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Tight Frames of
Multidimensional Wavelets

Marcin Bownik

ABSTRACT.  In this paper we deal with multidimensional wavelets arising from a multiresolution
analysis with an arbitrary dilation matrix A, namely we have scaling equations

¢ (x) = Z hdet Alp' (Ax —k)  fors=1,....q.,

keZ"

where @' is a scaling function for this multiresolutionand @2, . .., 9 (¢ = | det A|) are wavelets. Orthog-
onality conditions for @*, ..., ¢9 naturally impose constraints on the scaling coefficients [hi};‘:%‘,;"'q

which are then called the wavelet matrix. We show how to reconstruct functions satisfying the scaling
equations above and show that @2, ..., 99 always constitute a tight frame with constant 1. Furthermore,
we generalize the sufficient and necessary conditions of orthogonality given by Lawton and Cohen to the

case of several dimensions and arbitrary dilation matrix A.

1. Preliminaries

In this section we fix some definitions and notations and we present theorems we use later.

We use the following definition of the Fourier transform in R”.

Fflx)= f(x) = A;n f(y)e—Zni(x.y)dy )

FTLf(x) = e &Y fxy,

L s/ -]
FUAS ) = ldetA|f<(A) x)'

Allvl® < Y 1w, up)1? < Bljvl2.

jelJ
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(1.1)

This is well defined for integrable functions f. Nevertheless, F can be defined on L2(R"), and
then F : LZ(R") — L2(R") is unitary (Plancherel theorem). Let || - ||z be the norm in L2(R").
Let us recall some useful properties of the Fourier transform. Let us denote by 7, the operator of
translation by y, 7, f(x) = f(x — y) and by U4 the scaling operator by a non-degenerate matrix
AeM,(R), Uy f(x) = f(Ax). Then

(1.2)

(1.3)

Definition. A family of vectors (v;)jes in Hilbert space H is called a frame if there are A >
0, B < oo, such that for all v € H,

(1.4)
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A and B are called frame constants. If A = B, then (v;);<s is called a tight frame. O]

General information about frames can be found in [3]. For a tight frame with frame constant 1
we need only the simple fact that if ||v;|| = 1 for all j € J, then (v;);e/ is an orthonormal basis of
H. To see this, note that linear combinations of v; are dense in H and !Ivj(,ll2 =3 e vy, vj)]2 =

]
Wi li* + Xje s jmjo 1{Vi» vi)1% hence, (vjy, vj) = O for j # jo.

Definition. For any integer m > 0 we introduce the Sobolev space (with exponent 2) by

Wm(R") = {f € LXR") : D°f € LX(R") for |a| < m] : (1.5)
with norm
172
Wfllwn = | D UD*fIZ] (1.6)
lej<m
where @ = («), ..., @,) is a multi index and by DY = Eﬁ% is the distributional derivative.
¢ 1 Xy

W™(R") equipped with the norm (1.6) is Hilbert space. O
We will use the Sobolev lemma and a simple lemma about Sobolev spaces (see[17]).

Lemma 1.

(Sobolev). If f € W™(R") and m > n/2, then (eventually after a change of values on a set of
measure 0)

o feC (R forr <m—n/2,

e the derivatives D® f for la| < r satisfy the inequality

[1D% fllea < cllfllwm , (1.7)

with constant ¢ > G independent of f.

Lemma 2.
Let h € WT"R") and g € C®R") have compact support. Then the sequence ai =
NATgllwm, k € Z", belongs to I*(Z").

Proof.
lax2 = 1InTigllym = > ID*GTIF<C Y IID*hDP(Tig)ll3
lel<m lai+|Bl<m
< Csup IDPgl% Y [ |D*h(x)2dx .
|Bl<m jal<m SUpp7_;¢g

Because suppg is bounded,
/ | D% (x)|%dx < c”/ |Dh(x)|*dx
kezn SUPPT-kg R"

which finishes the proof. O

2. Introduction

Assume we have some matrix A € M,(R) acting on a lattice T, (' = PZ" for some non-
degenerate matrix P € M,(R)), such that:
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e A is a dilation matrix, i.e., all eigenvalues X of A satisfy |A] > 1.
e [isinvariant for A, thatis AT C T
P~ AP is a matrix with integer entries hence g = [det A| = |det P~1AP]isan integer greater than
1.
Definition. By a multiresolution analysis associated with (A, I") we mean a sequence of closed
subspaces (V;)iez C L%(R™), satisfying following conditions:
i ViCViyforieZ
ii. Ujez Viisdensein L¥(R™).
iii. Niez Vi = {0}
iv. f(x) € Viiff f(A™x) € V.
v. There exists ¢ called a scaling function such that {¢(x — y)},¢r is an orthonormal basis
of V.

