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A Characterization of Affine Dual Frames in L%(R")
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Abstract—We give a characterization of all (quasi)affine frames ftR") which
have a (quasi)affine dual in terms of the two simple equations in the Fourier
transform domain. In particular, if the dual frame is the same as the original system,
i.e., it is a tight frame, we obtain the well-known characterization of wavelets.
Although these equations have already been proven under some special conditions
we show that these characterizations are valid without any decay assumptions on
the generators of the affine systemuo 2000 Academic Press
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1. INTRODUCTION

In this paper we try to unify several concepts that arise in the theory of wavelets.
A classicalorthonormalwavelet is a functiony on the real line such that

Wik =292 - )} rez

forms an orthonormal basis 82(R). The natural question is whether we can characterize
such functions. It turns out that the necessary and sufficient condition i§tjat= 1,
and the following two equations are satisfied:

Y WReP=1 fora.e e R

JEZ

o

Z@(zfg)&(z'(g +5)=0 foraefeR,se2Z+1.

j=0
There are several directions in which a notion of a wavelet can and has been extended, for
example multiwavelets ifR"” forming a tight frame or the and -transforms of Frazier
and Jawerth; see [9, 10].

In this paper we present a unified approach to these various means of analyzing and
reconstructing functions, as well as the fact that translations need not always be performed
before dilations. It is natural to consider what happens if we exchange this order in the
definition of ;. This will lead us to the consideration of quasiaffine systems. Our
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unification of the characterization of all these concepts shows that two equations that
are surprisingly not much different from the ones in the one-dimensional case apply to
the situation in the more general settings. In fact we go beyond the cases just described
by considering dilations that are not necessarily dyadic and translations by elements of
certain general lattices. In order to describe these and also give proper references we need
to establish some notation.

Assume we have a lattide (I' = PZ" for some nondegeneratex n matrix P) and a
dilation matrix A preservingl’, i.e., all eigenvalues of A satisfy|A| > 1, andATl" C I".
Let W be a finite family of function® = {y1, ..., vL} c L?(R"). Theaffine systertresp.
quasiaffine systengenerated by associated with4, I') is the collection

X(W)={y} jeZ yel I=1...L)
XI(W)={y},:jeZ yel, I=1,... L}
where foryr € L2(R") we use the convention
Vjy () =Dy T, ¥ (x) =|detA)/?y(A/x —y),  jeZ yeTl

ooy = § ParTy v (0 = | detd /2y (Ax —y), jz0 yerl
»y |detA|//2T, Dy ¢ (x) = |[detAl/y (A/ (x —y)),  j <O, yeTl,

whereT, f(x) = f(x — y) is a translation operator by the vectoe R", andDy4 f(x) =
J/TdetA| f (Ax) is a dilation by the matrix A.

DEFINITION 1.1. X C L?(R") is aBessel familyf there existsB > 0 so that

Y UAMP<BIfIZ  for f e LAR"). (1.1)

neX

If, in addition, there exist & A < B so that

AlFIP <Y KAEmIP<BIFIZ  for fe LPRY, (1.2)

neX
X is aframeand itistightif A, B can be chosen so that= B. (Quasi)affine syste¥ (V')
(resp.X?(W¥)) is a(quasi)affine framéf (1.2) holds forX = X (W) (X = X9 ()).

DEFINITION 1.2. Letw = {y1, ... v}, & = {¢1,..., oL} c L2R") be two finite
families of functions so thafX(¥), X(®) are Bessel families. The® is called a
(quasi)affine duabf W, if (1.3) (resp. (1.4)) holds,

L
(fe)=D_ Y > (S Mg, e  forall f,ge LXR") (1.3)

=1 jeZyell
L
(fe)=2 > D (S ) ,.e)  forall f,ge LARY. (1.4)

I=1 jeZyel
Note that by polarization identity for sesquilinear forhs

1 3
SUe) =7 S +ifs [+if), (1.5)
k=0
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(1.3) (or (1.4)) holds if and only if it holds for alf = g € L2(R").

The concepts of affine and quasiaffine frames are closely related. This was observed by
Ron and Shen in [17, 18] under some decay assumptions and proved bgt@hum full
generality in [6].

THEOREM 1.3. Supposer, & c L2(R") are finite sets with the same cardinality. Then

(i) X (V) is a Bessel family if and only K7 (W¥) is a Bessel family. Furthermore,
their exact upper bounds are equal.

(i) X (w)isan affine frame if and only X7 (V) is a quasiaffine frame. Furthermore,
their lower and upper exact bounds are equal.

(i) @ is an affine dual ofV if and only if ® is a quasiaffine dual ob.

Although the implication<= of (iii) in Theorem 1.3 is not stated and proved in [6] it
does follow from the techniques developed in their paper.

