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ABSTRACT. Given a dilation matrix A and a natural number r we construct an associated r-regular 

multiresolution analysis with r-regular wavelet basis. Here a dilation is an n x n expansive matrix A (all 

eigenvalues ~. of A satisfy Ik[ > 1) with integer entries. This extends a theorem of Strichartz which assumes 

the existence of a self-affine tiling associated with the dilation A. We also prove that regular wavelets have 

vanishing moments. 

1. Introduct ion 

The main aim of this article is the construction of r-regular wavelet family with an associ- 
ated r-regular multiresolution analysis for an arbitrary dilation matrix A preserving some lattice F. 
Strichartz [31] achieved this goal for a wide class of dilations having a Haar type wavelet basis, or 
equivalently a self-affine tiling, see [ 17]. 

Theorem I (Strichartz). 
Assume the existence of a self-affine tiling. For every r there exists an r-regular multiresolution 

analysis and an associated wavelet basis. 

We extend this result by removing the assumption of the existence of a self-affine tiling. This 
assumption is highly non-trivial and it was studied by many authors, see [13, 16], [19]-[25], [32]. 
Using methods of algebraic number theory classes of dilations without self-affine tilings have been 
recently found in dimensions n > 4, see [22, 30]. The simplest example is a 4 x 4 dilation matrix 

(; o o~ 11 1 i) 
that does not have a self-affine tiling and thus does not have a Haar-type wavelet basis, see [22]. 
Therefore it is of interest to extend Strichartz's construction to such cases. 
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The wavelets constructed in this article are not compactly supported nor of exponential decay, 
as is the case with Strichartz's. Nothing is known about the existence of compactly supported or 
exponential-type regular wavelets for a general dilation. In fact, it is not even known whether there 
are any compactly supported orthogonal wavelets associated with the above 4 x 4 dilation matrix. 
The compactly supported regular wavelets have been constructed only for very specific dilations 
in higher dimensions. One method is to use a tensoring technique to obtain separable wavelets 
from Daubechies wavelets. There are other methods for the construction of nonseparable wavelets, 
see [3, 4]. However, r-regular wavelets are a sufficient tool for the study of function spaces as is 
evidenced by the book of Meyer [28] in the isotropic setting and [8] in the case of anisotropic Hardy 
spaces. Furthermore, as a special benefit, all the moments of the constructed wavelets vanish. 

In Section 3 it is shown that all r-regular wavelets must necessarily have a certain number of 
vanishing moments depending on r and the spectral properties of a dilation A. This was previously 
observed for the dilation A = 2Id in [5, 15, 28]. 

Wavele t  pre l iminar ies .  We are going to assume that we have a lattice F (F = PTfl for 
some nondegenerate n x n matrix P) and an expansive matrix A preserving P, i.e., all eigenvalues 
~. of A satisfy 141 > 1, and AF C IL Without loss of generality, we will assume that F = Z n. 

Defini t ion 1. Let qJ be a finite family of functions �9 = {~pl . . . . .  ~pL} C L2(Rn). We say that 
qJ is a wavelet family (or a multiwavelet) if {O},k : J e Z, k �9 Z n, l = 1 . . . . .  L} is an orthonormal 

basis for L2(Rn). Here, for lp �9 L2(R n) we use the convention 

~j ,k(X)  = DAJ'Ck~(X) = I de t  alJ /2~ r ( A J x  - k )  j �9 Z,  k �9 Z n , 

where r y f ( x )  = f ( x  - y) is a translation operator by the vector y �9 R n, and D A f ( x )  = 
~/I det A I f (Ax )  is a dilation by the matrix A. 

Defini t ion 2. By a multiresolution analysis (MRA) we mean a sequence of closed subspaces 
(Vi)iez C L2(R n) associated with a scaling function ~p, satisfying: 

(i) Vi C V/+I for /  �9 Z, 

(ii) Vi = Dal Vo for i �9 Z, 

(iii) Uiez  Vi = L2(Rn), 

(iv) ~")ieZ Vi = {0}, 

(v) {rk~o}g~Zn is an orthonormal basis of V0. 

A wavelet family �9 = {~pl . . . . .  ~L} "generates" MRA, if 

V i = @ W j ,  w h e r e W j = s p a n { ~  l } j , k : k � 9  n , l =  1 . . . . .  L . (1.1) 
j<i 

This happens precisely when V0 as a shift invariant subspace of L2(]~ n) has dimension function 
dimvo(~) = 1 for a.e. 
invariant spaces, see [7]. 

e R n. For the definition of the dimension function for general shift 
However, the dimension function of V0 is given by the explicit formula, 

L 
dimv0(~) = ) - - ~ Z  ~ ~ ' ( B J ( ~ + k ) )  2 , 

l=1 j = l  kEZ n 

where B = A T, see [9]. Since 

L 

f(_ dimvo(~)d~ = 1/(b - 1)~--~ ap t 2 , 
1/2'1/2)n 1=I 

(1.2) 

(1.3) 
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a wavelet family ~P = {Tt ~ . . . . .  7t L} can be associated with MRA only if L = b - 1, where 
b = I detAI.  

Definit ion 3. We say that a function f on R n is r-regular, if f is of  class C r, r = O, 1 . . . . .  oo 
and 

IOaf(x) l  < c~,k(1 + Ixl) -k , (1.4) 

for each k 6 N, and each multi-index a ,  with I~1 _< r. A wavelet family qJ = {~1 . . . . .  lp L } is 
r-regular, if ~pl . . . . .  lp/~ are r-regular functions. An M R A  is r-regular if the subspace V0 given 
by (1.1) has an orthonormal basis of  the form {rk~0 : k 6 Z n } for some r-regular scaling function ~0. 

