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Part one
Kac-Moody Algebras






1

Main Definitions

1.1 Some Examples
1.1.1 Special Linear Lie Algebras

Let g = sl,, = s1,,(C). Choose the subalgebra § consisting of all diagonal
matrices in g. Then, setting aiv = €4 — €t 1,

is a basis of h. Next define ey ...,¢, € h* by
g; : diag(aq,...,an) — a;.
Then, setting a; = ; — €441,
Q1yeey Q1
is a basis of h*. Let
ai; = (], a).

Then the (n — 1) X (n — 1) matrix A := (a;;) is

2 -1 0 0 0 0 0
-1 2 -1 0 0 0 0
o -1 2 -1 0 0 0
0 0 0 0 -1 2 -1
0 0 0 0 0o -1 2

This matrix is called the Cartan matriz. Define

XE{,—EJ' = eij? X—s,;—i—sj = eji (1 S Z < j S n)
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Note that
[h, Xa] = a(h)Xo (R €b),
and
{af o JU{Xe o [1<i#j<n}

is a basis of g. Set e; = X, and f; = X_,, for 1 <¢ < n. It is easy to
check that

€1y sty flreees foot,0) . (1.1)

generate g and the following relations hold:

i)' T (e)) =0 (i#)),
() =0 (i #)).
A (special case of a) theorem of Serre claims that g is actually gener-

ated by the elements of (1.1) subject only to these relations. What is
important for us is the fact that the Cartan matrix contains all the in-

[ei, fi] = dijaf’, (1.2)
[of, a1 =0, (1.3)
o ¢j] = aize;, (1.4)
[, f;] = —aij f;, (1.5)
(1.6)
(1.7)

formation needed to write down the Serre’s presentation of A. Since the
Cartan matrix is all the data we need, it makes sense to find a nicer ge-
ometric way to picture the same data. Such picture is called the Dynkin
diagram, and in our case it is:

a1 Q2 Qp—1

Here vertices ¢ and 7 + 1 are connected because a;+1 = aj+1,, = —1,
others are not connected because a;; = 0 for |i — j| > 1, and we don’t
have to record a;; since it is always going to be 2.

1.1.2 Symplectic Lie Algebras

Let V be a 2n-dimensional vector space and ¢ : V x V — C be a
non-degenerate symplectic bilinear form on V. Let

g=5p(V,p) ={X € gl(V) | o(Xv,w)+ (v, Xw) =0 for all v,w € V}.
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An easy check shows that g is a Lie subalgebra of gi(V). It is known
from linear algebra that over C all non-degenerate symplectic forms are
equivalent, i.e. if ¢’ is another such form then ¢'(v,w) = p(gv, gw) for
some fixed g € GL(V). Tt follows that

sp(V,¢') = g~ (sp(V, ©))g = sp(V. ),

thus we can speak of just sp(V'). To think of sp(V') as a Lie algebra of
matrices, choose a symplectic basis e1,...,e,,e_p,...,€_1, that is

@(eive—i) = —@(e—ivei) = 17

and all other ¢(e;, e;) = 0. Then the Gram matrix is

where
0 0 0 1
00 ... 1 O
5= ; . (1.8)
01 ... 00
10 ... 00

It follows that the matrices of sp(V') in the basis of e;’s are precisely the
matrices from the Lie algebra

SPoy, = {(g g) | B = SBtS,C = SCtS,D = —sAt.s},

so sp(V) & sp,,,. Note that sX's is the transpose of X with respect to
the second main diagonal.

