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ON CHARACTERIZATIONS OF MULTIWAVELETS IN L2(Rn)

MARCIN BOWNIK

(Communicated by David R. Larson)

Abstract. We present a new approach to characterizing (multi)wavelets by
means of basic equations in the Fourier domain. Our method yields an un-
complicated proof of the two basic equations and a new characterization of
orthonormality and completeness of (multi)wavelets.

1. Introduction

An orthonormal wavelet is a function ψ ∈ L2(R) such that the system {ψj,k :
j, k ∈ Z} is an orthonormal basis of L2(R), where

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

The following result characterizes wavelets in terms of two basic equations; see
section 7.1 in [HW].

Theorem 1.1. A function ψ ∈ L2(R) with ||ψ||2 = 1 is an orthonormal wavelet if
and only if ∑

j∈Z
|ψ̂(2jξ)|2 = 1 for a.e. ξ ∈ R,(1.1)

∞∑
j=0

ψ̂(2jξ)ψ̂(2j(ξ + s)) = 0 for a.e. ξ ∈ R, s ∈ 2Z+ 1.(1.2)

In fact, equations (1.1) and (1.2) alone characterize the system {ψj,k : j, k ∈ Z}
being a tight frame with constant 1 for L2(R). On the other hand, the orthonor-
mality of the system {ψj,k : j, k ∈ Z} is equivalent to∑

k∈Z
ψ̂(ξ + k)ψ̂(2j(ξ + k)) = δj,0 for a.e. ξ ∈ R, j ≥ 0.(1.3)

For the proof see section 3.1 in [HW] or [HKLS]. In [HKLS] it is also shown that a
function ψ is an orthonormal wavelet if and only if (1.1), (1.2) and (1.3) hold. This
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is an easy consequence of Theorem 1.1 and the orthonormality of {ψj,k : j, k ∈ Z}
⇐⇒ (1.3). Equation (1.3) is often written as two separate equations:∑

k∈Z
|ψ̂(ξ + k)|2 = 1 for a.e. ξ ∈ R,(1.3a)

∑
k∈Z

ψ̂(ξ + k)ψ̂(2j(ξ + k)) = 0 for a.e. ξ ∈ R, j ≥ 1.(1.3b)

In this note we present a new approach based on general results about shift
invariant systems in [RS1] and [B2], and quasi affine systems in [CSS]. As a result
we give an alternative characterization of wavelets in which the orthonormality
condition is explicit.

Theorem 1.2. Suppose ψ ∈ L2(R). Then the following are equivalent:
(i) ψ is an orthonormal wavelet,
(ii) ψ satisfies (1.1) and (1.3),
(iii) ψ satisfies (1.3) and ∫

R
|ψ̂(ξ)|2 dξ|ξ| = 2 ln 2.(1.4)

Paraphrasing Theorem 1.2 we can say that a necessary and sufficient condition
for the orthonormal system {ψj,k : j, k ∈ Z} to be complete is (1.4). Implications
(i) =⇒ (ii) =⇒ (iii) are clear. The hard part is to show (iii) =⇒ (i). The
equivalence of (i) and (ii) was conjectured by Guido Weiss and was first shown by
the author. An elementary proof was later found by Ziemowit Rzeszotnik; see [Rz].
Notice that conditions (1.2) and (1.3) are too weak to characterize wavelets, e.g.
consider function ψ given by ψ̂ = 1[1,2].

Since our results hold in Rn with general dilation matrices we first establish
necessary terminology.

