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Part one

Kac-Moody Algebras





1

Main Definitions

1.1 Some Examples

1.1.1 Special Linear Lie Algebras

Let g = sln = sln(C). Choose the subalgebra h consisting of all diagonal
matrices in g. Then, setting α∨i := eii − ei+1,i+1,

α∨1 , . . . , α
∨
n−1

is a basis of h. Next define ε1 . . . , εn ∈ h∗ by

εi : diag(a1, . . . , an) 7→ ai.

Then, setting αi = εi − εi+1,

α1, . . . , αn−1

is a basis of h∗. Let

aij = 〈α∨i , αj〉.

Then the (n− 1)× (n− 1) matrix A := (aij) is

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2


.

This matrix is called the Cartan matrix. Define

Xεi−εj
:= eij , X−εi+εj

:= eji (1 ≤ i < j ≤ n)

3
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Note that

[h,Xα] = α(h)Xα (h ∈ h),

and

{α∨1 , . . . , α∨n−1} ∪ {Xεi−εj | 1 ≤ i 6= j ≤ n}

is a basis of g. Set ei = Xαi and fi = X−αi for 1 ≤ i < n. It is easy to
check that

e1, . . . , en−1, f1, . . . , fn−1, α
∨
1 , . . . α

∨
n−1 (1.1)

generate g and the following relations hold:

[ei, fj ] = δijα
∨
i , (1.2)

[α∨i , α
∨
j ] = 0, (1.3)

[α∨i , ej ] = aijej , (1.4)

[α∨i , fj ] = −aijfj , (1.5)

(ad ei)1−aij (ej) = 0 (i 6= j), (1.6)

(ad fi)1−aij (fj) = 0 (i 6= j). (1.7)

A (special case of a) theorem of Serre claims that g is actually gener-
ated by the elements of (1.1) subject only to these relations. What is
important for us is the fact that the Cartan matrix contains all the in-
formation needed to write down the Serre’s presentation of A. Since the
Cartan matrix is all the data we need, it makes sense to find a nicer ge-
ometric way to picture the same data. Such picture is called the Dynkin
diagram, and in our case it is:

. . .• • • • • • • •
α1 α2 αn−1

Here vertices i and i + 1 are connected because ai,i+1 = ai+1,i = −1,
others are not connected because aij = 0 for |i − j| > 1, and we don’t
have to record aii since it is always going to be 2.

1.1.2 Symplectic Lie Algebras

Let V be a 2n-dimensional vector space and ϕ : V × V → C be a
non-degenerate symplectic bilinear form on V . Let

g = sp(V, ϕ) = {X ∈ gl(V ) | ϕ(Xv,w)+ϕ(v,Xw) = 0 for all v, w ∈ V }.
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An easy check shows that g is a Lie subalgebra of gl(V ). It is known
from linear algebra that over C all non-degenerate symplectic forms are
equivalent, i.e. if ϕ′ is another such form then ϕ′(v, w) = ϕ(gv, gw) for
some fixed g ∈ GL(V ). It follows that

sp(V, ϕ′) = g−1(sp(V, ϕ))g ∼= sp(V, ϕ),

thus we can speak of just sp(V ). To think of sp(V ) as a Lie algebra of
matrices, choose a symplectic basis e1, . . . , en, e−n, . . . , e−1, that is

ϕ(ei, e−i) = −ϕ(e−i, ei) = 1,

and all other ϕ(ei, ej) = 0. Then the Gram matrix is

G =
(

0 s

−s 0

)
,

where

s =


0 0 . . . 0 1
0 0 . . . 1 0

...
0 1 . . . 0 0
1 0 . . . 0 0

 . (1.8)

It follows that the matrices of sp(V ) in the basis of ei’s are precisely the
matrices from the Lie algebra

sp2n = {
(
A B

C D

)
| B = sBts, C = sCts,D = −sAts},

so sp(V ) ∼= sp2n. Note that sXts is the transpose of X with respect to
the second main diagonal.

Choose the subalgebra h consisting of all diagonal matrices in g. Then,
setting α∨i := eii − ei+1,i+1 − e−i,−i + e−i−1,−i−1, for 1 ≤ i < n and
α∨n = enn − e−n,−n,

α∨1 , . . . , α
∨
n−1, α

∨
n

is a basis of h. Next, setting αi = εi−εi+1 for 1 ≤ i < n, and αn := 2εn,

α1, . . . , αn−1, αn

is a basis of h∗. Let

aij = 〈α∨i , αj〉.
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Then the Cartan matrix A is the n× n matrix

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

...
0 0 0 0 . . . −1 2 −2
0 0 0 0 . . . 0 −1 2


.

Define

X2εi = ei,−i, (1 ≤ i ≤ n)

X−2εi = e−i,i, (1 ≤ i ≤ n)

Xεi−εj
= eij − e−j,−i (1 ≤ i < j ≤ n)

X−εi+εj
= eji − e−i,−j (1 ≤ i < j ≤ n)

Xεi+εj
= ei,−j + ej,−i (1 ≤ i < j ≤ n)

X−εi−εj = e−j,i + e−i,j (1 ≤ i < j ≤ n).

Note that

[h,Xα] = α(h)Xα (h ∈ h),

and

{α∨1 , . . . , α∨n} ∪ {Xα}

is a basis of g. Set ei = Xαi and fi = X−αi for 1 ≤ i ≤ n. It is easy to
check that

e1, . . . , en, f1, . . . , fn, α
∨
1 , . . . α

∨
n (1.9)

generate g and the relations (1.2-1.7) hold. Again, Serre’s theorem
claims that g is actually generated by the elements of (1.11) subject
only to these relations. The Dynkin diagram in this case is:

. . .• • • • • • • •<
α1 α2 αn−1 αn

The vertices n−1 and n are connected the way they are because an−1,n =
−2 and an,n−1 = −1, and in other places we follow the same rules as in
the case sl.
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1.1.3 Orthogonal Lie Algebras

Let V be an N -dimensional vector space and ϕ : V × V → C be a
non-degenerate symmetric bilinear form on V . Let

g = so(V, ϕ) = {X ∈ gl(V ) | ϕ(Xv,w)+ϕ(v,Xw) = 0 for all v, w ∈ V }.

An easy check shows that g is a Lie subalgebra of gl(V ). It is known from
linear algebra that over C all non-degenerate symmetric bilinear forms
are equivalent, i.e. if ϕ′ is another such form then ϕ′(v, w) = ϕ(gv, gw)
for some fixed g ∈ GL(V ). It follows that

so(V, ϕ′) = g−1(so(V, ϕ))g ∼= so(V, ϕ),

thus we can speak of just so(V ). To think of so(V ) as a Lie alge-
bra of matrices, choose a basis e1, . . . , en, e−n, . . . , e−1 if N = 2n and
e1, . . . , en, e0, e−n, . . . , e−1 if N = 2n+ 1, such that the Gram matrix of
ϕ in this basis is (

0 s

s 0

)
and

0 0 s

0 2 0
s 0 0

 ,

respectively, where s is the n× n matrix as in (1.8). It follows that the
matrices of so(V ) in the basis of ei’s are precisely the matrices from the
Lie algebra

so2n = {
(
A B

C D

)
| B = −sBts, C = −sCts,D = −sAts},

if N = 2n, and

so2n+1 = {

A 2sxt B

y 0 x

C 2syt D

 | B = −sBts, C = −sCts,D = −sAts},

if N = 2n + 1 (here x, y are arbitrary 1 × n matrices). We have in all
cases that so(V ) ∼= soN .

Choose the subalgebra h consisting of all diagonal matrices in g. We
now consider even and odd cases separately. First, let N = 2n.

Then, setting α∨i := eii− ei+1,i+1− e−i,−i + e−i−1,−i−1, for 1 ≤ i < n

and α∨n = en−1,n−1 + enn − e−n+1,−n+1 − e−n,−n,

α∨1 , . . . , α
∨
n−1, α

∨
n

is a basis of h. Next, setting αi = εi − εi+1 for 1 ≤ i < n, and αn :=
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εn−1 + εn,

α1, . . . , αn−1, αn

is a basis of h∗. Let

aij = 〈α∨i , αj〉.

Then the Cartan matrix A is the n× n matrix

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

...
0 0 0 0 . . . −2 −1 −1
0 0 0 0 . . . −1 2 0
0 0 0 0 . . . −1 0 2


.

Define

Xεi−εj
= eij − e−j,−i (1 ≤ i < j ≤ n)

X−εi+εj = eji − e−i,−j (1 ≤ i < j ≤ n)

Xεi+εj = ei,−j − ej,−i (1 ≤ i < j ≤ n)

X−εi−εj
= e−j,i − e−i,j (1 ≤ i < j ≤ n).

Note that

[h,Xα] = α(h)Xα (h ∈ h),

and

{α∨1 , . . . , α∨n} ∪ {Xα}

is a basis of g. Set ei = Xαi
and fi = X−αi

for 1 ≤ i ≤ n. It is easy to
check that

e1, . . . , en, f1, . . . , fn, α
∨
1 , . . . α

∨
n (1.10)

generate g and the relations (1.2-1.7) hold. Again, Serre’s theorem
claims that g is generated by the elements of (1.11) subject only to
these relations. The Dynkin diagram in this case is:

. . .• • • • • • • •

•

α1 α2 αn−2

αn

αn−1
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LetN = 2n+1. Then, setting α∨i := eii−ei+1,i+1−e−i,−i+e−i−1,−i−1,
for 1 ≤ i < n and α∨n = 2enn − 2e−n,−n,

α∨1 , . . . , α
∨
n−1, α

∨
n

is a basis of h. Next, setting αi = εi − εi+1 for 1 ≤ i < n, and αn := εn,

α1, . . . , αn−1, αn

is a basis of h∗. Let

aij = 〈α∨i , αj〉.

Then the Cartan matrix A is the n× n matrix

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −2 2


.

(It is transpose to the one in the symplectic case). Define

Xεi
= 2ei,0 + e0,−i, (1 ≤ i ≤ n)

X−εi = 2e−i,0 + e0,i, (1 ≤ i ≤ n)

Xεi−εj
= eij − e−j,−i (1 ≤ i < j ≤ n)

X−εi+εj
= eji − e−i,−j (1 ≤ i < j ≤ n)

Xεi+εj
= ei,−j − ej,−i (1 ≤ i < j ≤ n)

X−εi−εj = e−j,i − e−i,j (1 ≤ i < j ≤ n).

Note that

[h,Xα] = α(h)Xα (h ∈ h),

and

{α∨1 , . . . , α∨n} ∪ {Xα}

is a basis of g. Set ei = Xαi
and fi = X−αi

for 1 ≤ i ≤ n. It is easy to
check that

e1, . . . , en, f1, . . . , fn, α
∨
1 , . . . α

∨
n (1.11)

generate g and the relations (1.2-1.7) hold. Again, Serre’s theorem
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claims that g is actually generated by the elements of (1.11) subject
only to these relations. The Dynkin diagram in this case is:

. . .• • • • • • • •>
α1 α2 αn−1 αn

1.2 Generalized Cartan Matrices

Definition 1.2.1 A matrix A ∈ Mn(Z) is a generalized Cartan matrix
(GCM) if

(C1) aii = 2 for all i;
(C2) aij ≤ 0 for all i 6= j;
(C3) aij = 0 if and only if aji = 0.

Two GCMs A and A′ are equivalent if they have the same degree
n and there is σ ∈ Sn such that a′ij = aσ(i),σ(j). A GCM is called
indecomposable if it is not equivalent to a diagonal sum of smaller GCMs.

Throughout we are going to assume that A = (aij)1≤i,j≤n is a gen-
eralized Cartan matrix of rank `.

Definition 1.2.2 A realization of A is a triple (h,Π,Π∨) where h is a
complex vector space, Π = {α1, . . . , αn} ⊂ h∗, and Π∨ = {α∨1 , . . . , α∨n} ⊂
h such that

(i) both Π and Π∨ are linearly independent;
(ii) 〈α∨i , αj〉 = aij for all i, j;
(iii) dim h = 2n− `.
Two realizations (h,Π,Π∨) and (h′,Π′, (Π′)∨) are isomorphic if there

exists an isomorphism ϕ : h → h′ of vector spaces such that ϕ(α∨i ) =
((α′i)

∨) and ϕ∗(α′i) = (αi) for i = 1, 2, . . . , n.

Example 1.2.3 (i) Let A =

 2 −1 0
−1 2 −1
0 −1 2

 . We have n = ` = 3. Let

e1, . . . , e4 be the standard basis of C4, ε1, . . . , ε4 be the dual basis, and
h = {(a1, . . . , a4) | a1 + · · · + a4 = 0}. Finally, take Π = {ε1 − ε2, ε2 −
ε3, ε3 − ε4} and Π∨ = {e1 − e2, e2 − e3, e3 − e4}.

Another realization comes as follows. Let h = C3, and αi denote the
ith coordinate function. Now take α∨i to be the ith row of A. It is clear
that the two realizations are isomorphic.
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(ii) Let A =

 2 −1 −1
−1 2 −1
−1 −1 2

 . We have n = 3, ` = 2. Take h = C4

and let αi denote the ith coordinate function (we only need the first

three). Now take α∨i to be the ith row of the matrix

 2 −1 −1 0
−1 2 −1 0
−1 −1 2 1

 .

Proposition 1.2.4 For each A there is a unique up to isomorphism
realization. Realizations of matrices A and B are isomorphic if and
only if A = B.

Proof Assume for simplicity that A is of the form A =
(
A11 A12

A21 A22

)
where A11 is a non-singular `× ` matrix. Let

C =

A11 A12 0
A21 A22 In−`

0 In−` 0

 .

Note detC = ±detA11, so C is non-singular. Let h = C2n−`. Define
α1, . . . , αn ∈ h∗ to be the first n coordinate functions, and α∨1 , . . . , α

∨
n

to be the first n row vectors of C.
Now, let (h′,Π′, (Π′)∨ be another realization of A. We complete

(α′)∨1 , . . . , (α
′)∨n to a basis (α′)∨1 , . . . , (α

′)∨2n−` of h′. Then the matrix
(〈(α′i)∨, α′j〉) has form A11 A12

A21 A22

B1 B2

 .

By linear independence, this matrix has rank n. Thus it has n linearly
independent rows. Since the rows rows `+ 1, . . . , n are linear combina-
tions of rows 1, . . . , `, the matrix(

A11 A12

B1 B2

)
is non-singular. We now complete α′1, . . . , α

′
n to α′1, . . . , α

′
2n−`, so that

the matrix (〈(α′i)∨, α′j〉) isA11 A12 0
A21 A22 In−`

B1 B2 0

 .
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This matrix is non-singular, so α′1, . . . , α
′
2n−` is a basis of (h′)∗. Since

A11 is non-singular, by adding suitable linear combinations of the first `
rows to the last n− ` rows, we may achieve B1 = 0. Thus it is possible
to choose (α′)∨n+1, . . . , (α

′)∨2n−`, so that (α′)∨1 , . . . , (α
′)∨2n−` are a basis

of h′ and

(〈(α′i)∨, α′j〉) =

A11 A12 0
A21 A22 In−`

0 B′
2 0

 .

The matrix B′
2 must be non-singular since the whole matrix is non-

singular. We now make a further change to (α′)∨n+1, . . . , (α
′)∨2n−` equiv-

alent to multiplying the above matrix byI` 0 0
0 In−` 0
0 0 (B′

2)
−1

 .

Then we obtain

(〈(α′i)∨, α′j〉) =

A11 A12 0
A21 A22 In−`

0 In−` 0

 .

This is equal to the matrix C above. Thus the map α∨i 7→ (α′i)
∨ gives

an isomorphism h → h′ whose dual is given by α′i 7→ αi. This shows
that the realizations (h,Π,Π∨ and (h′,Π′, (Π′)∨ are isomorphic.

Finally, assume that ϕ : (h,Π,Π∨)→ (h′,Π′, (Π′)∨) is an isomorphism
of realizations of A and B respectively. Then

bij = 〈(α′i)∨, α′j〉 = 〈ϕ(α∨i ), α′j〉 = 〈α∨i , ϕ∗(α′j)〉 = 〈α∨i , αj〉 = aij .

Throughout we assume that (h,Π,Π∨) is a realization of A.
We refer to the elements of Π as simple roots and the elements of Π∨ as

simple coroots, to Π and Π∨ as root basis and coroot basis, respectively.
Also set

Q = ⊕n
i=1Zαi, Q+ = ⊕n

i=1Z+αi.

We call Q root lattice. Dominance ordering is a partial order ≥ on h∗

defined as follows: λ ≥ µ if and only if λ−µ ∈ Q+. For α =
∑n

i=1 kiαi ∈
Q, the number

ht α :=
n∑

i=1

ki
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is called the height of α.

1.3 The Lie algebra g̃(A)

Definition 1.3.1 The Lie algebra g̃(A) is defined as the algebra with
generators ei, fi (i = 1, . . . , n) and h and relations

[ei, fj ] = δijα
∨
i , (1.12)

[h, h′] = 0 (h, h′ ∈ h), (1.13)

[h, ei] = 〈αi, h〉ei (h ∈ h), (1.14)

[h, fi] = −〈αi, h〉fi (h ∈ h). (1.15)

It follows from the uniqueness of realizations that g̃(A) depends only
onA (this boils down to the following calculation: 〈α′i, ϕ(h)〉 = 〈ϕ∗(α′i), h〉 =
〈αi, h〉).

Denote by ñ+ (resp. ñ−) the subalgebra of g̃(A) generated by all ei

(resp. fi).

Lemma 1.3.2 (Weight Lemma) Let V be an h-module such that
V =

⊕
λ∈h∗ Vλ where the weight space Vλ is defined as {v ∈ V |

hv = 〈λ, h〉v for all h ∈ h}. Let U be a submodule of V . Then U =⊕
λ∈h∗(U ∩ Vλ).

Proof Any elementr v ∈ V can be written in the form v = v1 + · · ·+ vm

where vj ∈ Vλj
, and theere is h ∈ h such that λj(h) are all distinct. For

v ∈ U , we have

hk(v) =
m∑

j=1

λj(h)kvj ∈ U (k = 0, 1, . . . ,m− 1).

We got a system of linear equations with non-singular matrix. It follows
that all vj ∈ U .

Theorem 1.3.3 Let g̃ = g̃(A). Then

(i) g̃ = ñ− ⊕ h⊕ ñ+.
(ii) ñ+ (resp. ñ−) is freely generated by the ei’s (resp. fi’s).
(iii) The map ei 7→ fi, fi 7→ ei, h 7→ −h (h ∈ h) extends uniquely to

an involution ω̃ of g̃.
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(iv) One has the root space decomposition with respect to h:

g̃ =
( ⊕

α∈Q+,α6=0

g̃−α

)
⊕ h⊕

( ⊕
α∈Q+,α 6=0

g̃α

)
,

where g̃α = {x ∈ g̃ | [h, x] = α(h)x for all h ∈ h}. Moreover,
each g̃α is finite dimensional, and g̃±α ⊂ ñ± for ±α ∈ Q+, α 6= 0.

(v) Among the ideals of g̃ which have trivial intersection with h, there
is unique maximal ideal r. Moreover,

r = (r ∩ ñ−)⊕ (r ∩ ñ+) (direct sum of ideals).

Proof Let V be a complex vector space with basis v1, . . . , vn and let
λ ∈ h∗. Define the action of the generators on the tensor algebra T (V )
as follows:

(a) fi(a) = vi ⊗ a for a ∈ T (V ).

(b) h(1) = 〈λ, h〉 and then inductively on s,

h(vj ⊗ a) = −〈αj , h〉vj ⊗ a+ vj ⊗ h(a)

for a ∈ T s−1(V ).

(c) ei(1) = 0 and then inductively on s,

ei(vj ⊗ a) = δijα
∨
i (a) + vj ⊗ ei(a)

for a ∈ T s−1(V ).

To see that these formulas define a representation of g̃, let us check the
relations. For the first relation:

(eifj − fjei)(a) = ei(vj ⊗ a)− vj ⊗ ei(a)

= δijα
∨
i (a) + vj ⊗ ei(a)− vj ⊗ ei(a)

= δijα
∨
i (a).

The second relation is obvious since h acts diagonally. For the third
relation, apply induction on s, the relation being obvious for s = 0. For
s > 0, take a = vk ⊗ a1 where a1 ∈ T s−1(V ). Then using induction we



1.3 The Lie algebra g̃(A) 15

have

(hej − ejh)(vk ⊗ a1) = h(δjkα
∨
j (a1)) + h(vk ⊗ ej(a1))

−ej(−〈αk, h〉vk ⊗ a1)− ej(vk ⊗ h(a1))

= δjkα
∨
j (h(a1))− 〈αk, h〉vk ⊗ ej(a1)

+vk ⊗ h(ej(a1)) + 〈αk, h〉δjkα
∨
j (a1)

+〈αk, h〉vk ⊗ ej(a1)− δjkα
∨
j (h(a1))

−vk ⊗ ejh(a1)

= vk ⊗ [h, ej ](a1) + 〈αj , h〉δjkα
∨
j (a1)

= vk ⊗ 〈αj , h〉ej(a1) + 〈αj , h〉δjkα
∨
j (a1)

= 〈αj , h〉(vk ⊗ ej(a1) + δjkα
∨
j (a1))

= 〈αj , h〉ej(vk ⊗ a1).

Finally, for the fourth relation:

(hfj − fjh)(a) = h(vj ⊗ a)− vj ⊗ h(a)
= −〈αj , h〉vj ⊗ a+ vj ⊗ a− vj ⊗ h(a)
= −〈αj , h〉vj ⊗ a.

Now we prove (i)-(v).
(iii) is easy to check using the defining relations.
(ii) Consider the map ϕ : ñ− → T (V ), u 7→ u(1). We have ϕ(fi) = vi,

and for any Lie word w(f1, . . . , fn) we have

ϕ(w(f1, . . . , fn)) = w(v1, . . . , vn).

Now, for two words w and w′, we have

ϕ([w(f1, . . . fn), w′(f1, . . . fn)]) = [w(v1, . . . vn), w′(v1, . . . vn)]

= [ϕ(w(f1, . . . fn)), ϕ(w′(f1, . . . fn))],

so ϕ is a Lie algebra homomorphism. Now T (V ) = F (v1, . . . , vn), the
free associative algebra on v1, . . . , vn. Moreover, the free Lie algebra
FL(v1, . . . , vn) lies in T (V ) and is spanned by all Lie words in v1, . . . , vn.
Thus FL(v1, . . . , vn) is the image of ϕ. But there is a Lie algebra ho-
momorphism ϕ′ : FL(v1, . . . , vn) → ñ−, vi 7→ fi, which is inverse to ϕ,
so ϕ is an isomorphism. It follows that the fi generate ñ− freely. The
similar result for ñ+ follows by applying the automorphism ω̃.

(i) It is clear from relations that g̃ = ñ−+h+ñ+. Let u = n−+h+n+ =
0. Then in T(V) we have 0 = u(1) = n−(1) + 〈λ, h〉. It follows that
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〈λ, h〉 = 0 for all λ, whence h = 0. Now 0 = n−(1) = ϕ(n−), whence
n− = 0.

(iv) It follows from the last two defining relations that

ñ± =
⊕

α∈Q+, α 6=0

g̃±α.

Moreover,

dim g̃α ≤ n| ht α|. (1.16)

(v) By Lemma 1.3.2, for any ideal i of g̃, we have i =
⊕

α∈h∗(g̃α ∩ i).
Since h = g̃0, the sum of the ideals which have trivial intersection with h

is the unique maximal ideal with this property. It is also clear that the
sum in (v) is direct. Finally, [fi, r∩ ñ+] ⊂ ñ+. Hence [g̃, r∩ ñ+] ⊂ r∩ ñ+.
Similarly for r ∩ ñ−.

Remark 1.3.4 Note that the formula (b) in the proof of the theorem
implies that the natural homomorphism h → g̃ is an injection. This
justifies out notation.

1.4 The Lie algebra g(A)

Definition 1.4.1 We define the Kac-Moody algebra g = g(A) to be the
quotient g̃(A)/r where r is the ideal from Theorem 1.3.3(v).

We refer to A as the Cartan matrix of g, and to n as the rank of g.

In view of Remark 1.3.4, we have a natural embedding h → g(A).
The image of this embedding is also denoted h and is called a Cartan
subalgebra of g.

We keep the same notation for the images of the elements ei, fi, h in
g. The elements ei and fi are called Chevalley generators.

We have the following root decomposition with respect to h:

g =
⊕
α∈Q

gα,

with g0 = h. The number

multα := dim gα

is called the multiplicity of α. The element α ∈ Q is called a root if
α 6= 0 and multα 6= 0. A root α > 0 is called positive, a root α < 0
is called negative. Every root is either positive or negative. We denote
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by ∆,∆+,∆− the sets of the roots, positive roots, and negative roots,
respectively.

The subalgebra of g generated by the ei’s (resp. fi’s) is denoted by
n+ (resp. n−). From Theorem 1.3.3, we have

g = n− ⊕ h⊕ n+.

It follows that gα ⊂ n+ if α > 0 and gα ⊂ n− if α < 0. So for α > 0, gα

is a span of the elements of the form [. . . [[ei1 , ei2 ], ei3 ] . . . eis
] such that

αi1 + · · ·+ αis = α. Similarly for α < 0. It follows that

gαi
= Cei, g−αi

= Cfi, gsαi
= 0 (s 6= ±1).

Since every root is either positive or negative, we deduce

Lemma 1.4.2 If β ∈ ∆+ \ {αi}, then (β + Zαi) ∩∆ ⊂ ∆+.

From Theorem 1.3.3(v), r is ω̃-invariant, so we get the Chevalley in-
volution

ω : g→ g, ei 7→ −fi, fi 7→ −ei, h 7→ −h (h ∈ h). (1.17)

It is clear that ω(gα) = g−α, so multα = mult(−α) and ∆− = −∆+.

Proposition 1.4.3 Let A1 be an n× n GCM, A2 be an m×m GCM,

and A =
(
A1 0
0 A2

)
be the direct sum matrix. Let (hi,Πi,Π∨

i ) be a

realization of Ai. Then (h1⊕h2,Π1tΠ2,Π∨
1 tΠ∨

2 ) is a realization of A,
and g(A1)⊕g(A2) ∼= g(A), the isomorphism sending (h1, h2) 7→ (h1, h2),
(ei, 0) 7→ ei, (0, ej) 7→ en+j, (fi, 0) 7→ fi, (0, fj) 7→ fn+j.

Proof The first statement is obvious. For the second one, observe that
generators (h1, h2), (ei, 0), (0, ej), (fi, 0), (0, fj) of g(A1) ⊕ g(A2) satisfy
the defining relations of g̃(A). So there exists a surjective homomorphism

π̃ : g̃(A)→ g(A1)⊕ g(A2)

which acts on the generators as the inverse of the isomorphism promised
in the proposition. Moreover, since g(A1) ⊕ g(A2) has no ideals with
intersect h1⊕h2 trivially, it follows that π̃ factors through the surjective
homomorphism

π : g(A)→ g(A1)⊕ g(A2).

It suffices to show that π is injective. If not, its kernel must be an ideal
whose intersection with h is non-trivial. But then dimπ(h) < dim h
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giving a contradiction with the fact that π(h) = h1 ⊕ h2 has dimension
dim h1 + dim h2 = dim h.

Denote by

g′ = g′(A)

the subalgebra of g(A) generated by all Chevalley generators ei and fj .

Proposition 1.4.4 Let h′ ⊂ h be the span of α∨1 , . . . , α
∨
n .

(i) g′ = n− ⊕ h′ ⊕ n+.
(ii) g′ = [g, g].

Proof (i) It is clear that n− ⊕ h′ ⊕ n+ ⊂ g′. Conversely, if a Lie word in
the Chevalley generators is not equal to zero and belongs to h, it follows
from the relations that it belongs to h′.

(ii) It is clear that g′ is an ideal in g, and it follows from (i) that g/g′ ∼=
h/h′ is abelian, so [g, g] ⊂ g′. Conversely, α∨i = [ei, fi], ei = [ 12α

∨
i , ei],

and fi = [fi,
1
2α

∨
i ], so g′ ⊂ [g, g].

Let s = (s1, . . . , sn) ∈ Zn. The s-grading

g =
⊕
j∈Z

gj(s)

of g is obtained by setting

gj(s) =
⊕

gα

where the sum is over all α =
∑

i kiαi ∈ Q such that
∑

i siki = j. Note
that

deg ei = −deg fi = −si, deg h = 0.

The case s = (1, . . . , 1) gives the principal grading of g.

Lemma 1.4.5 If an element a of n+ (resp. n−) commutes with all fi

(resp. all ei), then a = 0.

Proof Note that in the principal grading g−1 = span(f1, . . . , fn) and
g1 = span(e1, . . . , en). So [a, g−1] = 0. Then∑

i,j≥0

(ad g1)i(ad h)ja

is an ideal of g contained in n+. This ideal must be zero, whence a = 0.
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Proposition 1.4.6 The center of g and g′ is

c = {h ∈ h | 〈αi, h〉 = 0 for all i = 1, . . . , n}. (1.18)

Moreover, dim c = n− `.

Proof Let c ∈ g be central and c =
∑

i ci be decomposition with respect
to the principal grading. Then [c, g−1] = 0 implies [ci, g−1] = 0, whence
ci = 0 for i > 0 and similarly ci = 0 for i < 0. So c ∈ h, and then
0 = [c, ei] = 〈αi, c〉ei implies c ∈ c. Converse is clear. Finally, c ⊂ h′,
since otherwise dim c > n− `.

Lemma 1.4.7 Let I1, I2 be disjoint subsets of {1, . . . , n} such that aij =
0 = aji for all i ∈ I1, j ∈ I2. Let βs =

∑
i∈Is

k
(s)
i αi (s = 1, 2). If

α = β1 + β2 is a root of g, then either β1 or β2 is zero.

Proof Let i ∈ I1, j ∈ I2. Then [α∨i , ej ] = 0, [α∨j , ei] = 0, [ei, fj ] =
0, [ej , fi] = 0. Using Leibnitz formula and Lemma 1.4.5, we conclude
that [ei, ej ] = [fi, fj ] = 0. Denote by g(s) be the subalgebra generated
by all ei, fi for i ∈ Is. We have shown that g(1) and g(2) commute.
Now, since gα is contained in the subalgebra generated by g(1) and g(2)

it follows that it is contained in one of them.

Proposition 1.4.8

(i) g is a simple Lie algebra if and only if detA 6= 0 and for each
pair of indices i, j the following condition holds:

there are indices i1, . . . , is such that aii1ai1i2 . . . aisj 6= 0. (1.19)

(ii) If the condition (1.19) holds then every ideal of g either contains
g′ or is contained in the center.

Proof (i) If detA = 0, then the center of g is non-trivial by Proposi-
tion 1.4.6. If (1.19) is violated, then we can split {1, . . . , n} into two non-
trivial sunsets I1 and I2 such that aij = aji = 0 whenever i ∈ I1, j ∈ I2.
Then g is a direct sum of two ideals by Proposition 1.4.3. Conversely, let
detA 6= 0 and (1.19) hold. If i ⊂ g is an ideal, then i contains a non-zero
element h ∈ h. By Proposition 1.4.6, c = 0, and hence [h, ej ] = aej 6= 0
for some j. Hence ej ∈ i, and α∨j = [ej , fj ] ∈ i. Now from (1.19) it
follows that ej , fj , α

∨
j ∈ i for all i. Since detA 6= 0, h is a span of the

α∨j ’s, and i = g.
(ii) is proved similarly—exercise.
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We finish with some terminology concerning duality. Note that At

is also GCM, and (h∗,Π∨,Π) is its realization. The algebras g(A) and
g(At) are called dual to each other. Then the dual root lattice

Q∨ :=
n∑

i=1

Zα∨i

corresponding to g(A) is the root lattice corresponding to g(At). Also,
denote by

∆∨ ⊂ Q∨

the root system ∆(At) and refer to it as the dual root system of g.

1.5 Examples

The following clumsy but easy result will be useful for dealing with
examples:

Proposition 1.5.1 Let g be a Lie algebra over C and h be a finite
dimensional abelian subalgebra of g with dim h = 2n − `. Suppose
Π = {α1, . . . , αn} is a linearly independent system of h∗ and Π∨ =
{α∨1 , . . . , α∨n} a linearly independent system of h satisfying 〈α∨i , αj〉 =
aij. Suppose also that e1, . . . , en, f1, . . . , fn are elements of g satisfying
relations (1.12)-(1.15). Suppose e1, . . . , en, f1, . . . , fn and h generate g

and that g has no non-zero ideals i with i∩ h = 0. Then g is isomorphic
to g(A).

Proof There is surjective homomorphism θ : g̃(A)→ g. The restriction
of θ to h ⊂ g̃(A) is an isomorphism onto h ⊂ g, cf. Remark 1.3.4. So
ker θ ∩ h = 0. It follows that ker θ ⊂ r. In fact, ker θ = r, since g has no
nonzero ideal i with i ∩ h = 0.

Example 1.5.2 Let

A = An :=



2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2


.
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We claim that g(A) ∼= sln+1. We take h ⊂ sln+1 to be diagonal matrices
of trace 0. Let εi ∈ h∗ be the ith coordinate function, i.e.

εi(diag(a1, . . . , an)) = ai (1 ≤ i ≤ n).

Now take

αi = εi − εi+1, α∨i = eii − ei+1,i+1 (1 ≤ i ≤ n),

and

ei = ei,i+1, fi = ei+1,i (1 ≤ i ≤ n).

It is easy to see that all assumptions of Proposition 1.5.1 are satisfied.
For example, to see that sln+1 does not contain nonzero ideals i with
i∩ h = 0, note that any such ideal would have to be a direct sum of the
root subspaces, and it is easy to see that no such is an ideal. In fact, an
argument along these lines shows that sln+1 is a simple Lie algebra, i.e.
it has no non-trivial ideals. Note that the roots of sln+1 are precisely

εi − εj (1 ≤ i 6= j ≤ n+ 1),

with the corresponding root spaces gεi−εj = Ceij .
Moreover, a similar argument shows that if g is a finite dimensional

semisimple Lie algebra with Cartan matrix A, then g ∼= g(A).

Before doing the next example we explain several general construc-
tions.

Let g be an arbitrary Lie algebra. A 2-cocycle on g is a bilinear map

ψ : g× g→ C

satisfying

ψ(y, x) = −ψ(x, y) (x, y ∈ g), (1.20)

ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y) = 0 (x, y, z ∈ g). (1.21)

If ψ is a 2-cocyle and

g̃ = g⊕ Cc

for some formal element c, then g̃ is a Lie algebra with respect to

[x+ λc, y + µc] = [x, y] + ψ(x, y)c.

We refer to g̃ as the central extension of g with respect to the cocycle ψ.
Let D : g→ g be a Lie algebra derivation, i.e. D is a linear map and

D([x, y]) = [D(x), y] + [x,D(y)] (x, y ∈ g).
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Let

ĝ = g⊕ Cd

for some formal element d. Then ĝ is a Lie algebra with respect to

[x+ λd, y + µd] = [x, y] + λd(y)− µd(x).

We refer to ĝ as the Lie algebra obtained from g by adjoining the deriva-
tion D. Sometimes we use the same letter d for both d and D.

A typical example of derivation comes as follows. Let g = ⊕j ∈ Zgj

be a Lie algebra grading on g. Then the map g sending x to jx for any
x ∈ g is a derivation.

Let

L = C[t, t−1],

and for any Lie algebra g define the corresponding loop algebra

L(g) := L ⊗ g.

This is an infinite dimensional Lie algebra with bracket

[P ⊗ x,Q⊗ y] = PQ⊗ [x, y] (P,Q ∈ L, x, y ∈ g).

If (·|·) is a bilinear form on g, it can be extended to a L-valued bilinear
form

(·|·)t : L(g)× L(g)→ L

by setting

(P ⊗ x|Q⊗ y)t = PQ(x|y).

We define the residue function

Res : L → C,
∑
i∈Z

cit
i 7→ c−1.