Choose the subalgebra h consisting of all diagonal matrices in g. Then,
setting a;' 1= €;; — €;41,i+1 — €—i—i + €—j—1,—i—1, for 1 < i < n and
Oé,r\i =€nn —€_n,—n,

oY,... a0 1, al
is a basis of §. Next, setting a; = €; —€;41 for 1 <14 < n, and a, := 2¢,,
A1y, Qp_1,Qnp

is a basis of h*. Let

aij = (o, o).
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Then the Cartan matrix A is the n x n matrix

2 -1 0 0o ... O 0 0
-1 2 -1 0 ... 0 0 0
o -1 2 -1 0 0 0
0 0 0 0 -1 2 =2
0 0 0 0 0o -1 2
Define
Xoey, = €i— (1<i<n)
X oy = ey, (1<i<n)
Xgifej = € —€_j—; (1 <i<j< n)
X cive; = eji—e 5 (1<i<j<n)
X5i+5j = €,—jTe€ji (1 <i<j< ’I’L)
X,Ei,E]. = e_jite_i; (1 <1< < TL)
Note that
[h, Xo] = a(h) X (h €b),
and

{af ..., U{X.}

is a basis of g. Set e; = X, and f; = X_,, for 1 <¢ < n. It is easy to
check that

617"-5en7fla"'7fnaa¥7"'ax (19)

generate g and the relations (1.2-1.7) hold. Again, Serre’s theorem
claims that g is actually generated by the elements of (1.11) subject
only to these relations. The Dynkin diagram in this case is:

ap Q2 Qp—1 Oy

The vertices n—1 and n are connected the way they are because a,—1,, =
—2 and a,,,—1 = —1, and in other places we follow the same rules as in
the case sl.
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1.1.3 Orthogonal Lie Algebras

Let V be an N-dimensional vector space and ¢ : V x V — C be a
non-degenerate symmetric bilinear form on V. Let

g=s50(V,0) ={X € gl(V) | o(Xv,w)+¢(v,Xw) =0 for all v,w € V}.

An easy check shows that g is a Lie subalgebra of gi(V'). It is known from
linear algebra that over C all non-degenerate symmetric bilinear forms
are equivalent, i.e. if ¢’ is another such form then ¢’ (v, w) = ¢(gv, gw)
for some fixed g € GL(V). It follows that

so(V,¢') = g~ (s0(V, ¢))g = s0(V, ),

thus we can speak of just so(V). To think of so(V) as a Lie alge-
bra of matrices, choose a basis eq,...,ep,e6_p,...,e_1 if N = 2n and
€1y y€n,€0,6_p,...,6_1if N =2n+ 1, such that the Gram matrix of

0 0 0 s
< S) and 02 0},
S
s 00
respectively, where s is the n X n matrix as in (1.8). It follows that the

matrices of so(V') in the basis of e;’s are precisely the matrices from the
Lie algebra

© in this basis is

509, = {(A B) | B=—sB's,C = —sC's,D = —sA's},

C D
if N =2n, and
A 2sxt B
0941 ={| ¥y 0 r || B=—sB's,C =—-sC's,D = —sA's},
C 2syt D

if N =2n+1 (here z,y are arbitrary 1 x n matrices). We have in all
cases that so(V) = son.
Choose the subalgebra h consisting of all diagonal matrices in g. We
now consider even and odd cases separately. First, let N = 2n.
Then, setting Oé;/ = €4 —€i41,i4+1 —€—j,—5 T €—j—1,—i—1, for1 <i<n
and O‘X =€n—1,n—1 T €nn —€—ntl,—ntl — €—p —n,
ol el aY

is a basis of h. Next, setting a; = ¢; —e;41 for 1 <7 < n, and o, =
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€n—1+ En,

A1y .e 3 Op—1,0n
is a basis of h*. Let

ai; = (o, aj).