O

Remark. Conditions (iv) and (v) can be expressed by saying that for each i {p(A‘x — Y)lyer is
an orthonormal basis of V;. Condition (i) then implies that a scaling equation is satisfied

w(x) =) hyVIdet Alp(Ax — y), 2.1)
yel

for some coefficients (4y)yer. Thus, the main ingredient of a multiresolution analysis is scaling
function ¢ satisfying (2.1). O

If we have a multiresolution analysis with scaling function ¢, then one can show there are

numbers {h;',};:%:""q so that the g — 1 functions @2, .. .; ¢, called wavelets, generated from @ by
the formula
o (x) = i .ldetAlp(Ax —y) fors=2,...,q, (2.2)
yel

have the property that {¢*(x — y)};,:?.‘""q is an orthonormal basis of Wy = V| & V; (the orthogonal
compliment of Vp in V), see [19]. Equations (2.1) and (2.2) can be expressed jointly by

()= hi/|detAlp'(Ax —y) fors=1,...,q, (2.3)

yerl

where ¢! = ¢ is the scaling function and h)’, = hy, y € I'. Therefore

. ) . s=2...4
[IdetAIf/zgo“(Afx - y)} . (2.4)
yel.jeZ

is an orthonormal basis of L2(R").

In order to simplify many calculations, we will deal with a multiresolution analysis asso-
ciated with (A, Z"), where A is some dilation matrix with integer entries. One should stress
that this is not an essential restriction. For any multiresolution analysis (V;);cz» associated with
(A, T') with scaling function ¢, we can consider another multiresolution analysis associated with
(P=YAP,Z™), where P has the same meaning as above. Since A and P! A P have the same char-
acteristic polynomials P~! AP is also a dilation matrix. Consider the unitary operator Up given
by Up f(x) = /]det P|f(Px). Because Up preserves scalar product in L2(R") (UpV;)jez is a
multiresolution analysis with scaling function Upg. Scalings and translates of Upg?, ..., Upg4
form an orthonormal basis. The operator Up preserves other properties, such as tightness of the
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frame, smoothness, vanishing in infinity, compact support, etc. This is why we will deal only with
dilation matrices A acting invariantly on I = Z".

Self similar tilings of R” arise naturally when one considers a multiresolution analysis for
which the scaling function is the indicator function of some measurable set. This was first noticed
in the paper {6]. Many other authors have worked on related subjects, see [8, 12] and [5]. The
following fact which can be extracted from [9] is of great use.

Fact 1.
Let A be a dilation matrix and D = {ky, ..., k, } be q = |det A| representatives of dtfferem
cosets of L' [AZ" and Q = Q(A, D) ={x € R” =R A%, & eDLIffe LIOC(R")

(locally integrable on R”) is Z" -periodic then
/ f(x)dx=|Q|/ fl)dx.
e [o.11"

3. Solution of the Scaling Equation

Suppose we have some scaling coefficients {4} |y e eé;."" and using them we try to reconstruct

the wavelets appearing in (2.3). Naturally, we should add some extra conditions on these coefficients.
The orthonormality of translations of the scaling function and of the wavelets is the motivation for
the following definition.

Definition. A sequence of vectors (h!, k2, ..., h?) € ({1 (Z"))4 is called a wavelet matrix, if
Z h}(.}.Am k+Am’ = s.x'am.m’ (31)
keZ”

foreverys,s’=1,...,q;m,m' € Z" and

>kl =IdetAl. (3.2)
meZ"

The first vector is called the scaling vector, the others are called wavelet vectors. O

This definition in the case of one dimension appeared in {7], where the reader can find various
examples of wavelet matrices. The simplest example of a wavelet matrix for the general dilation

A is obtained by taking a unitary ¢ x g matrix U = (u,J)‘_l o 9 with a constant first row, that is
ujj=1//9,j =1,...,q and defining

s = uj ifk=k forsomei=1,...,q,
& 0  otherwise,

where {k, ..., k,;} are representatives of different cosets of Z"/AZ". Not much is known to the
author about the existence, for a given dilation matrix, of wavelet matrices with coefficients of
compact support or with strong decay at infinity.

Now we begin to study the existence of a scaling function satisfying (2.1) and hence wavelets
given by (2.2).

For a given scaling vector (hy);cz» We define a function m by

—2m (k. x) 33
../|det Al kzz; ke -3
Letusdenote B = AT and let us choose any [, . . ., I, representatives of different cosets of Z" / BZ",

thatis U7_,(j + BZ") = Z".
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Lemma 3.