Lemma 1.5.3 Let (·|·) be a symmetric invariant bilinear form on g.
The function ψ : L(g)× L(g)→ C defined by

ψ(a, b) = Res (
da

dt
|b)t

is a 2-cocycle on L(g). Moreover, ψ(ti ⊗ x, tj ⊗ y) = iδi,−j(x|y).
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Proof Note that

ψ(ti ⊗ x, tj ⊗ y) = Res (iti−1 ⊗ x|tj ⊗ y)t

= Res iti+j−1(x|y)

=
{
i(x|y) if i+ j = 0
0 otherwise

from which (1.20) follows. Moreover, we have

ψ([ti ⊗ x, tj ⊗ y], tk ⊗ z) = ψ(ti+j [x, y], tk ⊗ z)

=
{

(i+ j)([x, y]|z) if i+ j + k = 0
0 otherwise

Now, if i+ j+k 6= 0, (1.21) is clear. If i+ j+k = 0, the required sum is

−k([x, y]|z)− i([y, z]|x)− j([z, x]|y)
= −k([x, y]|z)− i([x, y]|z)− j([x, y]|z) = 0

since the form is symmetric and invariant.

If g is a simple finite dimensional Lie algebra it possesses unique up to
a scalar non-degenerate symmetric invariant form (·|·), so Lemma 1.5.3
allows us to define a 2-cocycle ψ on L(g), and the previous discussion
then allows us to consider the corresponding central extension

L̄(g) = L(g)⊕ Cc.

Moreover, L̄(g) is graded with deg tj ⊗ x = j, deg c = 0. We then have
the corresponding derivation

d : L̄(g)→ L̄(g), tj ⊗ x 7→ jtj ⊗ x, c 7→ 0.

Finally, by adjoining d to L̄(g) we get the Lie algebra

L̂(g) := L(g)⊕ Cc⊕ Cd,

with operation

[tm ⊗ x+ λc+ µd, tn ⊗ y + λ1c+ µ2d]

= (tm+n ⊗ [x, y] + µntn ⊗ y − µ1mt
m ⊗ x) +mδm,−n(x|y)c.

Example 1.5.4 Let A = A
(1)
1 :=

(
2 −2
−2 2

)
. We claim that

g(A) ∼= L̂(sl2),
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sometimes also denoted ŝl2. First of all recall that the non-degenerate
symmetric invariant form on sl2 is just the trace form

(x|y) = tr (xy) (x, y ∈ sl2).

Then

(e, f) = 1, (h, h) = 2, (e, e) = (e, h) = (f, h) = (f, f) = 0.

Now set

h = Ch⊕ Cc⊕ Cd

and note that dim h = 2n− `. Next define

α∨0 = c− 1⊗ h, α∨1 = 1⊗ h

and α0, α1 ∈ h∗ via

〈αi, α
∨
i 〉 = 2, 〈αi, α

∨
j 〉 = −2 (0 ≤ i 6= j ≤ 1)

and

〈α0, c〉 = 0, 〈α0, d〉 = 1, 〈α1, c〉 = 0, 〈α1, d〉 = 0.

It is clear that we have defined a realization of A. Next set

e0 = t⊗ f, e1 = 1⊗ e, f0 = t−1 ⊗ e, f1 = 1⊗ f.

It is now easy to check the remaining conditions of Proposition 1.5.1.
Indeed,

[ei, fj ] = δijα
∨
i , [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi (h ∈ h)

follow from definitions. Next, ŝl2 is generated by h, e0, e1, f0, f1: if m

is the subalgebra generated by them, then clearly 1 ⊗ sl2 ⊂ m. Set
i := {x ∈ sl2 | t⊗ x ∈ m. We have f ∈ i, so i 6= 0. Also, if x ∈ i, y ∈ sl2,
then [x, y] ∈ i, thus i is an ideal of sl2, whence i = sl2, and t⊗ sl2 ⊂ m.
We may now use the relation

[t⊗ x, tk−1 ⊗ y] = tk ⊗ [x, y] (k > 0)

to deduce by induction on k that tk⊗sl2 ⊂ m for all k > 0. Analogously
tk ⊗ sl2 ⊂ m for all k < 0.

It remains to show that ŝl2 has no non-zero ideals i having trivial
intersection with h. For this we study root space decomposition of ŝl2.
Let δ ∈ h∗ be defined from

δ(α∨1 ) = δ(α∨2 ) = 0, δ(d) = 1.
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We claim that the roots are precisely

{±α1 + kδ | k ∈ Z} ∪ {kδ | k ∈ Z \ {0}}.

Indeed,

gα1+kδ = C(tk ⊗ e), g−α1+kδ = C(tk ⊗ f), (k ∈ Z)

and

gkδ = C(tk ⊗ h) (k ∈ Z \ {0}).

Since δ = α1 + α2, positive roots are of the form {(k + 1)α1 + kα1,
kα1 + (k + 1)α2, (k + 1)α1 + (k + 1)α2} for k ∈ Z≥0.

Let i be a non-zero ideal of ŝl2 which has trivial intersection with h.
It follows from Lemma 1.3.2 that some ti ⊗ x ∈ i where x = e, f or h.
Take y to be f, e or h, respectively. Then (x|y) 6= 0, and

[ti ⊗ x, t−i ⊗ y] = [x, y] + i(x|y)c ∈ i ∩ h,

and hence

[x, y] + i(x|y)c = 0.

since [x, y] is a multiple of 1 ⊗ h, we must have i = 0, whence [x, y] =
0. But since i = 0 we cannot have x = h, and then [x, y] = 0 is a
contradiction.

In conclusion we introduce the element Λ0 ∈ h∗ which is defined from

Λ0 : α∨0 7→ 1, α∨1 7→ 0, d 7→ 0.

Then {α0, α1,Λ0} and {α1, δ,Λ0} are bases of h∗.
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Invariant bilinear form and generalized
Casimir operator

2.1 Symmetrizable GCMs

A GCM A = (aij) is called symmetrizable if there exists a non-singular
diagonal matrix D = diag(ε1, . . . , εn) and a symmetric matrix B such
that

A = DB. (2.1)

If A is symmetrizable, we also call g = g(A) symmetrizable.

Lemma 2.1.1 Let A be a GCM. Then A is symmetrizable if and only
if

ai1i2ai2i3 . . . aiki1 = ai2i1ai3i2 . . . ai1ik

for all i1, i2, . . . , ik ∈ {1, . . . , n}.

Proof If A is symmetrisable then aij = εibij , hence

ai1i2ai2i3 . . . aiki1 = di1 . . . dik
ai1i2ai2i3 . . . aiki1 ,

ai2i1ai3i2 . . . ai1ik
= di1 . . . dik

bi2i1bi3i2 . . . bi1ik
,

and these are equal since B is symmetric.
For the converse, we may assume that A is indecomposable. Thus for

each i ∈ {1, . . . , n} there exists a sequence 1 = j1, . . . , jt = i with

aj1j2aj2j3 . . . ajt−1jt 6= 0.

We choose a number ε1 6= 0 in R and define

εi =
ajtjt−1 . . . aj2j1

aj1j2aj2j3 . . . ajt−1jt

ε1. (2.2)

26
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To see that this definition depends only on i, not on the sequence chosen
from 1 to i, let 1 = k1, . . . , ku = i be another such sequence. Then

ajtjt−1 . . . aj2j1

aj1j2aj2j3 . . . ajt−1jt

=
akuku−1 . . . ak2k1

ak1k2ak2k3 . . . aku−1ku

,

since it is equivalent to

a1k2ak2k3 . . . akt−1iaijt−1 . . . aj21 = ak21ak3k2 . . . aiku−1ajt−1jt
. . . a1j2 ,

which is one of the given conditions on the matrix A. Thus εi ∈ R is
well defined and εi 6= 0.

Let bij = aij/εi. It remains to show that bij = bji or aij/εi = aji/εj .
If aij = 0 this is clear since then aji = 0. If aij 6= 0, let 1 = j1, . . . , jt =
i be a sequence from 1 to i of the type described above. Then 1 =
j1, . . . , jt, j is another such sequence from 1 to j. These sequences may
be used to obtain εi and εj respectively, and we have

εj =
aji

aij
εi,

as required.

Lemma 2.1.2 Let A be a symmetrizable indecomposable GCM. Then
A can be expressed in the form A = DB where D = diag(ε1, . . . , εn), B
is symmetric, with ε1, . . . , εn positive integers and bij ∈ Q. Also D is
determined by these conditions up to a scalar multiple.

Proof We choose ε1 to be any positive rational number. Then (2.2)
shows that we can choose all εi to be positive rational numbers. Mul-
tiplying by a positive scalar we can make all εi positive integers. Also
bij = aij/εi ∈ Q. The proof of Lemma 2.1.1 also shows that D is unique
up to a scalar multiple.

Remark 2.1.3 If A is symmetrizable, in view of the above lemma, we
may and always will assume that ε1, . . . , εn are positive integers and
B is a rational matrix.

2.2 Invariant bilinear form on g

Let A be a symmetrizable GCM as above. Fix a linear complement h′′

to h′ in h:

h = h′ ⊕ h′′.
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Define a symmetric bilinear form (·|·) on h by the following two condi-
tions:

(α∨i |h) = 〈αi, h〉εi (h ∈ h); (2.3)

(h′|h′′) = 0 (h′, h′′ ∈ h′′). (2.4)

Note that

(α∨i |α∨j ) = bijεiεj . (2.5)

Lemma 2.2.1

(i) The kernel of the restriction (·|·)|h′ is c.
(ii) (·|·) is non-degenerate on h.

Proof (i) is clear from (1.18).
(ii) It follows from (i) and Proposition 1.4.6 that the kernel of (·|·) is

contained in h′. Now if for all h ∈ h we have

0 = (
m∑

i=1

ciα
∨
i |h) = 〈

m∑
i=1

ciεiαi, h〉,

whence
∑m

i=1 ciεiαi = 0, and so all ci = 0.

Since (·|·) is non-degenerate we have an isomorphism ν : h→ h∗ such
that

〈ν(h1), h2〉 = (h1|h2) (h1, h2 ∈ h),

and the induced bilinear form (·|·) on h∗. Note from (2.3) that

ν(α∨i ) = εiαi. (2.6)

So, by (2.5),

(αi|αj) = bij = aijε
−1
i . (2.7)

Since all εi > 0 (Remark 2.1.3), it follows that

(αi|αi) > 0 (1 ≤ i ≤ n). (2.8)

(αi|αj) ≤ 0 (i 6= j). (2.9)

α∨i =
2

(αi|αi)
ν−1(αi). (2.10)

So we get the usual expression for Cartan matrix:

aij =
2(αi|αj)
(αi|αi)

.
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Example 2.2.2 (i) If A is as in Example 1.5.2, then the Gram matrix
of (·|·) in the basis α∨1 , . . . , α

∨
n is A itself. In fact, we may take (·|·) to

be the trace form restricted to h.
(ii) If A is as in Example 1.5.4, choose h′′ := Cd. Then the Gram

matrix of (·|·) in the basis α∨0 , α
∨
1 , d and the transported form in the

basis α0, α1,Λ0 is  2 −2 1
−2 2 0
1 0 0

 ,

while the Gram matrix of the same forms in the bases α∨1 , c, d and
α1, δ,Λ0 is 2 0 0

0 0 1
0 1 0

 .

Theorem 2.2.3 Let g be symmetrizable. Fix decomposition (2.1) for
A. Then there exists a non-degenerate symmetric bilinear form (·|·) on
g such that

(i) (·|·) is invariant, i.e. for all x, y, z ∈ g we have

([x, y]|z) = (x|[y, z]). (2.11)

(ii) (·|·)|h is as above.
(iii) (gα, gβ) = 0 of α+ β 6= 0.
(iv) (·|·)|gα⊕g−α is non-degenerate for α 6= 0.
(v) [x, y] = (x|y)ν−1(α) for x ∈ gα, y ∈ g−α, α ∈ ∆.

Proof Set g(N) := ⊕N
j=−Ngj , N = 0, 1, . . . , where g = ⊕j∈Zgj is the

principal grading. Start with the form (·|·) on g(0) = h defined above
and extend it to g(1) as follows:

(fj |ei) = (ei|fj) = δijεi, (g0|g±1) = 0, (g±1|g±1) = 0.

An explicit check shows that the form (·|·) on g(1) satisfies (2.11) if both
[x, y] and [y, z] belong to g(1). Now we proceed by induction to extend
the form to an arbitrary g(N), N ≥ 2. By induction we assume that
the form has been extended to g(N − 1) so that it satisfies (gi|gj) = 0
for |i|, |j| ≤ N − 1 with i+ j 6= 0, and (2.11) for all x ∈ gi, y ∈ gj , z ∈ gk

with |i + j|, |j + k| ≤ N − 1. We show that the form can be extended
to g(N) with analogous properties. First we require that (gi|gj) = 0 for
all |i|, |j| ≤ N with i + j 6= 0. It remains to define (x|y) = (y|x) for
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x ∈ gN , y ∈ g−N . Note that y is a linear combination of Lie monomials
in f1, . . . , fn of degree N . Since N ≥ 2, each Lie monomial is a bracket
of Lie monomials of degrees s and t with s + t = N . It follows that y
can be written in the form

y =
∑

i

[ui, vi] (ui ∈ g−ai
, vi ∈ g−bi

) (2.12)

where ai, bi > 0 and ai + bi = N . The expression of y in this form need
not be unique. Now define

(x|y) :=
∑

i

([x, ui]|vi). (2.13)

The RHS is known since [x, ui] and vi lie in g(N−1). We must therefore
show that RHS remains the same if a different expression (2.12) for y is
chosen. In a similar way we can write x in the form

x =
∑

j

[wj , zj ] (wj ∈ gcj , zj ∈ gdj )

where cj , dj > 0 and cj + dj = N . We will show that∑
j

(wj |[zj , y]) =
∑

i

([x, ui]|vi).

This will imply that the RHS of (2.13) is independent of the given ex-
pression for y. In fact it is sufficient to show that

(wj |[zj , [ui, vi]]) = ([[wj , zj ], ui]|vi).

Now

([[wj , zj ], ui]|vi) = ([[wj , ui], zj ]|vi) + ([wj , [zj , ui]]|vi)

= ([wj , ui]|[zj , vi])− ([zj , ui]]|[wj , vi])

= ([wj , ui]|[zj , vi])− ([wj , vi]|[zj , ui])

= (wj |[ui, [zj , vi]])− (wj |[vi, [zj , ui]])

= (wj |[zj , [ui, vi]]).

We must now check (2.11) for all x ∈ gi, y ∈ gj , z ∈ gk with |i +
j|, |j + k| ≤ N . We may assume that i + j + k = 0 and at least one of
|i|, |j|, |k| is N . We suppose first that just one of |i|, |j|, |k| is N . Then
the other two are non-zero. If |i| = N then (2.11) holds by definition of
the form on g(N). Similarly for |k| = N . So suppose |j| = N . We may
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assume that y has form y = [u, v] where u ∈ ga, v ∈ gb, a+ b = |N |, and
0 < |a| < |j|, 0 < |b| < |j|. Then

([x, y]|z) = ([x, [u, v]]|z)
= ([[v, x], u]|z) + ([[x, u], v]|z)
= ([v, x]|[u, z]) + ([x, u]|[v, z])
= ([x, v]|[z, u]) + ([x, u]|[v, z])
= (x|[v, [z, u]]) + (x|[u, [v, z]])
= (x|[[u, v], z])
= (x|[y, z]).

Now suppose two of |i|, |j|, |k| are equal to N . Then i, j, k are N,−N, 0
in some order. Thus one of x, y, z lies in h. Suppose x ∈ h. We may
again assume that y = [u, v]. Then

([x, y]|z) = ([x, [u, v]]|z)
= ([[x, u], v]|z)− ([[x, v], u]|z)
= ([x, u]|[v, z])− ([x, v]|[u, z]) (by definition of (·|·) on g(N))

= (x|[u, [v, z]])− (x|[v, [u, z]]) (by invariance of (·|·) on g(N − 1))

= (x|[[u, v], z])
= (x|[y, z]).

If z ∈ h the result follows by symmetry. Finally, let y ∈ h. Then
we may assume that z = [u, v] where u ∈ ga, v ∈ gb, a + b = k, and
0 < |a| < |k|, 0 < |b| < |k|. Then

(x|[y, z]) = (x|[y, [u, v]])
= (x|[u, [y, v]]) + (x|[[y, u], v])
= ([x, u]|[y, v]) + ([x, [y, u]]|v) (by definition of (·|·) on g(N))

= ([[x, u], y]|v) + ([x, [y, u]]|v) (by invariance of (·|·) on g(N − 1))

= ([[x, y], u]|v)
= ([x, y]|[u, v]) (by definition of (·|·) on g(N))

= ([x, y]|z).

By induction, we have defined a symmetric bilinear form on g which
satisfies (i) and (ii). Let i be the radical of (·|·). Then i is an ideal in g.
If i 6= 0 then i ∩ h 6= 0, which contradicts Lemma 2.2.1(ii). Thus (·|·) is
non-degenerate.
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The form also satisfies (iii), since for all h ∈ h, x ∈ gα, y ∈ gβ , using
invariance, we have

0 = ([h, x]|y) + (x|[h, y]) = (〈α, h〉+ 〈β, h〉)(x|y).

Now (iv) also follows from the non-degeneracy of the form.
Finally, let α ∈ ∆, x ∈ gα, y ∈ gβ , h ∈ h. Then

([x, y]− (x|y)ν−1(α)|h) = (x|[y, h])− (x|y)〈α, h〉 = 0,

which implies (v).

The form (·|·) constructed in the theorem above is called the standard
invariant form on g. It is uniquely determined by the conditions (i) and
(ii) of the theorem (indeed, if (·|·)1 is another such form then (·|·) −
(·|·)1 is too, but its radical is non-trivial ideal containing h, which is a
contradiction).

Throughout (·|·) denotes the standard invariant form on symmetriz-
able g.

Example 2.2.4 (i) The standard invariant form is just the trace form
on sln+1 is the trace form.

(ii) The standard invariant form on ŝl2 is given by

(tm ⊗ x|tn ⊗ y) = δm,−ntr (xy),

(Cc+ Cd|L(sl2)) = 0,

(c|c) = (d|d) = 0,

(c|d) = 1.

2.3 Generalized Casimir operator

Let g be symmetrizable. By Theorem 2.2.3(iii),(iv), we can choose dual
bases {e(i)α } and {e(i)−α} in gα and g−α. Then

(x|y) =
∑

s

(x|e(s)−α)(y|e(s)α ) (x ∈ gα, y ∈ g−α). (2.14)

Lemma 2.3.1 If α, β ∈ ∆ and z ∈ gβ−α, then in g⊗ g we have∑
s

e
(s)
−α ⊗ [z, e(s)α ] =

∑
t

[e(t)−β , z]⊗ e
(t)
β . (2.15)
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Proof Define a bilinear form (·|·) on g⊗ g via

(x⊗ y|x1 ⊗ y1) := (x|x1)(y|y1).

Taje e ∈ gα, f ∈ g−β . It suffices to prove that pairing of both sides of
(2.15) with e⊗ f gives the same result. We have, using (2.14),∑

s

(e(s)−α ⊗ [z, e(s)α ]|e⊗ f) =
∑

s

(e(s)−α|e)([z, e(s)α ]|f)

=
∑

s

(e(s)−α|e)(e(s)α |[f, z])

= (e|[f, z]).

Similarly, ∑
t

([e(t)−β , z]⊗ e
(t)
β |e⊗ f) = ([z, e]|f),

as required.

Corollary 2.3.2 In the notation of Lemma 2.3.1, we have∑
s

[e(s)−α, [z, e
(s)
α ]] = −

∑
t

[[z, e(t)−β ], e(t)β ] (in g), (2.16)∑
s

e
(s)
−α[z, e(s)α ] = −

∑
t

[z, e(t)−β ]e(t)β (in U(g)). (2.17)

Definition 2.3.3 A g-module V is called restricted if for every v ∈ V
we have gαv = 0 for all but finitely many positive roots α.

Let ρ ∈ h∗ be any functional satisfying

〈ρ, α∨i 〉 = 1 (1 ≤ i ≤ n).

Then, by (2.10),

(ρ|αi) = (αi|αi)/2 (1 ≤ i ≤ n). (2.18)

For a restricted g-module V we define a linear operator Ω0 on V as
follows:

Ω0 = 2
∑

α∈∆+

∑
i

e
(i)
−αe

(i)
α .

One can check that this definition is independent on choice of dual bases.
Let u1, u2, . . . and u1, u2, . . . be dual bases of h. Note that

(λ|µ) =
∑

i

〈λ, ui〉〈µ, ui〉 (λ, µ ∈ h∗). (2.19)
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Indeed,

(λ|µ) = (ν−1(λ)|ν−1(µ))

=
∑

i

(ν−1(λ)|ui)(ν−1(µ)|ui)

=
∑

i

〈λ, ui〉〈µ, ui〉.

Also,

[
∑

i

uiui, x] = x((α|α) + 2ν−1(α)) (x ∈ gα). (2.20)

Indeed,

[
∑

i

uiui, x] =
∑

i

〈α, ui〉xui +
∑

i

ui〈α, ui〉x

=
∑

i

〈α, ui〉〈α, ui〉x+ x

(∑
i

ui〈α, ui〉+ ui〈α, ui〉

)
.

Define the generalized Casimir operator to be the following linear
operator Ω on V :

Ω := 2ν−1(ρ) +
∑

i

uiui + Ω0.

Example 2.3.4 (i) Let g = sl2. Then we have

Ω = h+ h(1/2)h+ 2fe = ef + fe+ h(1/2)h,

i.e. Ω =
∑
vivi for a pair {vi} and {vi} of dual bases of sl2. This is a

general fact for a finite dimensional simple Lie algebra.
(ii) Let g = ŝl2. We can take a pair of dual bases ui and ui of h as

follows

{α∨1 , c, d} and {(1/2)α∨1 , d, c},

and

2ν−1(ρ) = α∨1 + 4d.

Finally,

Ω0 =
+∞∑
k=1

(t−kh)(tkh) + 2
+∞∑
k=0

(t−kf)(tke) + 2
+∞∑
k=1

(t−ke)(tkf).
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For the purposes of he following theorem consider root space decom-
position of U(g):

U(g) =
⊕
β∈Q

Uβ ,

where

Uβ = {u ∈ U(g)|[h, u] = 〈β, h〉u for all h ∈ h}.

Set

U ′
β = Uβ ∩ U(g′),

so that U(g′) =
⊕

β∈Q U
′
β .

Theorem 2.3.5 Let g be symmetrizable.

(i) If V be a restricted g′-module and u ∈ U ′
α then

[Ω0, u] = −u
(
2(ρ|α) + (α|α) + 2ν−1(α)

)
. (2.21)

(ii) If V is a restricted g-module then Ω commutes with the action of
g on V .

Proof Note that elements of h commute with Ω since Ω is of weight
0. Now (ii) follows from (i) and (2.20). Next, note that if (i) holds for
u ∈ U ′

α and u1 ∈ U ′
β , then it also holds for uu1 ∈ U ′

α+β :

[Ω0, uu1] = [Ω0, u]u1 + u[Ω0, u1]

= −u
(
2(ρ|α) + (α|α) + 2ν−1(α)

)
u1

−uu1

(
2(ρ|β) + (β|β) + 2ν−1(β)

)
= −uu1

(
2(ρ|α) + (α|α) + 2ν−1(α)

+2(α|β) + 2(ρ|β) + (β|β) + 2ν−1(β)
)

= −uu1

(
2(ρ|α+ β) + (α+ β|α+ β) + 2ν−1(α+ β)

)
.

Since the eαi
’s and e−αi

’s generate g′, it suffices to check (2.21) for
u = eαi and e−αi . We explain the calculation for eαi , the case of e−αi

being similar. We have

[Ω0, eαi
] = 2

∑
α∈∆+

∑
s

([e(s)−α, eαi
]e(s)α + e

(s)
−α[e(s)α , eαi

])

= 2[e−αi
, eαi

]eαi
+ 2

∑
α∈∆+\{αi}

∑
s

([e(s)−α, eαi
]e(s)α + e

(s)
−α[e(s)α , eαi

]).
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Note using Theorem 2.2.3(v) that

2[e−αi , eαi ]eαi = −2ν−1(αi)eαi = −2(αi|αi)eαi − 2eαiν
−1(αi),

which is the RHS of (2.21) for u = eαi . So it remains to prove that∑
α∈∆+\{αi}

∑
s

([e(s)−α, eαi
]e(s)α + e

(s)
−α[e(s)α , eαi

]) = 0. (2.22)

Applying (2.17) to z = eαi
, we get∑

α∈∆+\{αi}

∑
s

([e(s)−α, eαi ]e
(s)
α + e

(s)
−α[e(s)α , eαi ])

=
∑

α∈∆+\{αi}

∑
s

([e(s)−α, eαi ]e
(s)
α −

∑
α∈∆\{αi}

∑
t

[e(t)−α−αi
, eαi ]e

(t)
α+αi

.

If α + αi 6∈ ∆, the last term is interpreted as zero. If α − αi 6∈ ∆,
then [e(s)−α, eαi ] = 0. Thus we may assume α = β + αi in the first term
with β ∈ ∆+ in view of Lemma 1.4.2, which makes that term equal to∑

β∈∆\{αi}
∑

t[e
(t)
−β−αi

, eαi ]e
(t)
β+αi

, which completes the proof of (2.22).

Corollary 2.3.6 If in the assumptions of Theorem 2.3.5, v ∈ V is a
high weight vector of weight Λ then

Ω(v) = (Λ + 2ρ|Λ)v.

If, additionally, v generates V , then

Ω = (Λ + 2ρ|Λ)IV .

Proof The second statement follows from the first and the theorem. The
first statement is a consequence of the definition of Ω and (2.19).
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Integrable representations of g and the Weyl
group

3.1 Integrable modules

Let

g(i) = Cei + Cα∨i + Cfi.

It is clear that g(i) is isomorphic to sl2 with standard basis.

Lemma 3.1.1 (Serre Relations) If i 6= j then

(ad ei)1−aijej = 0, (ad fi)1−aijfj = 0. (3.1)

Proof We prove the second equality, the first then follows by application
of ω. Let v = fj , θij = (ad fi)1−aijfj . We consider g as a g(i)-module via
adjoint action. We have eiv = 0 and α∨i v = −aijv. So, by representation
theory of sl2,

eiθij = (1− aij)(−aij − (1− aij) + 1)(ad fi)−aijfj = 0 (i 6= j).

It is also clear from relations that ekθij = 0 if k 6= i, j or if k = j and
aij 6= 0. Finally, if k = j and aij = 0, then

ejθij = [ej , [fi, fj ]] = [fi, α
∨
j ] = ajifi = 0.

It remains to apply Lemma 1.4.5.

Let V be a g-module and x ∈ g. Then x is locally nilpotent on V if
for every v ∈ V there is N such that xNv = 0.

Lemma 3.1.2 Let g be a Lie algebra, V be a g-module, and x ∈ g.

(i) If y1, y2, . . . generate g and (adx)Niyi = 0, i = 1, 2, . . . , then
adx is locally nilpotent on g.

37
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(ii) If v1, v2, . . . generate V as g-module, adx is locally nilpotent on
g, and xNivi = 0, i = 1, 2, . . . , then x is locally nilpotent on V .

Proof Since adx is a derivation, we have

(adx)k[y, z] =
k∑

i=0

(
k

i

)
[(adx)iy, (adx)k−iz].

This yields (i) by induction on the length of commutators in the yi’s.
(ii) follows from the formula

xka =
k∑

i=0

(
k

i

)
((adx)ia)xk−i, (3.2)

which holds in any associative algebra.

Lemma 3.1.3 Operators ad ei and ad fi are locally nilpotent on g.

Proof Follows from the defining relations, Serre relations, and Lemma 3.1.2(i).

A g-module V is called h-diagonalizable if

V =
⊕
λ∈h∗

Vλ,

where the weight space Vλ is defined to be

Vλ = {v ∈ V |hv = λ(h)v for all h ∈ h}.

If Vλ 6= 0 we call λ a weight of V , and dimVλ the multiplicity of the weight
λ denoted multV λ. h′-diagonalizable g′-modules are defined similarly.

A g (resp. g′)-module V is called integrable if it is h (resp. h′)-
diagonalizable and all ei, fi act locally nilpotently on V . For example
the adjoint g-module is integrable.

Proposition 3.1.4 Let V be an integrable g-module. As a g(i)-module,
V decomposes into a direct sum of finite dimensional irreducible h-
invariant submodules.

Proof For v ∈ Vλ we have

eif
k
i v = k(1− k + 〈λ, α∨i 〉)fk−1

i v + fk
i eiv.
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It follows that the subspace

U :=
∑

k,m≥0

Cfk
i e

m
i v

is (g(i)+h)-invariant. Since ei and fi are locally nilpotent on V , dimU <

∞. By Weyl’s Complete Reducibility Theorem, U is a direct sum of
irreducible h-invariant g(i)-submodules (for h-invariance use the fact that
fk

i e
m
i v and fk′

i e
m′

i v are of the same α∨i -weight if and only if they are
of the same h-weight). It follows that each v ∈ V lies in a direct sum
of finite dimensional h-invariant irreducible g(i)-modules, which implies
the proposition.

Proposition 3.1.5 Let V be an integrable g-module, λ ∈ h∗ be a weight
of V , and αi a simple root of g. Denote by M the set of all t ∈ Z such
that λ+ tαi is a weight of V , and let mt := multV (λ+ tαi). Then:

(i) M is a closed interval [−p, q] of integers, where both p and q are
either non-negative integers or ∞; p − q = 〈λ, α∨i 〉 when both p

and q are finite; if multV λ <∞ then p and q are finite.
(ii) The map ei : Vλ+tαi → Vλ+(t+1)αi

is an embedding for t ∈
[−p,−〈λ, α∨i 〉/2); in particular, the function t 7→ mt is increasing
on this interval.

(iii) The function t 7→ mt is symmetric with respect to t = −〈λ, α∨i 〉/2.
(iv) If λ and λ+ αi are weights then ei(Vλ) 6= 0.
(v) If λ + αi (resp. λ − αi) is not a weight, then 〈λ, α∨i 〉 ≥ 0 (resp.
〈λ, α∨i 〉 ≤ 0).

(vi) λ− 〈λ, α∨i 〉αi is also a weight of V and

multV (λ− 〈λ, α∨i 〉αi) = multV λ.

Proof Set U :=
∑

k∈Z Vλ+kαi
. This is a (g(i) +h)-module, which in view

of Proposition 3.1.4 is a direct sum of finite dimensional h-invariant
irreducible g(i)-modules. Let p := − infM and q := supM . Then
p, q ∈ Z+ since 0 ∈ M . Now everything follows from representation
theory of sl2 using the fact 〈λ+ tαi, α

∨
i 〉 = 0 for t = −〈λ, α∨i 〉/2.

3.2 Weyl group

For each i = 1, . . . , n define the fundamental reflection ri of h∗ by the
formula

ri(λ) = λ− 〈λ, α∨i 〉αi (λ ∈ h∗).
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It is clear that ri is a reflection with respect to the hyperplane

Ti = {λ ∈ h∗ | 〈λ, α∨i 〉 = 0}.

The subgroup W = W (A) of GL(h∗) generated by all fundamental re-
flections is called the Weyl group of g. The action ri on h∗ induces the
dual fundamental reflection r∨i on h. Hence the Weyl groups of dual
Kac-Moody algebras are contragredient linear groups which allows us
to identify them. We will always do this and write ri for r∨i . A simple
check shows that the dual fundamental reflection r∨i is given by

r∨i (h) = h− 〈h, αi〉α∨i .

Proposition 3.2.1

(i) Let V be an integrable g-module. Then multV λ = multV w(λ) for
any λ ∈ h∗ and w ∈ W . In particular, the set of weights of V is
W -invariant.

(ii) The root system ∆ is W -invariant and multα = multw(α) for
all α ∈ ∆, w ∈W .

Proof Follows from Proposition 3.1.5.

Lemma 3.2.2 If α ∈ ∆+ and ri(α) < 0 then α = αi. In particular,
∆+ \ {αi} is invariant with respect to ri.

Proof Follows from Lemma 1.4.2.

If a is a locally nilpotent operator on a vector space V , and b is another
operator on V such that (ad a)nb = 0 for some N , then

(exp a)b(exp−a) = (exp(ad a))(b). (3.3)

Indeed, using induction and (3.2), we get

(ad a)k(b) =
k∑

j=0

(−1)j

(
k

j

)
ak−jbaj ,

and so

(
∑
i≥0

ai

i!
)b(
∑
j≥0

(−1)j a
j

j!
) =

∑
k≥0

1
k!

∑
i+j=k

k!
i!j!

(−1)j(aibaj)

=
∑
k≥0

1
k!

(ad a)k(b).
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Lemma 3.2.3 Let π be an integrable representation of g in V . For
i = 1, . . . , n set

rπ
i := (expπ(fi))(expπ(−ei))(expπ(fi)).

Then

(i) rπ
i (Vλ) = Vri(λ);

(ii) radi ∈ Aut g;

(iii) radi |h = ri.

Proof Let v ∈ Vλ. Then

h(rπ
i (v)) = rπ

i (h(v)) = 〈λ, h〉rπ
i (v) if 〈αi, h〉 = 0. (3.4)

Next we prove that

α∨i (rπ
i (v)) = −〈λ, α∨i 〉rπ

i (v). (3.5)

This follows from

(rπ
i )−1π(α∨i )rπ

i = π(−α∨i ), (3.6)

and, in view of (3.3), it is enough to check (3.6) holds for the adjoint
representation of sl2. Applying (3.3) one more time, we see that it is
enough to check (3.6) for the natural 2-dimensional representation of
sl2. But in that representation we have

exp fi =
(

1 0
1 1

)
, exp(−ei) =

(
1 −1
0 1

)
, rπ

i =
(

0 −1
1 0

)
,

which implies (3.6) easily.

Now, any h ∈ h can be written in the form h = h′ + cα∨i , where c is a
constant and 〈αi, h

′〉 = 0. Then using (3.4) and (3.5), we have

h(rπ
i (v)) = (〈λ, h′〉 − 〈λ, cα∨i 〉)rπ

i (v) = 〈λ, ri(h)〉rπ
i (v) = 〈ri(λ), h〉rπ

i (v),

which proves (i).

For (iii), take h ∈ h and write it again in the form h = h′ + cα∨i
as above. Then it is clear that radi h′ = h′, and we just have to prove
that radi (α∨i ) = −α∨i . This can be done as above calculating with 2× 2
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matrices, or, if you prefer, here is another argument.

(exp ad fi)(α∨i ) = α∨i + 2fi;

(exp ad (−ei))(α∨i + 2fi) = α∨i + 2ei + 2fi − 2α∨i − 2ei

= −α∨i + 2fi;

(exp ad fi)(−α∨i + 2fi) = −α∨i − 2fi + 2fi

= −α∨i .

(ii) follows from (3.3) applied to the adjoint representation:

radi [x, y] = (exp ad fi)(exp ad (−ei))(exp ad (fi))(adx)(y)

= (exp ad fi)(exp ad (−ei))(exp ad (fi))(adx)

×(exp ad (−fi))(exp ad ei)(exp ad (−fi))

×(exp ad fi)(exp ad (−ei))(exp ad (fi))(y)

= radi (x)(radi (y))

= [radi (x), radi (y)].

Proposition 3.2.4 The bilinear form (·|·) on h∗ is W -invariant.

Proof Note that |ri(αi)|2 = | − αi|2 = |αi|2. Now let Λ,Φ ∈ h∗ and
write Λ = cαi + λ,Φ = dαi + ϕ where (λ|αi) = (ϕ|αi) = 0, and c, d are
constants. Then ri(Λ) = λ− cαi, ri(Φ) = ϕ− dαi, so

(ri(Λ)|ri(Φ) = (λ− cαi|ϕ− dαi) = (λ, ϕ) + (cαi|dαi) = (Λ|Φ).

3.3 Weyl group as a Coxeter group

Lemma 3.3.1 If αi is a simple root and ri1 . . . rit(αi) < 0 then there
exists s such that 1 ≤ s ≤ t and

ri1 . . . rit
ri = ri1 . . . r̂is

. . . rit
.

Proof Set βk = rik+1 . . . rit
(αi) for k < t and βt = αi. Then βt > 0

and β0 < 0. Hence for some s we have βs−1 < 0 and βs > 0. But
βs−1 = ris

βs, so by Lemma 3.2.2, βs = αis
, and we get

αis
= w(αi), where w = ris+1 . . . rit

. (3.7)
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By Lemma 3.2.3, w = w̃|h for some w̃ from the subgroup of Aut g gen-
erated by the radi . Applying w̃ to both sides of the equation [gαi

, g−αi
] =

Cα∨i , we see that Cw(α∨i ) = Cα∨is
. Since 〈w(αi), w(α∨i )〉 = 〈αi, α

∨
i 〉 = 2,

we now conclude that

w(α∨i ) = α∨is
. (3.8)

It now follows that ris = wriw
−1:

wriw
−1(λ) = w(w−1(λ)− 〈w−1(λ), α∨i 〉αi) = λ− 〈λ, α∨is

〉αis
= ris

(λ).