If  a wavelet family qJ is r-regular for r sufficiently large, or more precisely I~bll are continuous 
and I~ I (~) I < C (1 + I~ I)-n/2-E for some s > 0, then the sum (1.2) converges uniformly on compact  
subsets of  ~n \ zn  to the continuous function dim v0 (~) on ]~n \ zn.  Since dim v0 (~) is Z ~-periodic and 
integer-valued therefore dimv0 (~) is constantly equal to d for some d 6 N. If  d = 1 then r-regular 
wavelet family ~P comes from some MRA (more generally, ko comes from MRA with multiplicity 
d). This was essentially shown by Auscher [1, 2]. In general, we can not expect that this M R A  is 
also r-regular; for a counterexample see [29, Proposition 2, p. 88]. Conversely, having an r-regular 
MRA we cannot, in general, deduce the existence of r-regular wavelet family associated with it, 
see [34, Theorem 5.10 and Remark 5.6]. Nevertheless, we can deduce the existence of r-regular 
wavelet family by using the following result [34, Corollary 5.17]. 

Propos i t ion  1 (Woj taszczyk) .  
Assume that we have a multiresolution analysis on R n associated with an integral dilation A, 

[det AI = b. Assume that this MRA has an r-regular scaling function ~o(x) such that ~(~) is real 
for  some integer r > O. Then there exists a wavelet family associated with this MRA consisting o f  
(b - 1) r-regular function. 

2. Regular Wavelets 

Our goal is to construct r-regular wavelets for an arbitrary expansive matrix A with integer 
entries. Strichartz [31] has shown how to achieve this under the assumption of the existence of  a 
self-affine tiling of R n given by A. 

Se l f - a f f ine  t h ings .  Suppose A is an n x n dilation matrix and 79 = {dl . . . . .  db} is any set 
of representatives of  different cosets of  Z n / A Z  n, where b = I det AI. Any such set 79 is called a 
standard digit set in [24, 25]. It follows from [17, 23] that for any choice of  (A, 79) there exists a 
unique (non-empty) compact set Q = Q(A,  79) satisfying the set-valued functional equation 

A(Q)  = U (d + Q) , 
d~79 

which is given explicitly by 

Q = Q ( A , 7 9 ) =  x ~ N  n : x =  A - J s j ,  w h e r e s j  ~79 . 

j= l  

The set Q(A,  79) is called a self-affine tile. For properties of  self-affine tiles we refer the reader 
to [19, 23, 32]. Here we only mention a fundamental Lattice Tiling Theorem due to Lagarias and 
Wang [251. 
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Theorem 2 (Lagarias-Wang) .  
Every self-affine tile Q(A,  7)) gives a ['-tiling of R n for some lattice [" C Z n, i.e., {y + 

Q(A,  7 9 ) : y  ~ ['} is a partition of]~ n (modulo null sets). 

If the lattice [' = Z n in Theorem 2, which is easily seen to be equivalent with I Q (A, 79) 1 = 1, 
then we simply say that Q(A, 7)) gives a self-affine tiling o f R  n. Gr6chenig and Madych have shown 
that there exist self-affine tilings of  ~n given by the dilation A if and only if there exist Haar type 
wavelets associated with A, see [17]. 

The natural question is whether every dilation matrix admits a self-affine tiling. Lagarias and 
Wang have shown that all dilations in the dimensions < 3 possess this property, see Proposition 2 
below, whereas in the dimensions > 4 there are dilations for which every choice of  7) yields the 
corresponding tile Q(A, 7)) with measure bigger than 1, see [21, 22]. The simplest example is 
4 x 4 matrix presented in the Introduction. It requires some knowledge of algebraic number theory 
to understand why this matrix does not have a self-affine tiling. Even though Proposition 2 has 
not been explicitly stated by Lagarias and Wang for n = 3, it does follow directly from their 
work [21, 22, 25]. 

Proposi t ion 2 (Lagar ias-  Wang). 
Suppose n <_ 3. I f  A is an n x n dilation matrix then there exists a digit set 7) C Z n such that 

Q(A,  7)) gives a self-affine tiling o f ~  n. 

P r o o f .  The 1-dimensional case is trivial, see [16]. The case n = 2 was shown by Lagarias and 
Wang, see [20, Theorem 1.1]. Finally, the 3-dimensional case is outlined below. 

Suppose that A is a 3 x 3 dilation matrix. Assume first that A is reducible, i.e., A is integrally 
similar to a matrix fi, of  the form 

0 t A =  A2 ' 

where A1, A2 are r x r and (3 - r)  • (3 - r)  expansive integer matrices, respectively, and C is an 
(3 - r)  • r integer matrix, r = 1 or 2. Since Proposition 2 holds for n = 1, 2, we can find a standard 
digit set 7)i for the dilation matrix Ai satisfying IQ(Ai, 7)i)[ = 1 for i = 1, 2. It is easy to verify 
that 

) 7~= d2 :d l  E T ) l , d 2 e T ) 2  C Z  3 

is a standard digit set for ,~. Furthermore, by an argument involving Fubini's theorem, see the proof 
of [25, Theorem 5.1], 

Q ( f i x , ~ )  = Q ( ( A 1  A20) '7~)  = I Q ( A I ' 7 ) I ) X  Q(A2'792) I = I '  

Since, A = p ~ p - 1  for some invertible integer matrix P we have Q(A, PT)) = P(Q(A ,  D)). 
Therefore, I Q(A,  7))1 = 1 for the digit set 7) = PT). 

Assume next that A is irreducible, i.e., A is not integrally similar to a matrix of the form 
as above. Notice that every 3 • 3 dilation matrix A has a primitive standard digit 79, for the proof 
see [21, Theorem 1.5] with corrections in [22]. We say that a digit set 7) is primitive (for A) if 
Z[A, 7)] ---- Z n, where Z[A, 7)] is the smallest A-invariant lattice containing 79 - 79, i.e., 

Z[ A, 7)1 = Z [79 - 7), A(7) - 7)) . . . . .  A n-1 (79 - 79)] 

By [25, Corollary 6.2] for every irreducible dilation A with primitive digit set 79 the corresponding 
self-affine tile satisfies [ Q (A, 7))1 = 1. This completes the proof of  Proposition 2. [ ]  
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T h e  c o n s t r u c t i o n .  Lack of  a self-affine tile Q with IQI = 1 is a major obstacle in the 
construction of an r-regular MRA and a wavelet family. In the case when such a Q exists, Strichartz 
constructs r-regular scaling function by convolving the indicator function of Q, 1O, with itself 

and appropriately normalizing it. This works because of the minimal decay of iQ. Instead, our 
construction is based on the careful construction of  a smooth low-pass filter m and a scaling function 
~o satisfying ~b(~) = m(B- l~ )~b (B- l~ ) ,  B = A T, such that m is equal to 1 on some prespecified 
closed neighborhood of  the origin. This guarantees that all partial derivatives of~b have some minimal 
decay at infinity, of  order O(l~ I -E) for some e > 0, independent of  the order of  the differentiation. 
This in turn yields another scaling function with desired order of  regularity. 