4 1 0 m¢eAZ",

Z p2miim BT
= ldet A| 1 meAZ".

The proof can be found in [5].

Lemma 4.
Let (hi)rezr € [1(Z") and let m(x) be a function given by (3.3). The condition
> hihiiam =8om  formeZ’ (3.4)
kezZ"
is equivalent to
q
Z Im(B™'x+ 1) =1 foraexeR". (3.5)
Jj=l
Proof.
! 1y y12 ! 1 T ~2mifk—k' x4+B~ ;)
=], j— e JTI{(K—K X ;
Zlm(x +B7UpHP = Z oA > hihge i
j=l j=l kk'eZ"
q
. 1 : -1
—_ hihy eZm(m,x) eZm(m.B i)
\ ;gz o ; et A|
= Z hkmebri(fim.x)
k.meZ"

In the last equation, we used Lemma 3. Since {¢Z7{¢™-*)} - is an orthonormal basis of L2([0, 1]*)
(3.4) is equivalent to (3.5). O

If (hi)iezn is a scaling vector, then using (3.2) we can deduce that m is continuous, jm(x)| < 1
and m(0) = 1. The next theorem tells about the existence of a scaling function ¢.

Theorem 1.
(about the product) Let m be given by (3.3), where h is a scaling vector. If the product

12, m(B™x) converges pointwise to

o0
$(x):=[mB ), (3.6)
i=1
then § belongs to LX(R™) and ||$||2 < 1. Moreover, § is the Fourier transform of the g satisfying
the scaling equation (2.1).

Proof. Let L = {l;,...,[,} denote the set of representatives of the distinct g cosets of Z"/BZ"
and
[ee]
0= xeR”:x:ZB_iei, s,-eC] .
i=]

We can use the fact 1 for the set Q.
Let us define the sequence { fi}x>0 by

So(x)

Xi-172.1720 (x) ,
k
fikx) = I_[m(B"'x))([_l/z,l/z]n(B"‘x) fork>0.

i=]
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Since B is a dilation matrix f; converges pointwise to @.
We compute the norms of fi in L2(R").

k
/R i) Pdx = /R JTimB 0P 122r (B x) dx
f==1

k k
= |detB|k/ [[1m(B*x))Pdx = ]detB}"/ [TimB*x)1 dx
(=1/2.1721" .11
det Bt [ & A
= | TQll /inm(Bk"“x)de (by fact 1)
i=l
det BJ*=1 d o
= _—I—Ql_—/Binm(Bk =1 )%dx
i=l
_|det B! u

[ J1m(B*=='x)%dx (by the self similarity of Q)

i=l

k=1 p k=1 !
= __ldetéll /Q I1 |m(B"‘f"‘x)|2[Z|m(B"(x +lj))|2]dx
i=l =l

(By (3.5) the sum in the bracket = 1.)
k—1

= IdetBl""/[ H]m(B""'"x);zdx=/Rnlfk_1(x)lzdx-

=1/2,1721" |

T /Uj=,(1,-+Q)

Therefore, we have shown that for every £ > 0

WAl =ficillz=...=]lflla=1.

Hence, by Fatou’s lemma

/ [¢(x)|*dx < lim inf/ [ fe()Pdx = 1.
R" k—o00 R”

and we have |[¢|]2 < 1.
It is easy to see that @ satisfies

$(x) =m(B~ ' x)@(B~'x), (3.7)

Using (1.2) and (1.3) and the fact that & € [1(Z") is a scaling vector, we can see that (3.7) is an
equivalent form of the scaling equation (2.1). U

In order to apply Theorem 1, we need to ensure convergence of the product in (3.6). Therefore,
we add some conditions on m in the next definition.

Definition. A function m given by (3.3) is A-regular, if the product [[°2, m(B~x) is convergent
uniformly on compact sets in R”, where B = A7,

Remark. In our considerations, the matrix A does not change so we will simply say that m is
regular. For regular m Theorem 1 is valid and the function ¢ is continuous and ¢(0) = 1. Therefore,
for any regular scaling vector there exists a non-vanishing scaling function ¢ satisfying (2.1) and
unique up to a constant factor. ]
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For example, to assure regularity of m, it is sufficient to assume there exists some ¢ > 0 such

that
> ikl < o0
keZ"

Indeed, we can assume ¢ < 1 and forany R > O and every |x| < R

oo o0 .
~igy -1 = —°m'<k.8-fx)_]|
J:
o
< i)l sin(m (k, B~/ x
< kaguu (m{ Nl
. w .
< 2) Ikl ZCIklﬂB—fo <2 ) ImIC kI Y AR
keZ" j=1 keZ" j=1
< C" ) Ilikl < oo
keZ®

We used the elementary inequality |sinx| < C|x|® forx € R, 0 < ¢ < 1 and since B is
dilation matrix there exist constants A > | and C’ > 0 such that

[B~ix| < C'A7J|x| forxeR" j>0. (3.8)

The next result extends Theorem 1.