Since APZ" c PZ", P~1AP is a matrix with integer entries ang = |detA| =
|detP~1AP| is the order of the group/AT; see [22]. Letl™ be the dual lattice; that
is,

I*={y eR":Vy el (y,y)ez}= P 1z2".

By taking the transpose a?~1A P we observe thaB = AT is a dilation preserving the
dual lattice:BI'™* c I'*. Also letS = I'*\ BI'*. We use the Fourier transforf given by

FyE) =9&) = /Rn ¥ (x)e 28 gy

The main result of our paper is the characterization of affine dual frames in terms of two
equations, (1.6) and (1.7), in the Fourier transform domain.

THEOREM 1.4. Suppose two affine systeis¥), X (@) form Bessel families, where
v ={yl .. yl), & ={¢l, ..., L) Cc L2R"). Thend is a (quasi)affine dual oW if
and only if

L S
> PN Big)¢ (BiE) = | detP| a.e£ecR" (1.6)

=1 jeZ

L oo
(@& =YY ¢ BIEW (BI(E+5)=0 aeteR'forseS. (1.7)
=1 j=0
This result was obtained by Frazietral. [8] for dyadic dilationsA = 2/d, even though
they did not use the language of affine dual frames. Ron and Shen [18] and, independently,
Han [13] have obtained the above characterization under some decay assumptions of the
Fourier transform of the generatobsand ®. Finally, in the case whe = ¥ the above
characterization was established by Calogero in [4]. The proof that we present has elements
similar to all these cited papers. We think our approach is more direct and also avoids
unnecessary assumptions like decay at infinity. In fact, one of the purposes of this work is
to show that the decay assumptions can be eliminated.
Without loss of generality and in order to simplify the proofs we will deal with
(quasi)affine systems associated with dilation matrices preserving the standardZattice
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Indeed, for any (quasi)affine systek(W) (X9(W¥)) associated with4, I") we consider
the unitary operatoDp given by Dp f(x) = 4/[detP|f(Px). X (DpW¥) (or X4(DpW¥))
as a (quasi)affine system associated withZ"") (whereA = P~1AP is a dilation matrix
with integer entries) is equivalent £6(¥) (or X7 (V)); we see this from

X(Dp¥)=DpX(¥), X1(DpV)=DpX1(V),
which follow from the following identities:
D;;iTeDp = Dp[D 4, Tpi], TiD;;iDp = Dp[TpiDajl, JEZ, kel

Since the unitary operatddp preserves the scalar product if(R”) it also preserves
properties like being a Bessel family, a frame, duality of affine systems, etc.

Moreover, Egs. (1.6) and (1.7) are also invariant under this transformatiorB ket
AT = pTB(PT)~1; sinceFDpy () = |detP|~Y2Fy ((PT)~1¢), we have

FDpy(BE) =| detP| 2 Fy (B/¢)
o . (1.8)
FDpyr (B (€ +35)) = | detP| "2 Fy (B! (§ +5)),

whereé e R", § € Z"\BZ", and¢ = (PT)~1&, s = (PT)~1§ e I'*\ BT'*. Formulae (1.8)
guarantee that (1.6) and (1.7) hold for the affine systéit¥), X (®) associated with

(A, T) if and only if they hold forX (D W), X (Dp®) associated with4, Z").

Theorem 1.4 and other results in this paper could be written in slightly greater generality

involving subspaces df2(R") of the form

FL2(S) = {f € L*(R"):suppf C S},

where § C R” satisfiesBS = §; see [13]. This would inevitably lead to even more
complicated notation, the presence of which is not justified by the only natural example
known to the author, i.e £ L2(0, co) = H2(R).

2. PREPARATORY FACTS ABOUT LATTICES AND FRAMES

For the rest of the paper we will assume we have a dilatiavith integer entries. Since
A (and, thereforeB = A7) is a dilation there exist constarits> 1 andc > 0 such that

|B/E| > e/ €|, |IB~/&| <1/ca™/|g|  forj>0. (2.1)
Throughout this paper we will follow the convention that the support of the fungtion
suppf = {x e R": f(x) #0} andl, = (—1/2,1/2)".
LEMMA 2.1. LetC be any nonsingular matrix iiR"; then

. #(—=M,M)"NCZ") 1
lim — asM — oo.
M—00 M) | detC|

Proof. Let§ =diam(C1I,). DefineZo={m € Z".C(I, + m) C (=M, M)"}, Z1 =
{meZ":C(I, + m) N (—M, M)" % 9}. Clearly (=M + 8, M — 8)" C U,,ez, CUn +m)

andUmeZ1 C(, +m) C (—M — 8, M + 5)" modulo sets of measure zero. Hence
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(=M + 8, M — §)"| < (detC)#Zo < (detC)#((—M, M)" N CZ")
< (detC)#Zy < |(—=M — 8, M +5)"|.