A set A C ]R n is said to be a (closed) ellipsoid if 

m = {~ ~ I~":  IP~I ~ 1} , (2.1) 

for some nondegenerate n • n matrix P,  where I �9 I denotes the standard norm in/t~ n. By [32, 
Lemma 1.5.1], for any dilation matrix B there exists an ellipsoid A, and r > 1 such that 

A C r A  C B A .  (2.2) 

By a scaling we can additionally assume that 

A C ( - 1 / 2 ,  1/2) n , (2.3) 

Indeed, since B - J [ - 1 / 2 ,  1/2] n C [ - 1 / 2 ,  1/21 n for sufficiently large j ,  the se t /~  = U~=0 

B - J [ - 1 / 2 ,  1/2] n is compact and /~  N Z n = {0}, because the matrix B preserves the lattice Z n. 
Therefore 8 = dist( /f ,  Z n \ {0}) > 0, and it suffices to take A C B(0, ~) :=  {~ e R n : I~1 < ~}. 
The interior of  A is denoted by A ~ 

The following result extends Strichartz's Theorem [31], see also [34, Theorem 5.25]. 

Theorem 3. 
Suppose A is an integral dilation matrix on R n with b = I det A [. For every r E N there exists 

an r-regular multiresolution analysis and an associated r-regular wavelet family o f  (b - 1)functions. 

Proof. Choose an ellipsoid A satisfying (2.2)-(2.4). Pick a function h : ~n _+ ~ +  ___ [0, ~ )  in 
the class C ~ ,  such that 

{~ e ~"  : h ( ~ )  = o} = a .  (2.5) 

To see that such a function exists, consider/~ : ~n _+ 1~+ in the class C ~176 such that 

{~ e r~" : h(~) = 0} = B(0, 1). 

It suffices to take h(~) --- ~ ( p - t ~ ) ,  where the matrix P defines the ellipsoid A in (2.1). 
For a given R > ~/-n}}Bl}, choose a C ~ function g : ~n __+ ~ +  such that 

suppg  := {~ e ~n : g(~) ~= 0} = {~ 6 Rn : I~1 < R} = B(0, R ) .  

Define 

(2.6) 

g(s~) := g(~) H h(~ - k ) ,  
keZ 

(2.7) 
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where Z := {k ~ Z n \ {0) : (k + A) f3 B(0, R) ~= 0). Clearly ~ is C r162 and 

{~ E B(0,  R) : g (~ )  = 0} = B(0,  R)  f"l (~n \ {0}-~- A)  . (2.8) 

The function f given by 

~(~) 
f (~)  = (2.9) 

~k~z. g'(~ + k) 

is well defined by (2.3) and (2.8) It satisfies the following properties: 

(i) f : R n --~ [0, 1] is in the class C ~ and supp f C B(0, R), 

(ii) ~k~ , "  f (~  + k) = 1, 
(iii) f ( ~ ) = l  , ' . .~ f ~ A ,  
(iv) ifl~l < R a n d f ( ~ ) = 0 t h e n ~  ~ Z  n + A .  

Indeed, (i) follows from supp ~ C B(0, R), (ii) is a consequence of (2.9). (iii), and (iv) follow 
from (2.8) and (2.9). 

Finally, define function m : R n ~ [0, 1] by 

m(~)=~k~eznf(B(~+k)). (2.10) 

FIGURE 1 The low-pass filter m is constantly 1 in the shaded ellipses, constantly 0 in the unshaded ellipses and strictly 
between 0 and 1 elsewhere. 

Claim 1. 
The function m given by (2.10) is C ~, Zn-periodic, and 

m (~ A_ B-Id) 2 ~ n  , = 1 for all ~ c 
d~79 

m(~)=O -~ ~ E B - 1 Z  n \ Z  n + B - 1 A ,  

m ( ~ ) = l  ~ ~ Z  n + B - 1 A ,  

(2.11) 

(2.12) 

(2.13) 
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where the matrix B :=  A T, and 79 = {dl . . . . .  do} is the set of representatives of different cosets of 
Zn/BZ n, where b = I det AI. 

P r o o f  o f  C l a i m  1. To guarantee that m is C ~ ,  the function f must "vanish strongly," i.e., if 
f ( t 0 )  = 0 for some t0 then Oaf(to) = 0 for any multi-index ~. Since h, g and ~ have this property 
thus f has it, too. It is clear that if some nonnegative function in C c~ "vanishes strongly" then its 
square root is also C ~ .  

For simplicity assume that dl = 0, i.e., 0 represents the coset BZ n . (2.11) is a consequence of 

m ( t + B _ l d  ) 2 ~ ~ f ( B ( t + B _ l d + k ) ) =  y~. Z f ( t + d + B k ) = l  ' 
d~D kcZ n dcD kEZ n dcD 

by property (ii). To see (2.12), take t 6 ~n such that m ( t )  2 = ~ k ~ z ,  f ( B ( t  + k)) = 0. Choose 
k 6 Zn, so that t + k  E [ - 1 / 2 ,  1/2) n. Since 

IB(t  + k)l ___ [[nlll t  + kl _< Ilnll , , /-~/2, 

and R > II B I I~/-~, then by property (iv) B(t+k ) 6 Z n + A ,  hence t 6 B-1Zn+B -1A. Furthermore, 
i f t  ~ Z" + B -1 A, i.e., t 6 k + B - 1 A  for some k 6 Z n, then 

