different cosets of Z"/BZ"; O represents the coset
BZ".
The following theorem was shown in [12] in the case when m is a trigonometric polynomial.

However, it can be easily extended to the case when m is C* or merely C k for sufficiently large k.

Theorem 5 (Cohen, Grichenig, Villemoes).
Suppose ¢ € H} for some s > 0, and

o) =m(B7)4(B7')  forgeR, (3.18)
for some Z"-periodic C™ function m, with m(0) = 1. If {tep : k € Z")} is a Riesz system then m
satisfies the anisotropic Strang—Fix conditions of order s + 1.

The following result shows that every r-regular MRA has a scaling function with zeroth
moment equal to 1 and with vanishing moments of order twice as large as we can expect from
r-regular wavelets, see Corollary 1.

Theorem 6.
Suppose (V;)icz is an r-regular MRA. Then there is an r-regular scaling function ¢y € Vp
such that

/ x%po(x)dx = 81,0 Sfor any multi-index o, Ja| < 2rln|i]/In|i,] , (3.19)
Rn
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where A1 and ), respectively, are the smallest and the greatest eigenvalues of A (in modulus).
Moreover, if the matrix A is diagonalizable over C then (3.19) holds for || < 2r In|A1{/In|Az|.

Proof. Let ¢ € Vy be an r-regular scaling function of the MRA (V;);cz. Clearly, fR’*(l +
IEN? |@(&) |2 < . By a lemma due to Lemarié-Rieusset [26], for any y > 1 there exists a constant
c>0,

1/Cp(5)nln|)»1[/(ylnb) < lg_-l < Cp(é_—)nyln])»,,l/lnb for IEI >1, (320)
1/co@)"ral/nb < g < cp(gyr MV Inb)  for £ < 1. (3.21)

Moreover, if the matrix A has no Jordan blocks associated with the eigenvalues equal in modulus to
|A1] or |An|, then y can be chosen to be 1. By (3.20), ¢ € H5, where s = nrin |A1|/(y Inb).

Since ¢ is a scaling function (and thus refinable) we have (3.18). The low-pass filter m(§) is
C®. Indeed, by the Sobolev Embedding Theorem, ¢(&) is C*®. Moreover, for any £ € R” there
exists a k € Z" such that (¢ + k) # 0 by [6, Corollary 1]. By Theorem 5, the low-pass filter m of
¢ satisfies the anisotropic Strang—Fix conditions of order s + 1. In particular,

m@P=1+0(p®*) as&—0.
Therefore,
9@ = 1+0(p©®*) = 1+0 (p@> mMITBD) 45 ¢ 0.
By (3.21)
6@ =140 (IEF"“ A1/ In '*"')) as £—0. (3.22)

Any other scaling function g of the MRA (V;);cz must be of the form ¢(§) = v(§)¢(&) for some
Z"-periodic measurable function v with |v(£)] = 1. Define v by v(&) = @(£)/|¢(¢)|? in a small
neighborhood of 0 where § # 0. By a simple partition of unity argument we can extend v to be
Z"-periodic, C*°, and unimodular. Define ¢ by @g(&) = v(§)@(§). By [34, Corollary 5.14], ¢o(x)
is also r-regular. Since @p(§) is real in the small neighborhood of 0 and ¢(0) = 1 we have by (3.22),

o) =1+o0 (|§|2rlnl)\1l/()’2lnlln|)) as € > 0.

This immediately implies (3.19). |

Note that Theorem 6 implies Corollary 1 in the case when the r-regular wavelet family
{v!, ..., "1} is associated with an r-regular MRA with a scaling function ¢. Indeed, by (2.30)
and (2.31) we have the identity

o +|3t @] + -+ [ ] =]o (8% (3:23)

Hence by (3.22), [#(8)] = o(j&)7 "M/ nlaby a5 £ —s 0, which shows (3.15).

Remarks.

(i) Theorem 4 is an extension of the well-known result about vanishing moments for wavelets
associated with the dilation A = 2 in the dimension n = 1. We used an argument in the direct
domain as in [14, Theorem 5.5.1]. One could perform the proof in the Fourier domain as in [5] or in
the multiresolution setup as in [28].

(i) Careful examination of the proof of Theorem 4 implies that we have some extra vanishing
moments beyond r In|A1]/In |A,]|, e.g., those associated with eigenvalue A;. One might expect to
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show vanishing moments up to the order r. However, the other argument in the Fourier domain used
in the proof of Theorem 6 yields the same bounds which may be inevitable for general dilations.
One possible remedy is to alter the definition of r-regular functions by requiring varied orders of
differentiation which depend on the growth rates of the quasi-norm p in different directions.

(iii) A direct examination can give more vanishing moments than what is guaranteed by Theorem 4.
For example, the Fourier transform of the r-regular scaling function ¢ constructed in Theorem 3 is
equal to 1 in a neighborhood of the origin, so we have

/ x%@o(x)dx = 8jq,0 for all « .
]R’l

By (3.23) the Fourier transforms of the associated r-regular wavelets vl ..., V/b‘l vanish in a
neighborhood of the origin. Hence,
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