It remains to multiply both sides of ris = wriw
−1 by ri1 . . . ris−1 on the

left and by ris+1 . . . rit
ri on the right.

Decomposition w = ri1 . . . ris
is called reduced if s is minimal among

all presentations of w as a product of simple reflections ri. Then s is
called the length of w and is denoted `(w). Note that det ri = −1, so

detw = (−1)`(w) (w ∈W ). (3.9)

Lemma 3.3.2 Let w = ri1 . . . rit
∈ W be a reduced decomposition and

αi be a simple root. Then

(i) `(wri) < `(w) if and only if w(αi) < 0;
(ii) (Exchange Condition) If `(wri) < `(w) then there exists s such

that 1 ≤ s ≤ t and

risris+1 . . . rit = ris+1 . . . ritri

Proof By Lemma 3.3.1, w(αi) < 0 implies `(wri) < `(w). Now, if
w(αi) > 0, then wri(αi) < 0 and it follows that `(w) = `(wriri) <
`(wri), completing the proof of (i).

(ii) If `(wri) < `(w) then (i) implies w(αi) < 0, and we deduce the
required Exchange Condition from Lemma 3.3.1 by multiplying it with
ris−1 . . . ri1 on the left and ri on the right.

Lemma 3.3.3 `(w) equals the number of roots α > 0 such that w(α) < 0.

Proof Denote

n(w) := |{α ∈ ∆+ | w(α) < 0}.

It follows from Lemma 3.2.2 that n(wri) = n(w) ± 1, whence n(w) ≤
`(w).

We now apply induction on `(w) to prove that `(w) = n(w). If `(w) =
0 then w = 1 (by convention), and clearly n(w) = 0. Assume that
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`(w) = t > 0, and w = ri1 . . . rit−1rit
. Denote w′ = ri1 . . . rit−1 . By

induction, n(w′) = t − 1. Let β1, . . . , βt−1 be the positive roots which
are sent to negative roots by w′. By Lemma 3.3.2(i), w′(αit

) > 0, whence
w(αit) < 0. It follows from Lemma 3.2.2 that rit(β1), . . . , rit(βt−1), αit

are distinct positive roots which are mapped to negative roots by w, so
n(w) ≥ `(w).

Lemma 3.3.4 (Deletion Condition) Let w = ri1 . . . ris
. Suppose

`(w) < s. Then there exist 1 ≤ j < k ≤ s such that

w = ri1 . . . r̂ij
. . . r̂ik

. . . ris
.

Proof Since `(w) < s there exists 2 ≤ k ≤ s such that

`(ri1 . . . rik
) < `(ri1 . . . rik−1) = k − 1

. Then by Lemmas 3.3.2(i) and 3.3.1,

ri1 . . . rik
= ri1 . . . r̂ij . . . rik−1

for some 1 ≤ j < k.

Now for 1 ≤ i 6= j ≤ n define

mij :=


2 if aijaji = 0,
3 if aijaji = 1,
4 if aijaji = 2,
5 if aijaji = 3,
∞ if aijaji ≥ 4.

Lemma 3.3.5 Let 1 ≤ i 6= j ≤ n. Then the order of (rirj) is mij.

Proof The subspace Rαi + Rαj is invariant with respect to ri and rj ,
and we can make all calculations in this 2-dimensional space. The ma-

trices of ri and rj in the basis αi, αj are
(
−1 −aij

0 1

)
and

(
1 0
−aji −1

)
,

respectively. So the matrix of rirj is
(
−1 + aijaji aij

−aji −1

)
. The charac-

teristic polynomial of this matrix is λ2 + (2− aijaji)λ+ 1, and now the
result is an elementary calculation.
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Proposition 3.3.6 W is generated by r1, . . . , rn subject only to the
Coxeter relations

r2i = 1 (1 ≤ i ≤ n), (3.10)

(rirj)mij = 1 (1 ≤ i 6= j ≤ n), (3.11)

where w∞ is interpreted as 1. So W is a Coxeter group.

Proof This is a general fact. All we need is Deletion Condition. We
need to show that every relation

r1 . . . ris
= 1

in W is a consequence of (3.10) and (3.11). We have det ri = −1 for all
i, so s = 2q. We apply induction on q. If q = 1 the relation looks like
si1si2 = 1. Hence si2 = s−1

i1
= si1 . So our relation is s2i1 = 1, which is

one of (3.10).
For inductive step, rewrite the given relation as follows:

ri1 . . . riq
riq+1 = ri2q

. . . riq+2 . (3.12)

Then `(ri1 . . . riq
riq+1) < q + 1, so by the Deletion Condition,

ri1 . . . riqriq+1 = ri1 . . . r̂ij . . . r̂ik
. . . riq+1 (3.13)

for some 1 ≤ j < k ≤ q + 1. Now, unless j = 1 and k = q + 1, this is
a consequence of a relation with fewer than 2q terms—for example, if
j > 1, (3.13) is equivalent to

ri2 . . . riq
riq+1 = ri2 . . . r̂ij

. . . r̂ik
. . . riq+1 .

So, by induction, (3.13) can be deduced from the defining relations. The
relation

ri1 . . . r̂ij . . . r̂ik
. . . riq+1 = ri2q . . . riq+2

has 2q − 2 terms, so is also a consequence of the defining relations.
Therefore (3.12) is a consequence of the defining relations, unless j = 1
and k = q + 1.

In the exceptional case (3.13) is

ri1 . . . riqriq+1 = ri2 . . . riq ,

or

ri1 . . . riq
= ri2 . . . riq+1 . (3.14)
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Now we write (3.12) in the alternative form

ri2 . . . ri2q
ri1 = 1. (3.15)

In exactly the same way this relation will be a consequence of the defining
relations unless

ri2 . . . riq+1 = ri3 . . . riq+2 . (3.16)

If this relation is a consequence of the defining relations then (3.12) is
also a consequence of the defining relations by the above argument, and
we are done. Now, (3.12) is equivalent to

ri3ri2ri3 . . . riq
riq+1riq+2riq+1 . . . ri4 = 1, (3.17)

and this will be a consequence of the defining relations unless

ri3ri2ri3 . . . riq
= ri2ri3 . . . riq

riq+1 ,

We may therefore assume that this is true. But we must also have
(3.17). So ri1 = ri3 . Hence the given relation will be a consequence of
the defining relations unless ri1 = ri3 . However, an equivalent forms of
the given relation are also ri2 . . . ri2q

ri1 = 1, ri3 . . . ri2q
ri1ri2 = 1, etc.

Thus this relation will be a consequence of the defining relations unless
ri1 = ri3 = · · · = ri2q−1 and ri2 = ri4 = · · · = ri2q

. Thus we may assume
that the given relation has form (ri1ri2)

q = 1. Then mi1i2 divides q, and
the relation is a consequence of the Coxeter relation (3.11).

3.4 Geometric properties of Weyl groups

Let (hR,Π,Π∨) be a realization of A over R, so that

(h,Π,Π∨) = (C⊗R hR,Π,Π∨).

Note that hR is W -invariant since Q∨ ⊂ hR. The set

C = {h ∈ hR | 〈αi, h〉 ≥ 0 for i = 1, . . . , n}

is called the fundamental chamber, the sets of the form w(C) are called
chambers, and their union

X :=
⋃

w∈W

w(C)

is called the Tits cone. There are corresponding dual objects C∨, X∨,
etc. in h∗R.

Proposition 3.4.1
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(i) For h ∈ C, the group Wh := {w ∈W | w(h) = h} is generated by
the fundamental reflections contained in it.

(ii) The fundamental chamber is the fundamental domain for the ac-
tion of W on X, i.e. every W -orbit intersects C in exactly one
point. In particular, W acts regularly on the set of chambers.

(iii) X = {h ∈ hR | 〈α, h〉 < 0 for a finite number of α ∈ ∆+}. In
particular X is a convex cone.

(iv) C = {h ∈ hR | h − w(h) =
∑

i ciα
∨
i , where ci ≥ 0, for any w ∈

W}.
(v) The following conditions are equivalent:

(a) |W | <∞;
(b) X = hR;
(c) |∆| <∞;
(d) |∆∨| <∞.

(vi) If h ∈ X then |Wh| < ∞ if and only if h is an interior point of
X.

Proof Take w ∈ W and let w = ri1 . . . ris
be a reduced decomposition.

Take h ∈ C and assume that h′ = w(h) ∈ C. We have 〈αis
, h〉 ≥ 0,

hence 〈w(αis
), w(h)〉 = 〈w(αis

), h′〉 ≥ 0. It follows from Lemma 3.3.2(i)
that w(αis

) < 0, hence 〈w(αis
), h′〉 ≤ 0, and 〈w(αis

), h′〉 = 0, whence
〈αis , h〉 = 0. Hence ris(h) = h. Now for the proof of (i) and (ii) it
suffices to apply induction on `(w).

(iii) Set X ′ := {h ∈ hR | 〈α, h〉 < 0 for a finite number of α ∈ ∆+}.
Let h ∈ X ′ and w ∈ W . Then 〈α,w(h)〉 = 〈w−1α, h〉. Only finitely
many positive α’s are sent to negatives by w−1, see Lemma 3.3.3. So X ′

is W -invariant, and clearly C ⊂ X ′. Therefore X ⊂ X ′. To prove the
converese embedding, take h ∈ X ′ and set Mh := {α ∈ ∆+ | 〈α, h〉 <
0}. By definition Mh is finite. If Mh 6= ∅, then some simple root
αi ∈ Mh. But then it follows from Lemma 3.2.2 that |Mri(h)| < |Mh|.
Now induction on |Mh| completes the proof of (iii).

(iv) ⊃ is clear. The converse embedding is proved by induction on
s = `(w). For s = 0 the result is clear and for s = 1 it is equivalent to
the definition of C. Let s > 1 and w = ri1 . . . ris

. We have

h− w(h) = (h− ri1 . . . ris−1(h)) + ri1 . . . ris−1(h− ris
(h)).

It follows from (the dual version of) Lemma 3.3.2(i) that ri1 . . . ris−1(α
∨
is

) ∈
Q∨

+, which implies that the second summand is in Q∨
+. The first sum-

mand is there too by inductive assumption.
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(v) (a) ⇒ (b). Let h ∈ hR, and choose an element h′ from the (finite)
orbit W ·h for which ht (h′−h) is maximal. Then h′ ∈ C, whence h ∈ X.

(b) ⇒ (c) Take h in the interior of C. Then 〈α,−h〉 < 0 for all
α ∈ ∆+, and it remains to apply (iii).

(c) ⇒ (a) It suffices to prove that the action of W on the roots is
faithful. Assume that w(α) = α for all α ∈ ∆, and w = ri1 . . . ris

be a
reduced decomposition. But then w(αis) < 0 by Lemma 3.3.2(i).

(d) ⇔ (a) is similar to (c) ⇔ (a), but using dual root system.
(vi) In view of (ii) we may assume that h ∈ C. Then by (i), Wh

is generated by the fundamental reflections with respect to the roots
orthogonal to h. The action of Wh on h induces the action of Wh on
h′ := hR/Rh. Moreover, this induced action allows us to identify Wh

with a Weyl group W ′ acting naturally on h′. By (v), this group is finite
if and only if its X ′ = h′

Example 3.4.2 (i) Let g = sln+1. Then ri acts on ε1, . . . , εn+1 by
swapping εi and εi+1, from which it follows that W ∼= Sn+1. Introduce
Λ1, . . . ,Λn ∈ h∗ as the dual basis to α∨1 , . . . , α

∨
n :

〈Λi, α
∨
j 〉 = δij (1 ≤ i, j ≤ n).

Then

C∨ = R≥0Λ1 ⊕ · · · ⊕ R≥0Λn.

and X∨ = h∗R.
(ii) Let g = ŝl2. Then h∗R = Rα1 ⊕ Rδ ⊕ RΛ0 and the sum (Rα1) ⊕

(Rδ ⊕ RΛ0) is orthogonal. Moreover,

r0 : α1 7→ −α1 + 2δ, δ 7→ δ, Λ0 7→ α1 − δ + Λ0;
r1 : α1 7→ −α1, δ 7→ δ, Λ0 7→ Λ0,

whence

r0r1(λα1 + µδ + νΛ0) = (λ+ ν)α1 + (µ− 2λ− ν)δ + νΛ0. (3.18)

Consider the affine subspace

h∗1 = {λ ∈ h∗R | 〈λ, c〉 = 1} ⊂ h∗R,

invariant with respect to the action of W . So W acts on h∗1 with affine
transformations. Elements of h∗1 are of the form

λα1 + µδ + Λ0 (λ, µ ∈ R).

Moreover, it is clear that r0 and r1 act trivially on δ. So the action of
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W on h∗1 factors through to give an action of W on h∗1/Rδ which can be
identified with Rα1. We will denote the induced affine action of w ∈W
on Rα1 via w̄. An easy calculation gives:

r̄1 : λα1 7→ −λα1, r̄0 : λα1 7→ −λα1 + α1,

whence

r̄0r̄1(λα1) = λα1 + α1

is a ‘shift’ by α1. It follows that the image W̄ of W is a semidirect
product

W̄ = ZoS2.

In fact the map w 7→ w̄ is injective. This follows from the fact that every
element of W can be written uniquely in the form rε

1(r0r1)
k where k ∈ Z

and ε = 0 or 1. Thus

W = ZoS2.

Next,

C = {λα1 + µδ + νΛ0 | 0 ≤ λ ≤
1
2
ν}.

It follows from (3.18) that

(r0r1)kC = {λα1 + µδ + νΛ0 | ν ≥ 0, kν ≤ λ ≤ (k +
1
2
)ν}

r1(r0r1)kC = {λα1 + µδ + νΛ0 | ν ≥ 0, −(k +
1
2
)ν ≤ λ ≤ −kν},

whence

X = {λα1 + µδ + νΛ0 | ν ≥ 0}.

In terms of the affine action, C gets identified with the fundamental
alcove

Caf = {λα1 | 0 ≤ λ ≤
1
2
},

which is the fundamental domain for the affine action of W on Rα1.
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The Classification of Generalized Cartan
Matrices

4.1 A trichotomy for indecomposable GCMs

Let v = (v1, . . . , vn) ∈ Rn. We write

v ≥ 0 if all vi ≥ 0

and

v > 0 if all vi > 0.

We consider v ∈ Rn as row or column as convenient.

Definition 4.1.1 A GCM A has finite type if the following three con-
ditions hold:

(i) detA 6= 0;
(ii) there exists u > 0 with Au > 0;
(iii) Au ≥ 0 implies u > 0 or u = 0.

A GCM A has affine type if the following three conditions hold:

(i) corank A = 1 (i.e. rank A = n− 1);
(ii) there exists u > 0 with Au = 0;
(iii) Au ≥ 0 implies Au = 0.

A GCM A has indefinite type if the following two conditions hold:

(i) there exists u > 0 with Au < 0;
(ii) Au ≥ 0 and u ≥ 0 imply u = 0.

Remark 4.1.2 What we really have in mind in this. Let γ = u1α1 +
· · · + unαn, and u = (u1, . . . , un) ∈ Rn be the corresponding column
vector. Then Au is the column vector (〈γ, α∨1 〉, . . . , 〈γ, α∨n〉).

50



4.1 A trichotomy for indecomposable GCMs 51

Example 4.1.3 Let a, b be positive integers, and A =
(

2 −a
−b 2

)
.

Then A is of finite (resp. affine, resp. indefinite) type if and only if
ab ≤ 3 (resp. ab = 4, resp. ab > 4).

We will prove that an indecomposable GCM has exactly one of the
three types above.

Lemma 4.1.4 Let vi = (vi1, . . . , vin) ∈ Rn for i = 1, . . . ,m. Then there
exist x1, . . . , xn ∈ R with

n∑
j=1

vijxj > 0 (i = 1, . . . ,m)

if and only if

λ1v
1 + · · ·+ λmv

m = 0, λ1, . . . , λm ≥ 0

implies λ1 = · · · = λm = 0.

Proof Consider the usual scalar product (x, y) = x1y1 + . . . xnyn for two
vectors x, y ∈ Rn. Suppose there exists a column vector x = (x1, . . . , xn)
such that (vi, x) > 0 for all i. Suppose λ1v

1 + · · ·+ λmv
m = 0 with all

λi ≥ 0. Then

λ1(v1, x) + · · ·+ λm(vm, x) = 0.

This implies λi = 0 for all i.
Conversely, suppose λ1v

1 + · · ·+ λmv
m = 0, λi ≥ 0 implies λi = 0 for

all i. Let

S :=

{
m∑

i=1

λiv
i | λi ≥ 0,

m∑
i=1

λi = 1

}
.

Define f : S → R by f(y) = ||y|| :=
√
y2
1 + · · ·+ y2

n. Then S is a
compact subset of Rn and f is a continuous function. Thus f(S) is a
compact subset of R. Hence there exists x ∈ S with ||x|| ≤ ||x′|| for
all x′ ∈ S. Clearly x 6= 0 since 0 6∈ S by assumption. We will show
(vi, x) > 0 for all i as required. In fact we will show more, namely, that
(y, x) > 0 for all y ∈ S.

Now S is a convex subset of Rn. So for y 6= x we have ty+(1−t)x ∈ S
for all 0 ≤ t ≤ 1. By the choice of x,

(ty + (1− t)x, ty + (1− t)x) ≥ (x, x)
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or

t(y − x, y − x) + 2(y − x, x) ≥ 0.

As t can be made arbitrarily small, this implies (y−x, x) ≥ 0 or (y, x) ≥
(x, x) > 0.

Proposition 4.1.5 Let C be an m × n matrix over R. Suppose u ≥ 0
and Ctu ≥ 0 imply u = 0. Then there exists v > 0 with Cv < 0.

Proof Let C = (cij) and consider the following system of inequalities:

−
n∑

j=1

cijxj > 0 (i = 1, . . . ,m),

xj > 0 (j = 1, . . . , n).

We want to use Lemma 4.1.4 to show that this system has a solution.
Thus we consider an equation of the form

m∑
i=1

λi(−ci1, . . . ,−cin) +
n∑

j=1

µjεj = 0,

where λi, µj ≥ 0 and εj is the jth coordinate vector in Rn. Then
m∑

i=1

λicij = µj (j = 1, . . . , n).

Let u = (λ1, . . . , λm). Then Ctu = (µ1, . . . , µn). Thus we have u ≥ 0
and Ctu ≥ 0. This implies u = 0 and Ctu = 0. Thus all λi and µj

are zero. Hence Lemma 4.1.4 shows that the above inequalities have a
solution. Thus there exists v > 0 with Cv < 0.

We now consider three classes of GCM A. Let

SF = {A | A has finite type}
SA = {A | A has affine type}
SI = {A | A has indeterminate type}

It is easy to see that no GCM can lie in more than one of these classes.
We want to show that each indecomposable GCM lies in one of the
three classes.

Lemma 4.1.6 Let A be an indecomposable GCM. Then u ≥ 0 and
Au ≥ 0 imply that u > 0 or u = 0.
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Proof Suppose u ≥ 0, u 6= 0 and u 6> 0. Then we can reorder 1, . . . , n so

that u1 = · · · = us = 0 and us+1, . . . , un > 0. Let A =
(
P Q

R S

)
where

P is s × s and S is (n − s) × (n − s). Now all entries of the block Q

are ≤ 0 since A is GCM, and if Q has a negative entry, then Au has a
negative coefficient, giving a contradiction. Thus Q = 0, whence R = 0
by definition of GCM . Now A is decomposable, a contradiction.

Now let A be an indecomposable GCM and define

KA = {u | Au ≥ 0}.

KA is a convex cone. We consider its intersection with the convex cone
{u | u ≥ 0}. We will distinguish between two cases:

{u | u ≥ 0, Au ≥ 0} 6= {0},
{u | u ≥ 0, Au ≥ 0} = {0}.

The first of these cases splits into two subcases, as is shown by the next
lemma.

Lemma 4.1.7 Suppose {u | u ≥ 0, Au ≥ 0} 6= {0}. Then just one of
the following cases occurs:

KA ⊂ {u | u > 0} ∪ {0},
KA = {u | Au = 0} and KA is a 1-dimensional subspace of Rn.

Proof We know there exists u 6= 0 with u ≥ 0 and Au ≥ 0. By
Lemma 4.1.6, u > 0. Suppose the first case does not hold. Then there
is v 6= 0 with Av ≥ 0 such that some coordinate of v is ≤ 0. If v ≥ 0
then v > 0 by Lemma 4.1.6, so some coordinate of v is negative.

We have Au ≥ 0 and Av ≥ 0, hence A(tu + (1 − t)v) ≥ 0 for all
0 ≤ t ≤ 1. Since all coordinates of u are positive and some coordinate
of v is negative, there exists 0 < t < 1 with tu + (1 − t)v ≥ 0 and
some coordinate of tu+ (1− t)v is zero. But then tu+ (1− t)v = 0 by
Lemma 4.1.6. Thus v is a scalar multiple of u. We also have

0 = A(tu+ (1− t)v) = tAu+ (1− t)Av.

Since Au ≥ 0 and Av ≥ 0 this implies Av = Au = 0.
Now let w ∈ KA. Then Aw ≥ 0. Either w ≥ 0 or some coordinate

of w is negative. If w ≥ 0 then w > 0 or w = 0 by Lemma 4.1.6.
Suppose w > 0. Then by the above argument with u replaced by w, v
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is a scalar multiple of w, hence w is a scalar multiple of u. Now suppose
some coordinate of w is negative. Then by the above argument with v

replaced by w, w is a scalar multiple of u. Thus in all cases w is a scalar
multiple of u. Hence KA = Ru = {u | Au = 0}.

Finally, both cases cannot hold simultaneously since in the first case
KA cannot contain a 1-dimensional subspace.

We can now identify the first case in the lemma above with the case
of matrices of finite type.

Proposition 4.1.8 Let A be an indecomposable GCM. Then the follow-
ing conditions are equivalent:

(i) A has finite type;
(ii) {u | u ≥ 0, Au ≥ 0} 6= {0} and KA ⊂ {u | u > 0} ∪ {0}.

Proof (i) ⇒ (ii) Suppose A is of finite type. Then there exists u > 0
with Au > 0. Hence {u | u ≥ 0, Au ≥ 0} 6= {0}. Also, detA 6= 0.
Thus {u | Au = 0} is not a 1-dimensional subspace. Hence (ii) holds by
Lemma 4.1.7.

(ii) ⇒ (i) There cannot exist u 6= 0 with Au = 0 for this would give a
1-dimensional subspace in KA. Thus detA 6= 0. Now there exists u 6= 0
with u ≥ 0 and Au ≥ 0. By Lemma 4.1.6, u > 0. If Au > 0, A has finite
type. So suppose to the contrary that some coordinate of Au is zero.
Choose the numbering of 1, . . . , n so that the first s coordinates of Au

are 0 and the last n− s are positive. Let A =
(
P Q

R S

)
where P is s× s

and S is (n− s)× (n− s). The block Q 6= 0, since A is indecomposable.
We choose numbering so that the first row of Q is not the zero vector.
Then

Au =
(
P Q

R S

)(
u1

u2

)
=
(
Pu1 +Qu2

Ru1 + Su2

)
,

and Pu1 + Qu2 = 0 and Ru1 + Su2 > 0. We also have u1, u2 > 0.
Thus Qu2 ≤ 0 since the entries of Q are non-positive, and the first
coordinate of Qu2 is negative. Hence Pu1 ≥ 0 and the first coordinate
of Pu1 is positive. Since Ru1 + Su2 > 0 we can chose ε > 0 such that
R(1 + ε)u1 + Su2 > 0.

We now consider instead of our original vector u =
(
u1

u2

)
, the vector
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(1 + ε)u1

u2

)
> 0. We have

A

(
(1 + ε)u1

u2

)
=
(
Pu1 +Qu2 + εPu1

Ru1 + Su2 + εRu1

)
=
(

εPu1

R(1 + ε)u1 + Su2

)
.

The first coordinate and the last n − s coordinates of this vector are

positive and the remaining coordinates are ≥ 0. Thus A
(

(1 + ε)u1

u2

)
≥

0 and the number of non-zero coordinates in this vector is greater than
that in Au. We may now iterate this process, obtaining at each stage at
least one more non-zero coordinate than we had before. We eventually
obtain a vector v > 0 such that Av > 0.

We next identify the second case in Lemma 4.1.7 with that of an affine
GCM.

Proposition 4.1.9 Let A be an indecomposable GCM. Then the follow-
ing conditions are equivalent:

(i) A has affine type;
(ii) {u | u ≥ 0, Au ≥ 0} 6= {0}, KA = {u | Au = 0}, and KA is a

1-dimensional subspace of Rn.

Proof (i) ⇒ (ii) Suppose A is of affine type. Then there exists u > 0
with Au = 0. It follows that {u | u ≥ 0, Au ≥ 0} 6= {0}. Also λu ∈ KA

for all λ ∈ R. It follows from Lemma 4.1.7 that we are in the second
case of that lemma.

(ii) ⇒ (i) Note first that corank A = 1. Also there exists u 6= 0 with
u ≥ 0 and Au ≥ 0. By Lemma 4.1.6, u > 0. So there exists u > 0 with
Au ≥ 0. But KA = {u | Au = 0}, so Au = 0. Finally, Au ≥ 0 implies
Au = 0.

Proposition 4.1.10 Let A be an indecomposable GCM. Then

(i) A has finite type if and only if At has finite type;
(ii) A has affine type if and only if At has affine type.

Proof Let A be of finite type. There does not exist v > 0 with Av < 0
(Av < 0 ⇒ A(−v) > 0 ⇒ (−v) > 0 ⇒ v < 0). So by Proposi-
tion 4.1.5, there exists u 6= 0 with u ≥ 0 and Atu ≥ 0. So

{u | u ≥ 0, Atu ≥ 0} 6= {0}.
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By Lemma 4.1.7, either

KAt ⊂ {u | u > 0} ∪ {0}

or KAt = {u | Atu = 0} and this is a 1-dimensional subspace. Now
detA 6= 0, so detAt 6= 0. Thus the latter case cannot occur. The former
case must therefore occur, so by Proposition 4.1.8, At is of finite type.

Let A be of affine type. Again, there does not exist v > 0 with Av < 0
(Av < 0 ⇒ A(−v) > 0, which is impossible in the affine case). So by
Proposition 4.1.5, there exists u 6= 0 with u ≥ 0 and Atu ≥ 0. So

{u | u ≥ 0, Atu ≥ 0} 6= {0}.

By Lemma 4.1.7, either

KAt ⊂ {u | u > 0} ∪ {0}

or KAt = {u | Atu = 0} and this is a 1-dimensional subspace. Now
corank A = 1 so corank At = 1. This shows that we cannot have the first
possibility. Thus the second possibility holds, and by Proposition 4.1.9,
we see that At has affine type.

We may now identify the case not appearing in Lemma 4.1.7.

Proposition 4.1.11 Let A be an indecomposable GCM. Then the fol-
lowing conditions are equivalent:

(i) A has indefinite type;
(ii) {u | u ≥ 0, Au ≥ 0} = {0}.

Proof If A has indefinite type then u ≥ 0 and Au ≥ 0 imply u = 0.
Conversely, suppose {u | u ≥ 0, Au ≥ 0} = {0}. Then the same

condition holds for At, i.e. {u | u ≥ 0, Atu ≥ 0} = {0}. Indeed this
follows from Lemma 4.1.7 and Propositions 4.1.8, 4.1.9, 4.1.10. But then
Proposition 4.1.5 implies that there exists v > 0 with Av < 0. Thus A
has indefinite type.

Theorem 4.1.12 (Trichotomy Theorem) Let A be an indecompos-
able GCM. Then exactly one of the following three possibilities holds: A
has finite type, A has affine type, or A has indefinite type. Moreover,
the type of A is the same as the type of At. Finally,

(i) A has finite type if and only if there exists u > 0 with Au > 0.
(ii) A has affine type if and only if there exists u > 0 with Au = 0.

This u is unique up to a (positive) scalar.
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(iii) A has indefinite type if and only if there exists u > 0 with Au < 0.

Proof The first two statements have already been proved. We prove the
third statement. Let u > 0.

(i) Assume that Au > 0. A cannot have affine type as then Au ≥ 0
would imply Au = 0. A cannot have indefinite type as then u ≥ 0 and
Au ≥ 0 would imply u = 0. Thus A has finite type. The converse is
clear.

(ii) Assume that Au = 0. A cannot have finite type as then detA = 0.
A cannot have indefinite type as then u ≥ 0 and Au ≥ 0 would imply
u = 0. Thus A has affine type. The converse is clear, and the remaining
statement follows from Proposition 4.1.9.

(iii) Assume that Au < 0. Then A(−u) > 0. A cannot have finite
type as this would imply −u > 0 or −u = 0. A cannot have affine type
as and A(−u) > 0 would then imply −u = 0. Thus A has indefinite
type. The converse is clear.

Lemma 4.1.13 Let A be an indecomposable GCM.

(i) If A is of finite type then every principal minor AJ is also of
finite type.

(ii) If A is of affine type then every proper principal minor AJ is of
finite type.

Proof By passing to an equivalent GCM we may assume that J =
{1, . . . ,m} for some m ≤ n. Let K = {m+ 1, . . . , n}. Write

A =
(
AJ Q

R S

)
.

(i) We have Au > 0 for some u =
(
uJ

uK

)
> 0. We have

Au =
(
AJuJ +QuK

RuJ + SuK

)
.

We have AJuJ +QuK > 0. But QuK ≤ 0, so AJuJ > 0.
(ii) As in (i) we get AJuJ +QuK = 0, and QuK ≤ 0 implies AJuJ ≥ 0.

Suppose if possible AJuJ = 0. Then QuK = 0, and since uK > 0
this implies that Q = 0, which contradicts the assumption that A is
indecomposable. Hence we have uJ > 0, AJuJ ≥ 0, AJuJ 6= 0. This
implies that AJ cannot have affine or indefinite type.
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Remark 4.1.14 In proving results of this section we have never used
the full force of the assumption that A is a GCM. Namely we nowhere
needed that aii = 2 and aij ∈ Z.

4.2 Indecomposable symmetrizable GCMs

Proposition 4.2.1 Suppose A is a symmetric indecomposable GCM.
Then:

(i) A has finite type if and only if A is positive definite.

(ii) A has affine type if and only if A is positive semidefinite of corank
1.

(iii) A has indefinite type otherwise.

Proof (i) Let A be of finite type. Then there exists u > 0 with Au > 0.
Hence for all λ > 0 we have (A + λI)u > 0. Thus A + λI has finite
type by Trichotomy Theorem. (Note that A + λI need not be GCM,
but see Remark 4.1.14.) Thus det(A + λI) 6= 0 when λ ≥ 0, that is
det(A−λI) 6= 0 when λ ≤ 0. Now the eigenvalues of the real symmetric
matrix A are all real. Thus all the eigenvalues of A must be positive.

Conversely, suppose A is positive definite. Then detA 6= 0, so A has
finite or indefinite type. If A has indefinite type there exists u > 0 with
Au < 0. But then utAu < 0, contradicting the fact that A is positive
definite. Thus A must have finite type.

(ii) Let A have affine type. Then there is u > 0 with Au = 0. The
same argument as in (i) shows that all eigenvalues of A are non-negative.
But A has corank 1, so 0 appears with multiplicity 1.

Conversely, suppose A is positive semidefinite of corank 1. Then
detA = 0 so A cannot have finite type. Suppose A has indefinite type.
Then there exists u > 0 with Au < 0. Thus utAu < 0, which contradicts
the fact that A is positive semidefinite.

(iii) follows from (i) and (ii).

Lemma 4.2.2 Let A an indecomposable GCM of finite or affine type.
Suppose that ai1i2ai2i3 . . . aik−1ik

aiki1 6= 0 for some integers i1, . . . , ik
with k ≥ 3 such that i1 6= i2, i2 6= i3, . . . , ik−1 6= ik, ik 6= i1. Then A is
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of the form



2 −1 0 0 . . . 0 0 −1
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

...
0 0 0 0 . . . −1 2 −1
−1 0 0 0 . . . 0 −1 2


. (4.1)

Proof Choose integers i1, . . . , ik as in the assumption with minimal
possible k. We thus have

airis
6= 0 is (r, s) ∈ {(1, 2), (2, 3), . . . , (k, 1), (2, 1), (3, 2), . . . (1, k)}.

The minimality of k implies that air,is = 0 if (r, s) does not lie in the
above set.

Let J = {i1, . . . , ik}. Then the principal minor AJ of A has form

AJ =



2 −r1 0 0 . . . 0 0 −sk

−s1 2 −r2 0 . . . 0 0 0
0 −s2 2 −r3 . . . 0 0 0

...
0 0 0 0 . . . −sk−2 2 −rk−1

−rk 0 0 0 . . . 0 −sk−1 2


(4.2)

with positive integers ri, si. In particular we see that AJ is indecom-
posable. Now AJ must be finite or affine type by Lemma 4.1.13. Thus
there exists u = (u1, . . . , uk) > 0 with AJu ≥ 0. We define the k × k
matrix

M := diag(u−1
1 , . . . , u−1

k )AJdiag(u1, . . . , uk).

Then mij = u−1
i aijuj . Thus

∑
j

mij = u−1
i

∑
j

(AJ)ijuj ≥ 0.
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In particular,
∑

ij mij ≥ 0. Now we have

M =



2 −r′1 0 0 . . . 0 0 −s′k
−s′1 2 −r′2 0 . . . 0 0 0
0 −s′2 2 −r′3 . . . 0 0 0

...
0 0 0 0 . . . −s′k−2 2 −r′k−1

−r′k 0 0 0 . . . 0 −s′k−1 2


,

where r′i = u−1
i riui+1, s

′
i = u−1

i+1siui and uk+1 is interpreted as u1. We
note that r′i, s

′
i > 0 and r′is

′
i = risi ∈ Z. We also have∑

ij

mij = 2k − (r′1 + s′1)− · · · − (r′k + s′k).

Now r′i+s′i
2 ≥

√
r′is

′
i =
√
risi ≥ 1, hence r′i + s′i ≥ 2. Since

∑
ij mij ≥ 0,

we deduce that r′i + s′i = 2 and r′is
′
i = 1. Hence risi = 1, and since ri, si

are positive integers, we deduce that ri = si = 1, i.e. AJ is of the form
(4.1).

Let v = (1, . . . , 1). Then v > 0 and AJv = 0. Thus AJ is affine type
by Theorem 4.1.12. Lemma 2.1.1 shows that this can only happen when
AJ = A.

Theorem 4.2.3 Indecomposable GCM of finite or affine type is sym-
metrisable.

Proof If there is a set of integers i1, . . . , ik as in Lemma 4.2.2, then we
know that A is of the form (4.1), in particular it is symmetric. Otherwise
A is symmetrizable by Lemma 2.1.1.

Theorem 4.2.4 Let A be an indecomposable GCM. Then:

(i) A has finite type if and only if all its principal minors have posi-
tive determinant.

(ii) A has affine type if and only if detA = 0 and all proper principal
minors have positive determinant.

(iii) A has indefinite type if and only if neither of the above conditions
holds.

Proof (i) Suppose A has finite type. Then A is symmetrizable by The-
orem 4.2.3, hence A = DB where D = diag(d1, . . . , dn) with di > 0 and
B symmetric, see Lemma 2.1.2. Theorem 4.1.12 shows that A and B
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have the same type. By Lemma 4.1.13 all principal minors of B have fi-
nite type, hence by Proposition 4.2.1 they all have positive determinant.
Then the same is true for A.

Conversely, let all principal minors of A have positive determinant.
Suppose there is a set of integers i1, . . . , ik with k ≥ 3 such that i1 6=
i2, i2 6= i3, . . . , ik−1 6= ik, ik 6= i1 and ai1i2ai2i3 . . . aik−1ik

aiki1 6= 0. As in
the proof of the previous theorem, AJ has form (4.2). Analyzing 2 × 2
and 3× 3 principal subminors we conclude that AJ is of the form (4.1).
But then detAJ = 0, giving a contradiction. Thus there is no such
sequence i1, . . . , ik and so A is symmetrizable by Lemma 2.1.1. Hence
A = DB where D = diag(d1, . . . , dn) with di > 0 and B symmetric
of the same type as A. Now, it follows from the assumption that all
principal minors of B have positive determinant, so B is of finite type.