1 = f ( B ( t  - k)) < ~ f ( B ( t  +l)) < m ( t )  2 < 1 ,  
lEZ n 

therefore re ( t )  = 1 for t ~ zn + B -1A.  By (2.11) m vanishes precisely on B - I Z  n \ Z n + B - 1 A .  
This shows (2.12) and one implication of (2.13). To see other implication of (2.13) suppose m ( t )  = 1 
for some t ~ Rn. By (2.11) we have m( t + B- ld)  = 0 for d s 79 \ {0}. By (2.12) t + B - l d  
B -  1 zn \ Z n + B - 1 A, and hence t ~ B - 1Z" + B - 1A. Therefore by (2.12) we have t ~ zn  + B - 1 A. 
This ends the proof of  the claim. [ ]  

We can write m in the Fourier expansion as 

1 m(t) -- ~ /c~, hke-2:ri(k'~) ' (2.14) 

where we include the factor [detA1-1/2 outside the summation as in [6]. Since m is C ~ ,  the 
coefficients hk decay polynomially at infinity, that is for all N > 0 there is CN > 0 so that 

[hk[ < CNIk[ -N for k ~ Z n \ {0}. 

Since m satisfies (2.11) and m(0) = 1, m is a low-pass filter which is regular in the sense of  the 
definition following [6, Theorem 1]. By [6, Theorem 5] ~o 6 L 2 ( ~  n) defined by 

oo 

j = l  

has orthogonal translates, i.e., 

(~0, r/~o) = &t,0 for l 6 Z n , 

if and only if m satisfies the Cohen condition, that is there exists a compact set K C R n such that 

�9 K contains a neighborhood of zero, 

�9 I K M ( l + K ) l = & t , o f o r l ~ Z  n, 
�9 m(B-J t )  (=Ofort E K ,  j > 0 .  
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It is clear that K = [ - 1 / 2 ,  1/2] n does the job. Indeed, cons ider /~  = Uj=0~ B - J K .  By (2.4) 
and (2.12), we have 

Therefore ~o is a scaling function for the multiresolution analysis ( V j ) j ~  Z defined by 

V j = s S - ~ { D A J ' ~ l q ) : I E Z  n } for j ~ Z .  

It follows from a modification of a lemma due to Strichartz in [31] that q) possesses some 
minimal smoothness. However, we also need to estimate the derivatives of  ~b, because in general q) 
does not have compact support. 

Lemma 1. 
Suppose m is a real-valued, Z n-periodic function of class C ~.  Assume that m satisfies (2.11)- 

(2.13) as in Claim 1. Then there exists e > 0 such that ~ given by (2.15) satisfies 

10'~b(~)[ _< C(~)(1 + I~l) -~ for ~ ~ ]R n , (2.16) 

for some constant C (~) depending on a multi-index a. 

P r o o f  o f  L e m m a  1. Note that the product (2.15) in the definition of r converges uniformly on 
compact  sets. 

For a given integer k > 0, let ~ k m ( ~ )  be the derivative of  m of  order k at the point ~ thought 
of  as a symmetric, multilinear functional, i.e., ~ m ( ~ )  : (Rn) k = R n x . . .  x ]~n ___> R. That is, 

~ k m ( ~ )  (ej(1) . . . . .  ej (k) )  = O~m(~) ,  w h e r e  ot .= e j(1) -k- . . -  q- ej(k) , 

and el . . . . .  en is the standard basis of  ~n. The norm is given by 

~km(~) = sup ~ k m ( ~ )  (Vl . . . . .  Vk) �9 (2.17) 
vi ~ n ,  I vi [ = 1, 

i=l,...,k 

We will first show that there exists e > 0, so that for all integers N > 0 there is a constant 
C = C(N) > 0 so that 

OO 

17 ~ l ' i m ( B - j ~ )  < C ( N ) I ~ L - e  f o r ~  7~0 ,  (2.18) 
j = l  

for every sequence of  nonnegative integers (k j)7= 1 all of  which except a finite number are zeroes, 

and N = ~ j = l  k j .  
Indeed, let 

p = max {m(~) : ~ r A + Zn} = max {m(~) : r 6 R" \ (A~ + Zn)} , (2.19) 

where A ~ denotes the interior o f  A. Since m is Zn-periodic, and by (2.2) and (2.13) {~ 6 R n : 
m ( ~ ) = I } = B - 1 A + Z  n c A  ~  n, we conclude p < 1. 

Define e > 0 so that [[B[[~p = 1, i.e., e = - ln(p) / ln( l lBl[ ) .  Finally, define 

M = m a x {  ~km(~) : ~ E ] ~  n k = 0 ,  N} 

Since 0 < m(~) < 1 for all ~ ~ ]~n we have 

O0 

I-I ~k jm ( B - j ~ )  < MN for ~ E Nn .  (2.20) 
j = l  
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Furthermore, the above product equals zero, if B-J~ E Z n \ {0} + A ~ for some integer j >_ 1. 
Indeed, if B-J~ E l + A ~ for some 1 6 Z n \ {0}, then l = BJOlo, where j0 > 0, and lo E Z n \ BZ n. 
Clearly 

B-J-J~ E B-1lo + B - J ~ 1 7 6  C B-1lo + B - t A  ~ , 

thus I I~kJ+Jo +~ m(B-J-jo-l~)ll = 0 by the virtue of (2.12). Therefore the product in (2.18) equals 
zero for ~ E Z, where 

(NO 

z := U BJ ((z n + Ao) .  
j = l  

For any ~ 9g Z, ]~I > r :=  ~/-n/2, find a minimal integer j0 >_ 1, so that [B-Jo~l < r. For such a 
we have by (2.3) 

J : =  {j  > 1 :  B-J~ c gnq - A ~ = {j  > 1 :  B-J~9~ A 0} D { j  > 1 :  B-J~ >_ r } .  (2.21) 

The cardinality of  J is at least j0 - 1. Note also that 

I~l < BJ~176 I < B j~ B-J~ < IIBII j~ , 

therefore 

I~1 -~ > IIBIl-~Jor -~ = pJor-E . (2.22) 