Theorem 2.
Let h, m, and  be as in Theorem I. If ||@|l2 = 1, then the translates of ¢ are orthonormal,
Le, (@, Typ) = 8o fork € Z7.

Proof. Denote by S : L2(R") — L?(R") the bounded operator given by

Sf(x) =) he/Idet Alf(Ax — k). (3.9)

kez"

Using (3.4) it is easy to check that if the translates of f are orthonormal, i.e., {f, Tk f) = 8k.0 for
k € Z", then the translates of Sf are too, (Sf, Ty Sf) = 8¢.0. Denoting S =FSF!and using (1.2)
and (1.3) we get

Sg(x) =mB 'x)g(B 'x). (3.10)

Let fo = x(-1/2.1721 fk = Skfo, k > 0. Then

k
fetx) = 8% fotx) = [ m(B™x) fo(B™x) .

i=1

The functions fk converge pointwise to ¢ as k — oo because fo is continuous in a nelghborhood
of 0 and fo(O) = 1. Since the fk are uniformly bounded by 1, the fk converge weakly to ¢. Weak
convergness of fk to ¢ and ka||2 = |i¢llz = 1 imply fk converge in norm to ¢. Hence, the f;
converge in norm to ¢ so translates of ¢ are orthonormal. O

It is worth noting that using the ideas in the prev1ous proof one can simplify the proof of
Theorem 1, avoiding calculations.
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Theorem 3.
Assume that the Z"-periodic function m is of class CV for some N = 1,2, ..., 00. Then, ¢
given by (3.6) is also of class CV. Moreover $ € WN(R™).

Proof.
Sketch of the proof. Assume that m is of class C". Calculate the partial derivatives

-5‘?—46( =y [Z(B"‘), x—m<B"‘x)] [[mBx

k=1 =] j=1
J#k

and the series is convergent because |m(x)] < 1, the derivatives &m are bounded and (3.8) is true.

Analogously we compute derivatives of higher order.
To show ¢ € WV (R") we take the sequence { fi }x>0 defined in the proof of Theorem 1 which
converges pointwise to @.
k
a‘fk > [}:(B-’), ,—-m(B“x)] H m(B~Ix)x-1/2.1/21 (B 7¥x) .
i
=1 1#’
Using calculations similar to those in the proof of Theorem 1 we get

k
/ l_[Im(B-jX)Iz)([—l/z.l/z]n(B—kx)dx = |det B,
R"

Jj=1

i

forl =1,...,k, k > 0. Therefore, by (3.8)

k
——-fk < IdetBIn sup —m ZCA"' .
0xi" "l T s=i axy 00 J_|
Using Fatou’s lemma, we get |l gollz < o0. Using similar methods we can estimate derivatives of

higher order. U

Corollary 1.

Assume the Z"-periodic function m is of class CN for N > n/2 and § is given by (3.6). Then
the series 3, gn |P(x + k)|? is convergent uniformly on compact sets and its limit is a continuous
function.

Proof. Let g be of class C* with compact support and g(x) = 1 for x € B(0, r), r > 0. For any
& > 0 Lemma 2 guarantees there exists m > O such that

> eTeslln <&

ki>m

Since N > n/2, we may use the Sobolev lemma

Y 1 +k)PP <Ce,  forx e B@O,r),

lkl>m

which assures uniform convergence on B(0, r). Since r > 0 was arbitrary, this finishes the proof.

O
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4. Tight Frames of Wavelets

We start this section with some facts associated with the definition of the wavelet matrix. If
(h!, ..., hY)isthe wavelet matrix and m = m is regular, then by Theorem 1 ¢ = ¢! satisfies (2.1)
and we can define ¢*, s = 2, ..., g by (2.2). The main result of this section says that dilates and
translates of ¢* fors = 2, ..., g form atight frame. This generalizes results in [14] (a proof can also
be found in [3], Proposition 6.2.3), where dimension n = 1, dilation A = (2] and h? = (= 1)*h_44,.
For any matrix wavelet (A, ..., hy) we denote by m, ..., mq the functions given by

1 .
my(x) = —— E hie~mitkx) 4.1
s () [det A] k @
keZ"
The next fact is parallel to Lemma 4.