Dividing this inequality by|(—M, M)"| = (2M)" and taking the limit agy — oo we
obtain the desired conclusiol

LEMMA 2.2.
#(2L,)NB/Z") <2'q~/  for j <0andg = |detB|. (2.2)

Proof. Note first that(21, + m) N B/Z" = (2I,) N B/Z" since j < 0. For any
keZ, k>0letZ={m=@my,....my) €Z" :\m;| <k, i=1,...,n}.

# U (21, + 2m) N B/ Z" =#Z - #((21,) N B/Z") = (2k + 1)"#((21,) N B/ Z").

meZ

SincelJ,,cz (21, 4 2m) C (=2k — 1, 2k + 1)" then, by Lemma 2.1,

#UppezUn +2m)NBIZ"  (2k + 1)"#((21,) N BIZ")
(4k +2)n N (4k +2)n
=27"#(QL,)NBIZ") <q™/. |

LEMMA 2.3. Supppos® < a < b < oo. Then for anyt € R”
#jeZ:a<|BE|<b)<M, (2.3)

whereM = M (b/a) depends monotonically only éna.

Proof. For any& # 0 let jo € Z be the smallest integer such th#&/0&| > a. Then
by (2.1)|B/otkg| > cak|Biog| > caka for k > 0, where, ¢ are the same as in (2.1). Let
ko > 0 be the smallest integer such thatoa > b, i.e.,ko = [log, (b/(ac))]. Then we have

(j€Z:a<|BE| <b}C {jo,..., jo+ko—1},

andM = kg works. ThereforeM: Ry — N defined byM (x) = Tlog, (x/c)] performs the
job. m

LEMMA 2.4. Suppose: > 0, g € L*°(R"), suppg C {§ e R":|&| > a}, andsuppg C
B, + & for somegg € R" and jo € Z then

YY) BB +m)| <2'¢PM((a+8)/a)|gl51r(6)  ae&eR”,
JEZ meZ"\{0}
(2.4)

wheres = diam(B/°1,,)) and Y = Y (%o, jo) = ,_ ;. B~/ (B/°I, + &o).

Jj<ljo
Proof. For simplicity assumé|gllcc = 1. If |g(B/£)g(B’ (£ + m))| # 0 for some

£ € R" then B~/ (B/°I, + &) N (B™/(BI, + &) —m) # 0 & (I, + B~%) N (I, +

B~ogy — Bi=lom) £ ¢ < I, N (I, — B/=om) + ¢ < BI~jom e 21,. SinceB/ /07" N
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21, = {0} for all j — jo > 0, only the terms withj < jo may contribute to the sum.
Moreover, by Lemma 2.2

#m eZ: |g(B/E)g(BI (& +m))| #0} < 2'glo (2.5)

foranyj < jo andé € R".
Clearly we can findi’ > a so that supg C {§ e R":d’ < |§] < d’ + 8}, and for any
££0denoteZ ={j € Z:a' < |B/&| <a’+8}. Then by (2.3) and (2.5)

Y > qlle(BIE)gB € +m))

J<JjomeZ"\{0}

<3 qI2'q T = 2gIHZ < 2P M (@' +8)/d) < 2'qPM((a +8)/a).
jez
Since only terms withj < jo contribute to the sung(B/£) # 0 impliesé € B~/ (B/o1, +
£o) andonly fors e Y =J,_, B~/ (BJo], + &) the sum is nonzerdll
For the sake of completness we will prove the following simple lemma.

LEMMA 2.5. Suppose’, G € L?(R"), andsuppF, suppG are bounded. Then
Y FhGk) =/ ( D FG +m>)G<s>d5.
kezn R" meZnt

Proof. ConsiderZ" periodization ofF andG:

F& =) FE+m), GE& =) GE+m).

meZ* meZ*

Clearly F, G belong toL?(1,), because only a finite number of terms contributes to the
above sum. Since

F k) =/ F&)e= 28 gg = F(k), fork e 2",
Iy
hence by Plancherel formula

[ Fes@a= [ Feded =Y Fwin. m

keZ

To investigate duality of frames we need two lemmas (see [8]).

LEMMA 2.6. Let {e;};eny be a seguence of vectors in Hilbert spake If > 72, e;
converges unconditionally i, then

o
> lleill? < oo
i=1
LEMMA 2.7. Supposé€e;}ien, { fi}ien are Bessel sequencesit i.e., there isC > 0

Yo lhedP<Clkl® Y I, f)P<ClIkI?  forallheH.  (2.6)
ieN ieN
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Then the following are equivalent:

12 = "th. ei)(fi ) forall h € D, whereD is dense i (2.7)
ieN
Rl1Z =" "(h.ei)(fi. ) forall h e H (2.8)
ieN
h=Y (h.e))fi=) (h, fi)es  unconditionallyink forallheH.  (2.9)
ieN ieN

3. GENERALIZED DUALITY OF AFFINE SYSTEMS

In this section we prove a general result about some kind of weak duality between
two affine systemsx(¥), X (&) without even assuming that these systems are Bessel
families. This is a generalization of the result by Fraeigal. originally proved for dilations
A =21d; see Theorem 3 in [8]. First we start with the lemma which provides necessary
condition for family X ({v}) to be a Bessel family. We will make extensive use of

D={feL?*R"): feL®®R"),suppf C K for some compack C R"\{0}},

which is a dense subspacelot(R").