Hence by (2.19), (2.21), and (2.22) for ~ r Z and I~1 > r 

oo 

H 5Dk'm (B- '~ )  < M N H m (B- '~ )  < M Npj~ < (M/p)N (re~p)lsel-e. 
j = l  j~J 

kj =0 

Combined with (2.20) and the property of the set Z this shows (2.18). 
To finish the proof of Lemma 1 define, for j > 1, functions mj (~) = m(B-J~). By the chain 

rule for any integer k > 1 

~kmj(~) (Vl . . . . .  Vk) = ~km (B-J ~) (B-J vl . . . . .  B - i r k ) ,  (2.23) 

for any vectors vl . . . . .  vk E Rn. Let a be a fixed multi-index. Let F = F(ot) consists of  all 
sequences 15 = (/3J)~=1 of multi-indices/3j, such that/3j = 0 for all but finitely many j ' s ,  and 

oo E j = I  /3J = Or. By the infinite product rule 

oo O&mj(~) (2.24) 

fieF j = l  

provided the above series converges uniformly and absolutely. Indeed, by (2.23) and (2.18) 

oo oo 

E H I O~jmj(~)] <- Ot lE  H ~l#Jlm (B- j~)  " B- j  I/~jl 
ge t  j=l  t ~ r  j=t  

Ic, t 

fiEF j = l  j = l  

Since ~b(~) = 1 for ~ ~ A ~ by the above estimate applied for ~ 9~ A ~ we obtain (2.16). [ ]  
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For a given integer N > 0 define function ~01, by ~1 (~) : (~(~))N. By Lemma 1 and the 
product rule we have 

[8~b1(~)[ < C(ot)(1 + [~[)-Ne for b ~ �9 ~ n ,  (2.25) 

for some constant C(ot) depending on a multi-index or. Therefore, for sufficiently large N, q)l is 
r -regular. 

Since ~o is a scaling function, by the orthonormality of  the system {rk~o : k �9 Z n } we have 

Z 1~(~ q- k)[2 = 1 for a.e. ~ �9 ]I~ n . (2.26) 
kEZ n 

By [6, Corollary 1] the above series converges uniformly on compact  sets and we have equality for 
all ~ �9 R n. We remark that the uniform convergence on compact  sets in (2.26) does not follow 
from the estimate (2.16). Rather, it is a consequence of ~b being in the appropriate Sobolev space. 
Therefore we can find a finite subset S C Zn so that 

l ~ (~  at- k)[ 2 > 1/2 for ~ �9 [ - 1 / 2 ,  1/21". (2.27) 
k~S 

Since we sum over a finite set of  indices there exists a constant c > 0 so that 

+ k) l  2 = + k) l  2N > c 
k~S kcS  

for ~ �9 [ -  1/2, 1 /2 ] " .  

Therefore 

c < Z I ~bl(~ + k ) l  2 = Z [~b(~ + k ) l  2N < Z ] ~b(~ + k ) l  2 = 1 
kEZ n kEZ n kEZ n 

(2.28) 

which means that {rk~01 : k �9 Z n) forms a Riesz sequence. ~Ol is also refinable, i.e., ~bl(~) = 
(rn(B-I~))N~I(B-I~), therefore it defines an MRA with 

Vj  = s - - ~  {OaJr lq ) l  : l �9 Z n} . (2.29) 

Indeed, since ~Ol is refinable we have Vj C Vj+I. By a simple adaptation of  [18, Theorem 1.6, 
Chapter 2], spaces (Vj)jj~ satisfy Nj~z Vj = {0}. Since ~01 (0) = 1, and ~Ol is continuous we also 

have Uy~z  vj is dense in Le(R") .  Finally, we can pick a scaling function ~o0 for V0 by 

(k~cZn ) -1/2 r = ~1(~) [~1(~ + k) l 2 �9 

By [34, Corollary 5.14] ~00 is also r-regular. Since ~b0 is a real-valued scaling function, we can 
apply Proposition 1 to obtain r-regul ar wavelets { 7z 1 . . . . .  7t b -  1 } as sociated with the MRA (Vj) j c 7~ 
defined by (2.29). This finishes the proof  of  Theorem 3. [ ]  

Remarks .  
(i) The constructed scaling function q9 o, and the multiwavelet {~ 1 . . . . .  lp b-1 } satisfy scaling equa- 
tions 

for / =  1 . . . . .  b - l ,  
(2.30) 
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for all ~ e ]~n, where m0 . . . . .  rob-1 are Zn-periodic C ~ functions. If we write 

1 X-" h I e-27ri(k,~) 
m;(~) = ~ k Z _ ~ , z  " ~ 

for l = 0  . . . . .  b - l ,  

then the sequence of vectors (h ~ . . . . .  h b - l )  is a wavelet matrix, as it is defined in [6], where 
h I l -- (hk)k~Z,. The coefficients of  this wavelet matrix decay polynomially fast at infinity because 
m I's are C ~ .  We also have 

b-1 
Z m l ( ~ q - n - l d )  m l ( ~ q - n - l d ' ) = S d , d ,  

/=0 

for d , d '  e D, ~ e R n , (2.31) 

where 79 is the set of  representatives of different cosets of  Z n / B Z " .  
(ii) Note that the scaling function ~o0 vanishes in the Fourier domain in many places. The zero set 
for ~b0 contains the set Z, so ~bo vanishes in a neighborhood of every lattice point of  Z n except 0. 
One can see that as we move off the origin those neighborhoods may only become larger than the 
guaranteed ellipsoidal neighborhood A. However, in general there is no guarantee that ~b0 is going 
to vanish outside some bounded set. Nevertheless, for some specific dilations we can choose an 
ellipsoid A, so that ~b0 has a compact  support. For example, if the dimension n = 1, and A = 2, it 
suffices to take A = [ - ~ ,  ~], 1/3 < 8 < 1/2 to obtain supp ~b0 = (~ - 1, 1 - ~). Therefore we obtain 
a scaling function ~00 (and a wavelet ~ )  in the Schwartz class. Naturally, ~ is a Meyer  wavelet, 
see [28]. One could hope that by taking more general sets than ellipsoids for A, one could produce 
a filter m having "optimized" zero set, so that both ~b has compact support and m satisfies the Cohen 
condition. This is indeed the case in the dimension n = 2, where Speegle and the author [10] have 
recently shown the existence of wavelets in the Schwartz class for all 2 x 2 integral dilations. We 
do not know whether one can achieve this for general dilations in higher dimensions. 