Then the Cartan matrix A is the n x n matrix

2 -1 0 0 ... 0 0 O
-1 2 -1 0 ... 0 0 O
0 -1 2 -1 0 0 0
0 0 0 0 9 -1 -1
0 0 0 0 -1 2 0
0 0 0 0 -1 0 2
Define
Xeyey, = ej—e_ji (1<i<j<n)
Xocite; = €ji—€_i—j (1<i<j<n)
Xejye;, = €i—j—ej—i (1<i<j<n)
X cime; = eji—ej (1<i<j<n).
Note that
[h,Xa] = a(h)Xe  (h€b),
and

{af ..., ey U{X,}

Xo, and f; = X_, for 1 <14 <n. It is easy to

is a basis of g. Set e;
check that

€1sensny flyeees frrQfseeay (1.10)

generate g and the relations (1.2-1.7) hold. Again, Serre’s theorem
claims that g is generated by the elements of (1.11) subject only to
these relations. The Dynkin diagram in this case is:

o—o—Iaio
——eo o .-0

a1 Q2 Op—2 Op—1
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Let N = 2n+1. Then, setting Oéiv =€ —€it1,i41—€—4,—iTEe 1,1,
for 1 <i<nand a) =2en, —26_p,_p,

af, .l g a)

is a basis of h. Next, setting a; = &; — ;41 for 1 <i < n, and «,, := &,,
AlyeooyOp_1,0p

is a basis of h*. Let
ai; = {(a] , az).

Then the Cartan matrix A is the n x n matrix

2 -1 0 0 ... 0 0 0
-1 2 -1 0 0 0 0
o -1 2 -1 0 0 0
0 0 0 0 -1 2 -1
0 0 0 0 0o -2 2

(It is transpose to the one in the symplectic case). Define

Xe, = 2e0+e0—i, (1<i<n)
X—ai = 26_1‘70 + €eo,4, (1 << n)
Xejme; = ej—e—ji (1<i<j<n)
X_s7+€_7' €ji — €_i (1§l<j§n)
Xaz-i-aj = €,—j —€j—j (1 <i<j< n)
Xocime, = eji—ey (1<i<j<n).
Note that
hXol = a(h)Xa  (heb),
and

(af,...,aY}U{Xa)

is a basis of g. Set e; = X, and f; = X_,, for 1 <¢ < n. It is easy to
check that

€1sensny flyeees frrQ) ey (1.11)

generate g and the relations (1.2-1.7) hold. Again, Serre’s theorem
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claims that g is actually generated by the elements of (1.11) subject
only to these relations. The Dynkin diagram in this case is:

a1 Q2 Qp—1 Oy

1.2 Generalized Cartan Matrices

Definition 1.2.1 A matrix A € M,,(Z) is a generalized Cartan matriz
(GCM) if

(C1) ai; =2 for all g;

(C2) a;; <0 for all i # j;

(C3) a;; =0 if and only if aj; = 0.

Two GCMs A and A’ are equivalent if they have the same degree
n and there is ¢ € S, such that agj = o(i),0(j)- A GCM is called
indecomposable if it is not equivalent to a diagonal sum of smaller GCMs.

Throughout we are going to assume that A = (a;;)1<i j<n is a gen-
eralized Cartan matrix of rank /.

Definition 1.2.2 A realization of A is a triple (b, II,IIV) where b is a
complex vector space, Il = {aq,...,a,} C h* andIIY = {a,..., )/} C
h such that

(i) both IT and IV are linearly independent;

(i) (o, ;) = a,j for all 4, j;

(iii) dimbh =2n —£.

Two realizations (h, I1,IIV) and (§',II', (I")V) are isomorphic if there
exists an isomorphism ¢ : h — b’ of vector spaces such that p(a;) =
((a)V) and p* (o) = (o) for i = 1,2,...,n.

2 -1 0

Example 1.2.3 (i) Let A= -1 2 —1].Wehaven =1/¢=3. Let
o -1 2

e1,...,eq4 be the standard basis of C*, ¢1,...,e4 be the dual basis, and

h ={(a1,...,a4) | a1 + -+ as = 0}. Finally, take II = {e; —e2,69 —
€3,63 — €4} and 1Y = {e; — ez, 62 — €3,e3 — €4}

Another realization comes as follows. Let h = C3, and «; denote the
ith coordinate function. Now take ) to be the ith row of A. It is clear
that the two realizations are isomorphic.
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2 -1 -1
(ii)Let A= | -1 2 —1].Wehaven =3, (=2 Take h = C*
-1 -1 2
and let «; denote the ith coordinate function (we only need the first
2 -1 -1 0
three). Now take o) to be the ith row of the matrix [ -1 2 -1 0
-1 -1 2 1