Lemma 5.
Condition (3.1) is equivalent to

q
> meBT x +))mg(B N x + 1) =85, fors,s'=1,....q 4.2)

i=1
and for a.e. x € R".

Proof.

q ———
S omsGc+ B moet B-1E)

i=l
il 1 — 1
— o8 =2milk—k' x4+B7)
=2 Gaa 2o ke ‘
i=l k.k'eZ"

q

—_— 4. 1 . —1

— sy 2ni{m.x) 2rni{m.B~1;)

= 2 Hikine 2 oAl
k.meZ" i=l

- s’ 2ni{Am.x)
= Z hkhk+Ame
k.meZ”

the last equality being a consequence of Lemma 3. {e?™(™-¥)} o is an orthonormal basis of
L2([0, 1]"), thus

q
> myx+ B Umg(x + B-1) =8,y forae.x € [0,1]"
i=l
iff ]
D i pm = modsy
k.meZ"

which turns out to be (3.1). O
Another way of stating (3.1) is given by the next lemma.

Lemma 6.
Let (hy, ..., hy) € IN(Z")9. Equality holds in (3.1) iff

q
> R ik ak = bmm  form,m' € Z". 4.3)
keZ" s=1
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Proof. Consider

| ,—2milk.x) q ,—2milk.x)
Zked,+AZ" hie Zked|+AZ" hye
' 1,—2mitk.x J q ,-2nilk.x
Yked +aze hie O ke vazn hie )
where di, ..., d, are representatives of different cosets of Z"/AZ". This matrix is unitary for a.e.

x iff equality holds in (3.1). To show this, it suffices to compute the scalar product of two columns
sands’.

Zq: ( Z h;\;e—Zn'i(k.x))( Z h;\;’e—Zni(k.x))
k

j=1 “kedj+AZ" Gdj-l-AZ"

by . ’
E : hih;’,e"z’”("‘k x)
J=lk.kedi+AZ"

s s =2ild; + Ak—d; — Ak x}
Z s+ akia; 4 an® ! !

I I
M= M=

j=1 kk'ezn
q — !

— s s’ 2mi(Ak' .x)
= Z} k kz:z" ;s aka 4 ans ar®

J=lkK'e

e ra— . ' 7 s ’

= Z Z hihi;—Ak’ezm(Ak x) Z 3k’.08s.x’e-m(Ak X = 8.5

k'eZ” keZ" k'eZ?

If we compute the scalar products of two rows r and r’, we arrive at

i: ( Z hie—2ni(k.x)> ( Z hie—?.yri(k.x))

s=1 “ked,+AZ" ked,+AZ"

q
- s T —2milde+ Ak—dy—AK x)
=2 2 oy v aiPa, +ane ' i

s=1 k k'eZ” '

: T —2mi(d,—d, — Ak

_ s K3 —2ni{dy—d. — Ak’ .x)
=2 Zhdr+Akhd,.,+Ak+Ak’e T

k.k'eZ" s=1

q !

_ s T\ ~2nildy—dy—AK x)
= Z (Z Zh r+Akhd,/+Ak+Ak’>e T

K'eZ? N keT” s=1

Since the matrix is unitary, the last expression in brackets is equal to 8, 4,4+ ax Which turns
out to be (4.3). d

Theorem 4.
(about tight frames). Suppose (h', ..., h9) is a wavelet matrix and m, is regular. Then the

Jamily of wavelets {‘Pf‘k}j:é:}"é%m where ¢} \ (x) = |det AlI12¢* (Ad x — k), forms a tight frame with
constant 1 in L*(R"), ie.,
D KAEGIPE=IAR  for fe LARY. (4.4)

$=2.....9.
jeZxeZ?

Moreover, if ||lpl| = 1, then this family forms an orthonormal basis.
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Proof. Let f be any function of class C* with compact support. Since these functions are dense

in L2(R™). it is sufficient to show (4.4) for any such f.
1. First we show that for every j series }_;.an [{f. %k)lz is convergent (using the notation

Pjk = <P;‘k)-

2
Do gl < qu(/”mx)u«)(Afx—k>|dx)
keZ" k R
< ¢S NI / lo(Alx — k)Pdx
= g/ 2.-J ( )2d )
2’11 f1i3q ;Aj(suppf)+klwx| X

Since supp f is compact, there exists an integer K > 0 such that A/ (suppf) C (=K, K1". Contin-
uing the calculations

lo(x)*dx

lp)Pdx =Yy >

keZ" /"j(SUpr)*" 12" re(-K.K]". reZ" /A"(S”ppf)*z’“*’

and since k € Z" is uniquely represented as k = 2K! + r where [ € Z" and the remainder
r € (—K, K)J* NZ" we can proceed