LEMMA 3.1. Supposes € L2(R"), f € D, andJ € Z. Then

DY KLY < oo

j<J kezn

Moreover,

DIWBIEP € Ligg®\Oh & > > [(fivjP<oo  forall feD. (3.2)

JEL jezr kezr
Proof. Note that
Jia®) =g 2y (BT 5)e T hETE g = | detB;
therefore,
o) = o) =g /R FOTETIE 0 g

=72 [ fiei @Al as =gl [ FBieiee it .
R R (3.2)

By (3.2) we can write the series as

I=Y" > WfvinlP=Y> q

j<J kezn j<J kezr

I 2
/ f(BjS)Iﬁ(S)ez”“k’S}dé‘. (3.3)
Rn

Forfixedj e Zlet F(§) = f(Bfg)z}(S); then, using Lemma 2.5 applied whéh= G, we
have



210 LETTER TO THE EDITOR

- 2
/ f(Bf'sw(@ez”“"f)ds‘
Rn

2

keZ

=/Rn m@@[z f(Bf<s+m))m}d5;

meZn
hence,
1=qu/w [FBI&)P1 @)1 dg
Jj=<J
+qu/ f(BfE)@(E)[ > f(Bj(Ser))@(Ser)]dE- (3.4)
j=s TR meZ\{0)
Since

219 (E)Y (€ +m)| <19 (©)12+ ¥ (E +m)?,

the second sum is absolutely convergert#R”) and, thus, absolutely summable for a.e.
& even if we extend the sumation over alE Z; i.e.,

/an Y. AN BIOTENS B E +m)iE +m)ldé

JE€Z meZ"\{0}

1 A A
SE/WZ S @1 BIEFBE+m)

jeZmeZn\{0}

+q’| f(BI (& —m)) f(BI&))Y (£)IPdt
=/ WEPY . Y. q/IfBI&FBIE+m))ds
R" JeZmeZm (0}

L
<ey [ e <o, (3.5)
=1

whereC is the constant appearing in Lemma 2.4 depending on the size and the location

of suppf .
The first sum apearing in (3.4) can be estimated crudely by

Zq/’/Rn|f(Bf's>|2|$<s>|2d55nfnéquf/Rn (€)1 ds
j=J jsJ
qJ+1

=I5 (3.6)

To show the second part of the lemma, note that we have

DO IS ¢j,k>|2=qu/Rn |f(BIE)P1r©) 17 d&

jez kezn JEL
+qu/ f(st):ﬁ@){ Y FBIE+m)IE +m)|dé,
jez. IR meZn\(0}

where the second expression in this decomposition is always finite by (3.5).
The implication ‘=" follows from
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Y q / |f (BT ()2de = Z/ NGRICERIR

jezr jezr

<SIFIE [ 3 eI < .

uppf [ c7n

whereas the converse*” is the consequence of applying the abové'te: 1 for compact
K c R"\{0}, since we have equality (instead of inequality) in the above formllla.

THEOREM 3.2. Supposel = {y1 ... v}, & ={¢l, ..., ¢t} c L2(R"). Then

1117 = Jim ZZZ (vl gl ) forallfeD 3.7)
=1 j<J kezr
iff
L
J”—r>nooz > Wl(BIE)¢(Bie)=1  weakly inL*(K). Ycompactk C R"\{0}

I=1j>—J
(3.8)

L oo
(&) = ZZ(]SI(BjE)&I(BJ(S +s)=0 fora.e.f eR"forseS=27"\BZ".
=1 j=0
! (3.9)

Before we start the proof let us see that statements (3.7)—(3.9) are meaningful by
showing that all three series are absolutely convergent. Since

20,05 @Y 10 OIS KLV 1P+ 1 40 NP

the series in (3.7) is summable by Lemma 3.1. Moreover, by the polarization identity (1.5),
condition (3.7) is equivalent to

= lim ZZ DUf vt gy forall fgeD. (3.10)

121 j<Jkezn
Note that for anyy € L2(R"), ands € R”",

/ Z 1 (BY (& + )17 dé = / > g G+ Bis)Pdg
_]<]
J+1

/ Y (&)[? dE < oo;

hence,
S WBIE+s)P<oo  foraet. (3.11)
j==J

Using the above when= 0 yields

L - L . ) .
233 W BEGBIOI<Y Y W BIEP+1§(B/E)P <00 foraes.