(ii) If A has affine type, then detA = 0 and all proper principal minors
have finite type so have positive determinants by (i).

Conversely, supppose detA = 0 and all proper principal minors have
positive determinants. As above, we have two cases:

(a) there is a principal minor of the form (4.1). Since detAJ = 0 we
must have A = AJ , which is affine type.

(b) A is symmetrizable, in which case we reduce to the symmetric case
as above.

4.3 The classification of finite and affine GCMs

To every GCM A we associate the graph S(A), called the Dynkin dia-
gram of A, as follows. The vertices of the Dynkin diagram are labelled
by 1, . . . , n (or the corresponding simple roots α1, . . . , αn). Let i, j be
distinct vertices of S(A). The rules are as follows:

(a) If aijaji = 0, vertices i, j are not joined.
(b) If aij = aji = −1, vertices i, j are joined by a single edge.
(c) If aij = −1, aji = −2, vertices i, j are joined as follows

• •>
i j

(d) If aij = −1, aji = −3, vertices i, j are joined as follows

• •>
i j
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(e) If aij = −1, aji = −4, vertices i, j are joined as follows

• •>
i j

(f) If aij = −2, aji = −2, vertices i, j are joined as follows

• •<>
i j

(g) If aijaji =≥ 5, vertices i, j are joined as follows

• •
|aij |, |aji|
i j

It is clear that the GCM is determined by its Dynkin diagram.
Moreover, A is indecomposable if and only if S(A) is connected.

Theorem 4.3.1 Let A be an indecomposable GCM . Then:

(i) A is of finite type if and only if its Dynkin diagram belongs to
Figure 4.1. Numbers on the right give detA.

(ii) A is of affine type if and only if its Dynkin diagram belongs to Fig-
ures 4.2 and 4.3. All diagrams there have `+1 vertices. Numeric
marks are the coordinates of the unique vector δ = (a0, a1, . . . , a`)
such that Aδ = 0 and the ai are positive mutually prime integers.
Each diagram X

(1)
` in Figure 4.2 is obtained from the diagram

X` in Figure 4.1 by adding a vertex labeled α0 and preserving the
labeling of other vertices.

Proof We first prove that the numeric marks in the diagrams from Fig-
ures 4.2 and 4.3 are the coordinates of the unique vector δ = (a0, a1, . . . , a`)
such that Aδ = 0 and the ai are positive mutually prime integers. Note
that Aδ = 0 is equivalent to

2ai =
∑

j

mjaj for all i

where the sum is over all j which are linked with i; moreover if the
number of edges between i and j is equal to s > 1 and the arrow points
to i then thenmj = s, otherwisemj = 1. Now check that the marks work
in all cases. Now from Theorem 4.1.12 we conclude that all diagrams
from Figures 4.2 and 4.3 are affine and δ is unique.

Since all diagrams from Figure 4.1 are proper subdiagrams of diagrams
from Figures 4.2 and 4.3, Theorem 4.2.4 implies that they are of finite
type. It remains to show that if A is of finite (resp. affine) type then
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S(A) appears in Figure 4.1 (resp. Figures 4.2 and 4.3). We establish this
by induction on n. The case n = 1 is clear. Also, using the condition
detA ≥ 0 and Theorem 4.2.4, we obtain:

finite diagrams of rank 2 are A2, C2, G2; (4.3)

affine diagrams of rank 2 are A(1)
1 , A

(2)
2 ; (4.4)

finite diagrams of rank 3 are A3, B3, C3; (4.5)

affine diagrams of rank 3 are A(1)
2 , C

(1)
2 , G

(1)
2 , D

(2)
3 , A

(2)
4 , D

(3)
4 . (4.6)

Next, from Lemma 4.2.2, we have

if S(A) contains a cycle, then S(A) = A
(1)
` . (4.7)

Moreover, by induction and Lemma 4.1.13,

Any proper subdiagram of S(A) appears in Figure 4.1. (4.8)

Now let S(A) be a finite diagram. Then it does not have graphs
appearing in Figures 4.2 and 4.3 as subgraphs and does not have cycles.
This implies that every branch vertex has type D4 since otherwise we
would get an affine subdiagram or a contradiction with (4.8). Using
(4.8) again we see that there is at most one branch vertex, in which case
it also follows that S(A) is D`, E6, E7, or E8. Similarly one checks that
if S(A) has multiple edges then it must be B`, C`, F4, or G2. Finally, a
graph without branch vertices, cycles and multiple edges must be A`.

Let S(A) be affine. In view of (4.7) we may assume that S(A) has no
cycles. In view of (4.8), S(A) is obtained from a diagram in Figure 4.1
by adjoining one vertex in such a way that every subdiagram is again in
Figure 4.1. It is easy to see that in this way we can only get diagrams
from Figures 4.2 and 4.3.

Proposition 4.3.2 Let A be an indecomposable GCM. Then the follow-
ing conditions are equivalent:

(i) A is of finite type.
(ii) A is symmetrizable and the (·|·) on hR is positive definite.
(iii) |W | <∞.
(iv) |∆| <∞.
(v) g(A) is a finite dimensional simple Lie algebra.
(vi) There exists α ∈ ∆+ such that α+ αi 6∈ ∆ for all i = 1, . . . , n.

Proof (i) ⇒ (ii) follows from Theorems 4.2.3 and 4.2.4.
(ii) ⇒ (iii). In view of Proposition 3.2.4, W is a subgroup of the
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orthogonal group G := O((·|·)), which is known to be compact. If we
can check that W is a discrete subgorup, it will follow from general
theory that W is finite. To see that W is discrete it suffices to find an
open neighborhood U of identity e in G with U ∩W = {e}. Consider
the action of G on hR and fix an element h in the interior C of the
fundamental chamber. We get a continuos map ϕ : G → G · h. Take
U := ϕ−1(C).

(iii) ⇒ (iv) follows from Proposition 3.4.1(v).
(iv) ⇒ (vi) is obvious.
(vi) ⇒ (i). Let α ∈ ∆+ be such that α + αi 6∈ ∆ for all i. By

Proposition 3.1.5(v), 〈α, α∨i 〉 ≥ 0 for all i. Write α = u1α1 + · · ·+ unαn

with non-negative coefficients ui. Then u = (u1, . . . , un) ≥ 0, u 6= 0,
and Au ≥ 0. By Trichotomy Theorem, A is finite or affine type, and in
the latter case we have 〈α, α∨i 〉 = 0 for all i. But then α 6= αi, and so
α−αi ∈ ∆+ for some i by Lemma 1.4.5, hence α−αi+2αi = α+αi ∈ ∆+

in view of Proposition 3.1.5(vi), giving a contradiction.
Finally, (i) ⇒ (v) follows from Proposition 1.4.8 and (v) ⇒ (iv) is

obvious.
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A` . . .• • • • • • • •
α1 α2 α`−1 α`

` + 1

B` . . .• • • • • • • •>
α1 α2 α`−1 α`

2

C` . . .• • • • • • • •<
α1 α2 α`−1 α`

2

D` . . .• • • • • • • •

•

α1 α2 α`−2

α`

α`−1

4

E6

•α6

• • • • •
α1 α2 α3 α4 α5

3

E7

•α7

• • • • • •
α1 α2 α3 α4 α5 α6

2

E8

•α8

• • • • • • •
α1 α2 α3 α4 α5 α6 α7

1

F4 • • • •>
α1 α2 α3 α4

1

G2 • •>
α1 α2

1

Fig. 4.1. Dynkin diagrams of finite GCMs
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A
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1 • •< >
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A
(1)
` (` ≥ 2) . . .• • • • • • • •

1 1 1 1
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•
1

B
(1)
` (` ≥ 3) . . .• • • • • • • •>

1 2 2 2 2

•1

C
(1)
` (` ≥ 2) . . .• • • • • • • •<

1 2 2 2 1
>

D
(1)
` (` ≥ 4) . . .• • • • • • • •

•

1 2 2 2 1

1•1

E
(1)
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•

•

2

1

• • • • •
1 2 3 2 1

E
(1)
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• • • • • • •
1 2 3 4 3 2 1

E
(1)
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•3

• • • • • • • •
1 2 3 4 5 6 4 2

F
(1)
4 • • • • •>

1 2 3 4 2

G
(1)
2 • • •>

1 2 3

Fig. 4.2. Dynkin diagrams of untwisted affine GCMs
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A
(2)
2 • •<

α0 α1

2 1

A
(2)
2` (` ≥ 2) . . .• • • • • • • •<

α0 α1 α2 α`−1 α`

2 2 2 2 1
<

A
(2)
2`−1 (` ≥ 3) . . .• • • • • • • •<

1 2 2 2 1

α1 α2 α3 α`−1 α`

•1α0

D
(2)
`+1 (` ≥ 2) . . .• • • • • • • •>

α0 α1 α2 α`−1 α`

1 1 1 1 1
<

E
(2)
6 • • • • •<

1 2 3 2 1

α0 α1 α2 α3 α4

D
(3)
4 • • •<

1 2 1

α0 α1 α2

Fig. 4.3. Dynkin diagrams of twisted affine GCMs
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Real and Imaginary Roots

5.1 Real roots

A root α ∈ ∆ is called real if there exists w ∈ W such that w(α) is a
simple root. Denote by ∆re and ∆re

+ the sets of the real and positive real
roots respectively. If A is of finite type, then induction on height shows
that every root is real.

Let α ∈ ∆re. Then α = w(αi) for some w and some i. Define the dual
real root α∨ ∈ (∆∨)re by setting

α∨ = w(α∨i ).

This definition is independent of the choice of the presentation α =
w(αi). Indeed, we have to show that the equality u(αi) = αj implies
u(α∨i ) = α∨j , but this has been proved in Lemma 3.3.1, see (3.8). Thus
we have a canonical W -equivariant bijection bijection ∆re → (∆∨)re.

For α ∈ ∆re, define the reflection

rα : h∗ → h∗, λ 7→ λ− 〈λ, α∨〉α.

Since 〈α, α∨〉 = 2, it is indeed a reflection. If α = w(αi), then wriw−1 =
rα, so we have rα ∈W .

Proposition 5.1.1 Let α ∈ ∆re. Then:

(i) multα = 1;
(ii) kα is a root if and only if k = ±1.
(iii) If β ∈ ∆, then there exist non-negative integers p, q such that

p − q = 〈β, α∨〉 such that β + kα ∈ ∆ ∪ {0} if and only if −p ≤
k ≤ q, k ∈ Z.

(iv) Suppose that A is symmetrizable and let (·|·) is the standard in-
variant bilinear form on g. Then

68
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(a) (α|α) > 0;
(b) α∨ = 2ν−1(α)/(α|α);
(c) if α =

∑
i kiαi, then ki

(αi|αi)
(α|α) ∈ Z for all i.

(v) if ±α 6∈ Π, then there exists i such that

|ht ri(α)| < |ht α|.

(vi) if α > 0 then α∨ > 0.

Proof The proposition is true if α is a simple root, see (2.8), (2.10), and
Proposition 3.1.5. Now (i)-(iii) follow from Proposition 3.2.1(ii), and
(iv)(a),(b) from Proposition 3.2.4.

(iv)(c) follows from the fact that α∨ ∈
∑

i Zα∨i and the formula

α∨ =
∑

i

(αi|αi)
(α|α)

kiα
∨
i , (5.1)

which in turn follows from (iv)(b).
(v) Assume the statement does not hold. We may assume that α > 0.

Then−α ∈ C∨, and by Proposition 3.4.1(iv) applied to dual root system,
−α+ w(α) ≥ 0 for any w ∈ W . Taking w such that w(α) ∈ Π we get a
contradiction.

(vi) Apply induction on ht α. For ht α > 1 we have by (v) that
ht riα < ht α, for some i, and riα > 0. By induction, ri(α∨) = (riα)∨ >
0, whence α∨ > 0.

Lemma 5.1.2 Assume that A is symmetrizable. Then the set of all
α =

∑
i kiαi ∈ Q such that

ki(αi|αi) ∈ (α|α)Z for all i (5.2)

is W -invariant.

Proof It suffices to check that riα again satisfies (5.2), i.e.

(ki − 〈α|α∨i 〉)(αi|αi) ∈ (α|α)Z,

or

2(α|αi) ∈ (α|α)Z,

which follows from (5.2):

2(α|αi) =
∑

j

2(αj |αi)
(αj |αj)

kj(αj |αj) =
∑

j

ajikj(αj |αj) ∈ (α|α)Z.
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Let A be an indecomposable symmetrizable and (·|·) be a standard
invariant bilinear form. Then for a real root α we have (α|α) = (αi|αi),
where αi is one of the simple roots. We call α a short (resp. long) root
if (α|α) = mini(αi|αi) (resp. (α|α) = maxi(αi|αi)). This definition
is independent of the choice of the standard form since α is a linear
combination of simple roots.

Note that if A is symmetric then all simple roots are of the same length
(so they are both short and long). If A is not symmetric and S(A) has m
arrows directed in the same direction then A has m+1 different lengths,
as the arrow is directed from a longer to a shorter root. Hence if A
is not symmetric in Figure 4.1 then every root is either long or short.
Moreover, if A is not symmetric and affine and its type is not A(2)

2` for
` > 1, then every real root is either short or long. In the exceptional
case there are three root lengths for real roots. We use notation

∆re
s , ∆re

l , ∆re
i

to denote the set of all short, long, and intermediate roots, repspectively.
Note that α is a short real root for g(A) if and only if α∨ is a long

real root for g(At). Indeed, by Proposition 5.1.1(iv)(b)

(α∨|α∨) = (
2ν−1(α)
(α|α)

|2ν
−1(α)

(α|α)
) =

4
(α|α)

. (5.3)

Throughout this chapter: we normalize the form so that (αi|αi)
are mutually prime positive integers for each connected component of
S(A). In particular, if A is symmetric then (αi|αi) = 1 for all i.

5.2 Real roots for finite and affine types

Throughout this section we assume that A is finite or affine type.
If α =

∑
i kiαi ∈ Q then (α|α) =

∑
i,j kikj(αi|αj). Now, (αi|αj) ∈ Q

for all i, j. Thus there exists a positive integer d such that (αi|αj) ∈ 1
dZ

for all i, j. Thus if (α|α) > 0 then (α|α) ≥ 1
d . Hence there exists m > 0

such that

m = min{(α|α)|α ∈ Q and (α|α) > 0}.

Lemma 5.2.1 Let α =
∑

i kiαi ∈ Q.

(i) If (α|α) = m then ±α ∈ Q+.
(ii) If ki(αi|αi) ∈ (α|α)Z for all i then ±α ∈ Q+.
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Proof If±α 6∈ Q+, then α = β−γ for β, γ ∈ Q+ and suppβ∩supp γ = ∅.
Hence (β|γ) ≤ 0 and

(α|α) = (β|β) + (γ|γ)− 2(β|γ) ≥ (β|β) + (γ|γ).

All proper principal minors of A have finite type, so, considering con-
nected components β1, . . . , βr of β we have (β|β) = (β1|β1) + · · · +
(βr|βr) > 0. Hence (β|β) ≥ m. Similarly (γ|γ) ≥ m. Hence (α|α) ≥ 2m,
which proves (i).

Next, (ii) is clear if (α|α) = 0, so assume that (α|α) > 0. Then

(β|β)
(α|α)

=
1

(α|α)

∑
i

k2
i (αi|αi) +

∑
i<j

2kikj(αi|αj)


=

∑
i

ki
ki(αi|αi)

(α|α)
+
∑
i<j

aijkj(
ki(αi|αi)

(α|α)
) ∈ Z,

where all indices in the summations are assumed to belong to suppβ.
Since (β|β) > 0, it follows that (β|β) ≥ (α|α). Similarly (γ|γ) ≥ (α|α).
So (α|α) ≥ (β|β) + (γ|γ) ≥ 2(α|α). This contradiction yields (ii).

Proposition 5.2.2

∆re = {α =
∑

i

kiαi ∈ Q | (α|α) > 0, and ki
(αi|αi)
(α|α)

∈ Z for all i}.

Proof ”⊂” is obvious for the short roots, follows from Proposition 5.2.4
for long roots, and from (5.4) for intermediate roots. Conversely, let
α be as in the right hand side. Then w(α) ∈ ±Q+ for any w ∈ W

be Lemmas 5.1.2 and 5.2.1(ii). We may assume that α ∈ Q+, and let
β =

∑`
i=0 k

′
iαi be an element of {w(α) | w ∈ W} ∩ Q+ with minimal

possible height. Since (β|β) > 0, we have
∑`

i=0 k
′
i(αi|β) > 0. As all

k′i ≥ 0, there is i with (αi|β) > 0, and 〈β, α∨i 〉 = 2 (αi|β)
(αi|αi)

> 0. So
ri(β) = β − 〈β, α∨i 〉αi has smaller height, and ri(β) 6∈ Q+. But by
Lemmas 5.2.1(ii) and 5.1.2, ±ri(β) ∈ Q+, so ri(β) ∈ −Q+. Hence
β = kαi for some positive integer k. Thus m′ = (β|β) = k2(αi|αi). So
k′i

(αi|αi)
(β|β) = 1

k , whence k = 1, and we are done.

Proposition 5.2.3 Let A be an indecomposable GCM of finite or affine
type. Then

∆re
s = {α ∈ Q | (α|α) = m}.
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Proof Suppose α ∈ Q satisfies (α|α) = m. By Lemma 5.2.1(i), we may
assume that α ∈ Q+. Consider the set

{w(α) | w ∈W} ∩Q+.

We choose an element β =
∑
kiαi in this set with ht β minimal. Since

(β|β) = (α|α) = m, we have∑
i

ki(αi|β) = m.

Since ki ≥ 0 and m > 0 there exists i with (αi|β) > 0. Then 〈β, α∨i 〉 > 0.
So ri(β) has smaller height than β, whence si(β) ∈ −Q+, using the
previous lemma. It follows that β = rαi for some positive integer r.
Since (rαi|rαi) ≥ r2m, we have r = 1. Hence β ∈ ∆re

s and α ∈ ∆re
s also.

Conversely, if α ∈ ∆re
s then α = w(αi) for some i and (α|α) = (αi|αi).

However, we have seen in the previous paragraph that the short simple
roots have (αi|αi) = m, so (α|α) = m also.

Note from Proposition 5.2.3 that m is achieved on simple roots, so m
is just mini(αi|αi). The following easier result follows immediately from
Proposition 5.2.2.

Proposition 5.2.4 Let A be an indecomposable GCM of finite or affine
type, and

M := max{(α|α) | α ∈ ∆re}.

Then

∆re
l = {α =

∑
i

kiαi ∈ Q | (α|α) = M, ki
(αi|αi)
(α|α)

∈ Z for all i}.

Proposition 5.2.5 Let A = A
(2)
2` and m′ = (αi|αi) for 1 ≤ i < `. Then

∆re
i = {α ∈ Q | (α|α) = m′}.

Proof Let α =
∑`

i=0 kiαi ∈ Q satisfy (α|α) = m′. We just need to
check that

ki
(αi|αi)
(α|α)

∈ Z for all i. (5.4)

Indeed the condition ki
(αi|αi)
(α|α) ∈ Z is obvious for i 6= 0 since (αi|αi) = m′
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for i = 1, . . . , `− 1 and 2m′ for i = `. It just remains to show that k0 is
even. We have

(α|α) = k2
0(α0|α0) + 2k0k1(α0|α1) + (

∑̀
i=1

αi|
∑̀
i=1

αi)

= k2
0(α0|α0) + k0k1a10(α1|α1) +

∑̀
i=1

k2
i (αi|αi)

+
∑

1≤i<j≤`

kikjaij(αi|αi).

Thus (α|α) ∈ k2
0(α0|α0) + Zm′. But (α|α) = m, so k2

0(α0|α0) ∈ Zm′.
Since (α0|α0) = m′/2, we have k2

0/2 ∈ Z, whence k0 is even as required.

5.3 Imaginary roots

If a root is not real it is called imaginary. Denote by ∆im and ∆im
+ the

sets of the imaginary and positive imaginary roots respectively.

Proposition 5.3.1

(i) The set ∆im
+ is W -invariant.

(ii) For α ∈ ∆im
+ there exists a unique (positive) root β ∈ −C∨ which

is W -conjugate to α.
(iii) If A is symmetrizable then the root α is imaginary if and only if

(α|α) ≤ 0.

Proof (i) As ∆im
+ ⊂ ∆ \Π and the set Π \ {αi} is ri-invariant, it follows

that ∆im
+ is W -invariant.

(ii) Let α ∈ ∆im
+ and β be the element of minimal height in W · α ⊂

∆+. Then β ∈ −C∨. Indeed, if 〈β, α∨i 〉 > 0 then riβ ∈ ∆+ has smaller
height. Uniqueness of β follows from Proposition 3.4.1(ii).

(iii) If α ∈ ∆im . Since the form is W -invariant, as in (ii), we may
assume that α =

∑
i kiαi ∈ −C∨ and ki ∈ Z+. Then

(α|α) =
∑

i

ki(α|αi) =
∑

i

ki

2
|αi|2〈α, α∨i 〉 ≤ 0.

The converse follows from Proposition 5.1.1(iv)(a).
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For α =
∑

i kiαi ∈ Q define the support of α, denoted suppα, as the
subdiagram of S(A) of the vertices i such that ki 6= 0 and all edges
connecting them. By Lemma 1.4.7, suppα is connected. Set

K = {α ∈ Q+ \ {0} | 〈α, α∨i 〉 ≤ 0 for all i and suppα is connected}.

Lemma 5.3.2 K ⊂ ∆im
+ .

Proof Let α =
∑

i kiαi ∈ K. Set

Ωα = {γ ∈ ∆+ | γ ≤ α}.

The set Ωα is finite, and it is non-empty since the simple roots appearing
in decomposition of α belong to Ωα. Let β =

∑
imiαi be an element of

maximal height in Ωα. Note by definition

β + αi 6∈ ∆+ if ki > mi. (5.5)

Next,

suppβ = suppα.

Indeed, if some i ∈ suppα \ suppβ, we may assume that 〈β, α∨i 〉 < 0,
whence β + αi ∈ Ωα by Proposition 3.1.5(v), giving a contradiction.

Let A1 be the principal minor of A corresponding to the subset suppα.
If A1 is of finite type then 〈α, α∨i 〉 ≤ 0 for all i implies α = 0 giving a
contradiction (see the argument in the proof of Proposition 4.3.2). If A1

is not of finite type, then by Proposition 4.3.2(vi),

P := {j ∈ suppα | kj = mj} 6= ∅.

We aim to first show that P = suppα, and so α = β ∈ ∆+. Let
R be a connected component of subdiagram suppα \ P . By (5.5) and
Proposition 3.1.5(v),

〈β, α∨i 〉 ≥ 0 for all i ∈ R. (5.6)

Set β′ =
∑

i∈Rmiαi. Then

〈β′, α∨i 〉 = 〈β, α∨i 〉 −
∑

j∈supp α\R

mjaij .

Now (5.6) implies 〈β′, α∨i 〉 ≥ 0 for all i ∈ R and 〈β′, α∨j 〉 > 0 for some
j ∈ R.
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Let AR be the principal minor corresponding to the subset R, and u

be the column vector with entries mj , j ∈ R. Since

〈β′, α∨i 〉 =
∑
j∈R

aijmj (i ∈ R),

we have u > 0, AMu ≥ 0, and AMu 6= 0. It follows that AM is not affine
or indefinite type, hence it is finite type. Now let

α′ =
∑
i∈R

(ki −mi)αi.

We have ki−mi > 0 for all i ∈ R, and α− β =
∑

i∈supp α\P (ki−mi)αi.
Thus for i ∈ R we have

〈α− β, α∨i 〉 =
∑

j∈supp α\P

(kj −mj)aij =
∑
j∈R

(ki −mi)aij = 〈α′, α∨i 〉,

since R is a connected component of suppα \ P . Thus

〈α′, α∨i 〉 = 〈α, α∨i 〉 − 〈β, α∨i 〉 (i ∈ R).

Now 〈α, α∨i 〉 ≤ 0 since α ∈ K and 〈β, α∨i 〉 ≥ 0 by (5.6), so 〈α′, α∨i 〉 ≤ 0
for all i ∈ R. Now let u be the column vector with coordinates ki −mi

for i ∈ R. Then we have u > 0 and AMu ≤ 0. Since AM has finite type
AM (−u) ≥ 0 implies −u > 0 or −u = 0, giving a contradiction. This
completes the proof of the fact that α ∈ ∆+.

Finally, 2α satisfies all the assumptions of the lemma, so α ∈ ∆+, and
by Proposition 5.1.1(ii), α ∈ ∆im

+ .

Theorem 5.3.3 ∆im
+ =

⋃
w∈W w(K).

Proof ”⊃” follows from Lemma 5.3.2 and Proposition 5.3.1(i). The
converse embedding holds in view of Proposition 5.3.1(i),(ii) and the
fact that suppα is connected for every root α.

Proposition 5.3.4 If α ∈ ∆im
+ and r a non-zero rational number such

that rα ∈ Q, then rα ∈ ∆im .

Proof In view of Proposition 5.3.1(i),(ii) we may assume that α ∈ −C∨∩
Q+. Since α is a root, its support is connected, so α ∈ K. Then rα ∈ K
for any r > 0 as in the assumption. By Lemma 5.3.2, rα ∈ ∆im

+ .

Theorem 5.3.5 Let A be indecomposable.
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(i) If A is finite type then ∆im = ∅.
(ii) If A is affine type then ∆im

+ = {nδ | n ∈ Z>0}, where δ =∑`
i=0 aiαi and ai are the marks in the Dynkin diagram.

(iii) If A is indefinite type then there exists a positive imaginary root
α =

∑
i kiαi such that ki > 0 and 〈α, α∨i 〉 < 0 for all i = 1, . . . , n.

Proof By the definition of types and Remark 4.1.2, the set

{α ∈ Q+ | 〈α, αi〉 ≤ 0}

is {0} if A is finite type, is Zδ is A is affine type, and there exists
α =

∑
i kiαi such that ki > 0 and 〈α, α∨i 〉 < 0 for all i = 1, . . . , n, if A

is indefinite type. Now apply Theorem 5.3.3.

We call a root α null-root if α|h′ = 0, or equivalently 〈α, α∨i 〉 = 0 for
all i. It follows from Theorem 4.1.12 that if α is a null-root if and only
if suppα is affine type which represents a connected component of the
diagram A and α = kδ for k ∈ Z. We call a root α isotropic if (α|α) = 0.

Proposition 5.3.6 Let A be symmetrizable. A root α is isotropic if and
only if it is W -conjugate to an imaginary root β such that suppβ is a
subdiagram of affine type in S(A).

Proof Let α be an isotropic root. We may assume that α > 0. Then α ∈
∆im

+ by Proposition 5.1.1(iv)(a), and α is W -conjugate to an imaginary
root β ∈ K such that 〈β, α∨i 〉 ≤ 0 for all i, thanks to Proposition 5.3.1(ii).
Let β =

∑
i∈P kiαi and P = suppβ. Then

(β|β) =
∑
i∈P

ki(β|αi) = 0,

where ki > 0 and

(β|αi) =
1
2
|αi|2〈β, α∨i 〉 ≤ 0

for all i ∈ P . So 〈β, α∨i 〉 = 0 for all i ∈ P , and P is an affine diagram.
Conversely, let β = kδ be an imaginary root for an affine diagram.

Then

(β|β) = k2(δ|δ) = k2
∑

i

ai(δ|αi) = 0

since 〈δ, α∨i 〉 = 0 for all i.
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Affine Algebras

6.1 Notation

Throughout we use the following notation in the affine case:

• A is an indecomposable GCM of affine type of order ` + 1 and
rank `.
• a0, a1, . . . , a` are the marks of the diagram S(A) (note that a0 =

1, unless A = A
(2)
2` in which case a0 = 2).

• a∨0 , a∨1 , . . . , a∨` are the marks of the dual diagram S(At) (this di-
agram is obtained from S(A) by changing direction of all arrows
and preserving the labels of the vertices). Note that in all cases
a∨0 = 1.
• The numbers

h :=
∑̀
i=0

ai, h∨ :=
∑̀
i=0

a∨i

are Coxeter and dual Coxeter numbers.
• r ∈ {1, 2, 3} refers to the number r in the type X(r)

N .
• c =

∑`
i=0 a

∨
i α

∨
i is the canonical central element. By Proposi-

tion 1.4.6, the center c of g is Cc.
• δ =

∑`
i=0 aiαi. Then ∆im = {±δ,±2δ, . . . }, ∆im

+ = {δ, 2δ, . . . },
see Theorem 5.3.5.

6.2 Standard bilinear form

We know that A is symmetrizable. Moreover,

A = diag(
a0

a∨0
, . . . ,

a`

a∨`
)B (6.1)

77
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for a symmetric matrix B. Indeed let δ = (a0, . . . , a`)t and δ∨ =
(a∨0 , . . . , a

∨
` )t. If A = DB where D is a diagonal invertible matrix and

B is a symmetric matrix then Bδ = 0, and hence δtB = 0. On the other
hand, (δ∨)tA = 0 implies (δ∨)tDB = 0, whence BDδ∨ = 0, and since
dim kerB = 1, we get Dδ∨ is proportional to δ.

Fix an element d ∈ h such that

〈αi, d〉 = 0 for i = 1, . . . , `, 〈α0, d〉 = 1.

d is defined up to a summand proportional to c and is called energy
element. Note that {α∨0 , α∨1 , . . . , α∨` , d} is a basis of h. Indeed, we must
show that d is not a linear combination of α∨0 , α

∨
1 , . . . , α

∨
` . Otherwise

d =
∑`

i=0 uiα
∨
i , and Atu ≥ 0, Atu 6= 0, giving a contradiction with the

affine type of At.
Note that

g = [g, g]⊕ Cd.

Following §2.2, define the non-degenerate symmetric bilinear form (·|·)
on h by

(α∨i |α∨j ) =
aj

a∨j
aij (0 ≤ i, j ≤ `);

(α∨i |d) = δi,0a0 (0 ≤ i ≤ `);
(d|d) = 0.

It follows that

(c|α∨i ) = 0 (0 ≤ i ≤ `);
(c|c) = 0;

(c|d) = a0.

By Theorem 2.2.3, this form can be uniquely extended to g so that all
conditions of that theorem hold. The extended form (·|·) will be referred
to as the normalized invariant form.

Next define Λ0 ∈ h∗ by

〈Λ0, α
∨
i 〉 = δi0, 〈Λ0, d〉 = 0.

Then

{α0, . . . , α1,Λ0}

is a basis of h∗.
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The isomorphism ν : h→ h∗ defined by the form (·|·) is given by

ν : α∨i 7→
ai

a∨i
αi,

ν : d 7→ a0Λ0.

We also have that

ν : c 7→ δ.

The transported form (·|·) on h∗ has the following properties:

(αi|αj) =
a∨i
ai
aij (0 ≤ i, j ≤ `);

(αi|Λ0) = δi0a
−1
0 (0 ≤ i ≤ `);

(Λ0|Λ0) = 0;

(δ|αi) = 0 (0 ≤ i ≤ `);
(δ|δ) = 0;

(δ|Λ0) = 1.

It follows that there is an isometry of lattices

Q∨(A) ∼= Q(At). (6.2)

Denote by
◦
h (resp.

◦
hR) the C-span (resp. R-span) of α∨1 , . . . , α

∨
` .

The dual notions
◦
h∗ and

◦
hR
∗ are defined as similar linear combinations of

α1, . . . , α`. Then we have decompositions into orthogonal direct sums

h =
◦
h ⊕(Cc+ Cd), h∗ =

◦
h∗ ⊕ (Cδ + CΛ0).

Set

hR :=
◦
hR +Rc+ Rd, h∗R =

◦
hR
∗ + RΛ0 + Rδ.

By Theorem 4.2.4, the restriction of the bilinear form (·|·) to
◦
hR and

◦
hR
∗

(resp.
◦
hR +Rc and

◦
hR
∗ + Rδ) is positive definite (resp. positive semidefi-

nite with kernels Rc and Rδ).
For a subset S ⊂ h∗ denote by S̄ the orthogonal projection of S onto

◦
h∗. We have

λ− λ̄ = 〈λ, c〉Λ0 +
|λ|2 − |λ̄|2

2〈λ, c〉
δ (λ ∈ h∗, 〈λ, c〉 6= 0). (6.3)

Indeed, λ− λ̄ = b1Λ0 + b2δ. Applying (·|δ), we deduce that b1 = (λ|δ) =
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〈λ, c〉. Now, |λ|2 = |λ̄|2 + 2b1b2, which implies the required expression
for b2. The following closely related formula is proved similarly:

λ = λ̄+ 〈λ, c〉Λ0 + (λ|Λ0)δ. (6.4)

Define ρ ∈ h∗ by

〈ρ, d〉 = 0, 〈ρ, α∨i 〉 = 1 (0 ≤ i ≤ `).

Then (6.4) gives

ρ = ρ̄+ h∨Λ0. (6.5)

6.3 Roots of affine algebra

Denote by
◦
g the subalgebra of g generated by ei and fi for i = 1, . . . , `.

This subalgebra is isomorphic to g(
◦
A) where

◦
A is obtained from A by

removing 0th row and 0th column. This is a finite dimensional simple
Lie algebra whose Dynkin diagram comes from S(A) by deleting the 0th
vertex, see Proposition 4.3.2.

Indeed, let
◦
Π= {α1, . . . , α`},

◦
Π∨ = {α∨1 , . . . , α∨` }.

Then
◦
h,

◦
Π,

◦
Π∨ is a realization of

◦
A, and since [ei, fi] = α∨i ,

◦
g is generated

by ei, fi for i = 1, . . . , ` and
◦
h, and the relations (1.12)-(1.15) hold. So

there is a homomorphism from g̃(
◦
A) onto

◦
g. We claim that

◦
g has no

non-trivial ideals which have trivial intersection with
◦
h. Otherwise, if i

is such an ideal let x ∈ i be a non-zero element of weight α 6= 0. Then
α ∈

◦
∆, where

◦
∆= ∆ ∩

◦
h∗. (6.6)

We may assume that α is the smallest positive root for which such x

exists. Then

[fi, x] = 0 (i = 1, . . . , `).

But it is also clear from the relations that [f0, x] = 0. By Lemma 1.4.5,
x = 0. This contradiction proves that there is a homomorphism from
g(

◦
A) onto

◦
g. Since g(

◦
A) is simple by Proposition 1.4.8(i), this homo-

morphism must be an isomorphism.
We will also use the notations

◦
∆+:=

◦
∆ ∩∆+,

◦
Q= Z

◦
∆,

◦
Q∨ = Z

◦
∆∨.
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◦
∆s and

◦
∆l for the sets of short and long roots in

◦
∆, respectively, and

◦
W for the Weyl group for

◦
∆.

Note that a∨0 = 1 implies

Q∨ =
◦
Q∨ ⊕ Zc (orthogonal direct sum). (6.7)

We denote by ∆re
s and ∆re

l the sets of short and long real roots, re-
spectively. For type A

(2)
2` we denote by ∆re

i the set of real roots of
intermediate length.

Proposition 6.3.1

(i) If r = 1 then ∆re = {α + nδ | α ∈
◦
∆, n ∈ Z}, and α + nδ ∈ ∆re

is short if and only if α ∈
◦
∆ is short.

(ii) If r = 2 or 3 and A 6= A
(2)
2` then

∆re
s = {α+ nδ | α ∈

◦
∆s, n ∈ Z},

∆re
l = {α+ nrδ | α ∈

◦
∆l, n ∈ Z}.

(iii) If A = A
(2)
2` for ` > 1 then

∆re
s = {1

2
(α+ (2n− 1)δ) | α ∈

◦
∆l, n ∈ Z},

∆re
i = {α+ nδ | α ∈

◦
∆s, n ∈ Z},

∆re
l = {α+ 2nδ | α ∈

◦
∆l, n ∈ Z}.

(iv) If A = A
(2)
2 then

∆re
s = {1

2
(α+ (2n− 1)δ) | α ∈

◦
∆, n ∈ Z},

∆re
l = {α+ 2nδ | α ∈

◦
∆, n ∈ Z}.

(v) ∆re + rδ = ∆re.