Q u e s t i o n .  Does there exist an oo-regular multiresolution analysis and an associated c~-regular 
wavelet family of  (I det AI - 1) functions for any n • n integral dilation A, n > 3? 

A partial positive answer is given in [8]. It is shown there, that for any integral dilation A there 
exists a natural number m and an c~-regular multiresolution analysis with an c~-regular wavelet 
family of  (I det AI m - 1) functions associated with Am. 

3. Vanishing Moments 

In this section we are going to show that r-regular orthonormal multiwavelets must automat- 
ically have vanishing moments. This fact was previously observed for the dilation A = 2Id .  Here 
we are going to show this for all dilations, A, preserving some lattice, i.e., for dilations with integer 
entries. Before proceeding with the main results two technical lemmas are presented. 

L e m m a  2. 
Suppose we have a tempered distribution f on ~n such that its (distributional) Fourier trans- 

form / is a regular distribution. Let L be a partial differential operator with constant coefficients 
o f  order r, i.e., 

L f  = a c ~  f , (3.1) 

lul_<r 

where not all coefficients au are zero. I f  L f = 0 then f = O. 
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P r o o f .  Apply the Fourier transform to L f  

Z (-2zri~)~a~f  = 0 .  (3.2) 
lal<_r 

Since the distribution f is regular, there exists locally integrable function (also denoted by f ) ,  such 
that f(~0) = f~n f(~)~o(~) d~ for ~o e S in the Schwartz class of  test functions. Thus 

f ~ f ( ~ )  E ( -2zr i~)aaa~~ = 0 for ~ S .  ~o 
n 

Ictl_<r 

Therefore, f ( ~ )  = 0 for a.e. ~ outside the zero set of  the nonzero polynomial as in (3.2). Since the 
zero set of  a nonzero polynomial has measure zero, f = 0, and consequently f = 0. [ ]  

The second lemma appears in the work of Cabrelli, Heil, and Molter [11, Lemma 4.2], where 
the proof  can be found. It is also a consequence of  [27, Theorem 4.3 on p. 122]. In this lemma we 
can relax the assumption that A is a dilation. 

Lemma 3. 
Suppose A : C n ~ C n is a linear map with eigenvalues X1 . . . . .  Xn (taken according to 

multiplicity). Let Sk(C n) denote the space of homogeneous polynomials of degree k > 0 in n 
variables with complex coefficients. Define a linear map 

a[k] :  S k (C n) ~ S k ( o n ) ,  (a[k]p) (x) = p(ax) ,  for x E C n 

for p E Sk(Cn). Then all eigenvalues of A[k] are of the form ~.i l~. i2 ' ' "  ~'ik for some sequence of 
indices 1 < il < i2 < . . .  < ik < n. 

Let us enumerate eigenvalues ~,1 . . . . .  )~n of A according to multiplicity, so that 1 < IX~I _< 

�9 . .  ~ I~ .n l .  

Theorem 4. 
Suppose A is a dilation and ap, ~ E L 2 ( ~  n) are such that 

apy,k,/:0 ior j j'  Z,k,k' (3.3) 

Suppose also that ~ is nonconstant, bounded and of class cr, and lap (x) I -< C (1 + Ix [)-N for some 
N > n + r. Then 

f xaap(x)dx = 0 foranymulti-index I~l < rlnlXll / lnlXn[ (3.4) Ol , 
n 

where 3.1 is the smallest and Xn the greatest eigenvalue of A (in modulus). Moreover, if the matrix 
A is diagonalizable then (3.4) holds for I otl _< r In IX 1 I / In  I Xn I. 

P r o o f .  For a fixed point u ~ N n consider the Taylor expansion of ~ of  order r,  i.e., 

~(u + x) = ~ ~ + n(u, x) (3.5) 
or! 

I~l<_r 

where R(u, x) = o(Ixl r) as Ixl ~ 0, and JR(u, x)l < Clxl r for some C > 0, since ~ is bounded�9 
Let I = {or : a is a multi-index, Iod _< r}, U = U j c z  AJzn" Consider the finite dimen- 

sional, complex linear space V := C I = {(xa)uz/ : xa q C, a ~ I}. We claim that the vectors 
(Oa~t(u))azi ~ V, where u c U span the whole space V. Indeed, if W := s p a n { ( 0 ~ ( u ) ) ~ c l  : 
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u ~ U} # V, then there is a linear functional a : V --+ C, such that a is not zero, and W C kera .  
Since we can identify a = (aa)aet ~ V we would have L~(u)  = 0 for u ~ U, where L is given 
by (3.1). Since U is dense in N n, and ~ is C r we have L(p(u) = 0 for all u 6 Nn. By Lemma 2, 

= 0 which is a contradiction. 

Therefore, for any a = (a~)de I ~ C 1 we can find points U l . . . . .  Um ~ U, and complex scalars 

Cl , �9  Cm such that 

m 

aa = E r176 (ui) ~Or! 
i = 1  

for a �9 I .  (3.6) 

Applying (3.5) to points u t . . . . .  Um and taking linear combination with scalars ci . . . . .  Cm we have 

m 

Z c i ~ P  (ui + x ) =  Z aaxU + R(x) ,  
i=1 lal<r 

(3.7) 

where R(x) = o(Ixl r) as Ixl ~ 0, and Ie(x)l  ~ C[xl r for some C > 0. Write ui = AJiki, where 

ji E Z, ki c Z n for i = 1 . . . . .  m. By (3.3) for j > m a x ( - j l  . . . . .  - jm)  

s ~ ~ (ui + x) ~ (AJx) dx = fN, (p(x)~p (AJx - AJui) dx 

= s  r ( a J x -  aJ+Jiki)dx = Idetal-J/2((Po,o , l[rj,aj+Jiki ) = 0 ,  

since the dilation A preserves the lattice Z n. Therefore, if we multiply both sides of (3.7) by ~ (AJx) 
and integrate we obtain 

s  ~_, aaxCqp (AJx)dx = - s  R(x)t) (AJx) dx . 
lul_<r 

After conjugation and a change of variables we have 

f~n Z - d - d ( A - J x ) a ~ ( x ) d x = -  f~n R ( A - J x )  ~p(x)dx'  
Icd<_r 

(3.8) 

where R(x) = o([xJ r) as Ixl ~ 0, and Ie(x)l  ~ f i x [  r. 