Assume we have a dilation matrix A preserving Zn, i.e., A is an n by n integer
matrix and all eigenvalues λ of A satisfy |λ| > 1. Let Ψ be a finite family of func-
tions Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The affine system (resp. quasi affine system)
generated by Ψ and associated with A is the collection

X(Ψ) ={ψlj,k : j ∈ Z, k ∈ Zn, l = 1, . . . , L},(1.5)

Xq(Ψ) ={ψ̃lj,k : j ∈ Z, k ∈ Zn, l = 1, . . . , L},(1.6)

where for ψ ∈ L2(Rn) we use the convention

ψj,k(x) =DAjTkψ(x) = | detA|j/2ψ(Ajx− k), j ∈ Z, k ∈ Zn,

ψ̃j,k(x) =

{
DAjTkψ(x) = | detA|j/2ψ(Ajx− k), j ≥ 0, k ∈ Zn,
| detA|j/2TkDAjψ(x) = | detA|jψ(Aj(x− k)), j < 0, k ∈ Zn,

where Tyf(x) = f(x − y) is translation by the vector y ∈ Rn and DAf(x) =√
| detA|f(Ax) is dilation by the matrix A.
We say Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) is a multiwavelet if X(Ψ) is an orthonormal

basis of L2(Rn).

Definition 1.3. X ⊂ L2(Rn) is a Bessel family if there exists b > 0 so that∑
η∈X
|〈f, η〉|2 ≤ b||f ||2 for f ∈ L2(Rn).(1.7)
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If in addition there exist 0 < a ≤ b so that

a||f ||2 ≤
∑
η∈X
|〈f, η〉|2 ≤ b||f ||2 for f ∈ L2(Rn),(1.8)

then X is a frame. The frame is tight if a, b can be chosen so that a = b. The
(quasi) affine system X(Ψ) (resp. Xq(Ψ)) is a (quasi) affine frame if (1.8) holds
for X = X(Ψ) (X = Xq(Ψ)).

The concepts of affine and quasi affine frames are closely related. This was
observed by Ron and Shen in [RS2] under some decay assumptions and proved by
Chui, Shi and Stöckler in full generality in [CSS].

Theorem 1.4. Suppose Ψ ⊂ L2(Rn). Then:
(i) X(Ψ) is a Bessel family if and only if Xq(Ψ) is a Bessel family. Furthermore,

their exact upper bounds are equal.
(ii) X(Ψ) is an affine frame if and only if Xq(Ψ) is a quasi affine frame. Fur-

thermore, their lower and upper exact bounds are equal.

Definition 1.5. For a given family of vectors {ti : i ∈ N} ⊂ l2(Zn) consider the
operator H : l2(Zn)→ l2(N) defined by

H(v) = (〈v, ti〉)i∈N for v = (v(k))k∈Zn ∈ l2(Zn).(1.9)

If H is bounded, then the dual Gramian of {ti : i ∈ N} is the operator G̃ : l2(Zn)→
l2(Zn) given by G̃ = H?H .

Note that G̃ is a non-negative definite operator on l2(Zn). Moreover, for k, p ∈ Zn

〈G̃ek, ep〉 = 〈Hek, Hep〉 =
∑
i∈N

ti(k)ti(p),(1.10)

where {ek : k ∈ Zn} is the standard basis of l2(Zn). By the Cauchy-Schwarz
inequality the entries of the matrix G̃ in (1.10) are meaningfully defined if the
series

∑
i∈N |ti(k)|2 < ∞ for all k ∈ Zn. If the matrix (

∑
i∈N ti(k)ti(p))k∈N,p∈N

represents a bounded operator on l2(Zn), then the operator H given by (1.9) is
bounded. Therefore, H is bounded if and only if G̃ is bounded.

The following result due to Ron and Shen [RS1] (see also Theorem 2.5 in [B2])
characterizes when the system of translates of a given family of functions is a frame
in terms of the dual Gramian. Here we identify Tn = Rn/Zn with its fundamental
domain, that is Tn = [−1/2, 1/2)n. The Fourier transform is given by

f̂(y) =
∫
Rn
f(x)e−2πi〈x,y〉dx.