Proposition 1.2.4 For each A there is a unique up to isomorphism
realization. Realizations of matrices A and B are isomorphic if and
only if A= B.
‘ S . _ (An A
Proof Assume for simplicity that A is of the form A =
A1 Az
where A1, is a non-singular ¢ x ¢ matrix. Let

A Agp 0
C=\|An Axn I,
0 ) 0

Note det C' = +det A1, so C is non-singular. Let h = C?>"~¢. Define
ai,...,a, € h* to be the first n coordinate functions, and Y, ..., ay
to be the first n row vectors of C.

Now, let (b/,II',(IT')" be another realization of A. We complete
(@)Y,....(/)) to a basis («)},...,(a )y, _, of h’. Then the matrix

()Y, o)) has form

Ar A

A1 Az

By B
By linear independence, this matrix has rank n. Thus it has n linearly
independent rows. Since the rows rows £+ 1,...,n are linear combina-
tions of rows 1,..., ¢, the matrix

Ar A

By Bs
is non-singular. We now complete of,...,al, to af,...,al, ,, so that

the matrix (((a})", %)) is

A A 0
Aoy Asy Iy
By B, 0
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This matrix is non-singular, so o}, ..., a5, , is a basis of (h’)*. Since
Aj; is non-singular, by adding suitable linear combinations of the first ¢

rows to the last n — £ rows, we may achieve By = 0. Thus it is possible

to choose (o)), 1,--.,(a’)3,_,, so that (o/){,...,(a’)s,_, are a basis
of §" and
An A 0
((ah),af)) = | Asx Asp Iy
0 B, 0
The matrix Bj must be non-singular since the whole matrix is non-
singular. We now make a further change to ('), ,,..., ()3, _, equiv-
alent to multiplying the above matrix by
Iy 0 0
0 I,. O

0 0 (By!

Then we obtain

Ay A 0
(@)Y, af)) = | Asx Az Iy
0 I,, 0

This is equal to the matrix C' above. Thus the map o — (a})" gives
an isomorphism b — b’ whose dual is given by o} — «;. This shows
that the realizations (h,IL IIV and (', II', (II')¥ are isomorphic.

Finally, assume that ¢ : (b, I, IIV) — (b, I, (IT')V) is an isomorphism
of realizations of A and B respectively. Then

bij = ((e7)", o) = (p(a), &) = (o), 0" (a)) = (e, o) = asj.
U

Throughout we assume that (5, I, ITV) is a realization of A.

We refer to the elements of IT as simple roots and the elements of ITV as
simple coroots, to II and IIV as root basis and coroot basis, respectively.
Also set

Q = @?:lza% Q-‘r - @;L:lZJ’_ai.

We call Q root lattice. Dominance ordering is a partial order > on h*
defined as follows: A > pifand only if \—p € Q4. Fora =>"" | kja; €
Q, the number

ht o := i k;
=1
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is called the height of .

1.3 The Lie algebra g(A)

Definition 1.3.1 The Lie algebra g(A) is defined as the algebra with
generators e;, f; (i =1,...,n) and b and relations

[h, ei] = (i, h)e; (h €b),
(h, fi] = —(ai, h) fi (h €h).

It follows from the uniqueness of realizations that g(A) depends only
on A (this boils down to the following calculation: (&}, ¢(h)) = (¢*(af),h) =
<ai7 h>)

Denote by fy (resp. n_) the subalgebra of g(A) generated by all e;
(resp. fi)-

Lemma 1.3.2 (Weight Lemma) Let V' be an h-module such that
V' = @y~ Va where the weight space Vi is defined as {v € V |
hv = (A, hyv for all h € h}. Let U be a submodule of V. Then U =

®A€h*(U N V)\)

Proof Any elementr v € V' can be written in the form v = v +--- 4+ v,
where v; € V), and theere is h € h such that \;(h) are all distinct. For
v € U, we have

hk(v) = iAj(h)%j cU (k=0,1,...,m—1).

j=1

We got a system of linear equations with non-singular matrix. It follows
that all v; € U. U

Theorem 1.3.3 Let g = g(A). Then
(i) g=n_@hdn,.
(ii) ny (resp. n_) is freely generated by the e;’s (resp. f;’s).