Let 3.1 . . . .  ,3.n be the eigenvalues of A (according to multiplicity), so that 1 < 13.11 < �9 �9 " < 
[3.nl. By basic linear algebra this implies that the eigenvalues of A -1 are 3.11 . . . . .  3.n 1 and thus are 

non-zero. Hence for any y > 1 there is a constant c = c(y)  > 0 such that 

A - i x  ~c[3.1[-J/Ylx[ for j > O ,  x 6 R  n . (3.9) 

Moreover, if the matrix A is diagonalizable, or more precisely, there are no Jordan blocks associated 

with the eigenvalues of modulus 13.11, then y can be chosen to be 1. 

We claim that 

lim 13.1[Jr/~" f~ R (A-Jx )~p (x )  d x = O .  
j --+ O0 n 

(3.10) 

Indeed, for any e > 0, choose s > 0, so that flxl>s [xlr(1 -4- Ixl) - N  dx < e, where N > n + r. For 
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sufficiently large j ,  IR(A-Jx)I < ~[A-Jxl r for Ixl ~ s. Hence by (3.9) 

fR~ R(A-Jx) O(x)dX=fxl<_s R(A-Jx) O(x) dx+flxl>s R(A-Jx)~(x) dx 

< fxl<_s elXll-Jr/~" Ixlrlgt(x)ldX+fxl>~ CI)~ll-Jr/Y Ixlrl~p(x)ldx 

< IX11 -jr/~" ef t f Ixl~(1 + I11) -N  dx + I~-11 - j r / y  C'fx Ixlr(1 + Ixl) - g  dx 
Jlxl<_s I>s 

<tXll-Jr/Yect(fR Ixlr(l+lxl)-Ndx+l ) �9 

Since e > 0 was arbitrary we obtain (3.10). We are now ready to conclude the proof. Take any integer 
0 < k < r In ILl I / In  [Xn I (or < if ~' = 1). Consider the linear map (A-J)[kl : Sk(C n) --+ Sk(Cn), 
mapping a polynomial p(x) = ~1~1=~ a~x'~ to the polynomial ((A-J)[k]p)(x) = ~laI=k ac~(A-J 
x)~. By (3.8) for any choice of  complex coefficients (aa)I~ I=~, we have 

fR ~ aa(A-Jx) c~7t(x)dx=- f R(A-Jx)~(x)dx, (3.11) 

for some R(x) = o([x[ r) as Ixl --+ 0, and lR(x)l < CIxI r. Take any eigenvalue )~ of  (A-1)[k], By 

Lemma 3, Z is a product o f k  eigenvalues of A -1,  i.e., ~.11 . . . . .  ~.n I . Therefore IXl _> IL~I -k. We 
claim that for any s > 1 

f p(x)~(x)dx=O 
n 

forpcker(X-(A-1)[k]) s �9 (3.12) 

Indeed, letus proceed by induction on s. Le t s  = 1, p --- p(x) = ~l~l=k a~xa ~ ker()~ - (A-1)[k]), 

i.e., p is an eigenvector with eigenvalue ~.. Since ((A -1)[k]) j = (A-J)[k], we have by (3.11) 

xJfR, p(x)~p(x)dx=f~((A-J)[k]P)(X)~p(x)dx=-fR R(A-Jx) O(x)dx. (3.13) 

By our choice of  k we can find y > 1 (or y = 1 if A is diagonalizable) so that IXn I k I)~11 -r/~" ~ 1. 
Therefore by (3.10) 

fR p(x)~(x)dxJ<'XnlkJf~ n R(A-Jx)~(x) dx 

=(ILnlklXll-r/Y)ll)~llJr/Y , R(A-Jx)~(x) dx--+Oasj--+~. 
(3.14) 

Suppose (3.12) holds for some s > 1. Take p E ker(X - (A-1)[k]) s+l. Then p = Xp + p~, where 
pt ~ ker(~, - (A-1)[k]) s. Hence for some p "  ~ ker()~ - (A-~)[k]) s, 

f~n((A-J)[k]P)(X)ap(x)dx=fRn(XJP(x)q-P"(x))~t(x)dx=XJfgtnP(X)~(x)dx, 

by the induction hypothesis. Thus (3.13) holds, which in turn implies (3.14). 
Therefore (3.12) holds for any s > 1. Since L was an arbitrary eigenvalue of (A-l)[k], we 

have 

f~np( x)~(x)dx = 0  fo rany  p ~ S k ( C  n) . 
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This completes the proof. [ ]  

As a special case of  Theorem 4 we have the following. 

Corollary 1. 
Suppose qJ = {~1 . . . . .  ~pL} is r-regular wavelet family associated with a dilation A. Then 

f o r l =  l , . . . , L ,  

fi xa~/l(x)dx = foranymulti-index ~, Iotl < , 0 r lnl)~ll / I n  I)~nl (3.15) 
n 

where L1 is the smallest and )~n the greatest eigenvalue of A (in modulus). Moreover, if the matrix 
A is diagonalizable over C then (3.15) holds for lot I < r In I)~ 1 ] / In  I)~n I. 

Our next goal is to investigate the moments of  regular scaling functions. The results are a 
consequence of anisotropic Strang-Fix conditions introduced and investigated by Cohen, Gr6chenig, 
and Villemoes [ 12]. First, we need some definitions. 

We say that f belongs to the anisotropic Sobolev space associated with A, and write Definition 4. 
f E H~, if 

(f~ f(~)2 )1/2 IIfllH~ = ( 1  + p(~))2s d~ < ~ .  (3.16) 

Here, p is any quasi-norm associated with B = A T, that is p : ~n __~ [0, ~x~) is C ~ on ]R n \ {0} and 

p(~)=o .,, ,,, ~=0 ,  
p(B~) = b~/np(~) for all ~ ~ IR n . 