I=1j>—J =1 j>=—J
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And, similarly, (3.11) applied whes = 0 implies

L oo
233 19 B/ (BT (& +9))

=1 j=0
L oo
<Y DB BEOP+IPBIE+s))P <00 foraek.

=1 j=0
Proof (3.8)and(3.9)= (3.7). Supposef, g € D. By (3.2)

(Va0 ) / F(BIg)p (5)e?m 5 dé/ 2(BIE) (£)e~2mikE) gg.

For fixedl =1,..., L, andj € Z, let F(§) = f(B/&)y'(€), G(§) = §(B/§)$! (£); then,
using the above and Lemma 2.5, we have

D V0@ g) /R [Z f(BJ(S+m))w1($+m)]g(315)¢ ©de. (3.12)

keZr mez"

Hence,

1—1(1)—222 (Fovh (@40 8) =To+ I, (3.13)

1=1j<J kez"
where

Io=Io(J) = ZZq / FBI&FBIE ()¢ (€) de

11]<]

h=n() = ZZqJ’ /R ng?(Bfé)qSl(s)[ Y FBIE+m)YE +m)|dE

1=1j<J meZn\{0}

by splitting the sum (3.12) into terms correspondingmio= 0 andm # 0. We can
interchange the summation and integration/gnand /1 since fork € D, defined by
h =max(f], &), we have

ZZq / Ih(BIE) P9 ()¢ (§)] dE < o0
T (3.14)

ZZq / (B €)¢ (s)|[ > |/2<Bf(s+m))&’(s+m)|]ds<oo.

=1 jeZ meZ\{0}

Indeed, using B} (£)¢' €)] < 9/ (©)[2 + |4 ©)[? and, similarly, 26/ (€)v' (& +m)| <
16! (£)|2 + |9 (£ + m)|? the estimate (3.14) follows from estimates (3.5) and (3.6).
Therefore, we can manipulate the sums

Il_ZZq / g(Bf's)qS’(s)[ > f(Bf<s+m>)W<s+m>]ds

1=1j<J meZ™\{0}
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L . ) N ) -
=ZZ/ g’(sw’(B—fs)[ > fE+BIm)yl(B-ig +m)|dE
=1 j<j /R meZm\ {0}

L -
= ZZ/W &Y BTIED N [+ BIB )Y (BIE + Brs)de

I=1j<J r>0seS

L
= / B@® YYD DV BBTTIEfE + B )P Br(BTIE +5))dE

I=15eSr>0j<J

L
= / BOYD DD B BB (B + )6+ BYs)dg

=1 5seS r>0p<J+r

L
= / 8@ YYD > ¢ (BIBTIEN (B (BPE +5)) /(6 + Bs) ds,

I=1 5eS r>0peZ
for J sufficiently large so thag (&) /(¢ + B’s)=0forall p> J, s €S, i.e., (suppf —
supg) N BPS =g forall p > J. If b=sup||: & € (suppf — suppd)}; thus, by (2.1) any
J > [log, (b/c)] works. Therefore, we have for anfy ¢ € D and sufficiently large/,

L . ~, . .
lo()=3 ) /R F©®8EW (BIE)$ (BIE) dE
1(J)=Io(J)+11(J),  where I=1j=-J

)= [ FEY S 6+ BB e de.

PEZ s€S
(3.15)

Note that the formula folp follows by a simple change of variables, anddoes not
depend on/. Equation (3.15), combined with assumptions (3.8) and (3.9), immediately
implies lim; .o 1(J) =l .00 lo(J) + I(J) = (f, 8) = (. ). W

Proof(3.7)= (3.9). Fixsp €S andd > 0 and define

Q(d) =& eR":|&| > d, £ + 50| > d}.
For any&o € Q(d) andj > 0 define
£i© =B~ I, 72 argt, (6) 15, 1, (&)
8iE) =B L™, ers ),

where, for the purposes of the proof, we define HerC,

_Jz/lzl z#£0
argz_{l z=0.

By separating the term correspondingpte= 0 ands = sg in formula (3.15) forly(J)
f=fj, g =gj, from the rest, which we denote ®( ), we have

h(J)=

no@lde+ [ H® Y i+ Bon(B e de

PEZL,S€S
(p.9)#(0,50)

|B=/ I Jp-i1,+&

(3.16)
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Indeed, if|g; (£) f; (& + BPs)| # O for somet € R” then(B~/ I, + &) N (B~ I, + & +
s0 — BPs) # ¥ so B~/ (2I,) N (so — BPS) # ¥ which means 2, N (B/so — BP+IS) £ .
If p+j>0thenB/sg— BPT/S c 7", and since 2, N Z" = {0}, so ¢ B”S for p #0, the
only nonzero term happens fpr= 0 ands = sg. Therefore, the other nonzero terms can
contribute only ifp + j < 0, so we can restrict the sum in (3.16)6< —j.