(iii) The map e; — fi, fi— e, h— —h (h € ) extends uniquely to
an involution & of g.
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(iv) One has the root space decomposition with respect to b:

i=( P soore( P ba),

a€EQy,a#0 aEQ 4, a0

where 8o = {x € g | [h,z] = a(h)z for all h € h}. Moreover,
each g, s finite dimensional, and g+, C ny for +a € Q4, a # 0.

(v) Among the ideals of § which have trivial intersection with b, there
s unique maximal ideal t. Moreover,

t=(tNao_) @ (tNny) (direct sum of ideals).

Proof Let V be a complex vector space with basis vy, ...,v, and let
A € h*. Define the action of the generators on the tensor algebra T'(V)
as follows:

(a) fila) =v; ®a for a € T(V).
(b) h(1) = (A, h) and then inductively on s,

h(vj ® a) = —(a;, h)v; @ a + v; ® h(a)

for a € TS~1(V).
(¢) €;(1) = 0 and then inductively on s,

ei(v; ® a) = d;;a; (a) + v; @ ei(a)

for a € TS=1(V).

To see that these formulas define a representation of g, let us check the
relations. For the first relation:

(eifj — fiei)(a) = ei(v;®a)—v; Qei(a)
= §;0)(a) +vj®ei(a) —v; @ ei(a)
= dije (a).

The second relation is obvious since fh acts diagonally. For the third
relation, apply induction on s, the relation being obvious for s = 0. For
s> 0, take a = vx ® a3 where a; € T*~1(V). Then using induction we
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have

(hej —ejh)(ve ® a1)

h(8jraf (a1)) + hvk @ ej(ar))
—ej(—(an, h)vp ® a1) — e;j (v ® h(ar))
= k) (h(ar)) — {ak, h)vy, @ ej(ar)
+or @ h(ej(ar)) + (o, h)d;rerf (ar)
+{a, h)vp ® ej(a1) — 8 (h(ar))
—v; @ ejh(ar)
= v ®[h,e5](ar) + (aj, h)djra) (a1)
v @ (0, hyej(ar) + (aj, h)dpaj (ar)
(aj, h) (v ® ej(ar) + ke (ar))
= (aj,h)e;(vx ® a1).

Finally, for the fourth relation:

(hfy = fih)(a) = h(v; @ a) —v; @ h(a)
—(aj, h)yv; ® a+v; ®a—v; @ h(a)
= —(aj,h)v; ®@a.

Now we prove (i)-(v).

(iii) is easy to check using the defining relations.

(ii) Consider the map ¢ :n_ — T(V), u — u(1). We have ¢(f;) = v;,
and for any Lie word w(fy,..., fn) we have

o(w(f1y.-oy fn)) =w(vr,...,0,).

Now, for two words w and w’, we have

o([w(fi,- - fu), W (f1,--- f2)]) = [wvr,...vn),w (v1,...0,)]
= [p(w(fi, - fn)), (W' (fi, .- fu))l,

so ¢ is a Lie algebra homomorphism. Now T(V) = F(vy,...,v,), the
free associative algebra on wvy,...,v,. Moreover, the free Lie algebra
FL(v1,...,v,) liesin T(V) and is spanned by all Lie words in vy, ..., vy.
Thus FL(vy,...,v,) is the image of ¢. But there is a Lie algebra ho-
momorphism ¢’ : FL(vy,...,v,) — Ai_, v; — f;, which is inverse to ¢,
so ¢ is an isomorphism. It follows that the f; generate n_ freely. The
similar result for n follows by applying the automorphism @.