(vi) ∆re
+ = {α ∈ ∆re with n > 0}∪

◦
∆+.

Proof (v),(vi) follow from (i)-(iv).

Suppose that A 6= A
(2)
2` . Then

◦
∆s⊂ ∆re

s . Let α ∈
◦
∆s. Then (α|α) = m.

Hence for n ∈ Z we have (α + nδ|α + nδ) = m. By Proposition 5.2.3,
α+ nδ ∈ ∆re

s .
Conversely, let β =

∑`
i=0 kiαi ∈ ∆re

s . By Proposition 5.2.3,

(β − k0δ|β − k0δ) = (β|β) = m.
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Since a0 = 1, we have β − k0δ =
∑`

i=1(ki − k0ai)αi. So by (6.6) and

Proposition 5.2.3 again, we deduce that β − k0δ ∈
◦
∆s, thus the short

roots have the required form.

We now consider the long roots. Note that
◦
∆l⊂ ∆re

l . Let α =∑n
i=1 kiαi ∈

◦
∆l. Then (α + nδ|α + nδ) = (α|α) = M . By Propo-

sition 5.2.4, we have ki
(αi|αi)
(α|α) ∈ Z for i = 1, . . . , `. By the same

proposition α + nδ ∈ ∆re
l if and only nai

(αi|αi)
(α|α) ∈ Z for i = 0, . . . , `.

Now (αi|αi) = 2a∨i
ai

, so the condition is n 2a∨i
(α|α) ∈ Z. Note also that

(α0|α0) = 2.
First suppose that α0 is a long root, i.e. we are in the case (i). Then

(α|α) = 2, and so n 2a∨i
(α|α) ∈ Z. Hence α+ nδ ∈ ∆re

l for all n ∈ Z.

Conversely, let β =
∑`

i=0 kiαi ∈ ∆re
l . By Proposition 5.2.4, (β −

k0δ|β − k0δ) = (β|β) = M, and ki
(αi|αi)
(β|β) ∈ Z for i = 0, . . . , `. We

have k0ai
(αi|αi)
(β|β) ∈ Z also since (αi|αi) = 2a∨i

ai
, and (β|β) = 2. We

now conclude that have β − k0δ =
∑`

i=1(ki − k0ai)αi ∈
◦
∆l by (6.6) and

Proposition 5.2.4 again, and so the long roots have the required form.
Now suppose that α0 is a short root, i.e. we are in the case (ii). Note

that r = (α|α)
(α0|α0)

. Thus

n
2a∨i

(α|α)
= n

a∨i
r
,

Since a∨0 = 1 this lies in Z for all i = 0, . . . , ` if and only if n is divisible
by r. Thus by Proposition 5.2.4, α+ rnδ ∈ ∆re

l for all n ∈ Z.
Conversely, let β =

∑`
i=0 kiαi ∈ ∆re

l . By Proposition 5.2.4, (β −
k0δ|β − k0δ) = (β|β) = M, and ki

(αi|αi)
(β|β) ∈ Z for i = 0, . . . , `. In

particular, k0
(α0|α0)
(β|β) = k0

r ∈ Z. We have

k0ai
(αi|αi)
(β|β)

= a∨i
k0

r
∈ Z

for i = 1, . . . , `, as (αi|αi) = 2a∨i
ai

and (β|β) = 2r. Thus by Propo-

sition 5.2.4, β − k0δ =
∑`

i=1(ki − k0ai)αi ∈
◦
∆l by (6.6) and Proposi-

tion 5.2.4 again, and so the long roots have the required form.
The proof of (iii) and (iv) is similar.

Proposition 6.3.1 will also follow from explicit constructions of affine
Lie algebras given in the next chapter.
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Remark 6.3.2 ∆̄ =
◦
∆ \{0} in all cases, except A(2)

2` , in which case the

root system ∆̄ is not reduced, and
◦
∆ is the corresponding reduced root

system.

Introduce the element

θ := δ − a0α0 =
∑̀
i=1

aiαi ∈
◦
Q . (6.8)

We have

(θ|θ) = (δ − a0α0|δ − a0α0) = a2
0(α0|α0) = 2a0.

Thus (θ|θ) = M if r = 1 or A = A
(2)
2` , and (θ|θ) = m otherwise. In all

cases it follows from Propositions 5.2.3 and 5.2.4 that θ ∈
◦
∆+. Moreover,

θ∨ = 2
ν−1(θ)
(θ|θ)

=
1
a0
ν−1(θ) =

1
a0

∑̀
i=1

a∨i α
∨
i .

(θ∨|θ∨) =
2
a0
,

α∨0 = ν−1(δ − θ) = c− a0θ
∨.

Proposition 6.3.3 If r = 1 or A = A
(2)
2` , then θ ∈ (

◦
∆+)l and θ is the

unique root in
◦
∆ of maximal height (= h − a0). Otherwise θ ∈ (

◦
∆+)s

and θ is the unique root in
◦
∆s of maximal height (= h− 1).

Proof One checks that all simple roots in
◦
∆ of the same length are

◦
W -conjugate (this is essentially a type A2 argument). Hence

◦
∆s and

◦
∆l

are the orbits of
◦
W on

◦
∆. Moreover,

〈θ, α∨i 〉 = 〈δ − a0α0, α
∨
i 〉 = −a0ai0 ≥ 0 (1 ≤ i ≤ `).

Hence θ is in the fundamental domain of
◦
W , which determines the short

or long root uniquely. The height of θ is easy to compute from the
definition. Finally, if θ′ is a maximal height root in the W -orbit of roots
in

◦
∆ of the same length as θ, then a standard argument shows that θ′

is in the fundamental chamber, hence θ′ = θ.

If A is a matrix of finite type, we assume that the standard invariant
form (·|·) on g(A) is normalized by the condition (α|α) = 2 for α ∈ ∆l,
and call it the normalized invariant form.
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Corollary 6.3.4 Let g be an affine algebra of type X(r)
N . Then the ratio

of the restriction to the subalgebra
◦
g of the normalized invariant on g to

the normalized invariant form on
◦
g is equal to r.

6.4 Affine Weyl Group

Since 〈δ, α∨i 〉 = 0 for all i, we have w(δ) = δ for all w ∈ W . Denote by
◦
W the subgroup of W generated by r1, . . . , r`. As ri(Λ0) = Λ0 for i ≥ 1,
◦
W acts trivially on CΛ0 +Cδ. It is also clear that

◦
h∗ is

◦
W -invariant. So

the action of
◦
W on

◦
h∗ is faithful, and we can identify

◦
W with the Weyl

group of of
◦
g also acting on

◦
h∗. Hence

◦
W is finite.

We have

r0rθ(λ) = λ+ 〈λ, c〉ν(θ∨)−
(
〈λ, θ∨〉+ 1

2
(θ∨|θ∨)〈λ, c〉

)
δ. (6.9)

Indeed,

r0rθ(λ) = r0(λ− 〈λ, θ∨〉θ)
= λ− 〈λ, α∨0 〉α0 − 〈λ, θ∨〉(θ − 〈θ, α∨0 〉α0)

= λ− 〈λ, α∨0 〉
1
a0

(δ − θ)− 〈λ, θ∨〉θ + 〈λ, θ∨〉〈θ, α∨0 〉
1
a0

(δ − θ)

= λ+ (
〈λ, α∨0 〉
a0

− 〈λ, θ∨〉 − 〈λ, θ
∨〉〈θ, α∨0 〉
a0

)θ

+(−〈λ, α
∨
0 〉

a0
+
〈λ, θ∨〉〈θ, α∨0 〉

a0
)δ

= λ+ (〈λ, α∨0 〉 − a0〈λ, θ∨〉 − 〈λ, θ∨〉〈θ, α∨0 〉)
1
a0
θ

−(
〈λ, α∨0 〉
a0

− 〈λ, θ
∨〉〈θ, α∨0 〉
a0

)δ

= λ+ (〈λ, c− a0θ
∨〉 − a0〈λ, θ∨〉 − 〈λ, θ∨〉〈θ, c− a0θ

∨〉)ν(θ∨)

−(
〈λ, c− a0θ

∨〉
a0

− 〈λ, θ
∨〉〈θ, c− a0θ

∨〉
a0

)δ,

which easily implies (6.9).
Set

tα(λ) = λ+ 〈λ, c〉α−
(
(λ|α) +

1
2
(α|α)〈λ, c〉

)
δ (λ ∈ h∗, α ∈

◦
h∗).

(6.10)
Then (6.9) is equivalent to r0rθ = tν(θ∨).
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Proposition 6.4.1 Let α, β ∈
◦
h, w ∈

◦
W . Then

(i) tαtβ = tα+β.
(ii) wtαw−1 = tw(α).

Proof The linear map tα : h∗ → h∗ is uniquely determined by the
properties

tα(λ) = λ− (λ|α)δ if 〈λ, c〉 = 0, (6.11)

tα(Λ0) = Λ0 + α− 1
2
(α|α)δ. (6.12)

since 〈αi, c〉 = 0 and 〈Λ0, c〉 = 1. If 〈λ, c〉 = 0 then

tαtβ(λ) = tα(λ− (λ|β)δ)

= λ− (λ|α)δ − (λ|β)(δ − (δ|α)δ)

= λ− (λ|α+ β)δ

= tα+β(λ),

since (δ|α) = 0, and

wtαw
−1(λ) = w(w−1(λ)− (w−1(λ)|α)δ)

= λ− (λ|w(α))δ

= tw(α)(λ),

since 〈w−1(λ), c〉 = 0 and w(δ) = δ. Also

tαtβ(Λ0) = tα(Λ0 + β − 1
2
(β|β)δ)

= Λ0 + α− 1
2
(α|α)δ + β − (β|α)δ − 1

2
(β|β)(δ − (δ|α)δ)

= Λ0 + (α+ β)− 1
2
(α+ β|α+ β)δ

= tα+β(Λ0),

using (δ|α) = 0 again, and

wtαw
−1(Λ0) = w(Λ0 + α− 1

2
(α|α)δ)

= Λ0 + w(α)− 1
2
(w(α)|w(α))δ

= tw(α)(Λ0),

since w−1(Λ0) = w(Λ0) = Λ0. This proves (i) and (ii).
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Now define the lattice M in
◦
hR
∗. Let Z(

◦
W ·θ∨) denote the lattice in

◦
hR generated over Z by the finite set

◦
W ·θ∨, and set

M = ν(Z(
◦
W ·θ∨)).

Lemma 6.4.2

(i) If A is symmetric or r > a0 then M = Q̄ =
◦
Q.

(ii) In all other cases M = ν(Q∨) = ν(
◦
Q∨).

Proof If r = 1 then θ∨ is a short root in
◦
∆∨, see Proposition 6.3.3. So

◦
W ·θ∨ =

◦
∆∨

s . It is known (Exercise 6.9 in Kac) that for the finite type

the short roots generate the root lattice, so we have M = ν(
◦
Q∨), which

implies the result for r = 1.

Similarly if a0r = 2 or 3, then θ∨ is a long root in
◦
∆∨, so

◦
W ·θ∨ =

◦
∆∨

l , whence M =
◦
Q. Finally, for A(2)

2` we have ν(θ∨) = 1
2θ. Hence

M = 1
2Z

◦
∆l=

◦
Q again.

Corollary 6.4.3

(i) If A is not of types B(1)
` , C

(1)
` , F

(1)
4 , G

(1)
2 , A

(2)
2` , then M = Z

◦
∆=∑`

i=1 Zαi.
(ii) If A is of types B(1)

` , C
(1)
` , F

(1)
4 , G

(1)
2 , then

M = Z
◦
∆l=

∑
αi∈

◦
∆l

Zαi +
∑

αi∈
◦
∆s

Zpαi,

where p = 3 for G(1)
2 and 2 in the other cases.

(iii) If A is of type A(2)
2` , then

M =
1
2

Z
◦
∆l=

`−1∑
i=1

Zαi + Z
1
2
α`.

The latticeM considered as an abelian group acts on h∗ by the formula
(6.10). This action is faithful in view of (6.11),(6.12).

Denote the corresponding subgroup of GL(h∗) by T and call it the
group of translations. In view of (6.9) and Proposition 6.4.1(ii), T is a
subgroup of W .

Proposition 6.4.4 W = To
◦
W .
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Proof Since
◦
W is finite and T is a free abelian group, we have

◦
W ∩T =

{1}. Moreover, r0 = tν(θ∨)rθ ∈ T
◦
W , so T and

◦
W generate W . Finally

T is normal in W by Proposition 6.4.1(ii).

Observe that tν(θ∨) = r0rθ has determinant 1, and since T is generated
by the elements wtν(θ∨)w

−1, all elements of T have determinant 1.
For s ∈ R set

h∗s := {λ ∈ h∗R | 〈λ, c〉 = 1}.

Note that h∗s isW -invariant, soW acts on h∗s with affine transformations.
The elements of h∗1 are of the form

∑̀
i=1

ciαi + bδ + Λ0 (b, ci ∈ R).

Since W acts trivially on δ, the action of W on h∗1 factors through to
give an action of W on h∗1/Rδ. Note that the last space can be identified
with

Rα1 + · · ·+ Rα` =
◦
hR
∗

via ∑̀
i=1

ciαi + bδ + Λ0 7→
∑̀
i=1

ciαi.

We use this identification to get an affine action of W on
◦
hR
∗. The affine

transformation of
◦
hR
∗ corresponding to w ∈ W is denoted by af(w), so

that

af(w)(λ̄) = w(λ) (λ ∈ h∗1).

Proposition 6.4.5 Let w ∈
◦
W , m ∈M , λ ∈

◦
hR
∗. Then af(w)(λ) = w(λ),

af(tm)(λ) = λ+m.

Proof The first statement follows from w(δ) = δ, w(Λ0) = Λ0. For the
second one, using (6.11) and (6.12), we get

af(tm)(λ) = tm(λ+ Λ0) = λ− (λ|m)δ + Λ0 +m− 1
2
(m|m)δ = λ+m.

Corollary 6.4.6 The affine action of W on
◦
hR
∗ is faithful.
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Proof Suppose tmw ∈ W for m ∈ M,w ∈
◦
W acts trivially on

◦
hR
∗. Then

af(tmw)(0) = 0 implies m = 0, i.e. tm = 1. But
◦
W acts faithfully on

◦
hR
∗,

so w = 1 also.

Corollary 6.4.7 s0 acts on
◦
hR
∗ as the reflection in the affine hyperplane

Tθ,1 := {λ ∈
◦
hR
∗ | (λ|θ) = 1}.

Proof For λ ∈
◦
hR
∗, we have

r0(λ) = tν(θ∨)rθ(λ) = rθ(λ)+ν(θ∨) = λ−〈λ, θ∨〉θ+ν(θ∨) = λ−((λ|θ)−1)ν(θ∨),

and the result follows.

Define the fundamental alcove

Caf = {λ ∈
◦
hR
∗ | (λ|αi) ≥ 0 for 1 ≤ i ≤ ` and (λ|θ) ≤ 1}.

Proposition 6.4.8 Caf is the fundamental domain for the action of W

on
◦
hR
∗.

Proof Consider the projection π : h∗1 →
◦
hR
∗, λ 7→ λ̄. It is surjective and

af(w) ◦ π = π ◦ w for w ∈W . Moreover

π−1(Caf) = C∨ ∩ h∗1.

It remains to note that C∨ ∩ h∗1 is the fundamental domain for the W -
action on h∗1.

We complete this section with the list of explicit constructions related
to the root systems of finite type. We identify Q and Q∨ via the non-
degenerate form (·|·). Let Rn be the standard Euclidean space with
standard basis ε1, . . . , εn.
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6.4.1 A`

Q = Q∨ = {
∑

i

kiεi ∈ R`+1 | ki ∈ Z,
∑

ki = 0},

∆ = {εi − εj | 1 ≤ i 6= j ≤ `+ 1},
Π = {αi = εi − εi+1 | 1 ≤ ` ≤ `},
θ = ε1 − ε`+1,

W ∼= S`+1 = {all permutations of the εi}.

6.4.2 D`

Q = Q∨ = {
∑

i

kiεi ∈ R` | ki ∈ Z,
∑

ki ∈ 2Z},

∆ = {±εi ± εj | 1 ≤ i < j ≤ `},
Π = {α1 = ε1 − ε2, . . . , α`−1 = ε`−1 − ε`, α` = ε`−1 + ε`},
θ = ε1 + ε2.

6.4.3 E8

Q = Q∨ = {
∑

i

kiεi ∈ R8 | all ki ∈ Z or all ki ∈
1
2

+ Z,
∑

ki ∈ 2Z},

∆ = {±εi ± εj | 1 ≤ i < j ≤ 8}

∪{1
2
(±ε1 ± · · · ± ε8) even number of minuses},

Π = {αi = εi+1 − εi+2 | 1 ≤ i ≤ 6}

∪{α7 =
1
2
(ε1 − ε2 − · · · − ε7 + ε8), α8 = ε7 + ε8},

θ = ε1 + ε2.
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6.4.4 E7

Q = Q∨ = {
∑

i

kiεi ∈ R8 | all ki ∈ Z or all ki ∈
1
2

+ Z,
∑

ki = 0},

∆ = {±εi ± εj | 1 ≤ i < j ≤ 8}

∪{1
2
(±ε1 ± · · · ± ε8) (four minuses)},

Π = {αi = εi+1 − εi+2 | 1 ≤ i ≤ 6}

∪{α7 =
1
2
(−ε1 − ε2 − ε3 − ε4 + ε5 + ε6 + ε7 + ε8)},

θ = ε2 − ε1.

6.4.5 E6

Q = Q∨ = {
6∑

i=1

kiεi +
√

2k7ε7 ∈ R7 | all ki ∈ Z or all ki ∈
1
2

+ Z,
6∑

i=1

ki = 0},

∆ = {±εi − εj | 1 ≤ i 6= j ≤ 6}

∪{1
2
(±ε1 ± · · · ± ε6)±

√
2ε7 (three minuses)} ∪ {±

√
2ε7},

Π = {αi = εi − εi+1 | 1 ≤ i ≤ 5}

∪{α6 =
1
2
(−ε1 − ε2 − ε3 + ε4 + ε5 + ε6+) +

√
2ε7)},

θ =
√

2ε7.



7

Affine Algebras as Central extensions of
Loop Algebras

7.1 Loop Algebras

Affine algebras of type X(1)
` are called untwisted. In this chapter we will

describe an explicit construction of untwisted affine algebras. Recall the
material from §1.5. In particular, L = C[t, t−1], and let ϕ be a bilinear
form on L defined by

ϕ(P,Q) = Res
dP

dt
Q.

One checks that

ϕ(P,Q) = −ϕ(Q,P ), (7.1)

ϕ(PQ,R) + ϕ(QR,P ) + ϕ(RP,Q) = 0 (P,Q,R ∈ L). (7.2)

Note that Cartan matrix A of type X
(1)
` is the so-called extended

Cartan matrix of the simple finite dimensional Lie algebra
◦
g= g(

◦
A),

where the matrix
◦
A obtained from A by removing the 0th row and

column is of type X`. Consider the loop algebra

L(
◦
g) := L⊗

◦
g .

Fix a non-degenerate invariant symmetric bilinear form (·|·) on
◦
g. It

can be extended to a L-valued bilinear form (·|·)t on L(
◦
g) via

(P ⊗ x|Q⊗ y)t = PQ(x|y).

Also set

ψ(a, b) = (
da

dt
|b)t (a, b ∈ L(

◦
g)).
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We know from Lemma 1.5.3 that ψ is a 2-cocycle on L(
◦
g), and

ψ(ti ⊗ x, tj ⊗ y) = iδi,−j(x|y).

As in §1.5, we have a central extension

L̄(g) = L(g)⊕ Cc

corresponding to ψ. Moreover, L̄(
◦
g) is graded with deg tj⊗x = j, deg c =

0. We then have the corresponding derivation

d : L̄(
◦
g)→ L̄(

◦
g), tj ⊗ x 7→ jtj ⊗ x, c 7→ 0.

Finally, by adjoining d to L̄(
◦
g) we get the Lie algebra

L̂(
◦
g) := L(

◦
g)⊕ Cc⊕ Cd,

with operation

[tm ⊗ x+ λc+ µd, tn ⊗ y + λ′c+ µ′d]

= (tm+n ⊗ [x, y] + µntn ⊗ y − µ′mtm ⊗ x) +mδm,−n(x|y)c.

7.2 Realization of untwisted algebras

Let
◦
ω be the Chevalley involution of

◦
g,

◦
∆⊂

◦
h∗ be the root system of

◦
g,

{α1, . . . , α`} be a root base of
◦
∆ and

H1, . . . ,H`

be the coroot base in
◦
h, E1, . . . , E`, F1, . . . , F` be the Chevalley genera-

tors, θ be the highest root in
◦
∆, and let

◦
g=

⊕
α∈

◦
∆∪{0}

◦
gα

be the root space decomposition. Choose F0 ∈
◦
gθ so that

(F0|
◦
ω (F0)) = − 2

(θ|θ)
,

and set

E0 = − ◦
ω (F0).

Then by Theorem 2.2.3(v), we have

[E0, F0] = −θ∨. (7.3)
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The elements E0, E1, . . . , E` generate the algebra
◦
g since in the adjoint

representation we have
◦
g= U(

◦
n+)(E0).

Return to the algebra L̂(
◦
g). It is clear that Cc is the (1-dimensional)

center of L̂(
◦
g), and the centralizer of d in L̂(

◦
g) is the direct sum of

Lie algebras Cc ⊕ Cd ⊕ (1⊗
◦
g). From now on we identify

◦
g with the

subalgebra 1⊗
◦
g⊂ L̂(

◦
g). Further,

h :=
◦
h ⊕Cc⊕ Cd

is an (`+2)-dimensional abelian subalgebra of L̂(
◦
g). Continue λ ∈

◦
h∗ to

a linear function on h by setting 〈λ, c〉 = 〈λ, d〉 = 0, so
◦
h∗ gets identified

with a subspace of h∗. Denote by δ the linear function on h defined from

δ|◦
h⊕Cc

= 0, 〈δ, d〉 = 1.

Set

e0 = t⊗ E0,

f0 = t−1 ⊗ F0,

ei = 1⊗ Ei (1 ≤ i ≤ `)
fi = 1⊗ Fi (1 ≤ i ≤ `).

From (7.3) we get

[e0, f0] =
2

(θ|θ)
c− θ∨. (7.4)

Note the following facts on the root decomposition

L̂(
◦
g) =

⊕
α∈∆∪{0}

L̂(
◦
g)α

with respect to h:

L̂(
◦
g)0 = h,

∆ = {jδ + γ | j ∈ Z, γ ∈
◦
∆} ∪ {jδ | j ∈ Z \ {0}},

L̂(
◦
g)jδ+γ = tj⊗

◦
gγ ,

L̂(
◦
g)jδ = tj⊗

◦
h .
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Set

Π = {α0 := δ − θ, α1, . . . , α`},

Π∨ = {α∨0 :=
2

(θ|θ)
c− θ∨, α∨1 := 1⊗H1, . . . , α

∨
` := 1⊗H`}.

Note in view of Proposition 6.3.3(i) that our element θ agrees with
the one introduced in (6.8), whence

A = (〈α∨i , αj〉)0≤i,j≤`. (7.5)

So (h,Π,Π∨) is a realization of A.

Theorem 7.2.1 L̂(
◦
g) is affine Kac-Moody algebra g(A), h is its Cartan

matrix, Π and Π∨ are its root and coroot bases, and e0, . . . , e`, f0, . . . , f`

are Chevalley generators.

Proof We apply Proposition 1.5.1. All relations are easy to check (or
have already been checked).

Further, we will prove that L̂(
◦
g) has no non-trivial ideals i with i ∩

h = {0}. Indeed, if i is such an ideal, then by the Weight Lemma,

i ∩ L̂(
◦
g)α 6= {0} for some α = jδ + γ ∈ ∆. So some tj ⊗ x ∈ i for some

j ∈ Z and x ∈
◦
gγ , x 6= 0, γ ∈ ∆ ∪ {0}. By taking y ∈

◦
g−γ such that

(x|y) 6= 0, we get

[tj ⊗ x, t−j ⊗ y] = j(x|y)c+ [x, y] ∈ h ∩ i.

Hence j(x|y)c + [x, y] = 0. Since [x, y] ∈
◦
h we deduce that j = 0. Since

α = jδ + γ 6= 0, we have γ 6= 0. Then 0 6= [x, y] ∈
◦
h ∩i. Contradiction.

Finally we prove that the ei, fi and h generate L̂(
◦
g). Let g1 be the sub-

algebra in L̂(
◦
g) generated by the ei, fi and h. Since E1, . . . , E`, F1, . . . , F`

generate
◦
g, we deduce 1⊗

◦
g⊂ g1. Let

i = {x ∈
◦
g| t⊗ x ∈ g1}.

Then e0 = t⊗ E0 ∈ g1, so E0 ∈ i, and i 6= 0. Also, if x ∈ i, y ∈
◦
g, then

t⊗ [x, y] = [t⊗ x, 1⊗ y] ∈ g1,

whence i is an ideal of
◦
g. Since

◦
g is simple we have i =

◦
g or t⊗

◦
g⊂ g1.

We may now use the relation

[t⊗ x, tk−1 ⊗ y] = tk ⊗ [x, y]
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to deduce by induction on k that tk⊗
◦
g⊂ g1 for all k > 0. In an analogous

way, starting with f0 = t−1 ⊗ F0 we can show that t−k⊗
◦
g⊂ g1 for all

k > 0.

Corollary 7.2.2 Let g be a non-twisted affine Lie algebra of rank `+1.
Then the multiplicity of each imaginary root in g is `.

Let (·|·) be the normalized invariant form on
◦
g (see the end of §6.3).

Extend it to L̂(
◦
g) by

(P ⊗ x|Q⊗ y) = (Res t−1PQ)(x|y) (x, y ∈
◦
g, P,Q ∈ L),

(Cc+ Cd|L(
◦
g)) = 0,

(c|c) = 0,

(d|d) = 0,

(c|d) = 1.

The definition implies

(ti ⊗ x|tj ⊗ y) = δi,−j(x|y).

We get a non-degenerate symmetric bilinear form. In order to check
invariance, let us consider the only non-trivial case:

([d, P ⊗ x]|Q⊗ y) = (d|[P ⊗ x,Q⊗ y]).

The left hand side of this equality is

(t
dP

dt
⊗ x|Q⊗ y) = (Res

dP

dt
Q)(x|y),

while the right hand side is

(d|PQ⊗ [x, y] + (Res
dP

dt
Q)(x|y)c) = (Res

dP

dt
Q)(x|y).

Finally, the restriction of (·|·) to h agrees with the form defined in §6.2.
Note that the element c is the canonical central element and d is the

energy element.

Let
◦
g=

◦
n− ⊕

◦
h ⊕

◦
n+ be the canonical triangular decomposition of

◦
g.

Then the triangular decomposition of L̂(
◦
g) is

L̂(
◦
g) = n− ⊕ h⊕ n+, where

n− = (t−1C[t−1]⊗ (
◦
n+ ⊕

◦
h))⊕ C[t−1]⊗

◦
n−,

n+ = (tC[t]⊗ (
◦
n− ⊕

◦
h))⊕ C[t]⊗

◦
n+ .
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The Chevalley involution of g can be written in terms of
◦
ω as follows

ω(P (t)⊗ x+ λc+ µd) = P (t−1)⊗ ◦
ω (x)− λc− µd.

Set

t = Cc+
∑

s∈Z\{0}

gsδ.

Then t is isomorphic to the infinite dimensional Heisenberg algebra with
center Cc. Indeed, t = Cc ⊕s∈Z\{0} t

s ⊗ h, and the only non-trivial
commutation is

[ts ⊗ h, t−s ⊗ h′] = s(h|h′).

7.3 Explicit Construction of Finite Dimensional Lie Algebras

Let Q be the root lattice of type A`, D`, or E`, and let (·|·) be the
normalized form on Q, i.e.

∆ = {α | (α|α) = 2}.

We then also have (α|α) ∈ 2Z for all α ∈ Q (explicit check). Let

ε : Q×Q→ {±1}

be a function satisfying the ”bilinearity” condition for all α, α′β, β′ ∈ Q:

ε(α+ α′, β) = ε(α, β)ε(α′, β), ε(α, β + β′) = ε(α, β)ε(α, β′), (7.6)

and the condition

ε(α, α) = (−1)(α|α)/2 (α ∈ Q). (7.7)

We call such ε an asymmetry function. Substituting α + β to the last
equation we get

ε(α, β)ε(β, α) = (−1)(α|β) (α, β ∈ Q). (7.8)

An asymmetry function can be constructed as follows: choose an orien-
tation of the Dynkin diagram, and let

ε(αi, αj) = −1 if i = j or if
i◦→

j
◦

ε(αi, αj) = 1 otherwise, i.e. if
i◦←

j
◦ or

i◦
j
◦,

and extend by bilinearity. An easy check shows that the required con-
ditions are satisfied.

Now let us h be the complex hull of Q and extend (·|·) to h. Take
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the direct sum of h with 1-dimensional vector spaces CEα, one for each
α ∈ ∆:

g = h⊕ (
⊕
α∈∆

CEα).

Define the bracket on g as follows:
[h, h′] = 0 if h, h′ ∈ h

[h,Eα] = (h|α)Eα if h ∈ h, α ∈ ∆
[Eα, E−α] = −α if α ∈ ∆
[Eα, Eβ ] = 0 if α, β ∈ ∆, α+ β 6∈ ∆ ∪ {0}
[Eα, Eβ ] = ε(α, β)Eα+β if α, β, α+ β ∈ ∆

(7.9)

Define the symmetric bilinear form on g extending it from h as follows:{
(h|Eα) = 0 if h ∈ h, α ∈ ∆
(Eα|Eβ) = −δα,−β if α, β ∈ ∆

(7.10)

Proposition 7.3.1 g is the simple Lie algebra of type A`, D` or E`,
respectively, the form (·|·) being the normalized invariant form.

Proof To check the skew-commutativity it suffices to prove that [Eα, Eβ ] =
−[Eβ , Eα] when α, β, α+ β ∈ ∆. Note that

α± β ∈ ∆ ⇔ (α|β) = ∓1 (α, β ∈ ∆). (7.11)

Now the required equality follows from (7.8).
Next we check Jacobi identity for three basis elements x, y, z. If one

of these elements is in h, the Jacobi identity trivially holds. So let
x = Eα, y = Eβ , z = Eγ . If α + β, α + γ, β + γ 6∈ ∆ ∪ {0}, the identity
holds trivially, so we may assume that α+ β ∈ ∆ ∪ {0}.

If α+ β = 0, consider four cases:
(1) α± γ 6∈ ∆ ∪ {0};
(2) α+ γ or α− γ = 0;
(3) α+ γ ∈ ∆;
(4) α− γ ∈ ∆.
The Jacobi identity holds in cases (1) and (2) in view of (7.11). In

case (3) it reduces to ε(−α, α + γ)ε(α, γ) = (α|γ), which follows from
the bilinearity and (7.7). The case (4) is similar.

Thus we may assume that α+ β, α+ γ, β + γ ∈ ∆, for the remaining
cases follow either trivially or from bilinearity of ε. So (α|β) = (α|γ) =
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(β|γ) = −1, whence |α + β + γ|2 = 0, so α + β + γ = 0 using positive
definiteness of the form. So Jacobi identity boils down to

ε(β, γ)(β + γ) = −ε(α, β)(α+ β) + ε(α, γ)(α+ γ),

which holds by bilinearity again.
Thus g is a Lie algebra. Let

Π = Π∨ = {α1, . . . , α`}, ei = Eαi , fi = −E−αi .

We can now apply Proposition 1.5.1. To check that the form is invariant
is straightforward.
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Twisted Affine Algebras and Automorphisms
of Finite Order

8.1 Graph Automorphisms

Let A be of finite type XN . Let σ be a permutation of {1, . . . , N} such
that aσ(i)σ(j) = aij . Such σ can be thought of as a graph automorphism
of the Dynkin diagram of A. Let g = g(A). It is clear that such graph
automorphism defines an automorphism, denoted by the same letter σ
and called graph automorphism of g:

σ : g→ g, ei 7→ eσ(i), fi 7→ fσ(i), α
∨
i 7→ α∨σ(i).

The interesting graph automorphisms are listed in Figure 8.1:
Our first main goal is to determine the fixed point subalgebra gσ. We

consider the linear action of σ on V := h∗R given from

σ(αi) = ασ(i) (1 ≤ i ≤ N).

For each orbit J of σ on {1, . . . , N} define

αJ :=
1
|J |
∑
j∈J

αj . (8.1)

Then the αJ form a basis of V σ as J runs over the σ-orbits on {1, . . . , N}.
Note that αJ is the orthogonal projection of αj onto V σ. We see from
Figure 8.1 that the following possible situations for the orbits J are
possible:

(1) |J | = 1;
(2) |J | = 2, J = {j, j′}, αj + αj′ 6∈ ∆;
(3) |J | = 3, J = {j, j′, j′′}, αj + αj′ , αj + αj′′ , αj′ + αj′′ 6∈ ∆;
(4) |J | = 2, J = {j, j′}, αj + αj′ ∈ ∆.

These are referred to as orbits of types A1, A1×A1, A1×A1×A1, and
A2, respectively.
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A2` . . .• • • • • • • •
2` 2`− 1 ` + 1

. . .• • • • • • • •
1 2 `

αi 7→ α2`+1−i

A2`−1
��•

. . .• • • • • • •
2`− 1 2`− 2 ` + 1

`− 1

`
HH

. . .• • • • • • •
1 2

αi 7→ α2`−i

D`+1
��•

•
. . .• • • • • • •

1 2 `− 1

`

` + 1
HH

αi 7→ αi (1 ≤ i < `), α` 7→ α`+1, α`+1 7→ α`

E6 �
�

HH

• •

• •
• •

12
36

54

αi 7→ α6−i (1 ≤ i ≤ 6), α6 7→ α6

D4 ��
H

H
• •

•

•

2 1
3
4

α1 7→ α3, α3 7→ α4, α4 7→ α1, α2 7→ α2

Fig. 8.1. Graph automorphisms

Lemma 8.1.1 The vectors αJ , αK for distinct σ-orbits J,K form a base
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of a root system of rank 2 as follows:

J K Type of root system
(i) • • • •

(ii) ��
H

H
•
•

•
• •>

(iii) ��
H

H
•
•

•
• • •>

(iv)
• •

• •
• •

(v)
• •

• •
• •>

Finally, if no node in J is connected to any node in K then the type of
the root system is A1 ×A1.

Proof This is an easy calculation. Suppose for example that we have
case (v) with roots numbered

• •

• •4

1

3

2

Then

αJ =
α1 + α4

2
, αK =

α2 + α3

2
.

So

(αJ |αJ) =
1
2
(α1|α1),

(αK |αK) =
1
4
(α1|α1),

(αJ |αK) = −1
4
(α1|α1),

This is what was claimed.

Corollary 8.1.2 Let Πσ be the set of vectors αJ for all σ-orbits J on
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{1, . . . , N}. Then Πσ is a base of a root system of the following type:

Type Π Order of σ Type Πσ

A2` 2 B`

A2`−1 2 C`

D`+1 2 B`

D4 3 G2

E6 2 F4

Now let ∆σ be the root system in V σ with base Πσ and Weyl group
W σ and Cartan matrix Aσ. In view of Lemma 8.1.1 and Corollary 8.1.2,
we know the type of this Cartan matrix and:

Lemma 8.1.3 Let I, J be distinct σ-orbits σ-orbits on {1, . . . , N}. Then

aσ
IJ =

{ ∑
i∈I aij for any j ∈ J if I has type A1, A1 ×A1 or A1 ×A1 ×A1

2
∑

i∈I aij for any j ∈ J if I has type A2

Lemma 8.1.4 There is an isomorphism W σ →W 1 := {w ∈W | wσ =
σw} under which the fundamental reflection rJ ∈ W σ corresponding to
αJ maps to (w0)J ∈ W , the element of maximal length in the Weyl
group WJ generated by the ri, i ∈ J .

Proof Observe first that W 1 acts on V σ. Next, we claim that (w0)J ∈
W 1 for each J . Indeed, σrjσ−1 = rσ(j) implies σWJσ

−1 = WJ , so
σ induces the length preserving automorphism of WJ , hence (w0)J is
invariant.