2

re(—K.K1"NZ" 1eZ"

o= [ oo,

/Ai(suppf)+'+2K1 re(=K.Kynz”

because ((—K, K1 + 2K) N ((—K, K" + 2K1") = @ for [ # I'. This gives us an estimate of the

sum of series.
g . 2 . 5
2. Now we compute 3 (| > cn I{f, 0§ )1°. Since @ o = 3,27 Al @1.m, then

G = Pior—k) = ) hheimx—k)
meZ"
= > B otmeak() = Y B g flm(x) .
meZ" meZ"
Therefore,

4 ) q
S UEGOE = YD UL D B i)
s=| keZ” keZ" s=1 meZ"

q

>

keZ" mm'eZ" " s=

D Prm AEoim) = D lorm O

meZ" meZ"

h,A;,_Akhfnf_Ak> (@1.ms FUS ©1m)
1

The third equality is a consequence of Lemma 6.
3. The operator Uy : L3(R") — L%*(R") given by Ua f(x) = J/|det A{f(Ax) is unitary.
Using this and Item 2 we can transform our last equality to get

q
Z Zl(f’ il = Z (fopina?  forieZ.

keZ" s=1 kez”
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Using this repeatedly fori € {—I, -1+ 1,...,1}, I > 0, I € Z we obtain

U q
S D UL =) Ko = Y ool

i=—1 keZ" 5=2 keZ" keZ"

4. To finish the proof we need to show

li =
Jim 31 f pora? =0,

keZ"
i 2 _ 2
Jim 31 fer =11
keZ"

Let us first prove (4.5). Using the computations in Item 1 we have the estimate

K F - < A 1Rlsuppf 3 | 0o .

ez ¥ YA (Suppf)+k

(4.5)

(4.6)

Since A is a dilation matrix, there exists /g such that A~/ (suppf) C (=1/2,1/2)" for I > Iy. If

I > Iy, the last expression becomes

ILf 113 Isupp £ fR leCoPxi@dx

where x;(x) = Y pezn XA-I(Suppf)+k(X). For every ¢ > 0, A"(suppf) C B(0, ) for sufficient
big /; thus, x; converges pointwise to O when I — oo. By Lebesgue’s dominated convergence

theorem we obtain
lim / o) > x1(x)dx = 0.
I—-00 JRn

Now we compute (4.6).

Y Hfiel =)

keZ® keZ"

1 P T A ey
=2 et Al f f)em BTGB~ x)dx
keZ" R
_ / 1 e-zxs(k.s-fx)[
ez BIIO.]]" |detA|l

B /B'[o.l]n

2

f FO)Gra(x)dx
R’l

2

leZ"

2
> fa+BINGBTx+1)| dx

lezZ"

(since {|det Al"e‘z"i(k‘B_")}keZn is orthonormal basis in L2(B'[0, 11))

= f 2 fa+BIDGB x + ) fxr + BUNGBT x + 1) dx
B [0.”” lll

eZ"

=2 /R F@ o+ BUNGB-Tx)G(B™ x +1) dx

ez

= [ 1f@ripE 0l + k().

> fx+B'DEBTx + !)]dx
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where R(f) represents the terms summed with I’ € Z" \ {0}. The dominated convergence theorem
yields

tim [ 1F PR x)dx = £ = A1

I—o00 JRr

since $(0) = 1, ¢ is continuous in a neighborhood of 0 and @(B~'x)tendsto 1 as | — oo.
Now it suffices to estimate R( f).

RO X | [ FFer BnsBTpe s + Dax
rezno) R
< > ||¢H§o/" | fCNfx + B'1)ldx
1Z"\[0) R
s ¥ [ ifwife sl
tez\ (0} 'R

because ||@]lco < 1. Since f is of class C™, there exists C > 0 such that lf(x)l < C(1+ |x))~.

Continuing the estimates

= ) /nlf(x)||f(x+3'l)]dx

tezn\(0} * K
= Z Cz/ (14 x)~*Q + |x + B *dx

eznvioy R
< ¢? Z f(1+Ix|)—2n((1+;x;)(1+]x+31”))-2ndx

tezn\(o) 'R
2 P 4"
—aan
< avmha Y
1eZ"\{0)
We used the elementary inequality
1 2

sup < —,
xR I+ 1D +1x+yD) 7 |yl

for y # 0. Z[ezn\w] |[j=2" < C’, for some C’ > 0. Since B is a dilation, there exist A > 1 and

C” > 0 such that
|B/x] > C"\|x] forxeR", I>0.