D e f i n i t i o n  5. Suppose m : •n _ .  C is Zn-periodic. We say that m satisfies the anisotropic 
Strang-Fix conditions of order s + 1, if and only if 

m ( ~ + B - l d )  = o ( p ( ~ )  ~) a s ~ - - + 0  f o r a l l d ~ 7 9 \ { 0 } .  (3.17) 

Here 79 denotes the set of  b representatives of  different cosets of  Z n /BZn;  0 represents the coset 
BZ ~, 

The following theorem was shown in [12] in the case when m is a trigonometric polynomial. 
However, it can be easily extended to the case when m is C ~ or merely C k for sufficiently large k. 

Theorem 5 (Cohen, Gr6chenig, Villemoes). 
Suppose ~o E H~ for some s > O, and 

~ ( ~ ) = m ( B - I ~ ) ~ ( B - I ~ )  for ~ E R  n , (3.18) 

for some Z~-periodic C ~  function m, with m(0) = 1. If  {rk~o : k ~ Z n } is a Riesz system then m 
satisfies the anisotropic Strang-Fix conditions of order s + 1. 

The following result shows that every r-regular MRA has a scaling function with zeroth 
moment  equal to 1 and with vanishing moments of  order twice as large as we can expect from 
r-regular wavelets, see Corollary 1. 

Theorem 6. 
Suppose (Vi)iE Z is an r-regular MRA. Then there is an r-regular scaling function ~Po E V 0 

such that 

f xa~o(x)dx=~l~l,o foranymulti-index loll <2rlnl)~l l / lnl)~nl ,  (3.19) ot , 
n 
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where  ~,1 and ~,n, respectively, are the smallest and the greatest eigenvalues of A (in modulus). 
Moreover, if the matrix A is diagonalizable over C then (3.19) holds for lot] < 2r In 1)~1 l/In [~-n 1. 

Proof .  Let go 6 V0 be an r-regular scaling function of the MRA (V/)iez. Clearly, f~,(1 + 
[~ [)2r [q3(~)[2 < OO. By a lemma due to Lemari6-Rieusset [26], for any ~, > 1 there exists a constant 
C > 0 ,  

1/cp(~) nlnlzll/()'lnb) < I~1 - cp(~) nYlnl~'nl/lnb for It[ > 1, (3.20) 

1/cp(~) m'lnlx"l/lnb < 1~1 - cp(~) n~nIzll/O'lnb) for I~l -< 1. (3.21) 

Moreover, if the matrix A has no Jordan blocks associated with the eigenvalues equal in modulus to 
IZll or lZ. I, then y can be chosen to be 1. By (3.20), go 6 H~, where s = nr In I)~11/(Y In b). 

Since go is a scaling function (and thus refinable) we have (3.18). The low-pass filter m(~) is 
C ~ .  Indeed, by the Sobolev Embedding Theorem, ~b(~) is C ~176 Moreover, for any ~ 6 ~n there 
exists a k 6 Z n such that ~b(~ + k) # 0 by [6, Corollary 1]. By Theorem 5, the low-pass filter m of 
go satisfies the anisotropic Strang-Fix conditions of order s + 1. In particular, 

Therefore, 

By (3.21) 

as 0 

0 

as 0 (3.22) 

Any other scaling function go0 of the MRA (Vi)i~z must be of the form ~b0(~) = v(~)~b(~) for some 
Zn-periodic measurable function v with Iv(~)l = 1. Define v by v(~) = ~b(~)/l~b(~)l 2 in a small 
neighborhood of 0 where ~b r 0. By a simple partition of unity argument we can extend v to be 
Zn-periodic, C ~176 and unimodular. Define go0 by ~b0(~) = v(~)~b(~). By [34, Corollary 5.14], go0(x) 
is also r-regular. Since ~0(~) is real in the small neighborhood of 0 and ~bo(0) --- 1 we have by (3.22), 

= 1 + o ([~[ 2rlnlJ~ll/(y21nl)~nl)) as ~ --+ O. 

This immediately implies (3.19). [ ]  

Note that Theorem 6 implies Corollary 1 in the case when the r-regular wavelet family 
{~1 . . . . .  ~b-~} is associated with an r-regular MRA with a scaling function go. Indeed, by (2.30) 
and (2.31) we have the identity 

1~(~)12_.j - ~tl(~) 2 . . j_ . . .§  ~b_1(~)2____ ~ ( B _ t ~  ) 2 .  (3.23) 

Hence by (3.22), 1~l(~)1 = o(l~I rlnl)~ll/(y21n];~nl)) as ~ ~ 0, which shows (3.15). 

Remarks. 
(i) Theorem 4 is an extension of the well-known result about vanishing moments for wavelets 
associated with the dilation A = 2 in the dimension n = 1. We used an argument in the direct 
domain as in [14, Theorem 5.5.1]. One could perform the proof in the Fourier domain as in [5] or in 
the multiresolution setup as in [28]. 
(ii) Careful examination of the proof of Theorem 4 implies that we have some extra vanishing 
moments beyond r In I)~1 ]/In ])~n 1, e.g., those associated with eigenvalue )~1. One might expect to 
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show vanishing moments up to the order r. However, the other argument in the Fourier domain used 
in the proof of Theorem 6 yields the same bounds which may be inevitable for general dilations. 
One possible remedy is to alter the definition of r-regular functions by requiring varied orders of 
differentiation which depend on the growth rates of the quasi-norm p in different directions. 
(iii) A direct examination can give more vanishing moments than what is guaranteed by Theorem 4. 
For example, the Fourier transform of the r-regular scaling function ~00 constructed in Theorem 3 is 
equal to 1 in a neighborhood of the origin, so we have 

f xa~oo(x) dx = *tal,0 
n 

for all u .  

By (3.23) the Fourier transforms of the associated r-regular wavelets ~1 . . . . .  ~b-1 vanish in a 
neighborhood of the origin. Hence, 

lien x~ ~/l (x) dx = 0 for allot, 1 = 1  . . . . .  b - 1 .  
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