Using the estimate

L
6@ <D D 1B P+ [ (B E+)P<TE +TE+s),

=1 m>0

whereT (§) = Y11 3,010 (B"6)1? + 1§/ (B"£)|? € LY, we have

1 N
IR()I < E/Rn 3 " qP18i(BPEIIf5(BP (€ + s)IT€) dé

p<—j seS

1 A A
* E/R,, > D alIgi BRI (BYE + )T € +5)dt

p<—j s€S

1 ~
25/,, DD qP18j(BPEIfi(BP (€ +9)IT (8)d&

p<—j se€S

1 N
+5/Rn D> qP18;(BP(E — )| fj(BPE)IT () dé. (3.17)

p<—j seS
Using| f;(£)] = 18 (¢ — s0)| we have

D qP18j(BPEIfi(BP(E +9))

p<—j seS
= > D q"1§;(BPE)I§;(BP (& +5) — 50)|
p<—j seS
=Y Y qP18;(BPE)I12;(BP (& +s — B Ps0)]
p<—j seS

<Y D q"Igi(BPOII(BPE +m)|

p<—jmeZ"\{0}

<2'q'M((a+8)/a))13; 1151 (E) = 2"M((a + 8)/a)1x (€), (3.18)

by Lemma 2.4, assuming> 0, wherea = a(j) = inf{|§|:& € B~/ I, + &}, 8 = 8(j) =
diam(B~/1,), Y =Y(j) =U,._; B""(B™/I, + ). Similarly,
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> aP18i(BP & —))IIfi(BP @)
p<—j s€S

<Y D qPIfi(BPEIIS(BPE +m)|

p<—jmeZ"\{0}
<2"'qIM((b + 8)/D)|I 112, Ly (§) = 2" M ((b + 8)/b) Ly (§) (3.19)

by Lemma 2.4, assuminlg > 0, whereb = b(j) = inf{|§|:& € B~/ I, + & + s0}, Y/ =
Y () =Up_;j B"P(B~/ I, + 0+ 50).

For anye > 0, there exists > 0, so thatf|g:|>r T(§)d¢ <e.By (2.1) we canfindip > 0
so thats(j) < d/2, and consequently(j) > d/2, b(j) > d/2 for j > jo. Furthermore,
by (2.1) we can choose (a possibly larggyso that

inf{|£]:£ € T(j)} = inf{|§| el BrBIL +go)} >cald/2>r

P>

inf{|£]:& € Y/ (j)} =inf{|§| Ee U BP(B7/1, +go+so)} >cAid/2>r
p>J
forall j > jo.

Hence, by placing (3.18) and (3.19) into (3.17) we have

T(§)de + 21 / T(§)d&

')

RG)Y =27 M () /
()

< 2"M(2)/ T(€)dE <2"M(2)e (3.20)
lE|>r

for j > jo independent of the choice dfy € Q2(d). Since the supports ofj and
g, are disjointIo(J) = 0; moreover, (3.7) (and thus (3.10)) implies=0(f;, g;) =
My l(J)=Ilimyj_ 1 (J)=11.

Sinces > 0 was arbitrary, by (3.16) and (3.20)

lim sup
i~ goeqa) 1B~ Il Ja-i1,+e

|tso()| d& = 0. (3.21)

Consider any ballB(r) with radius r > 0 such thatB(r) C Q(2d). Let Z =
{(B=/m:B~I(I, +m) N B(r) #¥,m € Z"}. If j is sufficiently large then diatB—/I,) <
min(d, r), SO

Z=J B, +k)c@dnB@r).
éo€Z
Hence,
/ no@lde < [Ino@lae <Y [ ing(elde
B(r) foez Y B~/ Intto
< > 1B I+ bole = | ZIe = 2" | B()e
&o€Z

for sufficiently largej = j(¢) by (3.21). Sinces > 0 is arbitrarny(r) £, (§)1dE =0
for any ball B(r) C Q2(2d). Therefore,fQ(Zd) |t5,(£)] d€ = 0 and sincel > 0 is arbitrary
Jgn 150 (6)| d& = 0 which impliest,(§) =0 fora.e£ eR",sp€S. W
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Proof (3.7) = (3.8). Equation (3.8) follows easily from (3.9) and (3.15) since any
functionk € L°(K) can be represented As= f ¢ for somef, g€ D. R

ExamMPLE. We present an example for which we cannot replace the limitin (3.7) by the
sum over allj € Z simply because the series diverges absolutely. For simplicity let us work
in R, the dilationA = 2 (multiplication by 2). LetA; = (2=7-1,277) for j e Z. Define
v, ¢ € L2(R) by

JE) =1a,(ED+ Y Lay(ED. 3@ =Lay(ED + Y Lag., (€D

=1 =1
Sincey (£)¢(£) = 14, (I£]) we have

Y v69RE =) 14,2 EN=) 1p-4,(E)=1 foraefeR.