Theorem 1.6. Suppose {ϕi : i ∈ N} ⊂ L2(Rn). Then for a.e. ξ ∈ Tn, let G̃(ξ)
denote the dual Gramian of {ti = (ϕ̂i(ξ+ k))k∈Zn : i ∈ N} ⊂ l2(Zn). The system of
translates {Tkϕi : k ∈ Zn, i ∈ N} is a frame for L2(Rn) with constants a, b if and
only if G̃(ξ) is bounded for a.e. ξ ∈ Tn and

a||v||2 ≤ 〈G̃(ξ)v, v〉 ≤ b||v||2 for v ∈ l2(Zn), a.e. ξ ∈ Tn,(1.11)

i.e., the spectrum of G̃(ξ) is contained in [a, b] for a.e. ξ ∈ Tn.

Theorem 1.6 still holds if a = 0, and then characterizes the system of translates
{Tkϕi : k ∈ Zn, i ∈ N} being a Bessel family with constant b.

Finally we need the notion of a quasi-norm associated with a dilation B.
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Definition 1.7. A quasi-norm associated with a dilation B is a measurable map-
ping ρ : Rn → [0,∞), so that

(i) ρ(ξ) = 0 ⇐⇒ ξ = 0,
(ii) ρ(Bξ) = | detB|ρ(ξ) for all ξ ∈ Rn,
(iii) there is c > 0 so that ρ(ξ + ζ) ≤ c(ρ(ξ) + ρ(ζ)) for all ξ, ζ ∈ Rn.

Lemarié-Rieusset [LR] shows how to construct ρ which is C∞ on Rn \ {0}. An
elementary argument in [B3] shows that for every r > 1 we have

0 < inf
1/r<|ξ|<r

ρ(ξ) ≤ sup
1/r<|ξ|<r

ρ(ξ) <∞.(1.12)

Given a quasi-norm ρ we define its characteristic number κ(ρ) by

κ(ρ) =
∫
Rn

1D(ξ)
ρ(ξ)

dξ,(1.13)

where D ⊂ Rn is a measurable set such that {BjD : j ∈ Z} partitions Rn (modulo
sets of measure zero), i.e.,

⋃
j∈ZB

jD = Rn and BiD ∩ BjD = ∅ for i 6= j ∈ Z.
The number κ(ρ) does not depend on the choice of D. Indeed, if D′ is another set
such that {BjD′ : j ∈ Z} partitions Rn, then {D′ ∩BiD : i ∈ Z} partitions D′ and
{D ∩BiD′ : i ∈ Z} partitions D. Therefore,∫

Rn

1D′(ξ)
ρ(ξ)

dξ =
∑
i∈Z

∫
Rn

1D′∩BiD(ξ)
ρ(ξ)

dξ =
∑
i∈Z

∫
Rn

1D′∩BiD(Biξ)
ρ(Biξ)

| detB|idξ

=
∑
i∈Z

∫
Rn

1(B−iD′)∩D(ξ)
ρ(ξ)

dξ =
∫
Rn

1D(ξ)
ρ(ξ)

dξ = κ(ρ).

Furthermore, by choosing D such that D ⊂ {ξ : 1/r < |ξ| < r} for some r > 1
we conclude that the characteristic number κ(ρ) is always finite by (1.12). For
example, if B = 2Id in dimension n, then ρ(ξ) = |ξ|n is its quasi-norm and by
choosing D = {ξ : 1 < |ξ| < 2},

κ(| · |n) =
∫
Rn

1D(ξ)
|ξ|n dξ =

∫ ∞
0

∫
Sn−1

1(1,2)(r)
rn

dσrn−1dr = σ(Sn−1) ln 2,

where σ is the induced Lebesgue measure on Sn−1 = {ξ ∈ Rn : |ξ| = 1}.

2. Main result

In this general setting Theorem 1.1 takes the following form.