Now, note that (w0)J |V σ = rJ . Indeed, using the defining property of
the longest element we have

(w0)J(αJ) = (w0)J(
1
|J |
∑
j∈J

αj) = − 1
|J |
∑
j∈J

αj = −αJ

Moreover, if v ∈ V σ and (αJ |v) = 0 then (αj |v) = 0 for all j ∈ J ,
whence (w0)J(v) = v.

Next, we show that the elements (w0)J generate W 1. Take w 6= 1 in
W 1. Then there exists a simple root αj with w(αj) < 0. Let J be the
σ-orbit of j. Then w(αi) < 0 for all i ∈ J . Now (w0)J changes the signs
of all roots in ∆J but of none in ∆ \∆J . Hence `(w(w0)J) < `(w). Now
apply induction on the length.

We may now define a homomorphism W 1 → W σ by restricting the
action of w ∈ W 1 from V to V σ, which maps (w0)J to rJ and so is
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surjective. To see that the homomorphism is injective, take w 6= 1 in
W 1. We saw that there exists a σ-orbit J such that w(αi) < 0 for all
i ∈ J , whence w(αJ) 6= αJ .

From now on we identify W σ and W 1.
For each α ∈ ∆ denote by ασ its orthogonal projection into V σ.

Lemma 8.1.5

(i) For each α ∈ ∆, ασ is a positive multiple of a root in ∆σ.
(ii) Let ∼ be the equivalence relation on ∆ given by α ∼ β ⇔ ασ

is a positive multiple of βσ. Then the equivalence classes are the
subsets of ∆ of the form w(∆+

J ) where w ∈W σ and J is a σ-orbit
on {1, . . . , N}.

(iii) There is a bijection between equivalence classes in ∆ and roots in
∆σ given by w(∆+

J ) 7→ w(αJ).

Proof We first show that each α ∈ ∆ lies in w(∆+
J ) for some w ∈

W σ and some σ-orbit J . We have σw0σ
−1 = w0, so w0 ∈ W σ. By

Lemma 8.1.4 the elements (w0)J generate W σ, and so we can write
w0 = (w0)J1 . . . (w0)Jr

. Let α ∈ ∆+. Then w0(α) ∈ ∆−. Thus there
exists i such that

(w0)Ji+1 . . . (w0)Jr
(α) ∈ ∆+,

but

(w0)Ji
(w0)Ji+1 . . . (w0)Jr

(α) ∈ ∆−.

Hence

(w0)Ji+1 . . . (w0)Jr (α) ∈ ∆+
Ji
,

that is

α ∈ (w0)Jr
. . . (w0)Ji+1(∆

+
Ji

),

and

−α ∈ (w0)Jr
. . . (w0)Ji+1(w0)Ji

(∆+
Ji

).

Now consider the projection ασ for α ∈ ∆+
J . If J has type A1, A1×A1

or A1 × A1 × A1 then ∆+
J = ΠJ , so ασ = αJ . If J has type A2, then

ΠJ = {αj , αj′} and ∆+
J = {αj , αj′ , αj + αj′}, and

ασ =
{
αJ if α = αj or αj′ ,
2αJ if α = αj + αj′ .
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Thus for α ∈ ∆+
J , we know that ασ is a positive multiple of αJ . Hence

for α ∈ w(∆+
J ) with w ∈ W σ we know that ασ is a positive multiple of

w(αJ) ∈ ∆σ, proving (i).
We now know that the elements of each set w(∆+

J ) for w ∈W σ lie in
the same equivalence class. Suppose w(∆+

J ) and w′(∆+
K) lie in the same

class for w,w′ ∈ W σ and orbits J,K. Then w(αJ) = w′(αK) ∈ ∆σ

or w′−1w(αJ) = αK . Consider the root w′−1w(αj) ∈ ∆ for j ∈ J .
The root has the property that (w′−1w(αj))σ = αK . So w′−1w(αj)
is a non-negative linear combination of the αk for k ∈ K. Hence
w′−1w(ΠJ) ⊂ ∆+

K , and so w′−1w(∆+
J ) ⊂ ∆+

K . By symmetry we also
have w′w−1(∆+

K) ⊂ ∆+
J . Hence we have equality, that is w(∆+

J ) =
w′(∆+

K), which completes the proof of (ii).
Now, any root in ∆σ has form w(αJ) for some w ∈ W σ and some σ-

orbit J . The set of the roots α ∈ ∆ such that ασ is a positive multiple of
w(αJ) is w(∆+

J ), as shown above. Thus w(∆+
J ) 7→ w(αJ) is a bijection

between equivalence classes of ∆ and elements of ∆σ, giving (iii).

Theorem 8.1.6 Let A be of finite type, and σ be a graph automorphism
of g = g(A). Then gσ is isomorphic to g(Aσ).

Proof For each σ-orbit J on {1, . . . , N} we define elements eJ , fJ , α
∨
J of

gσ by

eJ =
∑
j∈J

ej , fJ =
∑
j∈J

fj , α∨J =
∑
j∈J

α∨j

if J is of type A1, A1 ×A1 or A1 ×A1 ×A1, and

eJ =
√

2
∑
j∈J

ej , fJ =
√

2
∑
j∈J

fj , α∨J = 2
∑
j∈J

α∨j

if J is of type A2. Then the α∨J form a basis of hσ. One checks us-
ing Lemma 8.1.3 that hσ together with Π = {αJ},Π∨ = {α∨J } give a
realization of Aσ and the relations (1.12-1.15) hold.

Thus the subalgebra g1 of gσ generated by the elements eJ , fJ , α
∨
J is a

quotient of g̃(Aσ). Since the dimension of hσ is the same as the dimension
of the Cartan subalgebra of g̃(Aσ), we deduce that g1 is the quotient
of g̃(Aσ) by an ideal whose intersection with the Cartan subalgebra is
trivial. But we know that among such ideals there is the largest one r

so that g̃(Aσ)/r ∼= g(Aσ), the simple finite dimensional Lie algebra of
type Aσ. Moreover, the root spaces of g(Aσ) are 1-dimensional. Now
it follows that g1 = gσ and it is isomorphic to g(Aσ) by dimension
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considerations. Indeed, consider the decomposition of ∆ into equivalence
classes given by Lemma 8.1.5. For each equivalence class S let

gS = ⊕α∈Sgα.

Then σ(gS) = gS , and g = hσ ⊕
∑

S gσ
S . Now dim gσ

S ≤ 1 for each
equivalence class S. This is clear if S has type A1, A1 × A1 or A1 ×
A1×A1. Suppose S has type A2. Then S = {α, β, α+ β} with σ(gα) =
gβ , σ(gβ) = gα, σ(gα+β) = gα+β . Take non-zero eα ∈ gα, eβ ∈ gβ .
Then σ(eα) = λeβ , σ(eβ) = λ−1eα. Hence σ([eα, eβ ]) = [λeβ , λ

−1eα] =
−[eα, eβ ]. It follows that gσ

S = C(eα + λeβ). We thus have

dim gσ ≤ dim hσ + |∆/ ∼ | = dim hσ + |∆σ| = dim g(Aσ),

which completes the proof.

If σ is of order r (recall that r = 2 or 3) set η = e2πi/r, and g(i) be
the ηi-eigenspace of σ on g for 0 ≤ i < r. Note that g(0) = gσ, and

g =
⊕

0≤i<r

g(i),

is a Z/rZ grading. In particular, each g(i) is a gσ-module.

Proposition 8.1.7 g(i) is an irreducible gσ-module.

Proof If i = 0 this is clear. Let i 6= 0. Suppose first that A =
A2`−1, D`+1 or E6 (and so r = 2, i = 1). Let {α, β} be a 2-element
orbit of σ on ∆ and Eα, Eβ be the corresponding root elements such
that σ(Eα) = Eβ . Then Eα − Eβ ∈ g(1), and, moreover, such elements
yield a basis of g(1) as we run through all 2-element orbits. The roots
α, β ∈ h∗ have the same restriction to hσ, and this restriction is the
weight of Eα − Eβ with respect to hσ. The highest weight of the gσ-
module g(1) thus comes from the highest 2-element orbit. Explicit check
shows that the highest 2-element orbits are:

for A2`−1: (α1 + · · ·+ α2`−2, α2 + · · ·+ α2`−1);

for D`+1: (α1 + · · ·+ α`−1 + α`, α1 + · · ·+ α`−1 + α`);

for E6: (α1 + 2α2 + 2α3 + α4 + α5 + α6, α1 + α2 + 2α3 + 2α4 + α5 + α6).

Moreover, in this three cases the subalgebra gσ has type C`, B`, or F4,
respectively. For the standard labellings of the corresponding Dynkin
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diagrams, the highest weights for the gσ-module g(1) are:

for C`: α1 + 2α2 + · · ·+ 2α`−1 + α` = ω2;

for B`: α1 + α2 + · · ·+ α`−1 + α` = ω1;

for F4: α1 + 2α2 + 3α3 + 2α4 = ω4.

Note that in all cases we get the highest short root θ0 as the highest
weight. Now

dim g(1) = dim g− dim gσ =


2`2 − `− 1, for C`,

2`+ 1, for B`,

26, for F4,

which according to Weyl’s dimension formula is the dimension of the
irreducible module with the highest weight θ0. The argument for D4

and A2` is similar.

To get a precise multiplication table for the non-simply-laced finite di-
mensional Lie algebras, it is convenient to change our notation. Roughly
speaking we drop indices σ from objects related to the fixed points of
σ (so ∆σ becomes ∆) and use primes ′ to distinguish the objects corre-
sponding the big Lie algebra g (so ∆ becomes ∆′. To be more precise, ∆′

is the root system of type (XN , r) = (D`+1, 2), (A2`−1, 2), (E6, 2), (D4, 3)
with roots α′ ∈ ∆′, simple roots α′1 . . . , α

′
N , etc. Let g′ = g(X(r)

N ) be
the corresponding Lie algebra, and σ the graph automorphism of g′ as
before. We already know that g := g′σ is a simple Lie algebra of type

B`, C`, F4, G2,

respectively. In all four cases fix an orientation of the Dynkin diagram
XN which is σ-invariant, and let ε(α, β) be the corresponding asymme-
try function, which is then also σ-invariant. This gives us an explicit
realization

g′ = h′ ⊕
⊕

α′∈∆′

CE′
α′

as in (7.9). It is easy to see that

µ : α′ 7→ σ(α′), E′
α′ 7→ E′

σ(α′) (α′ ∈ ∆′) (8.2)

is an automorphism of g′ which agrees with the graph automorphism σ

on the generators, so σ = µ. Note that there are no σ-orbits of type A2,
since we are staying away from type A2`. Moreover, there is a bijection
between σ-orbits on ∆′ and the root system ∆ := ∆σ, given by mapping
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an orbit J = {α′, . . . } to α′σ = 1
|J|
∑

α∈J α. So we can (and will) identify
the σ-orbits on ∆′ with elements of ∆.

For α ∈ ∆ denote Eα =
∑

α′∈αE
′
α′ (note we have identified elements

α ∈ ∆ with σ-orbits on ∆′). Similarly, for simple roots α1, . . . , α` ∈ ∆
we have αi = 1

|αi| (
∑

α′∈αi
α′)—this is just the formula (8.1) in our new

notation. Let h = h′σ, the subspace with basis α1, . . . , α`. Then

g = g′σ = h⊕
⊕
α∈∆

CEα.

Moreover, the normalized invariant form (·|·)′ on g′ is σ-invariant and
so it restricts to the invariant form (·|·) on g, which is non-degenerate
and invariant. Moreover (·|·) is normalized since we already know that
the single orbit elements α′ correspond to the long roots α ∈ ∆, and so
(α|α) = (α′|α′)′ = 2 for α ∈ ∆l.

Proposition 8.1.8 Let ∆ = ∆s ∪∆l be a non-simply-laced root system
of finite type in Euclidean space hR with root lattice Q. Set r = 2 if
∆ = B`, C`, or F4, and r = 3 if ∆ = G2. Let us h be the complex hull
of hR and extend (·|·) to h. Let

g = h⊕ (
⊕
α∈∆

CEα).

Define the bracket on g as follows:

[h, h′] = 0 if h, h′ ∈ h

[h,Eα] = (h|α)Eα if h ∈ h, α ∈ ∆
[Eα, E−α] = −α if α ∈ ∆l

[Eα, E−α] = −rα if α ∈ ∆s

[Eα, Eβ ] = 0 if α, β ∈ ∆, α+ β 6∈ ∆ ∪ {0}
[Eα, Eβ ] = (p+ 1)ε(α′, β′)Eα+β if α, β, α+ β ∈ ∆ where p ∈ Z≥0

is maximal with α− pβ ∈ ∆ and
α′ ∈ α, β′ ∈ β are representatives
such that α′ + β′ ∈ α+ β

The normalized bilinear form (·|·) on g is given by extending (·|·) as
follows:

(h,Eα) = 0, (Eα, Eβ) =
{
−δα,−β if α, β ∈ ∆l

−rδα,−β if α, β ∈ ∆s

Proof We just need to check the relations. The first one is obvious. For
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the second, working in g′ we get

[h,Eα] =
∑
α′∈α

(h|α′)E′
α′ = (h|α)Eα,

since orthogonal projection of every α′ ∈ α to h equals α. The third and
fourth relations follow from

[Eα, E−α] = [
∑
α′∈α

E′
α′ ,
∑
β′∈α

E′
−β′ ] =

∑
α′∈α

[E′
α′ , E

′
−α′ ] = −

∑
α′∈α

α′.

The fifth relation comes from the following (easy) fact: if α+β 6∈ ∆∪{0}
then α′ + β′ 6∈ ∆′ ∪ {0}.

For the last relation, we have

[Eα, Eβ ] = [
∑
α′∈α

E′
α′ ,
∑
β′∈β

E′
β′ ] =

∑
α′∈α,β′∈β,α′+β′∈∆′

ε(α′, β′)E′
α′+β′ .

Now note that α′ + β′ ∈ α + β and ε(α′, β′) is the same for any repre-
sentatives α′ ∈ α, β′ ∈ β such that α′ + β′ ∈ ∆′. Next check explicitly
that each Eα′+β′ appears (p+ 1) times.

8.2 Construction of Twisted Affine Algebras

In this section we construct explicit realization of affine algebras of types
X

(r)
N with r > 1, referred to as twisted affine algebras. Let

◦
g be a finite

dimensional Lie algebra of type XN , and σ be its graph automorphism
of order r. Then σ extends to a graph automorphism of L̂(

◦
g) denoted

again by σ and given by

σ : c 7→ c, d 7→ d, ti ⊗ x 7→ ti ⊗ σ(x) (x ∈
◦
g).

Set η = e2πi/r and define a twisted graph automorphism of L̂(
◦
g) by

τ : c 7→ c, d 7→ d, ti ⊗ x 7→ η−iti ⊗ σ(x) (x ∈
◦
g).

Proposition 8.2.1 We have

L̂(g(A2`−1))τ ∼= g(A(2)
2`−1),

L̂(g(A2`))τ ∼= g(A(2)
2` ),

L̂(g(D`+1))τ ∼= g(D(2)
`+1),

L̂(g(E6))τ ∼= g(E(2)
6 ),

L̂(g(D4))τ ∼= g(D(3)
4 ).
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Proof We will skip the proof for A(2)
2` . Let

◦
g= g(

◦
A), where

◦
A is of type

A2`−1, D`+1, E6 or D4. If r = 2 then we have

L̂(
◦
g)τ =

∑
n∈Z

(t2n ⊗ (
◦
g)σ)⊕

∑
k∈Z

(t2n+1 ⊗ (
◦
g)(1))⊕ Cc⊕ Cd,

whereas if r = 3, then

L̂(
◦
g)τ =

∑
n∈Z

(t3n⊗(
◦
g)σ)⊕

∑
n∈Z

(t3n+1⊗(
◦
g)(1))⊕

∑
n∈Z

(t3n+2⊗(
◦
g)(2))⊕Cc⊕Cd.

Let E1, . . . , EN , F1, . . . , FN ,H1, . . . ,HN be the standard generators of
◦
g. Pick a representative θ0 ∈

◦
∆ of the highest 2- or 3-element σ-orbit on

◦
∆, cf. the proof of Proposition 8.1.7. Specifically we pick

for A2`−1: θ0 = α1 + α2 + · · ·+ α2`−2;

for D`+1: θ0 = α1 + · · ·+ α`−1 + α`;

for E6: θ0 = α1 + 2α2 + 2α3 + α4 + α5 + α6;

for D4: θ0 = α2 + α1 + α3.

Choose elements Eθ0 ∈
◦
gθ0 , Fθ0 ∈

◦
g−θ0 so that [Eθ0 , Fθ0 ] = θ∨0 , and sim-

ilarly Eσ(θ0), Fσ(θ0). Now choose the elements ei, fi, α
∨
i ∈ L̂(

◦
g)τ as fol-

lows:

A2`−1:

��•
. . .• • • • • • •

2`− 1 2`− 2 `+ 1

`− 1

`
HH

. . .• • • • • • •
1 2

ei = 1⊗ (Ei + E2`−i), fi = 1⊗ (Fi + F2`−i), α∨i = 1⊗ (Hi +H2`−i) (1 ≤ i < `),

e` = 1⊗ E`, f` = 1⊗ F`, α
∨
` = 1⊗H`

e0 = t⊗ (Fθ0 − Fσ(θ0)), f0 = t−1 ⊗ (Eθ0 − Eσ(θ0)), α
∨
0 = 1⊗ (−θ∨0 − (σ(θ0))∨) + 2c.

D`+1:

�
�•

•
. . .• • • • • • •

1 2 `− 1

`

`+ 1
HH

ei = 1⊗ Ei, fi = 1⊗ Fi, α
∨
i = 1⊗Hi (1 ≤ i < `),

e` = 1⊗ (E` + E`+1), f` = 1⊗ (F` + F`+1), α∨` = 1⊗ (H` +H`+1)

e0 = t⊗ (Fθ0 − Fσ(θ0)), f0 = t−1 ⊗ (Eθ0 − Eσ(θ0)), α
∨
0 = 1⊗ (−θ∨0 − (σ(θ0))∨) + 2c.
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E6:

HH
��

• •

• •
• •

1 2
3 6

5 4

ei = 1⊗ (Ei + E6−i), fi = 1⊗ (Fi + F6−i), α∨i = 1⊗ (Hi +H6−i) (1 ≤ i ≤ 2),

e3 = 1⊗ E3, f3 = 1⊗ F3, α
∨
3 = 1⊗H3

e4 = 1⊗ E6, f4 = 1⊗ F6, α
∨
4 = 1⊗H6

e0 = t⊗ (Fθ0 − Fσ(θ0)), f0 = t−1 ⊗ (Eθ0 − Eσ(θ0)), α
∨
0 = 1⊗ (−θ∨0 − (σ(θ0))∨) + 2c.

D4:

HH
�

�
• •
•

•
21

3
4

e1 = 1⊗ E2, f1 = 1⊗ F2, α
∨
1 = 1⊗H2,

e2 = 1⊗ (E1 + E3 + E4), f2 = 1⊗ (F1 + F3 + F4), α∨2 = 1⊗ (H1 +H3 +H4)

e0 = t⊗ (Fθ0 + η2Fσ(θ0) + ηFσ2(θ0)), f0 = t−1 ⊗ (Eθ0 + ηEσ(θ0) + η2Eσ2(θ0)),

α∨0 = 1⊗ (−θ∨0 − (σ(θ0))∨ − (σ2(θ0)∨) + 3c.

Let

h = 1⊗
◦
h ⊕Cc⊕ Cd.

Note that

hσ = hτ = span(α∨0 , α
∨
1 , . . . , α

∨
` )⊕ Cc⊕ Cd.

Define the elements α1, . . . , α` ∈ (hσ)∗ to be the restriction from h∗

of the roots α1, . . . , α` ∈ h∗, respectively, in types A2`−1 and D`+1.
Define the elements α1, α2, α3, α4 ∈ (hσ)∗ to be the restriction from
h∗ of the roots α1, α2, α3, α6 ∈ h∗, respectively, in type E6. Define
the elements α1, α2 ∈ (hσ)∗ to be the restriction from h∗ of the roots
α2, α1 ∈ h∗, respectively in type D4. Also, in all cases, we define α0 to
be the restriction from h∗ of δ − θ0.

We next claim that (hσ,Π,Π∨) is a realization of the Cartan matrix
A′ of type X(r)

N . We know from Theorem 8.1.6 that

〈α∨i , αj〉 = a′ij
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for i, j ≥ 1. The ` × ` matrix with entries 〈α∨i , αj〉 for 1 ≤ i, j ≤ ` is
non-singular, so α∨1 , . . . , α

∨
` and α1, . . . , α` are linearly independent. We

have 〈d, αi〉 = δi0, whence α0, α1, . . . , α` are linearly independent. Also
c appears in α∨0 , whence α∨0 , α

∨
1 , . . . , α

∨
` are linearly independent. For

the remaining entries of the Cartan matrix, note that

∑̀
i=0

a∨i α
∨
i = rc,

where ai are the marks of the diagram X
(r)
N . We also note that

∑̀
i=0

aiαi = δ|
(
◦
h

σ

)
.

Now

〈α∨i , α0〉 = 〈α∨i , δ −
∑̀
j=1

ajαj〉 = −
∑̀
j=1

a′ijaj = a0a
′
i0 = a′i0

for i = 1, . . . , `. Moreover,

〈α∨0 , αj〉 = 〈rc−
∑̀
i=1

a∨i α
∨
i , αj〉 = −

∑̀
i=1

a′ija
∨
i = a∨0 a

′
0j = a′0j

for j = 1, . . . , `. Finally,

〈α∨0 , α0〉 = 〈−1⊗ θ∨0 − 1⊗ σ(θ0)∨ − · · ·+ rc,−θ0 + δ〉 = 〈θ∨0 , θ0〉 = 2,

since 〈σ(θ0)∨, θ0〉 = 0.

We next verify relations (1.12-1.15). The relation (1.12) is easy and
the relation (1.13) is obvious. For (1.14,1.15), if i, j ≥ 1, then we already
know that

[α∨i , ej ] = a′ijej , [α∨i , fj ] = −a′ijfj (8.3)

For j = 1, . . . , ` we have

[α∨0 , ej ] = [rc−
∑̀
i=1

a∨i α
∨
i , ej ] = −

∑̀
i=1

a∨i [α∨i , ej ] = −
∑̀
i=1

a∨i a
′
ijej = a′0jej ,
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and similarly we get [α∨0 , fj ] = −a′0jfj for j = 1, . . . , `. Also, for i =
1, . . . , ` we have

[α∨i , e0] = [α∨i , t⊗ (Fθ0 + η−1Fσ(θ0) + . . . )]

= t⊗ 〈α∨i ,−θ0〉(Fθ0 + η−1Fσ(θ0) + . . . )

= 〈α∨i ,−
∑̀
j=1

ajαj〉e0

= −(
∑̀
j=1

aijaj)e0

= ai0e0.

Similarly we have [α∨i , f0] = −ai0f0. We also have

[α∨0 , e0] = [1⊗ (−θ∨0 − σ(θ0)∨ − . . . ), t⊗ (Fθ0 + η−1Fσ(θ0) + . . . )]

= 2t⊗ (Fθ0 + η−1Fσ(θ0) + . . . )]

= 2e0.

Similarly we have [α∨0 , f0] = −2f0. Ffinally, for h = c and d the relations
[h, ei] = 〈h, αi〉ei and [h, fi] = −〈h, αi〉fi are easy to check.

We next prove that the elements e0, e1, . . . , e`, f0, f1, . . . , f` together
with hτ generate L̂(

◦
g)τ . Denote by g1 the subalgebra generated by

this elements. We know that e1, . . . , e`, f1, . . . , f` generate (
◦
g)σ. So the

degree 0 part of L̂(
◦
g)τ lies in g1.

Suppose first that r = 2. We have e0 = t ⊗ (Fθ0 − Fσ(θ0)) ∈ g1 and

Fθ0 − Fσ(θ0) ∈ (
◦
g)(1). Now, it is easy to see that the elements y ∈ (

◦
g)(1)

for which t ⊗ y ∈ g1 form a non-zero submodule of the (
◦
g)σ-module

(
◦
g)(1). Since this module is irreducible, we conclude that t⊗ (

◦
g)(1) ⊂ g1.

Now we can find elements x, y ∈ (
◦
g)(1) such that [x, y] 6= 0. Then

[t⊗ x, t⊗ y] = t2 ⊗ [x, y] is a non-zero element of g1. Now the set of all

z ∈ (
◦
g)σ such that t2 ⊗ z ∈ g1 is an ideal of (

◦
g)σ, and (

◦
g)σ is simple, so

t2 ⊗ (
◦
g)σ ⊂ g1. The relations

[t2 ⊗ x, t2k ⊗ y] = t2k+2 ⊗ [x, y] (x, y ∈ (
◦
g)σ)

[t2 ⊗ x, t2k+1 ⊗ y] = t2k+3 ⊗ [x, y] (x ∈ (
◦
g)σ, y ∈ (

◦
g)(1))

can then be used to show by induction on k that t2k ⊗ (
◦
g)σ ⊂ g1 and

t2k+1 ⊗ (
◦
g)(1) ⊂ g1 for k > 0. The argument for k < 0 and for r = 3 is

similar.
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Finally we must show that L̂(
◦
g)τ has non non-trivial ideals i with

i ∩ hτ = (0). Decompose L̂(
◦
g)τ into root spaces with respect to hτ . We

first suppose that r = 2. Then L̂(
◦
g)τ is the direct sum of hτ and the

following weight spaces:

t2k ⊗ (
◦
h)σ with weight 2kδ;

t2k+1 ⊗ (
◦
h)(1) with weight (2k + 1)δ;

Ct2k ⊗Eα with weight α+ 2kδ where {α} is a one-element orbit

of σ on
◦
∆;

Ct2k ⊗ (Eα + Eσ(α)) with weight α + 2kδ where {α, σ(α)} is a

two-element orbit of σ on
◦
∆;

Ct2k+1⊗ (Eα−Eσ(α)) with weight α+(2k+1)δ where {α, σ(α)}
is a two-element orbit of σ on

◦
∆.

By the Weight Lemma, if i 6= 0, then it has a non-zero element x in one
of these root spaces. Then we can find an element y in the negative root
space such that [x, y] is a non-zero element of hτ .

When r = 3 a similar argument can be applied. This time the weight
spaces are

t3k ⊗ (
◦
h)σ with weight 3kδ;

t3k+1 ⊗ (
◦
h)(1) with weight (3k + 1)δ;

t3k+2 ⊗ (
◦
h)(2) with weight (3k + 2)δ;

Ct3k ⊗Eα with weight α+ 3kδ where {α} is a one-element orbit

of σ on
◦
∆;

Ct3k⊗(Eα+Eσ(α)+Eσ2(α)) with weight α+3kδ where {α, σ(α), σ2(α)}
is a three-element orbit of σ on

◦
∆;

Ct3k+1 ⊗ (Eα + η−1Eσ(α) + ηEσ2(α)) with weight α + (3k + 1)δ

where {α, σ(α), σ2(α)} is a three-element orbit of σ on
◦
∆.

Ct3k+2 ⊗ (Eα + ηEσ(α) + η−1Eσ2(α)) with weight α + (3k + 2)δ

where {α, σ(α), σ2(α)} is a three-element orbit of σ on
◦
∆.

Corollary 8.2.2 The multiplicities of the imaginary roots are as follows:

(i) Type A(2)
2` : the multiplicity of any kδ is `;

(ii) Type A(2)
2`−1: the multiplicity of any 2kδ is ` and the multiplicity

of any (2k + 1)δ is `− 1;
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(iii) Type D(2)
`+1: the multiplicity of any 2kδ is ` and the multiplicity

of any (2k + 1)δ is 1;
(iv) Type E(2)

6 : the multiplicity of any 2kδ is 4 and the multiplicity of
any (2k + 1)δ is 2;

(v) Type D(3)
4 : the multiplicity of any 3kδ is 2 and the multiplicity

of any (3k + 1)δ and (3k + 2)δ is 1.

Proof By the previous theorem, the multiplicity of rkδ equals dim(
◦
h)σ,

and the multiplicity of (2k + 1)δ in cases (i)-(iv) equals dim(
◦
h)(1), etc.

8.3 Finite Order Automorphisms

Let g be a simple finite dimensional Lie algebra of type XN . Let µ be a
diagram automorphism of g of order r. Let Ei, Fi,Hi (i = 0, 1, . . . , N)
be the elements of g introduced in §7.2, and let α0, α1, . . . αN be the
roots attached to E0, E1, . . . , EN , respectively. Recall that the elements
E0, E1, . . . , EN generate g, and that there exists a unique linear de-
pendence

∑`
i=0 aiαi = 0 such that the ai are positive relatively prime

numbers. Recall also that the vertices of the diagram X
(r)
N are in one-

to-one correspondence with the Ei and that the ai are the labels at this
diagram.

Lemma 8.3.1 Every ideal of the Lie algebra L(g, µ) is of the form
P (tr)L(g, µ), where P (t) ∈ L. In particular, a maximal ideal is of the
form (1− (at)r)L(g, µ), where a ∈ C×.

Proof Let i be a non-trivial ideal of L(g, µ), and

x =
∑
j̄,s

tjPj̄,s(t)⊗ aj̄,s ∈ i

where 0 ≤ j < r is such that j̄ ≡ j (mod r), Pj̄,s(t) ∈ L, and aj̄,s ∈ gj̄

are linearly independent. We show that

Q(tr)Pj̄,s(t)L(g, µ) ⊂ i

for all Q(t) ∈ L. Let h0̄ = hµ be the Cartan subalgebra of g0̄ = gµ. We
can assume that x is an eigenvector for h0̄ with weight α ∈ h∗0̄. If α 6= 0,
taking [x, tj ⊗ a−j̄ ] with a−j̄ of weight −α, instead of x, we reduce the
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problem to the case α = 0 and j̄ = 0, i.e. aj̄,s ∈ h0̄. Let γ ∈ h∗0̄ be the
root of g0̄ such that 〈γ, aj̄,s〉 6= 0. Then the element y

Theorem 8.3.2 Let s = (s0, s1, . . . , s`) be a sequence of non-negative
relatively prime numbers; put m = r

∑`
i=0 aisi. Then

(i) The formulas

σs;r : Ej 7→ e2πisj/mEj (0 ≤ j ≤ `)

define (uniquely) an mth order automorphism σs,r of g.
(ii) Up to conjugation by an automorphism of g, the automorphisms

σs,r all mth order automorphisms of g.
(iii) The elements σs,r and σs′,r′ are conjugate by an automorphism

of g if and only if r = r′ and the sequence s can be transformed
to the sequence s′ by an automorphism of the diagram X

(r)
N .

Proof See Kac.
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Highest weight modules over Kac-Moody
algebras

9.1 The category O
For an h-diagonalizable g-module V we denote by P (V ) the set of weights
of V . For λ ∈ h∗ denote

D(λ) = {µ ∈ h∗ | µ ≤ λ}.

The category O is defined as follows. Its objects are g-modules V
which are h-diagonalizable with finite dimensional weight spaces and
such that there exists a finite number of elements λ1, . . . , λs ∈ h∗ such
that

P (V ) ⊂ D(λ1) ∪ · · · ∪D(λs).

The morphisms in O are homomorphisms of g-modules. By the Weight
Lemma, any submodule or quotient module of a module from category
O is also in O. Also, a sum and a tensor product of a finite number
of modules from O is again in O. Finally, every module from O is
restricted.

A highest weight vector of weight Λ is a Λ-weight vector v in a g-
module V such that n+v = 0. A g-module is a highest weight module
with highest weight Λ ∈ h∗ if it is generated by a highest weight vector
of weight Λ. If V is such a module and vΛ ∈ V is a highest weight vector
of weight Λ, then

V = U(n−)vΛ, V =
⊕
λ≤Λ

Vλ, VΛ = C · vΛ, dimVλ <∞ (λ ∈ h∗).

In particular V ∈ O. Now form the Verma module

M(Λ) = U(g)⊗U(b+) CΛ,

where b+ = n+ ⊕ h and CΛ is the 1-dimensional b+-module with the

116
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trivial action of n+ and the action of h with the weight Λ. Let us write

vΛ := 1⊗ 1 ∈M(Λ).

This is a highest weight vector and M(Λ) is a highest weight module
with highest weight Λ. By PBW, M(Λ) restricted to U(n−) is a free
module of rank 1 on basis vΛ.

Lemma 9.1.1 Suppose V is a highest weight module with highest weight
Λ. Then there is a unique up to scalars surjective homomorphism from
M(Λ) onto V .

Proof By adjointness of tensor and Hom,

Homg(M(λ), V ) ∼= Homb+(CΛ, V ).

It is clear that the last Hom-space is 1-dimensional.

Proposition 9.1.2 M(Λ) has a unique maximal submodule M ′(Λ), and
the quotient

L(Λ) := M(Λ)/M ′(Λ)

is an irreducible g-module. Moreover, every irreducible module in the
category O is isomorphic to one and only one L(Λ), Λ ∈ h∗. Finally,
Endg(L(Λ)) = C · IL(Λ).

Proof If M is a proper submodule of M(Λ) then MΛ = 0, hence the sum
of all proper submodules of M(Λ) still has the trivial Λ-weight space, so
is still proper. This proves the existence of a unique maximal submodule,
whence L(Λ) is irreducible. Next, let L be an irreducible module in O.
Pick a maximal weight Λ of L, an let v ∈ LΛ. It follows that v generates
L, so by Lemma 9.1.1, L is a quotient of M(Λ), whence L ∼= L(Λ). The
last claim is easy to check using the fact that dimL(Λ)Λ = 1.

A vector v in a g-module V is called primitive (of weight λ) if v is a
weight vector (of weight λ) and there exists a submodule U ⊂ V such
that v + U is a highest weight vector in V/U . Every module V ∈ O is
generated by its primitive vectors. Indeed, let V ′ be the submodule of
V generated by the primitive vectors. If V ′ 6= V , then V/V ′ contains
a highest weight vector, any preimage of which is a primitive vector.
Actually, even more is true:
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Lemma 9.1.3 Any module V ∈ O is generated by its primitive vectors
as an n−-module.

Proof Note first that a weight vector v ∈ V is not primitive if and only
if v ∈ U(n−)U0(n+)v, where U0(g) stands for the augmentation ideal of
U(g). Indeed, for a weight vector v

U(n−)U0(n+)v = U(n−)U(n+)n+v = U(n−)U(n+)U(h)n+v = U(g)n+v

is the g-submodule generated by n+v.
Now it follows that every non-primitive vector is obtained by appli-

cation of some elements from n− to elements of higher weights. This
implies the lemma using boundedness from above of P (V ).

9.2 Formal Characters

Unfortunately, a module V in O need not have a composition series. So
we cannot define things like multiplicities [V : L(Λ)] in the usual way.
The following provide a substitute for this:

Lemma 9.2.1 Let V ∈ O and λ ∈ h∗. Then there exists a filtration

V = Vt ⊃ Vt−1 ⊃ · · · ⊃ V0 = 0

and a subset J ⊂ {1, . . . , t} such that

(i) if j ∈ J then Vj/Vj−1
∼= L(λj) for some λj ≥ λ;

(ii) if j 6∈ J then (Vj/Vj−1)µ = 0 for every µ ≥ λ.

Proof Let

a(V, λ) =
∑
µ≥λ

dimVµ.

This is a well-defined non-negative integer. We prove the lemma by
induction on a(V, λ). If a(V, λ) = 0 then 0 = V0 ⊂ V1 = V is the
required filtration, with J = ∅. If a(V, λ) > 0, let µ be a maximal
weight of M such that µ ≥ λ. Choose a non-zero weight vector v ∈ Vµ

and let U = U(g) · v. Clearly U is a highest weight module. Hence it
has a unique maximal submodule U ′. Now we have

0 ⊂ U ′ ⊂ U ⊂ V

with U/U ′ ∼= L(µ) and µ ≥ 0. Since a(U ′, λ) and a(V/U, λ) are both
less than a(V, λ), we now can proceed by induction.
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Lemma 9.2.2 Let V ∈ O, µ ∈ h∗ and let λ be such that λ ≤ µ. Consider
the corresponding filtration from Lemma 9.2.1. Then the number of
times µ appears among the {λj | j ∈ J} is independent of the choice of
filtration and also the choice if λ.