JEZ JEZ JEZ
Since supg, suppp C (—1/2,1/2)
suppy (2/-) € (=2777L2777h, supph(2/ (- +s) c (-2 2 T — s

hence, forj > 0, s € S = Z\(2Z) the supports of the above functions are disjoint and
t;(¢) = 0. Therefore, by Theorem 3.2 we have

117 = Jim >3 (fvju)igx. £)  forall feD.

j<JkeZ
Take f € D given by f = 1(1,4). By a simple calculation
(il = 27270 (g0l =277/ for j=5, k| <2/7°.

Therefore the above sum over @l Z is not absolutely convergent. This is not surprising
because, in the light of Lemma 3.1, we cannot expect, in general, anything better if

Y ezl @EP=00,3 7 1$(2/8)? = co.
The next corollary is a positive step in this direction.

COROLLARY 3.3. Supposal = {y/1, ..., yl}, & ={¢l, ..., oL} C L3(R") satisfy

DWW BIEP Y 161 (BIE)I € Ligg®"\{0)  fori=1,....L. (3.22)

JEZ JEZ
Then
L
LFP=Y DY (i@, £y forall feD (3.23)
1=1 jeZ keZ"
if and only if
L -
DY U BIEd(BIE)=1 aeseR" (3.24)

I=1jeZ
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L oo
1, (&) = ZZ&(B@W(BJ(& +s5)=0 aeteR'forseS=7Z"\BZ". (3.25)
1=1 j=0
Proof. By Lemma 3.1 and (3.22) the series in (3.23) is absolutely convergent. Also
by (3.22) the series in (3.24) converges absolutel)Lm(R"\{O}) and, therefore, is
absolutely convergent for a.e. Therefore, under the hypothesis (3.22), (38)(3.23)
and (3.9} (3.24). Hence, the corollary follows from Theorem 3R.

4. CHARACTERIZATION OF (QUASI)AFFINE DUAL SYSTEMS

In this section we prove the characterization announced in Theorem 1.4.

THEOREM 4.1. Supposel = {y1, ..., v}, ® = {¢L, ..., L) c L3R"). Then the
following are equivalent;

(i) @ is an affine dual ofV.
(i) @ is a quasiaffine dual ob.
(iii) The series if{4.1)converges unconditionally ih?(R"):

L L
FEY 0 (A0 =D 0" Y (b avh,  forall fe LAR"). (4.1)

=1 jeZ keZ" =1 jeZ keZ"

(iv) The series ir(4.2) converges unconditionally ih?2(R"):

L L
F=220 2 @l =2"0 " D (f @), forall feL2R"). (4.2)

=1 jeZ keZ" =1 jeZ keZ"
(V) X(¥), X(®) are Bessel families, an@.24)and(3.25)hold.

Proof. First note that if for somé=1, ..., L, ¢' or ¢! is the zero function then each
of the properties (i)—(v) holds fo¥, @ if and only if the corresponding property holds for
W\ {y'}, ®\{¢'}. So without loss of generality we can assume that all functioris and
® are nonzero.

(i) = (i) was already proved in [6]. To show (i (i) take any f € L2(R") with
compact support. By Lemma 4 in [6]

DY UDN £ @ DY ) < S ZZIDth/f,k|2+I(¢,k,DNf>I—>0

j<OkezZr ]<0keZ”
asN — oo,

fori=1,..., L, whereDf (x) = |detA|Y2 f(Ax). Hence by (1.4)

I(N)= ZZZDNJ‘IM $ . DY) > IDVfI2= | fI?  asN — oo.

I=1 j>0keZn

But, on the other hand,

L L
TN =3 S (DY L (el DY Y =D Y Y (N £yd e, DV ),

=1 j>0keZr =1 j>—N keZn
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which yields (1.3) forf € L?(R") with compact support. By invoking Lemma 2.7 we
obtain (i).
Assume either (iii) or (iv). Equations (4.1) or (4.2) and Lemma 2.6 imply

=1 j>0kez» =1 j>0keZr

Therefore the mapping: L2(R") — I2(Nx Z" x {1,...,L})
Tf =AY oty for f e 2R

is well defined. It is clear that the graph 6fis closed and thereforg is bounded; i.e.,
there isC > 0 so that

L
DY D KAYEOPCIfIZ for fe LARY.