Therefore,
2 —2n 4mc’
IR(HI=C /R"(l +x)7" dx(—c',',w -0
when I — o0. This shows the tightness of the frame.
5. If {lg]| = 1, then by Theorem 2 the translates of ¢ are orthonormal; hence, ||¢?|| =
. = ||¢4]| = 1 and the family {(p;f.k};:é';;%,, is an orthonormal basis of L2(R") by the remark in

Section 1. [l

5. Orthonormality of Wavelets

In this section we give necessary and sufficient conditions for orthonormality of the translates
of ¢ given by (3.6), where m is given by (3.3). When these criteria are satisfied, the tight frame of
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wavelets becomes orthonormal basis. The first condition is found in [1] in the case where A = 21d
and it generalizes in a straightforward way to arbitrary dilation matrices A.

Theorem 5.
(Cohen). Suppose m is regular and ¢ is given by (3.6).
Suppose there exists a compact set K C R such that

e K contains neighborhood of zero,
e |[KN(U+K)| =68oforleZn
e m(BTix)#0forxeK,i>0.

Then {@, Tip) = 8.0 forl € Z".
Moreover, if m is of class C N where N > n /2, then the converse is true.

Proof. Define a sequence of functions {gi }x>0 by
golx) = xxlx),

k
ax) = [[mBx)xx(B™*x)  fork>0.

i=l

Since B is a dilation and K contains a neighborhood of zero, g, tends pointwise to ¢ when £ — 0.
Because m is continuous there exists ¢ > 0 such that |m(B~x)] > c forx € K, i > 0. Since the
product [T52, m(B~ x) converges uniformly on K, there exists some N such that [[{2y m(B~/x) >
¢’ for x € K, where ¢’ > 0 is some constant independent of x. Therefore,

N-1 o}
ol =[] ImB 0[] Im(B™x)| 2Vl =" forxek,
i=l] i=N

which can be written as

[
xk(x) < =1px)|  forx eR".
c
Using the last inequality we can estimate g, from above
d 1 1
lgel < [TImB™' 0151687 0] = Z1p)I -

i=l

We compute
k
/ |§k(x)128—2ni(l.x)=/ n|m(B—ix)|2e—27ri(l.x)XK(B—kx)dx
RrR” RrR" i=1
k
_ ;detB]"‘/ nim(Bk_ix)lze_2xi(l'ka)dx
Ki=1

k
= |detBka H Im(B"“ix)|2e_2”i(l‘8k">dx
[0.117

i==1

(by Z"-periodicity of the integrand)
_|det B
10l

k
/ ]'[ Im(BYix)2e= B ) g . (by fact 1)
Qi=l
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k
_ |det Bk~ 1/ nIm(B'I‘“"lx)lze‘z’”(f‘gk_"‘)dx

12l
k-1
e e Y
j=1

(since BQ = UJI_ l(l + Q)

|de[8|k 1]0 Hlm(Bk—z 1x)|2 —2mi{l.B* % gy
(0.1 ;_

- |det8£k“f H!m(Bk—i—lx)‘Ze—in(l.Bk“x)dx 2/ ot () et
K| R"

Therefore, by induction we have for every k > 0,

/ ()P0 = /R oo Pe™2m 0 =5

Lebesgue’s dominated convergence theorem gives orthonormality

lim / e () Pem i) = f |G x) P 2mill)
k—o0 ]Rn R"
Now we show the implication in the opposite direction.

(0. Tip) = (Fo,FTp)

= / 19(x)|%e ””'“>dx=f [Z |p(x +k)|2j]e2”i(l"‘)dx 5.
[0.1)7

keZ”

and using the fact that {e2"/¢-¥)}, _-u is an orthonormal basis in L2([0, 1]*) we obtain that the
orthonormality condition is equivalent to

S px+bP=1 forac.x eR"
keZ"

In fact, the series 3, zn 10(x + k)|* converges uniformly on compact sets and equality holds for
every x € R” by virtue of Corollary 1. Thus, there exists / > 0 such that

1
> e +hP > 5 forxel-1/2,172]".
keZ" ki<l

The last sum is finite; hence, there exists ¢ > 0 such that for any x € [—1/2, 1/2]" we can find a
cube U, with center in x and a translation k, € Z", |k,| < ! such that

¢y +ke)| >c  fory e Uy.

We can find finite subcover {Uy, }i=1. . m wWithx; = Qofthecovering {U ) re(—1/2.1/2pr of [—1/2, 1/2]".
Now we define by induction sets K, ..., K.