Proof We first observe that a filtration with respect to λ is also a
filtration with respect to µ when µ ≥ λ. Also, the multiplicity of L(µ)
in such filtration is the same whether it is regarded as a filtration with
respect to λ or µ. Thus to prove the lemma it will be sufficient to
take two filtrations with respect to µ and show that L(µ) has the same
multiplicity in each. The following variant of the proof of the Jordan-
Holder theorem achieves this. Let

V = V0 ⊃ V1 ⊃ · · · ⊃ Vl1 = 0, (9.1)

V = V ′
0 ⊃ V ′

1 ⊃ · · · ⊃ V ′
l2 = 0 (9.2)

be two such filtrations of lengths l1 and l2. We use induction on min(l1, l2).
If min(l1, l2) = 1 then either V is irreducible and the two filtrations are
identical or µ is not a weight of µ and L(µ) does not appear in both
filtrations. Thus suppose min(l1, l2) > 1.

Assume first that V1 = V ′
1 . Then consider two filtrations

V1 ⊃ · · · ⊃ Vl1 = 0,

V ′
1 ⊃ · · · ⊃ V ′

l2 = 0

of V1. By induction they give the same multiplicity of L(µ), and the
filtrations for V are obtained by adding the additional factor V/V1, which
is the same for both. So we are done in this case.

Next, assume that V1 6= V ′
1 . Suppose first that one contains the other,

say V1 ⊂ V ′
1 . Then V/V1 is not irreducible, so µ is not a weight of V/V1.

Thus neither V/V1 nor V/V ′
1 is isomorphic to L(µ). Let

V ⊃ U1 ⊃ · · · ⊃ Um = 0,

be a filtration of V1 of the required type with respect to µ. We then
consider the filtrations

V ⊃ V1 ⊃ U1 · · · ⊃ Um = 0, (9.3)

V ⊃ V ′
1 ⊃ V1 ⊃ U1 · · · ⊃ Um = 0. (9.4)

These are filtrations of the required type with respect to µ. Moreover,
L(µ) has the same multiplicity in (9.1) and (9.3), since they have the
same leading term V1. Similarly L(µ) has the same multiplicity in (9.2)
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and (9.2). Finally, L(µ) has the same multiplicity in (9.3) and (9.4),
since since none of V/V1, V/V

′
1 , V

′
1/V1 is isomorphic to L(µ). Thus L(µ)

has the same multiplicity in (9.1) and (9.2), as required.
Finally, we assume that neither of V1, V

′
1 is contained in the other.

Let U = V1 ∩ V ′
1 and choose a filtration of U of the required type with

respect to µ:

U ⊃ U1 ⊃ · · · ⊃ Um = 0.

We then consider the filtrations

V ⊃ V1 ⊃ U ⊃ U1 · · · ⊃ Um = 0, (9.5)

V ⊃ V ′
1 ⊃ U ⊃ U1 · · · ⊃ Um = 0. (9.6)

These are filtrations of the required type with respect to µ. This is clear
since

V1/U ∼= (V1 + V ′
1)/V ′

1 , V ′
1/U

∼= (V1 + V ′
1)/V1.

Now L(µ) has the same multiplicity in (9.1), (9.5) and in (9.2), (9.6),
since they have the same leading term. It is therefore sufficient to show
that L(µ) has the same multiplicity in (9.5) and (9.6). These filtrations
differ only in the two first factors. If V1 + V2 = V then we have

V/V1
∼= V ′

1/U, V/V ′
1
∼= V1/U,

and we are done. If V1+V ′
1 6= V then V/V1 and V/V ′

1 are not irreducible.
In this case µ is not a weight of V/V1 and V/V ′

1 , so it is not a weight
of V1/U . Thus none of V/V1, V1/U , V/V ′

1 , V ′
1/U is isomorphic to L(µ).

This completes the proof.

Now, let V ∈ O and µ ∈ h∗. Fix λ ∈ h∗ such that λ ≤ µ and construct
a filtration as in Lemma 9.2.1. Denote by [V : L(µ)] the number of times
µ appears among the {λj | j ∈ J} and call it the multiplicity of L(µ) in
V . In view of Lemma 9.2.2, the multiplicity is well-defined.

Given a module V ∈ O, we have by definition that all its weight spaces
are finite dimensional. The idea of the formal character is to record the
dimensions of each of these weight spaces in one ”book-keeping devise”
or a generating function. Since there may be infinitely many weights in
P (V ), we are going to have to work with certain formal infinite sums.

So let E be the C-algebra whose elements are series of the form∑
λ∈h∗

cλe(λ)
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where cλ ∈ C and cλ = 0 for λ outside the union of a finite number of
sets of the form D(µ). The sum of two such series and the multiplication
by a scalar are defined in the usual way. The product of two such series
also makes sense if we use the rule e(λ)e(µ) = e(λ+µ) and note that to
calculate the coefficient of a given e(ν) in the product of two elements
in E only involves calculating a finite sum. Under these operations E
becomes a commutative associative C-algebra with identity e(0).

Given a module V ∈ O, define its formal character to be

ch V :=
∑
λ∈h∗

(dimVλ)e(λ) ∈ E .

By definition, we have

ch (V ⊕W ) = ch V + chW, ch (V ⊗W ) = ch V chW.

Proposition 9.2.3 Let V ∈ O. Then

ch V =
∑
λ∈h∗

[V : L(λ)]ch L(λ).

Proof Let

ϕ(V ) = ch V −
∑
λ∈h∗

[V : L(λ)]ch L(λ).

Note that ϕ(V ) ∈ E . Moreover, ϕ(L(λ)) = 0 and, given a SES of
modules

0→ V1 → V2 → V3 → 0

we have ϕ(V2) = ϕ(V1) + ϕ(V3). Now let us focus on a particular λ and
V . By Lemma 9.2.1, there exists a filtration

V = Vt ⊃ Vt−1 ⊃ · · · ⊃ V0 = 0

such that, setting Wi := Vi/Vi−1, we have either Wi
∼= L(λi) for some

λi ≥ λ or that (Wi)λ = 0. In the former case ϕ(Wi) = 0. In the latter
case ϕ(Wi) has e(λ)-coefficient 0. This was for all λ, so ϕ(V ) = 0.

Lemma 9.2.4 For any λ ∈ h∗ the formal character of the Verma module
is given by

chM(λ) = e(λ)
∏

α∈∆+

(1− e(−α))−mult α.
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Proof Follows from PBW-theorem and freeness of M(λ) over U(n−).

Assume that A is symmetrizable and let (·|·) be the standard form
on g. Recall from Corollary 2.3.6 that if V is a g-module with highest
weight Λ, then

Ω = (|Λ + ρ|2 − |ρ|2)IV .

Proposition 9.2.5 Let V be a g-module with highest weight Λ. Then

ch V =
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cλchM(λ), (9.7)

where cλ ∈ Z, cΛ = 1.

Proof In view of Proposition 9.2.3, we may assume that V = L(Λ).
Using the same proposition, for any µ we deduce

chM(µ) =
∑
ν≤µ

cµ,νch L(ν),

for some non-negative integers cµ,ν with cµ,µ = 1. We know that cµ,ν 6= 0
if and only if M(µ) contains a primitive vector of weight ν. Using the
action of the Casimir we deduce that cµ,ν = 0 unless |µ+ ρ|2 = |ν + ρ|2.

Set B(Λ) = {λ ≤ Λ | |λ+ ρ|2 = |Λ + ρ|2}, and order elements of this
set, λ1, λ2, . . . so that λi ≥ λj implies i ≤ j. Then

chM(λi) =
∑

j

ci,jch L(λj),

with ci,i = 1 and ci,j = 0 for j > i. So we can solve this system of linear
equations to complete the proof of the lemma.

9.3 Generators and relations

Recall from chapter 1 that g = g̃/r, and r = r+⊕ r− where r± are ideals
of g̃ defined by r± = r ∩ ñ±. Set rα = r ∩ g̃α.

We deal with some general lemmas first.

Lemma 9.3.1 Let θ : g → g′ be a surjective homomorphism of Lie
algebras with kernel r. Let ϕ : U(g)→ U(g′) be the corresponding homo-
morphism between enveloping algebras. Then the kernel of ϕ is rU(g).
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Proof Since r is an ideal of g, rU(g) is a two-sided ideal of U(g). More-
over, rU(g) ⊂ kerϕ. Conversely, we have a homomorphism

α : U(g)/rU(g)→ U(g′)

induced by ϕ. We consider the Lie algebra U(g)/rU(g) (with respect to
the commutator bracket). Define a map

g′ → U(g)/rU(g)

as follows. Given x′ ∈ g′, choose x1 ∈ g with θ(x1) = x′. Then x1 gives
rise to x̄1 ∈ U(g)/rU(g). This map is well-defined and is a Lie algebra
homomorphism. By the universal property there is a map

β : U(g′)→ U(g)/rU(g)

extending the constructed homomorphism of Lie algebras. It is readily
checked that α and β are inverse homomorphisms, and thus isomor-
phisms.

The two-sided ideal U0(g) := gU(g) of U(g) is called the augmentation
ideal of U(g).

Lemma 9.3.2 g ∩ (U0(g)2) = [g, g].

Proof Since g ⊂ U0(g) and [x, y] = xy − yx in U(g), the embedding
g ∩ (U0(g)2) ⊃ [g, g] is clear. Conversely, let ḡ = g/[g, g]. We have a
natural homomorphism U(g)→ U(ḡ) under which g∩ (U0(g)2) maps to
ḡ∩ (U0(ḡ)2). Now ḡ is abelian, so U(ḡ) is a polynomial algebra. In such
a polynomial algebra, it is evident that ḡ∩ (U0(ḡ)2) = 0. It follows that
g∩ (U0(g)2) lies in the kernel of g→ ḡ, and so g∩ (U0(g)2) ⊂ [g, g].

Lemma 9.3.3 Let r be a subalgebra of the Lie algebra g. Then r ∩
rU0(g) = [r, r].

Proof Since r ⊂ U0(r) and [x, y] = xy − yx in U(r), we have

[r, r] ⊂ r ∩ rU0(r) ⊂ r ∩ rU0(g).

Conversely, let {ri} be a basis of r and extend it to a basis {ri, uj} of g.
The monomials

∏
rmi
i u

nj

j with
∑
mi +

∑
nj > 0 form a basis of U0(g)

and those with
∑
mi +

∑
nj ≥ 2 and

∑
mi ≥ 1 form a basis of rU0(g).

Hence, each element of r ∩ rU0(g) is a linear combination of monomials
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rmi
i u

nj

j with
∑
nj = 0 and

∑
mi ≥ 2. Hence

r ∩ rU0(g) ⊂ r ∩ U0(r)2 = [r, r],

where the last equality comes from Lemma 9.3.2

Proposition 9.3.4 The ideal r+ (resp. r−) is generated as an ideal
in ñ+ (resp. ñ−) by those rα (resp. r−α) for which α ∈ Q+ \ Π and
2(ρ|α) = (α|α).

Proof We define a Verma module M̃(λ) over g̃ by

M̃(λ) = U(g̃)⊗U(b̃+) Cλ,

where b̃+ = ñ+ ⊕ h and Cλ is the 1-dimensional b̃+-module with the
trivial action of ñ+ and the action of h with the weight λ. As for the usual
Verma modules, one proves that M̃(λ) has a unique maximal proper
submodule M̃ ′(λ) and that as a U(ñ−)-module, M̃(λ) is a free module
on the generator ṽλ := 1⊗ 1.

Consider the special case λ = 0. Write ṽ := ṽ0 = 1⊗ 1 ∈ M̃(0). Since
ñ− is a free Lie algebra on f1, . . . , fn, U(ñ−) is a free associative algebra
on f1, . . . , fn. So as vector spaces,

U(ñ−) = C1⊕ U(ñ−)f1 ⊕ · · · ⊕ U(ñ−)fn.

Thus U(ñ−)f1 ⊕ · · · ⊕ U(ñ−)fn is a U(ñ−)-submodule of codimension 1
in U(ñ−). It corresponds to the subspace

n⊕
i=1

U(ñ−)fiṽ

of codimension 1 in M̃(0). Moreover, this subspace is a g-submodule
isomorphic to

⊕n
i=1 M̃(−αi) since the vectors fiṽ are easily checked to

be highest weight vectors of weight −αi, i = 1, . . . , n. It follows that

M̃ ′(0) =
n⊕

i=1

U(ñ−)fiṽ ∼=
n⊕

i=1

M̃(−αi).

Tensoring with U(g)⊗U(g̃) we get an isomorphism of U(g)-modules

U(g)⊗U(g̃) M̃
′(0) ∼=

n⊕
i=1

M(−αi). (9.8)

Let π : g̃→ g be the canonical homomorphism. We define a map

λ1 : r− → U(g)⊗U(g̃) M̃
′(0), a 7→ 1⊗ a(ṽ).
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This is a g̃-module homomorphism, where g̃ acts on r− via the adjoint
action. Indeed, for x ∈ g̃, a ∈ r−, we have

λ1([x, a]) = 1⊗ (xa− ax)(ṽ) = π(x)⊗ a(ṽ) = x(λ1(a))

since π(a) = 0. A similar calculation shows that λ1([r−, r−]) = 0. So we
have a g-module homomorphism

λ : r−/[r−, r−]→
n⊕

i=1

M(−αi) (9.9)

by (9.8). More explicitly λ is described as follows: write a ∈ r− in the
form a =

∑
i uifi, where ui ∈ U0(ñ−), and the action of ui on fi is the

adjoint action extended to the universal enveloping. Then

λ(a+ [r−, r−]) =
∑

i

π(ui)vi,

where vi is the highest weight vector of M(−αi).
We claim that λ is injective. Indeed, λ(a + [r−, r−]) = 0 implies

π(ui) = 0 for all i, hence ui ∈ r−U(n−), see Lemma 9.3.1. So
∑
uifi ∈

r−U0(n−). So a ∈ r− ∩ r−U0(n−) = [r−, r−] by Lemma 9.3.3. Thus we
have an embedding (9.9) in the category O.

Now let−α (α ∈ Q+) be a primitive weight of the g-module r−/[r−, r−].
Note that α 6∈ Π since no fi belongs to r−. Using the embedding and the
action of Casimir we deduce that (−α+ρ|−α+ρ) = (−αi +ρ|−αi +ρ)
for some i. Since 2(ρ|αi) = (αi|αi) by (2.18), we get 2(ρ|α) = (α|α).

By Lemma 9.1.3, r−/[r−, r−] is generated as an n−-module by the
representatives of those r−α for which α ∈ ∆+ \ Π and 2(ρ|α) = (α|α).
We want to deduce from it that r− is generated as an ñ−-module by
such rα (equivalently the ideal of ñ− generated by such r−α). Let k be
the the ñ−-submodule generated by such r−α. Then k + [r−, r−] = r−.
Suppose k 6= r−. Then r−/k is an ñ−-module. Consider the submodule
[r−/k, r−/k] of r−/k. This is an ñ−-module whose weights are of the form
β + γ where β, γ are weights of r−/k. Thus if α is a weight of r−/k for
which |ht α| is minimal then α cannot be a weight of [r−/k, r−/k]. Thus
[r−/k, r−/k] 6= r−/k, and this gives k + [r−, r−] 6= r−, a contradiction.

This completes the proof for r−. The result for r+ follows by applying
the involution ω̃.

Theorem 9.3.5 Let A be symmetrizable. Then the elements

(ad ei)1−aijej , i 6= j (i, j = 1, . . . , n), (9.10)

(ad fi)1−aijfj , i 6= j (i, j = 1, . . . , n) (9.11)



126 Highest weight modules over Kac-Moody algebras

generate the ideals r+ and r−, respectively.

Proof Denote by ḡ the quotient of g̃ by the ideal generated by all ele-
ments (9.10) and (9.11). The natural surjection g̃ → g factors through
surjections g̃ → ḡ → g, thanks to Lemma 3.1.1. We have the induced
Q-gradation of ḡ:

ḡ =
⊕
α∈Q

ḡα.

Let r̄ (resp. r̄±) denote the image of r (resp. r±) in ḡ. We just need to
show that r̄+ = 0 (then r̄− = 0 too by applying ω̃). Otherwise, choose
the root α of minimal height among the roots α ∈ Q+ \ {0} such that
(r̄+)α 6= 0 and let α =

∑
kiαi. It is clear that (r+)α must occur in any

system of homogeneous generators of r+ as an ideal of n+. It follows
from Proposition 9.3.4 that (α|α) = 2(ρ|α).

We know that the Weyl group W acts on the weights of g = g̃/r and
that weights in the same W -orbit have the same multiplicity. The same
argument can be applied to ḡ to give a similar result (the proofs in §3.2
relied only on Serre relations, which hold in ḡ). Since

dim ḡα = dim gα + dim r̄α

we see that W acts on the weights of r̄ and that weights in the same
W -orbit have the same multiplicity. It follows using Lemma 3.2.2 that
(r̄+)riα 6= 0 for any i. Now ht (riα) ≥ ht (α) implies (αi|α) ≤ 0, whence
(α|α) ≤ 0. But

2(ρ|α) = 2
∑

ki(ρ|αi) =
∑

ki(αi|αi) > 0.

This contradicts (α|α) = 2(ρ|α).
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Weyl-Kac Character formula

10.1 Integrable highest weight modules and Weyl group

Set

P = {λ ∈ h∗ | 〈λ, α∨i 〉 ∈ Z (i = 1, . . . , n)},
P+ = {λ ∈ P | 〈λ, α∨i 〉 ≥ 0 (i = 1, . . . , n)},
P++ = {λ ∈ P | 〈λ, α∨i 〉 > 0 (i = 1, . . . , n)}.

The set P is called the weight lattice, elements from P (resp. P+, resp.
P++) are called integral weights (resp. dominant, resp. regular dominant
weights). Note that P contains the root lattice Q.

Let V be a highest weight module over g with highest weight vector
v. It follows from Lemmas 3.1.2(ii) and 3.1.3 that V is integrable if and
only if fNi

i v = 0 for some Ni > 0 (i = 1, . . . , n).

Lemma 10.1.1 The g-module L(Λ) is integrable if and only if Λ ∈ P+.

Proof Follows from the previous paragraph and representation theory
of sl2.

Denote by P (Λ) the set of weights of L(Λ). It is clear that P (Λ) ⊂ P
if λ ∈ P . The following proposition follows from Lemma 10.1.1 and
Proposition 3.2.3.

Proposition 10.1.2 If Λ ∈ P+, then for all w ∈W we have

multL(Λ) λ = multL(Λ) w(λ).

In particular, P (Λ) is W -invariant.

127
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Corollary 10.1.3 If Λ ∈ P+ then any λ ∈ P (Λ) is W -conjugate to a
unique µ ∈ P+ ∩ P (Λ).

Proof Follows from Proposition 3.4.1.

We let W act on the complex vector space Ẽ of all (possibly infinite)
formal linear combinations

∑
λ cλe(λ) by

w(
∑

λ

cλe(λ)) =
∑

λ

cλe(wλ).

The space Ẽ contains E as a subspace. However, the product of two ele-
ments P1, P2 ∈ Ẽ doesn’t always make sense. If it does, then w(P1P2) =
w(P1)w(P2). Proposition 10.1.2 implies that

w(ch L(Λ)) = ch L(Λ) (w ∈W, Λ ∈ P+). (10.1)

Consider now the element

R :=
∏

α∈∆+

(1− e(−α))mult α ∈ E .

For w ∈W set

ε(w) := (−1)`(w) = deth∗ w.

We next claim that

w(e(ρ)R) = ε(w)e(ρ)R (w ∈W ). (10.2)

Indeed, it is sufficient to check (10.2) for each fundamental reflection ri.
Recall that the set ∆+ \ {αi} is ri-invariant and mult ri(α) = multα for
α ∈ ∆+. So

ri(e(ρ)R) = (rie(ρ))(riR)

= e(riρ)ri(1− e(−αi))
∏

α∈∆+\{αi}

ri(1− e(−α))mult α

= e(ρ− αi)(1− e(αi))
∏

α∈∆+\{αi}

(1− e(−α))mult α

= −e(ρ)R.

10.2 The character formula

From now on we assume that A is symmetrizable and (·|·) is the standard
bilinear form on g.
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Lemma 10.2.1 Let λ,Λ ∈ P , λ ≤ Λ, and Λ + λ ∈ P+. Then either
〈Λ + λ, α∨i 〉 = 0 for i ∈ supp (Λ− λ) or (Λ|Λ) > (λ|λ). In particular, if
Λ ∈ P++, λ ∈ P+, and λ < Λ, then (Λ|Λ) > (λ|λ).

Proof We have Λ− λ =
∑

i kiαi, ki ∈ Z+. Hence

(Λ|Λ)− (λ|λ) = (Λ + λ|Λ− λ) =
∑

i

(αi|αi)
2

ki〈Λ + λ, α∨i 〉.

Since (αi|αi) > 0 the result follows.

Theorem 10.2.2 (Weyl-Kac character formula) Let g be a sym-
metrizable Kac-Moody algebra, and let L(Λ) be an irreducible g-module
with highest weight Λ ∈ P+. Then

ch L(Λ) =
∑

w∈W ε(w)e(w(Λ + ρ)− ρ)∏
α∈∆+

(1− e(−α))mult α
. (10.3)

Proof Multiplying both sides of (9.7) by e(ρ)R and using Lemma 9.2.4,
we get

e(ρ)R ch L(Λ) =
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cλe(λ+ ρ), (10.4)

for cλ ∈ Z with cΛ = 1. By (10.1) and (10.2), the LHS of the last
equation is W -skew-invariant. Hence the coefficients in the RHS have
the following property:

cλ = ε(w)cµ if w(λ+ ρ) = µ+ ρ for some w ∈W. (10.5)

Let λ be such that cλ 6= 0. Then by (10.5) we have cw(λ+ρ)−ρ 6= 0 for all
w ∈W . Hence it follows from (10.4) that w(λ+ρ) ≤ Λ+ρ for all w ∈W .
Let µ ∈ {w(λ + ρ) − ρ | w ∈ W} be such that ht (Λ − µ) is minimal.
Then µ+ρ ∈ P+ and |µ+ρ|2 = |Λ+ρ|2. Applying Lemma 10.2.1 to the
elements Λ + ρ ∈ P++ and µ + ρ, we deduce that µ = Λ. Thus cλ 6= 0
implies λ = w(Λ + ρ) for some w ∈ W , and in this case cλ = ε(w), see
(10.5).

But Λ+ρ ∈ P++, so by Proposition 3.4.1(ii), w(Λ+ρ) = Λ+ρ implies
w = 1. Hence finally we obtain

e(ρ)R ch L(Λ) =
∑

w∈W

ε(w)e(w(Λ + ρ)− ρ),

as required.
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Take Λ = 0 in the Weyl-Kac character formula. Since L(0) is the
trivial module, its character is e(0) = 1E . This gives the following de-
nominator identity:∏

α∈∆+

(1− e(−α))mult α =
∑

w∈W

ε(w)e(w(ρ)− ρ). (10.6)

Substituting into (10.3) we get another form of the Weyl-Kac character
formula:

ch L(Λ) =
∑

w∈W ε(w)e(w(Λ + ρ)− ρ)∑
w∈W ε(w)e(w(ρ)− ρ)

. (10.7)

Remark 10.2.3 In the proof of the Weyl-Kac formula we never used
the fact that L(Λ) is irreducible, but only that L(Λ) is integrable highest
weight module with highest weight Λ. This happens if and only if Λ ∈ P+

and

f
〈Λ,α∨i 〉+1
i (vΛ) = 0 (i = 1, . . . , n). (10.8)

Indeed, if L(Λ) is integrable, then clearly Λ ∈ P+. Moreover, if the (10.8)
fails then one of the f 〈Λ,α∨i 〉+1

i (vΛ) is a non-zero highest weight vector
of negative highest weight for the corresponding sl2, which contradicts
integrability again. The converse follows from Lemmas 3.1.2(ii) and
3.1.3. We make two conclusions: first, if Λ ∈ P+ is dominant and V

is an integrable module generated by highest weight vector of weight Λ
then V = L(Λ). Second,

L(Λ) = M(Λ)/
∑

i

(U(n−)f 〈Λ,α∨i 〉+1
i (vΛ)) (Λ ∈ P+). (10.9)

Consider the expansion∏
α∈∆+

(1− e(−α))−mult α =
∑
β∈h∗

K(β)e(−β), (10.10)

defining the function

K : h∗ → Z+

called the (generalized Kostant) partition function. Note that K(β) = 0
unless β ∈ Q+, K(0) = 1, and for β ∈ Q+, K(β) is the number of
partitions of β into a sum of positive roots. Now the character formula
for Verma modules can be rewritten as follows:

multM(Λ) λ = K(Λ− λ). (10.11)
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Now, substitute (10.10) to (10.3):

∑
λ≤Λ

(multL(Λ) λ)e(λ) =
∑

w∈W

ε(w)e(w(Λ + ρ)− ρ)
∑
β∈h∗

K(β)e(−β)

=
∑

w∈W

∑
β∈h∗

ε(w)K(β)e(−β + w(Λ + ρ)− ρ)

=
∑

w∈W

∑
λ∈h∗

ε(w)K(w(Λ + ρ)− (λ+ ρ))e(λ).

Comparing the coefficients at e(λ), we obtain the (generalized) Kostant
multiplicity formula:

multL(Λ) λ =
∑

w∈W

ε(w)K(w(Λ + ρ)− (λ+ ρ)). (10.12)

Assume now that A is of finite type and for any λ ∈ P denote

χ(λ) =
∑

w∈W ε(w)e(w(λ+ ρ)− ρ)∑
w∈W ε(w)e(w(ρ)− ρ)

=
∑

w∈W ε(w)e(w(λ+ ρ))∑
w∈W ε(w)e(w(ρ))

.

In particular, for λ ∈ P+, we have χ(λ) = ch L(λ), but it makes sense
to consider χ(λ) for any λ ∈ P . It is interesting to specialize e(α) to
1 for all α. The result of such specialization in the expression χ(λ) is
denoted d(λ). For example, if λ ∈ P+, then d(λ) = dimL(λ). There is
a nice fomula for d(λ) called the Weyl dimension formula:

d(λ) =

∏
α∈∆+

(λ+ ρ|α)∏
α∈∆+

(ρ|α)
. (10.13)

To prove the formula, let E be the ring for g defined in §9.2 and denote
by E0 the subring consisting of all finite sums

∑
µ∈P nµe(µ) with nµ ∈ Z.

Then we have in E0:( ∑
w∈W

ε(w)e(wρ)
)
χ(λ) =

∑
w∈W

ε(w)e(w(λ+ ρ)). (10.14)

Let A = R[[t]]. Then for each ξ ∈ P we have a ring homomorphism

θξ : E0 → A, e(µ) 7→ exp((ξ|µ)t).
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We have

θξ

( ∑
w∈W

ε(w)e(wµ)
)

=
∑

w∈W

ε(w) exp((ξ|wµ)t)

=
∑

w∈W

ε(w) exp((µ|wξ)t)

= θµ

( ∑
w∈W

ε(w)e(wξ)
)
.

In particular we have

θρ

( ∑
w∈W

ε(w)e(w(λ+ ρ)
)

= θλ+ρ

( ∑
w∈W

ε(w)e(wρ)
)

= θλ+ρ

(
e−ρ

∏
α∈∆+

(e(α)− 1)
)

= exp((λ+ ρ| − ρ)t)
∏

α∈∆+

exp((λ+ ρ|α)t)− 1)

= tN (
∏

α∈∆+

(λ+ ρ|α) + . . . ),

where N = |∆+|. By putting λ = 0 we obtain

θρ(
∑

w∈W

ε(w)e(wρ)) = tN (
∏

α∈∆+

(ρ|α) + . . . ).

Thus by applying θρ to (10.14), we obtain

tN (
∏

α∈∆+

(ρ|α) + . . . )θρ(χ(λ)) = tN (
∏

α∈∆+

(λ+ ρ|α) + . . . ).

By canceling tN and taking the constant term we obtain∏
α∈∆+

(ρ|α)d(λ) =
∏

α∈∆+

(λ+ ρ|α).

10.3 Example: L̂(sl2)

Consider the denominator identity for the case g = L̂(sl2). Remember
from Example 1.5.4 that the positive roots are of the form α1 + kδ for
k ∈ Z+ and −α1 + nδ, nδ for n ∈ N, and that they all have multiplicity
1. Denote e(−δ) by q and e(−α1) by z. Then the left hand side of (10.6)
is ∏

n>0

(1− qn)(1− qn−1z)(1− qnz−1).
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To compute the right hand side, remember from Example 3.4.2(ii) that
W ∼= ZoS2, where the generators 1 ∈ Z and s ∈ S2 act on weights by
the following formulas

1 : α1 7→ α1 − 2δ, δ 7→ δ, Λ0 7→ α1 − δ + Λ0,

s : α1 7→ −α1, δ 7→ δ, Λ0 7→ Λ0.

Now, we can take ρ = α1/2 + 2Λ0. So

1 : ρ 7→ ρ+ 2α1 − 3δ,

s : ρ 7→ ρ− α1.

We deduce that

m : ρ 7→ ρ+ 2mα1 − (2m2 +m)δ,

sm : ρ 7→ ρ− (2m+ 1)α1 − (2m2 +m)δ.

Now the right hand side of (10.6) is∑
w∈W

ε(w)e(w(ρ)− ρ) =
∑
m∈Z

e(2mα1 − (2m2 +m)δ)

−
∑
m∈Z

e(−(2m+ 1)α1 − (2m2 +m)δ)

=
∑
k∈Z

(−1)ke(−kα1 −
k(k − 1)

2
δ)

=
∑
k∈Z

(−1)kzkq
k(k−1)

2 .

So the Weyl-Kac denominator identity for the easiest affine type A(1)
1

becomes∏
n>0

(1− qn)(1− qn−1z)(1− qnz−1) =
∑
m∈Z

(−1)mzmq
m(m−1)

2 .

This is a highly non-trivial Jacobi’s triple product identity. Let us divide
both sides by (1− z) to get an equivalent form∏

n>0

(1− qn)(1− qnz)(1− qnz−1) =
∑
k∈Z

z−2k − z(2k+1)

1− z
qk(2k+1).

By various specializations we get more famous identities. For example,
take z = 1 in the second form to get

ϕ(q)3 =
∑
k∈Z

(4k + 1)qk(2k+1),
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where

ϕ(q) :=
∏
n>0

(1− qn).

Another specialization is obtained by applying a homomorphism

θ : C[[e(−α0), e(−α1)]]→ C[[q]], e(−α0) 7→ qs0 , e(−α1) 7→ qs1 .

Then the first form specializes to∏
n>0

(1− q(s0+s1)n)(1− qs0(n−1)+s1n)(1− qs0n+s1(n−1))

=
∑
m∈Z

(−1)mqs0
m(m−1)

2 +s1
m(m+1)

2 .

Let us take (s0, s1) = (1, 1). We obtain

ϕ(q)2

ϕ(q2)
=
∑
m∈Z

(−1)mqm2

or

(1− q)2(1− q2)(1− q3)2(1− q4)(1− q5)2(1− q6) . . .
= 1− 2q + 2q4 − 2q9 + 2q16 − . . . .

This is a classical Gauss identity. Next take (s0, s1) = (2, 1). We obtain

ϕ(q) =
∑
m∈Z

(−1)mq
m(3m−1)

2

or

(1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6) . . .
= 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − . . . .

This is a classical Euler identity.

10.4 Complete reducibility

Lemma 10.4.1 Let A be symmetrizable and V ∈ O. Assume that for
any primitive weights λ, µ of V such that λ > µ one has

2(λ+ ρ|λ− µ) 6= (λ− µ|λ− µ). (10.15)

Then V is completely reducible.
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Proof Every module in O is locally finite over Ω (this follows from the
fact that Ω preserves weight spaces). It follows that V is a direct sum
of generalized eigenspaces for Ω. We may assume that V is one such
eigenspace, i.e. Ω − aI acts locally nilpotently on V for some a ∈ C.
Now, let v be a primitive vector of weight λ. Then there is a submodule
U such that Ω(v) = (|λ + ρ|2 − |ρ|2)v (mod U) (see Corollary 2.3.6).
Hence |λ+ρ|2−|ρ|2 = a, whence |λ+ρ|2 = |µ+ρ|2 for any two primitive
weight λ and µ, which is equivalent to 2(λ + ρ|λ − µ) 6= (λ − µ|λ − µ),
which contradicts (10.15).

So we have proved that for two primitive weights λ and µ of V , the
inequality λ ≥ µ implies λ = µ. This property actually implies complete
reducibility. Indeed, let V 0 = ⊕λ∈LV

0
λ be the space of singular vectors

in V (i.e. vectors killed by n+), where L is the set of singular weights.
Let v be a nonzero vector from V 0

λ . Then U(g)v is irreducible. Indeed, if
this is not the case, there is a non-trivial submodule U ( U(g)v, whose
maximal µ weight would be singular and µ < λ. Therefore the U(g)-
submodule V ′ generated by V 0 is completely reducible. It remains to
show that V ′ = V . If this is not the case, consider a singular vector
v + V ′ of weight µ in V/V ′. We have ei(v) ∈ V ′ for all i, and ei(v) 6= 0
for some i. But then, in view of Lemma 9.1.3, there exists a primitive
weight λ ≥ µ+ αi > µ, giving a contradiction.

Theorem 10.4.2 Let g be symmetrizable. Then every integrable module
from the category O is a direct sum of modules L(Λ), Λ ∈ P+.

Proof In view of Lemma 10.4.1, it suffices to check that if λ > µ are
primitive weights and β := λ− µ, then

2〈λ+ ρ, ν−1(β)〉 6= (β|β).

Since the module is integrable, we have

〈λ, α∨i 〉 ∈ Z+ (i = 1, . . . , n)

for every primitive weight λ. But then

2〈λ+ ρ, ν−1(β)〉 − (β|β) = 〈λ+ (λ− β) + 2ρ, ν−1(β)〉
= 〈λ+ µ+ 2ρ, ν−1(β)〉 > 0.

Corollary 10.4.3
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(i) A g-module V ∈ O is integrable if and only if V is a direct sum
of modules L(Λ) with Λ ∈ P+.

(ii) Tensor product of a finite number of integrable highest weight
modules is a direct sum of modules L(Λ) with Λ ∈ P+.

10.5 Macdonald’s identities

From now on we assume that g is affine.
Recall the Kac’s denominator formula (10.6):∏

α∈∆+

(1− e(−α))mult α =
∑

w∈W

ε(w)e(w(ρ)− ρ).

We first assume that g is an untwisted affine algebra, i.e. g = L̂(
◦
g).

Then

∆re = {α+ nδ | α ∈
◦
∆, n ∈ Z} ∪ {nδ | n ∈ Z, n 6= 0}.

∆+ = {α+ nδ | α ∈
◦
∆, n > 0}∪

◦
∆+ ∪{nδ | n > 0}.

The left hand side of the denominator formula can be expressed as∏
α∈

◦
∆+

(1− e(−α))
∏
n>0

((
1− e(−nδ)

)` ∏
α∈

◦
∆

(
1− e(−α− nδ)

))
.

We also recall that

W = T
◦
W, T = {tα | α ∈M},

where

tα(λ) = λ+ 〈λ, c〉α−
(
(λ|α) +

1
2
(α|α)〈λ, c〉

)
δ,

and

M =

{ ∑`
i=1 Zαi for types A(1)

` , D(1)
` , E(1)

` ;∑
αi long Zαi +

∑
αi short pZαi for types B(1)

` , C(1)
` , F (1)

4 , G(1)
2 .

In calculating the right hand side of the denominator formula we recall
that

h =
◦
h ⊕Cc⊕ Cd, h∗ = (

◦
h)∗ ⊕ Cδ ⊕ CΛ0.

Accordingly λ ∈ h∗ can be written as

λ =
◦
λ +〈λ, c〉Λ0 + 〈λ, d〉δ
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where
◦
λ∈ (

◦
h)∗. We also recall that ρ ∈ h∗ satisfies

〈ρ, d〉 = 0, 〈ρ, α∨i 〉 = 1 (0 ≤ i ≤ `).

Since 〈ρ, c〉 =
∑`

i=0 a
∨
i = h∨, we have

ρ =
◦
ρ +h∨Λ0

where
◦
ρ∈ (

◦
h)∗ satisfies

〈
◦
ρ, α∨i 〉 = 1 (1 ≤ i ≤ `).