I=1 jeNkezZr

This implies thatX (V) is the Bessel family. Indeed, for afy=1, .. ., L,andN >0

Y= lim SVIE
,%;z: VA% N_)ooj>Z—Nk§1 TR
= lim DNyt P <ClfI>
NW;}(EZZ" (DY £t 1P < CIA
By interchanging the roles af’ and v’ we obtainX (®) is a Bessel family; hence by
Theorem 1.3X4 (W), X49(®) are Bessel. This shows (ii> (i) and (iv) < (i) by virtue of
Lemma 2.7.
Finally assume (i). Sinc& (¥), X (®) are Bessel, the condition (3.22) is satisfied by
Lemma 3.1; hence we can apply Corollary 3.3 to conclude (v). Conversely, again by
Corollary 3.3 (v) implies (3.23) and, by Lemma 2.7, (i) follows.

In the special case whett = ¥ = {y1, ..., ¥} we obtain the characterization of
wavelets proved by Calogero in [4]. This result in dimension 1 and for dilatioa 2
was first proved by [11] and independently by [21]; see also [14].

THEOREM 4.2. Supposel = {y1, ..., vt} c L2(R"), then

L
LAP=D"Y "> KAy o2 forall fe LR (4.3)
=1 jeZ keZ
iff
L
DY W BEP=1 aeteR" (4.4)
=1 jeZ

L oo
(& =YY P BEY(BIE+5)=0 ae&eR' forseS=7"\BZ" (4.5)

=1 j=0
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In particular, X (V) is an orthonormal basis at2(R") if and only if (4.4), (4.5)hold and
|y =1fori=1,...,L.

Proof. By Lemma 3.1 (4.3) implies that

S W BIE)P e Lis®"\(0})  forl=1,... L,

JjeZ

so we can apply Corollary 3.3 with = & = {y/1, ..., L} c L?(R")) to obtain (4.4) and
(4.5). Conversely, assume (4.4) and (4.5); then by the same corollary we have

L
IFP=) D" Y KAyi 7 forall feD.

=1 jeZ keZ"

By the well-known result about abstract tight frames from Chapter 7 of [14] we have
the above for allf € L2(R"). FurthermoreX (¥) is an orthonormal basis df?(R") if
lv!|=1fori=1,....,L. A

5. FINAL REMARKS

It is relatively easy to construct an affine tight frame for an arbitrary dilation. Here we
present a simple construction of such a frame which is generated by a single fupiction
which is in the Schwartz class andis C*° with compact support.

EXAMPLE. For O< a < (4|B|)~! considerp: R* — R, = {x € R:x > 0} of class
C® such that

suppy = {§ e R":a < |§] < 2a| B|)}.

It is not hard to give an explicit example of such function. Since the{get Z:a <
|B/&|| < 2||B|la} has at least one element for glle R”\{0} we conclude thafj(¢) =
ez n(B/&) > 0 for all £ # 0 andij is C* onR"\{0}.

Definey € L2(R") by y(§) = \/1(§)/7i(&). Clearly

D OIWBIEP=) n(Big)/H(BIE) = n(B/&)/7(E) =1.

JEZ JjeZ JjeZ
To guarantee
V(BIEY(BI(E+5)=0 foralléeR", j>0,seS

we have must hav8—/ suppy N (B~/ suppy — s) = @, S0 supp N (suppy — B/s) = &;

that isB/s ¢ (suppy — suppn) C {£ € R":|£| < 4a| B|}, which is true sinca € S, and

Jj = 0. Therefore (4.4) and (4.5) hold and by Theorem @2} jcz xez» forms a tight
frame with constant 1 ir.2(R"). Note that this frame is not an orthogonal basis since
¥l < 1. A different approach of constructing tight frames having an MRA-like structure
is presented in [2].

The above example yields a function from the Schwartz class with compact support
in the Fourier domain generating a tight frame. It is less obvious how to find smooth
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generators of tight frames with compact support in the direct space. In the recent paper [12]
Grochenig and Ron have shown how to construct (for arbitrary dilatiptight frames
X (W) with functions & of classC" with compact support for any < co. In their
construction the number of functionsin grows withr—the level of desired smoothness.
Not much is known about the existence of “nice” orthogonal wavelets in higher
dimensions. In [7] Daiet al. have shown the existence of orthogonal bas%igv })
generated by a single functigne L?(R"); see also [19]. Even though itself is smooth
it decays slowly at infinity since) is the characteristic function of some set. Strichartz
presented a method of obtainingegular waveletst = {y/1, ..., y971}, g = | detA]| for
dilations which admit Haar-type basis; see [20]. Since not all dilations have this property
(see [15, 16]) one needs-special argument to prove the existenceegfilar wavelets
for arbitrary dilations; see [3]. Finally, for some specific dilationsRA Belogay and
Wang in [1] constructed nonseparaldle wavelets with compact support the size of which
depends on.
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