Theorem 2.1. Suppose Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The affine system X(Ψ)
associated with a dilation A is a tight frame with constant 1 for L2(Rn), i.e.,

||f ||2 =
L∑
l=1

∑
j∈Z

∑
k∈Zn

|〈f, ψlj,k〉|2 for all f ∈ L2(Rn)

if and only if

L∑
l=1

∑
j∈Z
|ψ̂l(Bjξ)|2 = 1 for a.e. ξ ∈ Rn,(2.1)
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and

ts(ξ) :=
L∑
l=1

∞∑
j=0

ψ̂l(Bjξ)ψ̂l(Bj(ξ + s)) = 0 for a.e. ξ ∈ Rn, s ∈ Zn \BZn,

(2.2)

where B = AT . In particular, Ψ is a multiwavelet if and only if (2.1), (2.2), and
||ψl||2 = 1 for l = 1, . . . , L.

The direct, but long proofs of this result are in [C2] and [B1]. This theorem is
also shown in [RS2] under some decay conditions on Ψ and for special dilations in
[FGWW] and [HW]. In this note we will present the new characterization of multi-
wavelets in Theorem 2.4. Our methods will yield a quick proof of Theorem 2.1 based
on Theorems 1.4, 1.6 and Lemma 2.3. Before that, note that the orthonormality of
affine systems can be characterized using the following lemma.

Lemma 2.2. Suppose Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The affine system X(Ψ)
associated with a dilation A is orthonormal in L2(Rn) if and only if

∑
k∈Zn

ψ̂l(ξ + k)ψ̂l′(Bj(ξ + k)) = δl,l′δj,0 a.e. ξ ∈ Rn for j ≥ 0, l, l′ = 1, . . . , L,

(2.3)

where B = AT .

Proof. By a simple change of variables

〈ψlj,k, ψl
′

j′,k′〉 = δl,l′δj,j′δk,k′ for j, j′ ∈ Z, k, k′ ∈ Zn, l, l′ = 1, . . . , L,

is equivalent to

〈ψlj,k, ψl
′

0,0〉 = δl,l′δj,0δk,0 for j ≥ 0, k ∈ Zn, l, l′ = 1, . . . , L.

Take any j ≥ 0, k ∈ Zn, l, l′ = 1, . . . , L. By Plancherel’s formula

δl,l′δj,0δk,0 = 〈ψ̂lj,k, ψ̂l
′

0,0〉 =
∫
Rn
q−j/2ψ̂l(B−jξ)e−2πi〈k,B−jξ〉ψ̂l′(ξ)dξ

=
∫
Rn
qj/2ψ̂l(ξ)e−2πi〈k,ξ〉ψ̂l′(Bjξ)dξ =

∑
l∈Zn

qj/2
∫
l+Tn

ψ̂l(ξ)ψ̂l′(Bjξ)e−2πi〈k,ξ〉dξ

= qj/2
∫
Tn

[ ∑
l∈Zn

ψ̂l(ξ + l)ψ̂l′(Bj(ξ + l))
]
e−2πi〈k,ξ〉dξ = qj/2

∫
Tn
K(ξ)e−2πi〈k,ξ〉,

where q = | detA|, and K denotes the expression in the bracket. The interchange
of summation and integration is justified by∫

Tn

∑
l∈Zn
|ψ̂l(ξ + l)||ψ̂l′(Bj(ξ + l))|dξ =

∫
Rn
|ψ̂l(ξ)||ψ̂l′ (Bjξ)|dξ

≤ q−j/2||ψl||2||ψl′ ||2 <∞.

The above computation shows that all Fourier coefficients of K(ξ) ∈ L1(Tn) are
zero except for the coefficient corresponding to k = 0 which is 1 if j = 0 and l = l′.
Therefore, K(ξ) = δj,0δl,l′ for a.e. ξ ∈ Tn.
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Suppose we have Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). For j ≥ 0, let Dj denote a set of
qj representatives of distinct cosets of Zn/AjZn, where q = | detA|. For j < 0 we
define Dj = {0}. Since the quasi affine system Xq(Ψ) is invariant under shifts by
k ∈ Zn, we have

Xq(Ψ) = {Tkϕ : k ∈ Zn, ϕ ∈ A}, A := {ψ̃lj,d : j ∈ Z, d ∈ Dj , l = 1, . . . , L}.
(2.4)

The dual Gramian G̃(ξ) of the quasi affine system Xq(Ψ) at ξ ∈ Tn is defined as
the dual Gramian of {(ϕ̂(ξ + k))k∈Zn : ϕ ∈ A} ⊂ l2(Zn), where A is given in (2.4).
We now show that G̃(ξ) does not depend on a choice of representatives Dj and can
be computed explicitly in terms of the Fourier transforms of functions in Ψ.