K| U, N[-1/2,1/2)"
Kivi = Ug,\ u;i:lK,- N[—1/2,172]"
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Since Ui, Ki = [—-1/2,1/2)" and |[K; N Kj| = 0 fori # j, K = /L (Ki + ky,) satisfies
|[K N+ K)| =8 forl € Z" and K contains a neighborhood of zero. Moreover, [¢(x)] > ¢ for
x € K. By the definition of ¢ every element of the product jm(B ™ x)| > ¢ fori > 0. Therefore, K
has all the required properties and the proof is done. O

Another necessary and sufficient condition is due to Lawton which originally appeared in the
context of one dimension. For any fixed scaling vector 4 we define an operator C : L2([0, 11") —
L2([0, 11*) by the formula

q
Cray =) ImB~ ' G+LNPFB x+1)), (5.2)
Jj=l1
where L2([0, 1]") is the space of Z"-periodic functions and /1, . . ., I, are representatives of different

cosets of Z" /BZ". The choice of representatives does not affect definition of C.
The following lemma justifies the notation of C.

Lemma 7. .
Operator C is unitary equivalent (by the Fourier transform) to C : | 2(Z™Y — 12(Z") which is
represented by the matrix

C = (cprlprezrs Cpr= D hihirar—p . (5.3)
keZ”

Proof. Suppose f(x) = e2**P*) and compute Cf

q
Crxy = Zlm(B"l(x+lj))|23271i(ﬂ.8"(x+lj))
j=I

g
. :A| ) Zhkme—Zn'i(k—m.B"(x+lj))827ri(p.B"(x+lj))
A mezr j=1

1

q
Z hkmeZni(m-k+p.B"x)< - e27ri(m—k+p.B"lj))
k.meZ" |det A j=l1

By Lemma 3 the expression in brackets isequal to | whenm —k 4+ p € AZ" orOwhenm —k+p &
AZ". Hence, we can assume that m — k + p = Ar for some r € Z". Therefore, we can write the

last expression as
S i (S b ).

reZ" keZ"
which shows the unitary equivalence of C and C. O
Theorem 6.
(Lawton). Suppose a scaling vector h has a finite number of non-zero elements, m is given
by (3.3) and ¢ by (3.6).

The following conditions are equivalent:

1. (. Zjp) =810 forl € Z".

2. There is no non-constant trigonometric polynomial Y (x) = Y j.qn 21€
Cyr =9
Proof. Let us consider ¢ (x) = Y,z |¢(x + k)|2. By Corollary 1, ¥ is continuous. Moreover,
¥ is a trigonometric polynomial

Yx) = Z ge¥idn), where z; = (@, T_19) ,
lezZ®

2ridx) satisfying
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because ¢ has bounded support and (5.1) holds. In order to check ¢ ¥ = v, it suffices to show
Cz = 7 where z = (z1)iez by Lemma 7.

Z hihesar—plo, T_,,(p) = Z hi <€0. Z hk+Ar—pT—p¢>

k.peZ” keZ" peZ”

= Z hy <7;C+Ar§0y Z hk+Ar—p77<+Ar~p¢>

keZ" pezZ”

= <:';,,(Z mTie), D k,oTp@>

keZ” peZ’
= (Tr0,0) = (0. T_rp)

(CZ)r

where the fifth equality is true by (2.1). Therefore, we have showed that if Item 1 is not true, then ¥

is a non-constant trigonometric polynomial satisfying ¢ v =1.
Conversely, suppose that there exists such a polynomial . Since y is also an eigenvector of
C, hence without loss of generality we can assume ' is real valued and positive (by adding some

constant).
Let us define m| by

my(x) = mx)y ¥ (x)/¥(Bx) .

The function m is given by (3.3) by some scaling vector. This can be seen easily by Lemma 4 and
the calculations below:

q q
DoimiBT x + )P =Y Im(BT x + I)PY (BT x + 1))/ Y x) = () /p ) = 1.

Hence, we can define ¢; by

[[miB 0 =]] m(B“x)\/xI/(B-ix)/z,/f(B—i+1x)

i=} i=l
PV (0)/¢Y(x) .

Since m(x) and m(x) vanish on the same set, m satisfies the Cohen condition iff m| does. Suppose
Item 1 holds, hence

@1(x)

. . v (0) ¥ (0)
I= > 1pic+0P= > o +h) = :
keZ" kez" veth o v
Therefore, v is constant—contradiction. U

Remark. The lasttheorem can be presented with more general assumptions about the regularity of
m. Nevertheless, the most interesting case from a practical point of view is when m is a polynomial.
This theorem gives us a method of constructively checking of orthonormality by computing the
spectrum of C. Those calculations can be done on computers. This was already known in the case
of self similar tilings of R” in the work of [5]. For more criteria of orthogonality of compactly
supported scaling functions in R”, see [13]. 0
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