We now consider the right hand side of the denominator formula. Let
w ∈W have form w =

◦
w tα where

◦
w∈

◦
W and α ∈M . Then

w(ρ)− ρ =
◦
w tα(ρ)− ρ

=
◦
w
(
ρ+ h∨α−

(
(ρ|α) +

1
2
(α|α)h∨

)
δ
)
− ρ

=
◦
w (ρ)− ρ+ h∨

◦
w (α)−

(
(ρ|α) +

1
2
(α|α)h∨

)
δ

=
◦
w (ρ)− ρ+ h∨

◦
w (α)−

(
(
◦
ρ |α) +

1
2
(α|α)h∨

)
δ.

since
◦
w (Λ0) = Λ0 and 〈Λ0, α〉 = 0 for α ∈ M . Now the last expression

equals

◦
w (h∨α+

◦
ρ)−

◦
ρ − (

◦
ρ +h∨α|

◦
ρ +h∨α)− (

◦
ρ |

◦
ρ)

2h∨
δ.

Denote

c(λ) = (λ+ ρ|λ+ ρ)− (ρ|ρ).

If λ ∈ (
◦
h)∗ then

c(λ) = (λ+
◦
ρ |λ+

◦
ρ)− (

◦
ρ |

◦
ρ).

We also write for λ ∈ (
◦
h)∗,

◦
χ (λ) =

∑
w∈

◦
W
ε(w)e(w(λ+

◦
ρ)−

◦
ρ)∑

w∈
◦

W
ε(w)e(w(

◦
ρ)−

◦
ρ)

.

When λ ∈ (
◦
h)∗ is dominant integral, χ(λ) is the character of the ir-

reducible
◦
g-module L(λ). However c(λ) and χ(z(λ) are defined for all
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λ ∈ (
◦
h)∗. Using the denominator formula for

◦
g we have∑

w∈W

ε(w)e(w(ρ)− ρ) =
∑
α∈M

∑
◦
w∈

◦
W

ε(
◦
w)e(

◦
w (h∨α+

◦
ρ)−

◦
ρ)e(
−c(h∨α)

2h∨
δ)

=
∑
◦
w∈

◦
W

ε(
◦
w)e(

◦
w (

◦
ρ)−

◦
ρ)
∑
α∈M

◦
χ (h∨α)e(

−c(h∨α)
2h∨

δ)

=
∏

α∈
◦
∆+

(1− e(−α))
∑
α∈M

◦
χ (h∨α)e(

−c(h∨α)
2h∨

δ).

We now put

q = e(−δ)

and equate the left- and right-hand sides of Kac’s denominator formula.
We obtain:

Theorem 10.5.1 (Untwisted Macdonald’s Identity)∏
n>0

(
(1− qn)`

∏
α∈

◦
∆

(1− qne(−α))
)

=
∑
α∈M

◦
χ (h∨α)qc(h∨α)/2h∨ .

We have seen that in the special case the Macdonald’s identity gives
Jacobi’s triple product identity.

We next state Macdonald’s identities for the twisted affine algebras.
The right hand side looks the same as before, the only change being that
the appropriate lattice M should be taken in each case, see Lemma 6.4.2.

Theorem 10.5.2 We have L = R, where

R =
∑
α∈M

◦
χ (h∨α)qc(h∨α)/2h∨

and L is given as follows:

A
(2)
2` : ∏

n>0

[
(1−qn)`

∏
α∈

◦
∆s

(1−qne(−α))
∏

α∈
◦
∆l

(
1−q

2n−1
2 e(−α

2
)
)(

1−q2ne(−α)
)]

A
(2)
2`−1: ∏

n>0

[
(1−q2n)`(1−q2n−1)`−1

∏
α∈

◦
∆s

(1−qne(−α))
∏

α∈
◦
∆l

(1−q2ne(−α))
]
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D
(2)
`+1: ∏

n>0

[
(1−q2n)`(1−q2n−1)

∏
α∈

◦
∆s

(1−qne(−α))
∏

α∈
◦
∆l

(1−q2ne(−α))
]

E
(2)
6 : ∏

n>0

[
(1−q2n)4(1−q2n−1)2

∏
α∈

◦
∆s

(1−qne(−α))
∏

α∈
◦
∆l

(1−q2ne(−α))
]

D
(3)
4 : ∏

n>0

[
(1−q3n)2(1−q3n−1)(1−q3n−2)

∏
α∈

◦
∆s

(1−qne(−α))
∏

α∈
◦
∆l

(1−q3ne(−α))
]
,

where

M =


∑`

i= Zαi for types A(2)
2`−1, D

(2)
`+1, E

(2)
6 , D

(3)
4∑

αi long
1
2Zαi +

∑
αi short Zαi for type A(2)

2`
1
2Zα1 for type A(2)

2

Example 10.5.3 In the case A(2)
2 we get the following quintuple product

identity:∏
n>0

(1− qn)(1− qnz−1)(1− qn−1z)(1− q2n−1z−2)(1− q2n−1z2)

=
∑
n∈Z

(z3n − z−3n+1)q
n(3n−1)

2 .

10.6 Specializations of Macdonald’s identities

One way to specialize is simply replace e(α) with 1 for all α ∈
◦
∆. The

result of such specialization in the expression
◦
χ (λ) is denoted

◦
d (λ),

which is given essentially by the Weyl dimension formula (10.13):

◦
d (λ) =

∏
α∈

◦
∆+

(λ+
◦
ρ |α)∏

α∈
◦
∆+

(
◦
ρ |α)

.

Remember that

ϕ(q) =
∏
n>0

(1− qn)
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is the Euler function. Now the specialization of the left hand side of the

untwisted Macdonald identity is ϕ(q)`+|
◦
∆| = ϕ(q)dim

◦
g. So we get

Theorem 10.6.1 (Macdonald’s ϕ-function identity)

ϕ(q)dim
◦
g =

∑
α∈M

◦
d (h∨α)qc(h∨α)/2h∨ .

Example 10.6.2

Type A(1)
1 :

ϕ(q)3 =
∑
n∈Z

(4n+ 1)qn(2n+1).

Type A(1)
2 :

ϕ(q)8 =
∑

(n1,n2)∈Z2

1
2
(6n1 − 3n2 + 1)(−3n1 + 6n2 + 1)

×(3n1 + 3n2 + 2)q3n2
1−3n1n2+3n2

2+n1+n2).

Type C(1)
2 :

ϕ(q)10 =
∑

(n1,n2)∈Z2

(12n1 − 6n2 + 1)(−6n1 + 6n2 + 1)

×(2n2 + 1)(3n1 + 1)q6n2
1−6n1n2+3n2

2+n1+n2).

Type G(1)
2 :

ϕ(q)14 =
∑

(n1,n2)∈Z2

1
15

(8n1 − 12n2 + 1)(−12n1 + 24n2 + 1)

×(3n1 − 3n2 + 1)(12n2 + 5)(−2n1 + 6n2 + 1)

×(4n1 + 3)q4n2
1−12n1n2+12n2

2+n1+n2).

Theorem 10.6.3 (Macdonald’s twisted ϕ-function identities) We
have L = R where

R =
∑
α∈M

◦
d (h∨α)qc(h∨α)/2h∨ ,

and L is given as follows:

A
(2)
2` : ϕ(q

1
2 )2`ϕ(q)2`2−3`ϕ(q2)2`;

A
(2)
2`−1: ϕ(q)2`2−`−1ϕ(q2)2`+1;

D
(2)
`+1: ϕ(q)2`+1ϕ(q2)2`2−`−1;
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E
(2)
6 : ϕ(q)26ϕ(q2)26;

D
(3)
4 : ϕ(q)7ϕ(q3)7.

Example 10.6.4

Type A(2)
2 :

ϕ(q
1
2 )2ϕ(q)−1ϕ(q2)2 =

∑
n∈Z

(3n+ 1)q
1
2 n(3n+2).

Type D(2)
4 :

ϕ(q)5ϕ(q2)5 =
∑

(n1,n2)∈Z2

1
3
(8n1 − 4n2 + 1)(−8n1 + 8n2 + 1)

×(8n1 + 3)(2n2 + 1)q8n2
1−8n1n2+4n2

2+2n1+n2).

10.7 On converegence of characters

If we replace e(λ) in the formal character by the function

eλ : h→ C, h 7→ e〈λ,h〉,

we will get the (”informal”) character

ch V : h→ C

of the module V ∈ O. Of course, now the questions of convergence arise.
Let Y (V ) be the set of elements h ∈ h such that the series converges
absolutely. Note that

ch V (h) = tr V e
h (h ∈ Y (V )).

Define the complexified Tits cone XC by

XC = {x+ iy | x ∈ X, y ∈ hR}.

Set

Y = {h ∈ h |
∑

α∈∆+

(multα)|e−〈α,h〉| <∞},

YN = {h ∈ h | Re〈αi, h〉 > N for all i = 1, 2 . . . , n} (N ∈ R+).

Note by Proposition 3.4.1(iii) that Y ⊂ XC . We also have

XC =
⋃

w∈W

w(Ȳ0). (10.16)

Lemma 10.7.1 Let V be a highest weight module over g. Then
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(i) Y (V ) is a convex set.
(ii) Y (V ) ⊃ Y ∩ Y0.
(iii) Y (V ) ⊃ Yln n.

Proof (i) is clear from the convexity of the function |eλ| (a function f

is called convex if its domain D is a convex set and f(tx + (1 − t)y) ≤
tf(x)+(1−t)f(y) for any x, y ∈ D and t ∈ [0, 1]. Now each |eλ| is defined
on h, and if the series ch V converges at h1 and h2 then the convexity
property guarantees that ch V converges at th1 + (1− t)h2 (actually to
a convex function)). Moreover, since V is a quotient of some M(Λ), we
have

multV λ ≤ K(Λ− λ),

which gives∑
λ∈h∗

(multV λ)|e〈λ,h〉| ≤ |e〈Λ,h〉|
∑

β∈Q+

K(β)|e−〈β,h〉|

= |e〈Λ,h〉|
∏

α∈∆+

(1− |e−〈α,h〉|)−mult α,

provided h ∈ Y0. The product converges for h ∈ Y . This proves (ii).
Now (iii) follows from (ii) since Yln n ⊂ Y0 and also Yln n ⊂ Y in view of
(1.16).

Lemma 10.7.2 Let T ⊂ XC be an open convex W -invariant set. Then

T ⊂ convex hull
( ⋃

w∈W

w(T ∩ Y0)
)
.

Proof Note that T0 :=
⋃

w∈W w(Ȳ0 \ Y0) is nowhere dense (interior of
closure is empty) in XC. Hence every h ∈ T lies in the convex hull of
T \ T0 =

⋃
w∈W (T ∩ Y0) applied to T = IntXC.

For a convex set R in a real vector space denote by IntR the interior
of R.

Proposition 10.7.3 Let Λ ∈ P+. Then

(i) Y (L(Λ)) is a solid (i.e. has non-empty interior) convex W -
invariant set, which for every x ∈ IntXC contains tx for all
sufficiently large t ∈ R.

(ii) ch L(Λ) is a holomorphic function on IntY (L(Λ)).
(iii) Y (L(Λ)) ⊃ IntY .
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(iv) The series
∑

w∈W ε(w)ew(Λ+ρ) converges absolutely on IntXC to
a holomorphic function, and diverges absolutely on h \ IntXC.

(v) Provided that A is symmetrizable, ch L(Λ) can be extended from
Y (L(Λ)) ∩XC to a meromorphic function on IntXC.

Proof Set T = IntY . Then T is open, convex (see the proof of
Lemma 10.7.1(i)), and W -invariant. By Lemma 10.7.1(ii), we have
Y (L(Λ)) ⊃ Y ∩Y0. Furthermore, Lemma 10.7.1(i) and Proposition 10.1.2
imply that Y (L(Λ) is a convex W -invariant set. Now (iii) follows from
Lemma 10.7.2.

To finish the proof of (i), we have to show that X ′ := {x ∈ IntXC |
tx ∈ Y (L(Λ)) for all sufficiently large t ∈ R} coincides with IntXC. But
again X ′ is W -invariant, convex, and contains Y0 by Lemma 10.7.1(iii).
So X ′ contains the convex hull of

⋃
w∈W w(Y0) = IntXC, the last equal-

ity being true by Lemma 10.7.2.
The convexity of |eλ| implies that the absolute convergence is uniform

on compact sets. This implies (ii).
(iv) By Proposition 3.4.1(ii), all w(Λ + ρ)− (Λ + ρ) are distinct, and

also w(Λ + ρ)− (Λ + ρ) ∈ −Q+. Hence we have for all h ∈ Y0:

|
∑

w∈W

ε(w)e〈w(Λ+ρ)−(Λ+ρ),h〉| ≤
∑

α∈Q+

|e−〈α,h〉| <∞.

Thus the region of absolute convergence of our series contains Y0 and is
convex and W -invariant, so it contains IntXC, as above. On the other
hand, let h ∈ h \ XC. Then the set ∆0 := {α ∈ ∆re

+ | Re〈α, h〉 ≤ 0}
is infinite by Proposition 3.4.1(iii),(vi), and for every α ∈ ∆0 we have
|e〈rα(Λ+ρ),h〉| > |e〈Λ+ρ,h〉|, proving divergence at h.

(v) follows from (iv) and the Weyl character formula.
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Irreducible Modules for affine algebras

Throughout g is affine.

11.1 Weights of irreducible modules

Let λ ∈ h∗. Since Λ0,Λ1, . . . ,Λ`, δ form a basis of h∗, we can write

λ = s0Λ0 + s1Λ2 + · · ·+ s`Λ` + sδ (ci, c ∈ C).

Note that λ ∈ P if and only if all ci ∈ Z, and λ ∈ P+ if and only if all
ci ∈ Z≥0.

Let λ ∈ P+. Then every weight µ of L(Λ) is of the form λ−m0α0 −
m1α1−· · ·−m`α` for some mi ∈ Z≥0. Since 〈αi, c〉 = 0 we have 〈µ, c〉 =
〈λ, c〉 for any weight µ of L(λ). Now, 〈λ, c〉 =

∑`
i=0 a

∨
i 〈λ, α∨i 〉 ∈ Z≥0.

This non-negative integer 〈λ, c〉 is referred to as the level of the module
L(λ).

Proposition 11.1.1 If L(λ) has level zero, then λ = sδ for some s ∈ C
and dimL(λ) = 1.

Proof The first statement is clear and from the Weyl-Kac character
formula we get ch L(sδ) = e(sδ).

From now on we concentrate on higher levels.

Theorem 11.1.2 Let λ ∈ P+ and 〈λ, c〉 > 0. Then µ ∈ P is a weight
of L(λ) if and only if there exists w ∈ W such that w(µ) ∈ P+ and
w(µ) ≤ λ.

Proof Assume that µ is a weight of L(λ). We know that then w(µ) is

144
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also a weight of L(λ) for all w ∈ W . Take w for which the height of
λ − w(µ) is minimal. The minimality shows that 〈w(µ), α∨i 〉 ≥ 0, i.e.
w(µ) ∈ P+.

Conversely, assume that µ ∈ P+ and µ ≤ λ. We have to prove that
µ is a weight of L(λ). Let µ = λ − α where α =

∑`
i=0 kiαi. We may

assume α 6= 0.
We first show that every connected component of suppα contains an

i with 〈λ, α∨i 〉 > 0. Otherwise there exists a connected component S of
suppα with 〈λ, α∨i 〉 = 0 for all i ∈ S. We have L(λ)µ ⊂ U(n−)−αvλ,
and by the PBW theorem, U(n−)−α is spanned by the monomials of
the form

∏
β∈∆+

e
kβ

−β where
∑
kββ = α and each β involves simple

roots which lie in the same connected component of suppα. Now, the
e−β with simple roots in different connected components commute with
each other, so we may bring the e−β with simple roots in S to the right
of the above product. But for such β we have e−βvλ = 0. It follows that
U(n−)−αvλ = 0, giving a contradiction.

Now let Ψ be defined by

Ψ = {γ ∈ Q+ | γ ≤ α, λ− γ is a weight of L(λ)}.

The set Ψ is finite. Let β ∈ Ψ be an element of maximal height. Then
β ≤ α. We need to show that β = α. Let β =

∑
miαi. We have mi ≤ ki

for all i. Let I = {0, 1, . . . , ` and J = {i ∈ I | ki = mi}. Again, we need
to show that J = I. If not, consider the non-empty subset of I given by
suppα \ (suppα ∩ J). This set splits into connected components. Let
M be one of them and take i ∈M . Then λ− β is a weight of L(λ) but
λ−β−αi is not. Thus 〈λ−β, α∨i 〉 ≥ 0. Also lanµ, α∨i 〉 ≥ 0 since µ ∈ P+

and so 〈λ− α, α∨i 〉 ≥ 0. Thus we have

〈α, α∨i 〉 ≤ 〈λ, α∨i 〉 ≤ 〈β, α∨i 〉.

Let γ =
∑

j∈M (kj −mj)αj . We have kj −mj > 0 for all j ∈ M . We
also have

〈γ, α∨i 〉 =
∑
j∈M

(kj −mj)aij .

However 〈γ, α∨i 〉 = 〈α−β, α∨i 〉 since supp (α−β) = suppα \J and M is
a connected component of suppα \ J . Thus 〈γ, α∨i 〉 ≤ 0 for each i ∈M .

Let AM be be the principal minor corresponding to M . Let u be the
column vector with entries ki − mi for i ∈ M . Then we have u > 0
and Au ≤ 0. It follows that AM does not have finite type, i.e. M = I.
Thus suppα = I and J = ∅. But then for all i ∈ I, λ − β is a weight
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of L(λ) but λ − β − αi is not. Thus 〈λ − β, α∨i 〉 ≤ 0 for all i ∈ I.
Hence 〈α, α∨i 〉 ≤ 〈λ, α∨i 〉 ≤ 〈β, α∨i 〉 for all i ∈ I. We now have u > 0
and Au ≤ 0. Since A is affine we deduce that Au = 0. This shows
that 〈α, α∨i 〉 = 〈β, α∨i 〉 for all i ∈ I. Hence 〈α, α∨i 〉 = 〈λ, α∨i 〉 for all
i, i.e. 〈µ, α∨i 〉 = 0. But then we have 〈µ, c〉 = 0, and so 〈λ, c〉 = 0,
contradiction.

Corollary 11.1.3 If µ is a weight of L(λ) then µ− δ is also a weight.

Proof Since µ is a weight there exists w ∈ W such that w(µ) ∈ P+.
Then w(µ− δ) = w(µ)− δ ∈ P+. Since w(µ)− δ ≤ λ it follows from the
theorem that w(µ)− δ is a weight of L(λ).

It follows from the corollary that µ − iδ is a weight for all positive
integers i. On the other hand, there exist only finitely many positive
integers i such that µ+ iδ ≤ λ.

Definition 11.1.4 A weight µ of L(λ) is called an maximal weight if
µ+ δ is not a weight.

Corollary 11.1.5 For each weight µ of L(λ) there are a unique maximal
weight ν and a unique non-negative integer i such that µ = ν − iδ.

Proof Consider the sequence µ, µ + iδ, µ + 2δ, . . . . There exists i such
that µ + iδ is a weight of L(λ) but µ + (i + 1)δ is not. Let ν = µ + iδ.
Then ν is an maximal weight of L(λ) and µ = ν − iδ. If µ = ν′ − i′δ
where ν′ is an maximal weight and i′ is a non-negative integer we show
that ν = ν′ and i = i′. Otherwise we may assume that i < i′. Then
ν′ = ν+(i′− i)δ is a weight. Then ν+ δ is also a weight. Contradiction.

A string of weights of L(λ) is a set ν, ν − δ, ν − 2δ, . . . where ν is an
maximal weight. Each weight lies in a unique string of weights.

Lemma 11.1.6 The set of maximal weights of L(λ) is invariant under
the Weyl group.

Proof Let w ∈ W . Then µ is a weight if and only if w(µ) is a weight.
Thus if µ is an maximal weight then w(µ) is a weight but w(µ) + δ =
w(µ+ δ) is not a weight.
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Corollary 11.1.7 Each maximal weight of L(λ) has form w(µ) where
w ∈W and µ is a dominant maximal weight.

Recall the fundamental alcove

Caf = {λ ∈
◦
hR
∗ | (λ|αi) ≥ 0 for 1 ≤ i ≤ ` and (λ|θ) ≤ 1}.

We also recall that

h∗ =
◦
h∗ ⊕ (CΛ0 ⊕ Cδ),

and for λ ∈ h∗ we have

λ = λ̄+ 〈λ, c〉Λ0 + a−1
0 〈λ, d〉δ

where λ̄ ∈
◦
h∗. Let Q̄ be the set of λ̄ given by λ in the root lattice Q.

Proposition 11.1.8 Let λ ∈ P+ have level k > 0. Then the projec-
tion map µ 7→ µ̄ gives a bijection between the set of dominant maximal
weights of L(λ) and (λ̄+ Q̄) ∩ kCaf .

Proof Let µ be a dominant weight of L(λ). Then µ = λ−
∑

imiαi for
mi ∈ Z≥0. Hence µ̄ = λ̄− (

∑
imiαi) and so µ̄ ∈ λ̄+ Q̄.

Now µ = µ̄+ kΛ0 + a−1
0 〈µ, d〉δ. Since µ ∈ P+ we have 〈µ, α∨i 〉 ≥ 0 for

i = 0, . . . , `. Now 〈Λ0, αi〉 = 〈δ, α∨i 〉 = 0 for i = 1, . . . , `. So 〈µ̄, α∨i 〉 ≥ 0
and hence (µ̄|αi) ≥ 0 for i = 1, . . . , `. We also have

(µ̄|θ) = (µ|θ) = (µ|δ − a0α0) = 〈µ, c〉 − 〈µ, α∨0 〉 = k − 〈µ, α∨0 〉.

Since 〈µ, α∨0 〉 ≥ 0 we have (µ̄|θ) ≤ k. Thus µ̄ ∈ kCaf . Hence the
projection maps dominant maximal weights of L(λ) into (λ̄+ Q̄)∩kCaf .

We next show that this map is surjective. Let ν ∈ (λ̄ + Q̄) ∩ kCaf .
Since ᾱi = αi for i = 1, . . . , ` and ᾱ0 = −a−1

0 θ + a−1
0 δ = −a−1

0 θ we have

ν = λ̄+ k1α1 + · · ·+ k`α` − k0a
−1
0 θ (ki ∈ Z).

Since θ = a1α1 + · · ·+ a`α` we have

ν = λ̄+ (m− k0a
−1
0 )θ − (ma1 − k1)α1 − · · · − (ma` − k`)α`.

Choose m ∈ Z with m ≥ ki/ai for i = 0, . . . , `. Then

ν = λ̄+ (m0a
−1
0 )θ −m1α1 − · · · −m`α`

where mi = mai − ki are non-negative integers for i = 0, 1, . . . , `. Let
µ = λ−

∑`
i=0miαi. Then

µ̄ = λ̄+ (m0a
−1
0 )θ −m1α1 − · · · −m`α` = ν.
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We next show that µ ∈ P+. For i = 1, . . . , ` we have

〈µ, α∨i 〉 = 〈µ̄, α∨i 〉 = 〈ν, α∨i 〉 ≥ 0.

Also

〈µ, α∨0 〉 = 〈µ̄, c− a0θ
∨〉 = k − (µ̄|θ) = k − (ν|θ) ≥ 0.

Hence µ ∈ P+ and also µ ≤ λ, so µ is a weight of L(λ). Replacing µ by
the maximal weight in the chain of weights containing µ we may assume
that µ is a dominant maximal weight. Thus our map is surjective.

To show that the map is injective, let µ, µ′ be dominant maximal
weights of L(λ) with µ̄ = µ̄′. Writing µ = µ̄ + kΛ0 + a−1

0 〈µ, d〉δ and
µ′ = µ̄′ + kΛ0 + a−1

0 〈µ′, d〉δ, we get µ− µ′ = a−1
0 (〈µ, d〉 − 〈µ′, d〉)δ. Now

λ−µ, λ−µ′ ∈ Q, hence µ−µ′ ∈ Q and a−1
0 (〈µ, d〉− 〈µ′, d〉)δ ∈ Q. This

shows that a−1
0 (〈µ, d〉 − 〈µ′, d〉) ∈ Z. Thus µ = µ′ + rδ for r ∈ Z. Since

µ, µ′ are both maximal we must have r = 0, i.e. µ = µ′.

Corollary 11.1.9 The set of dominant maximal weights of L(λ) is fi-
nite.

Proof Q̄ is a lattice in
◦
h∗ and λ̄ + Q̄ is a coset of that lattice. On the

other hand the set kCaf is bounded. Hence the intersection (λ̄+Q̄)∩kCaf

must be finite.

We now have a procedure for describing all weights of L(λ). First
determine the finite set (λ̄ + Q̄) ∩ kCaf where k = 〈λ, c〉. For each
element ν in this finite set there is a unique dominant weight µ of L(λ)
with µ̄ = ν. This gives the set of all dominant maximal weights. By
applying elements of the Weyl group to these we obtain all maximal
weights. Finally, by subtracting positive integral multiples of δ from the
maximal weights we obtain all weights of L(λ).

We next consider the weights in a string µ, µ − δ, µ − 2δ, . . . . We
wish to show that the multiplicities of these weights form an increasing
function as we move down the string. In order to do this we introduce
the subalgebra

t =
⊕
m∈Z

gmδ.

Thus t is spanned by h and the root spaces of the imaginary roots. This
algebra has a triangular decomposition

t = t− ⊕ h⊕ t+,
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where t± =
∑

±i>0 giδ. One can define the category O of t-modules in
the usual manner. One can also define Verma modules for t:

M(λ) = U(t)/(U(t)t+ +
∑
x∈h

U(t)(x− 〈λ, x〉) (λ ∈ h∗).

Consider the expression

Ω0 = 2
∑
i>0

∑
j

e
(j)
−iδe

(j)
iδ

where {e(j)iδ } is a basis of giδ and {e(j)−iδ} is the dual basis of g−iδ. Thus

(e(j)iδ |e
(k)
−iδ) = δjk, [e(j)iδ , e

(k)
−iδ] = δjkic.

Although the expression for Ω0 is an infinite sum the action of Ω0 on
any t-module in category O is well defined, since all but a finite number
of the terms will act as zero.

Lemma 11.1.10 Let λ ∈ h∗ and M(λ) be the associated Verma module
for t. Let u ∈ U(t)mδ where m ∈ Z\{0}. Then Ω0u−uΩ0 acts on M(λ)
in the same way as −2m〈λ, c〉u.

Proof Note that a basis element e(j)rδ commutes with all e(k)
iδ , e

(k)
−iδ except

for e(j)−rδ. So

Ω0u− uΩ0 = 2(e(j)−rδe
(j)
rδ e

(j)
rδ − e

(j)
rδ e

(j)
−rδe

(j)
rδ ) = −2rce(j)rδ = −2r〈λ, c〉e(j)rδ

on M(λ). Thus the lemma holds if u is a basis element e(j)mδ. It follows
that the lemma also holds if u ∈ gmδ. Next suppose that u = u1u2

where on M(λ) we have

Ω0ui − uiΩ0 = −2ri〈λ, c〉ui (i = 1, 2).

Then on M(λ)

Ω0u− uΩ0 = Ω0u1u2 − u1u2Ω0

= u1Ω0u2 − 2r1〈λ, c〉u− u1Ω0u2 − 2r2〈λ, c〉u
= −2(r1 + r2)〈λ, c〉u.

The required result now follows from the PBW theorem.

Proposition 11.1.11 Let 〈λ, c〉 6= 0. Then the Verma module M(λ) for
t is irreducible.



150 Irreducible Modules for affine algebras

Proof Suppose if possible that M(λ) has a proper submodule K. Let v
be a highest weight vector of K. Then v ∈M(λ)λ−mδ for some positive
integer m. Thus v = uvλ for some u ∈ U(t−)−mδ. By the previous
lemma,

(Ω0u− uΩ0)vλ = −2m〈λ, c〉uvλ.

Thus Ω0v − uΩ0vλ = −2m〈λ, c〉v. Now Ω0vλ = 0 and Ω0v = 0 since
vλ and v are highest weight vectors. By assumption this implies v = 0
giving a contradiction.

We now restrict the g-module L(λ) to t.

Proposition 11.1.12 Suppose λ ∈ P+ with 〈λ, c〉 > 0. Then the
t-module L(λ) is completely reducible. Its irreducible components are
Verma modules for t.

Proof Let

U = {v ∈ L(λ) | t+v = 0},

and pick a basis B of U consisting of weight vectors. Suppose that v ∈ B
has weight µ. Then we have a surjective homomorphism M(µ)→ U(t)v.
Now 〈µ, c〉 = 〈λ, c〉 > 0, so M(µ) is irreducible and the homomorphism
M(µ) → U(t)v is an isomorphism. Let V =

∑
v∈B U(t)v. This sum of

modules is a direct sum. Indeed, consider

U(t)v ∩
∑

v′∈B,v′ 6=v

U(t)v′.

Since U(t)v is irreducible the intersection is either trivial or U(t)v. In
the latter case v ∈

∑
v′∈B,v′ 6=v U(t)v′. This is impossible since

U ∩
∑

v′∈B,v′ 6=v

U(t)v′ =
∑
v′ 6=v

Cv′.

Thus V = ⊕v∈BU(t)v.
We wish to show that V = L(λ). If not consider the t-module L(λ)/V .

Let µ be a weight of L(λ)/V such that µ+iδ is not a weight for any i > 0.
Then t+L(λ)µ ⊂ Vµ. Now consider the map Ω0 : L(λ) → L(λ). Since
the action of Ω0 preserves weight spaces (it is ”of weight 0”), we have
Ω0 : L(λ)→ L(λ). So L(λ)µ decomposes as a direct sum of generalized
eigenspaces

L(λ)µ = ⊕ζ∈C(L(λ)µ)ζ .
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Since L(λ)µ 6⊂ V , there exists ζ ∈ C such that (L(λ)µ)ζ 6⊂ V . Choose
v ∈ (L(λ)µ)ζ with v 6∈ V . Then

(Ω0 − ζ1)kv = 0

for k large enough, and Ω0v ∈ V since t+L(λ)µ ⊂ V . If ζ 6= 0 the
polynomials (t − ζ)k and t are coprime so we can deduce v ∈ V giving
contradiction. Hence ζ = 0.

Now t+v 6= 0 since v 6∈ V and hence v 6∈ U . So there exists m > 0
and u ∈ U(t+)mδ with uv 6= 0 and t+uv = 0. Let v′ = uv. Then v′ 6= 0
and Ω0v

′ = 0. Now all weights ν of L(λ) satisfy 〈ν, c〉 = 〈λ, c〉 so by
Lemma 11.1.10, we have

Ω0uv − uΩ0v = −2m〈λ, c〉uv,

that is

(Ω0 + 2m〈λ, c〉)v′ = uΩ0v.

It follows that

(Ω0 + 2m〈λ, c〉)2v′ = (Ω0 + 2m〈λ, c〉)uΩ0v = uΩ2
0v,

and continuing thus we obtain

(Ω0 + 2m〈λ, c〉)kv′ = uΩk
0v = 0.

But the polynomials (t + 2m〈λ, c〉)k and t are coprime. Thus (Ω0 +
2m〈λ, c〉)kv′ = 0 and Ω0v

′ = 0 imply v′ = 0 giving a contradiction.

Proposition 11.1.13 Let µ be a weight of L(λ) where λ ∈ P+ with
〈λ, c〉 > 0. Then dimL(λ)µ−δ ≥ dimL(λ)µ.

Proof Choose a non-zero element x ∈ g−δ and consider the action of x
on the t-module L(λ). Since L(λ) is a direct sum of Verma modules, it
is free as a module over U(t−), so x acts on it injectively. Thus we get
an injective map L(λ)µ → L(λ)µ−δ.

11.2 The fundamental modules for ŝl2

By symmetry it suffices to determine the character of L(Λ0). Note that
ᾱ0 = −α1 and the lattice Q̄ = Zα1, θ = α1, θ

∨ = α∨1 . The fundamental
alcove is given by

Caf = {λ ∈
◦
hR
∗ | 〈λ, α1〉 ≥ 0, 〈λ, θ∨〉 ≤ 1} = {λ ∈

◦
hR
∗ | 0 ≤ 〈λ, α1〉 ≤ 1}.



152 Irreducible Modules for affine algebras

Thus

(Λ̄0 + Q̄) ∩ Caf = {mα1 | m ∈ Z, 0 ≤ 2m ≤ 1} = {0}.

Thus L(Λ0) has only one dominant maximal weight which must be the
highest weight Λ0. The other maximal weights are transforms of Λ0

under the affine Weyl group W . The stabilizer of Λ0 in W is
◦
W= 〈r1〉.

So the maximal weights have the form

tmα1(Λ0) = Λ0 +mα1 −m2δ (m ∈ Z)

The set of all weights of L(Λ0) is

{Λ0 +mα1 −m2δ − kδ | m ∈ Z, k ∈ Z≥0}.

The weights Λ0 + mα1 − m2δ have multiplicity 1 and the multiplicity
Λ0 +mα1−m2δ−kδ is independent of m. To determine the multiplicity
of these weights consider Weyl-Kac formula

ch L(Λ0) =
∑

w∈W ε(w)e(w(Λ0 + ρ)− ρ)∏
α∈∆+

(1− e(−α))mult α
.

Now∑
w∈W

ε(w)e(w(Λ0 + ρ)− ρ) =
∑
◦
w∈

◦
W

∑
n∈Z

ε(
◦
w)e(

◦
w tnα1(Λ0 + ρ)− ρ).

Now ρ = 1
2α1 + 2Λ0, hence

tnα1(Λ0 + ρ) = 3Λ0 + (3n+
1
2
)α1 − (3n2 + n)δ,

so

tnα1(Λ0 + ρ)− ρ = Λ0 + 3nα1 − (3n2 + n)δ.

Also

r1tnα1(Λ0 + ρ) = 3Λ0 − (3n+
1
2
)α1 − (3n2 + n)δ,

so

r1tnα1(Λ0 + ρ)− ρ = Λ0 − (3n+ 1)α1 − (3n2 + n)δ.

Thus∑
w∈W

ε(w)e(w(Λ0+ρ)−ρ) = e(Λ0)
∑
n∈Z

(
e(3nα1)−e(−(3n+1)α1)

)
e(−(3n2+n)δ).
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We write e(−α1) = z and e(−δ) = q1/2. Then our expression is

e(Λ0)
∑
n∈Z

(
z−3n − z3n+1

)
q

n(3n+1)
2 .

Now we can factor this expression using Macdonald’s identity for type
A

(2)
2` . So we get

e(Λ0)
∏
n>0

(1− qn)(1− qnz−1)(1− qn−1z)(1− q2n−1z−2)(1− q2n−1z2)

= e(Λ0)(1− z)
∏
n>0

(1− qn)(1− qnz−1)(1− qnz)(1− q2n−1z−2)(1− q2n−1z2)

= e(Λ0)(1− z)
∏
n>0

(1− qn)(1− qnz−1)(1− q
2n−1

2 z−1)(1− qnz)(1− q
2n−1

2 z)

×(1 + q
2n−1

2 z−1)(1 + q
2n−1

2 z)

= e(Λ0)(1− z)
∏
k>0

(1− qk/2z−1)(1− qk/2z)
∏
n>0

(1− qn)(1 + q
2n−1

2 z−1)(1 + q
2n−1

2 z).

We now make use of the Macdonald’s identity for type A(1)
1 :∏

n>0

(1− qn)(1− qn−1z′)(1− qnz′−1) =
∑
m∈Z

(−1)mz′mq
m(m−1)

2 .

Taking z′ = −z−1q
1
2 we obtain∏

n>0

(1− qn)(1 + q
2n−1

2 z−1)(1 + q
2n−1

2 z) =
∑
m∈Z

z−mq
m2
2 .

Hence

ch L(λ) =
e(Λ0)(1− z)

∏
k>0(1− qk/2z−1)(1− qk/2z)

∑
m∈Z z

−mq
m2
2

(1− z)
∏

k>0(1− qk/2z−1)(1− qk/2z)(1− qk/2)

=
∑

n∈Z e(Λ0 + nα1 − n2δ)∏
k>0(1− e(−kδ))

=
∑
n∈Z

e(Λ0 + nα1 − n2δ)
∑
k≥0

p(k)e(−kδ)

=
∑
n∈Z

∑
k≥0

p(k)e(Λ0 + nα1 − n2δ − kδ).

Hence:

Proposition 11.2.1 The weights of the fundamental module
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Proof
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