Lemma 2.3. Suppose Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The dual Gramian G̃(ξ) of
Xq(Ψ) at ξ ∈ Tn is equal to

〈G̃(ξ)ek, ek〉 =
L∑
l=1

∑
j∈Z
|ψ̂l(Bj(ξ + k))|2 for k ∈ Zn,(2.5)

〈G̃(ξ)ek, ep〉 = tB−m(p−k)(B−mξ +B−mk) for k 6= p ∈ Zn,(2.6)

where B = AT , m = max{j ∈ Z : B−j(p−k) ∈ Zn}, and functions ts, s ∈ Zn\BZn,
are given by (2.2).

Proof. By (1.10) and (2.4) we have for k, p ∈ Zn

〈G̃(ξ)ek, ep〉 =
∑
ϕ∈A

ϕ̂(ξ + k)ϕ̂(ξ + p) =
L∑
l=1

∑
j<0

ψ̂l(B−j(ξ + k))ψ̂l(B−j(ξ + p))

+
L∑
l=1

∑
j≥0

ψ̂l(B−j(ξ + k))ψ̂l(B−j(ξ + p))
[ ∑
d∈Dj

| detA|−je−2πi〈d,B−j(k−p)〉
]

=
L∑
l=1

m∑
j=−∞

ψ̂l(B−j(ξ + k))ψ̂l(B−j(ξ + p)),

where m = max{j ∈ Z : k − p ∈ BjZn}, i.e., m is the unique integer so that
B−m(k− p) ∈ Zn \BZn, and m =∞ when k = p. Indeed, by Lemma 1 in [M] (see
also [GH]) the expression in the bracket equals 1 if k − p ∈ BjZn and 0 otherwise.
Therefore, if k = p, then

〈G̃(ξ)ek, ek〉 =
L∑
l=1

∑
j∈Z
|ψ̂l(Bj(ξ + k))|2.

If k 6= p, then

〈G̃(ξ)ek, ep〉 =
L∑
l=1

∑
j≥0

ψ̂l(Bj−m(ξ + k))ψ̂l(Bj−m(ξ + p))

=
L∑
l=1

∑
j≥0

ψ̂l(Bj(B−mξ + B−mk))ψ̂l(Bj(B−mξ +B−mk +B−m(p− k)))

= tB−m(p−k)(B−mξ +B−mk),

where ts is defined by (2.2).
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Proof of Theorem 2.1. By Theorem 1.4, X(Ψ) is a tight frame with constant 1 if
and only if Xq(Ψ) is. By Theorem 1.6, this is equivalent to the spectrum of G̃(ξ)
consisting of single point 1, i.e., G̃(ξ) is the identity on l2(Zn) for a.e. ξ ∈ Tn. This
in turn is equivalent to (2.1) and (2.2) by Lemma 2.3. By Theorem 1.8, section 7.1
in [HW], a tight frame X(Ψ) is an orthonormal basis if and only if ||ψl||2 = 1 for
l = 1, . . . , L.

The main result of this note is a new characterization of multiwavelets.

Theorem 2.4. Suppose Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). Then the following are
equivalent:

(i) Ψ is a multiwavelet associated with a dilation A.
(ii) Ψ satisfies

L∑
l=1

∑
j∈Z
|ψ̂l(Bjξ)|2 = 1 for a.e. ξ ∈ Rn,(2.1)

∑
k∈Zn

ψ̂l(ξ + k)ψ̂l′(Bj(ξ + k)) = δl,l′δj,0 for j ≥ 0, l, l′ = 1, . . . , L, a.e. ξ ∈ Rn,
(2.3)

where B = AT .
(iii) Ψ satisfies (2.3) and

L∑
l=1

∫
Rn
|ψ̂l(ξ)|2 dξ

ρ(ξ)
= κ(ρ),(2.7)

for some (or any) quasi-norm ρ associated with B.

Recall that X(Ψ) is an orthonormal system (not necessarily complete) if and only
if (2.3) holds. Condition (2.1), or even weaker (2.7), guarantees that this system is
complete. This result is a consequence of a more general result.

Theorem 2.5. Suppose Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). Assume that X(Ψ) is a
Bessel family with constant 1. Then the following are equivalent:

(i) X(Ψ) is a tight frame with constant 1,
(ii) (2.1) holds,
(iii) (2.7) holds.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are immediate. If X(Ψ) is a tight
frame with constant 1, then by Theorem 2.1 (2.1) holds. If in turn (2.1) holds, then

L∑
l=1

∫
Rn
|ψ̂l(ξ)|2 dξ

ρ(ξ)
=

L∑
l=1

∑
j∈Z

∫
BjD

|ψ̂l(ξ)|2 dξ

ρ(ξ)

=
L∑
l=1

∫
D

∑
j∈Z
|ψ̂l(Bjξ)|2 dξ

ρ(ξ)
= κ(ρ),

where D ⊂ Rn is such that {BjD : j ∈ Z} partitions Rn (modulo sets of measure
zero).

To prove (iii) =⇒ (i) we assume (2.7). Since X(Ψ) is a Bessel family with
constant 1 then Xq(Ψ) is also a Bessel family with constant 1 by Theorem 1.4(i).
Let G̃(ξ) be the dual Gramian of Xq(Ψ) at ξ ∈ Tn. Since Xq(Ψ) is a Bessel family
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with constant 1 we have ||G̃(ξ)|| ≤ 1 for a.e. ξ ∈ Tn by Theorem 1.6. In particular,
||G̃(ξ)ek|| ≤ 1. Hence

1 ≥ ||G̃(ξ)ek||2 =
∑
p∈Zn

|〈G̃(ξ)ek, ep〉|2 = |〈G̃(ξ)ek, ek〉|2 +
∑

p∈Zn,p6=k
|〈G̃(ξ)ek, ep〉|2.

(2.8)

By Lemma 2.3
L∑
l=1

∑
j∈Z
|ψ̂l(Bj(ξ + k))|2 ≤ 1 for k ∈ Zn, a.e. ξ ∈ Tn.

Since

κ(ρ) =
∫
D

L∑
l=1

∑
j∈Z
|ψ̂l(Bjξ)|2 dξ

ρ(ξ)
≤
∫
D

dξ

ρ(ξ)
= κ(ρ),

we have
∑L

l=1

∑
j∈Z |ψ̂l(Bjξ)|2 = 1 for a.e. ξ ∈ D and hence for a.e. ξ ∈ Rn, i.e.,

(2.1) holds. By Lemma 2.3, |〈G̃(ξ)ek, ek〉|2 = 1 for all k ∈ Zn, a.e. ξ ∈ Tn. By (2.8)
〈G̃(ξ)ek, ep〉 = 0 for k 6= p, and G̃(ξ) is an identity on l2(Zn) for a.e. ξ ∈ Tn. Hence
by Theorem 1.6, Xq(Ψ) is a tight frame with constant 1. So is X(Ψ) by Theorem
1.4.

Proof of Theorem 2.4. The implications (i) =⇒ (ii) =⇒ (iii) are immediate by
Lemma 2.2 and Theorem 2.5.

To prove (iii) =⇒ (i) assume (2.3) and (2.7). (2.3) implies X(Ψ) is a Bessel
family with constant 1. By Theorem 2.5, this and (2.7) implies X(Ψ) is a tight
frame with constant 1. Since ||ψl||2 = 1 for l = 1, . . . , L, we have X(Ψ) is an
orthonormal basis for L2(Rn), i.e., Ψ is a multiwavelet.

3. Final remarks

In some circumstances the new characterization of wavelets is advantageous over
the classical characterization. In this section we present an interesting application of
Theorem 2.4 to provide a quick proof of the completeness theorem due to Garrigós
and Speegle [GS]. We are going to show this result in greater generality.

Given a dilation A and an integer L ≥ 1 consider

WA,L =W = {(ψ1, . . . , ψL) ∈ L2(Rn)⊕L : {ψ1, . . . , ψL} is a multiwavelet}.
There are two natural metrics d1, d2 on the set W ,

d1(Ψ,Φ) =
( L∑
l=1

||ψ̂l − φ̂l||2L2(Rn,dξ)

)1/2

,

d2(Ψ,Φ) =
( L∑
l=1

||ψ̂l − φ̂l||2L2(Rn,ρ(ξ)−1dξ)

)1/2

,

where Ψ = (ψ1, . . . , ψL),Φ = (φ1, . . . , φL) ∈ W , and ρ is a quasi-norm associated
with the dilation B = AT . Finally define the metric d on W by

d(Ψ,Φ) = d1(Ψ,Φ) + d2(Ψ,Φ).



ON CHARACTERIZATIONS OF MULTIWAVELETS IN L2(Rn) 3273

Theorem 3.1. The metrics d1, d2 and d are topologically equivalent on W. More-
over, (W , d) is a complete metric space.

Proof. Suppose we have a sequence (Ψi)i∈N ⊂ W converging to Ψ in d1. In partic-
ular, for l = 1, . . . , L

〈ψ̂li, g〉L2(Rn,dξ) → 〈ψ̂l, g〉L2(Rn,dξ) as i→∞,
for all g ∈ L∞ with bounded and bounded away from zero support, i.e., there is
r > 1 such that g(ξ) 6= 0 =⇒ 1/r < |ξ| < r. Since ||ψ̂li||L2(Rn,ρ(ξ)−1dξ) ≤ κ(ρ)1/2,
ψ̂li → ψ̂l weakly in L2(Rn, ρ(ξ)−1dξ) as i→∞. Since

||Ψ̂i||2L2(Rn,ρ(ξ)−1dξ)⊕L = ||Ψ̂||2L2(Rn,ρ(ξ)−1dξ)⊕L =
L∑
l=1

||ψ̂l||2L2(Rn,ρ(ξ)−1dξ) = κ(ρ),

we also have Ψ̂i → Ψ̂ in L2(Rn, ρ(ξ)−1dξ)⊕L, hence in the metric d2. Conversely,
we can show that convergence in d2 implies convergence in d1.

To see that the metric d is complete, take a Cauchy sequence (Ψi)i∈N ⊂ W . By
the completeness of L2 there are G1 and G2 such that Ψ̂i → G1 in L2(Rn, dξ)⊕L,
and Ψ̂i → G2 in L2(Rn, ρ(ξ)−1dξ)⊕L as i → ∞. By the argument with the weak
convergence as above we must have G1 = G2. Since the affine system X(Ψi) is
an orthonormal system for every i ∈ N so is X(Ψ), where Ψ̂ = G1 = G2. Since
||Ψ̂||2L2(Rn,ρ(ξ)−1dξ)⊕L = κ(ρ), X(Ψ) is complete by Theorem 2.4. Therefore Ψ is a
multiwavelet.

Remark 3.2. Although the presented results work nominally for the standard lattice
Zn they can be easily extended to the general lattice Γ = PZn, where P is an n
by n non-degenerate real matrix. In this setup the dilation is an n by n real
matrix A such that all eigenvalues λ satisfy |λ| > 1 and AΓ ⊂ Γ; see [C1]. The
standard considerations involving the unitary operator DP given by DP f(x) =√
| detP |f(Px) yield the corresponding results for general lattices; see [B1] for

more details.
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