(1) It is clear from relations that § = n_+h+ny. Let u = n_+h+ny =
0. Then in T(V) we have 0 = u(1) = n_(1) + (A, h). It follows that
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(A, hy = 0 for all A\, whence h = 0. Now 0 = n_(1) = ¢(n_), whence
n_ = 0.
(iv) It follows from the last two defining relations that

ir= P Fia

acQ4, a#0
Moreover,

dim §o, < n!Bt el (1.16)

(v) By Lemma 1.3.2, for any ideal i of g, we have i = P, ¢4+ (8a Ni).
Since h = g, the sum of the ideals which have trivial intersection with b
is the unique maximal ideal with this property. It is also clear that the
sum in (v) is direct. Finally, [f;,tNfy] C ny. Hence [g,tNny] C tNiy.
Similarly for tNn_. |

Remark 1.3.4 Note that the formula (b) in the proof of the theorem
implies that the natural homomorphism § — g is an injection. This
justifies out notation.

1.4 The Lie algebra g(A)

Definition 1.4.1 We define the Kac-Moody algebra g = g(A) to be the
quotient §(A)/r where v is the ideal from Theorem 1.3.3(v).
We refer to A as the Cartan matriz of g, and to n as the rank of g.

In view of Remark 1.3.4, we have a natural embedding h — g(A).
The image of this embedding is also denoted h and is called a Cartan
subalgebra of g.

We keep the same notation for the images of the elements e;, f;, b in
g. The elements e; and f; are called Chevalley generators.

We have the following root decomposition with respect to b:

g= @ Jas
aEeQ
with go = h. The number

mult o := dim g,,

is called the multiplicity of @. The element a € @ is called a root if
a # 0 and multa # 0. A root a > 0 is called positive, a root o < 0
is called negative. Every root is either positive or negative. We denote
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by A, A4, A_ the sets of the roots, positive roots, and negative roots,
respectively.

The subalgebra of g generated by the e;’s (resp. f;’s) is denoted by
ny (resp. n_). From Theorem 1.3.3, we have

g=n_ohon,.

It follows that g, C ny if & > 0 and g, C n_ if @ < 0. So for a > 0, gq
is a span of the elements of the form [...[[e;,,€:,], €] - .. €;,] such that
i, + -+ a;, = a. Similarly for ao < 0. It follows that

o, = Cei7 9—a;, = (szv sa; = 0 (5 7é i1)

Since every root is either positive or negative, we deduce

Lemma 1.4.2 If 5 € A\ {«;}, then (B+ Zo;) NA C AL,

From Theorem 1.3.3(v), t is @-invariant, so we get the Chevalley in-

volution
w:g—g, e+ —fi, firs—ei, h——h  (heh). (1.17)
Tt is clear that w(ge) = g—a, 80 mult & = mult(—«) and A_ = —A,.

Proposition 1.4.3 Let A1 be an n x n GCM, As be an m x m GCM,

and A = </(1)1 j) be the direct sum matriz. Let (h;,11;,IIY) be a
2

realization of A;. Then (h1 @ bo, I UTL,, ITY UTLY) is a realization of A,
and g(A1)®g(A2) = g(A), the isomorphism sending (hi, he) — (hi, hs),
(€:,0) = ei, (0,€5) = entj, (fi,0) = fi, (0, f;) = fary-

Proof The first statement is obvious. For the second one, observe that
generators (hi, ha), (€;,0),(0,¢e;), (fi,0), (0, f;) of g(A1) ® g(As2) satisfy
the defining relations of g(A). So there exists a surjective homomorphism

7:g(A) — g(Ar) @ g(As)

which acts on the generators as the inverse of the isomorphism promised
in the proposition. Moreover, since g(A;) @ g(As2) has no ideals with
intersect by @ o trivially, it follows that 7 factors through the surjective
homomorphism

m:g(A) — g(Ar) ® g(As).

It suffices to show that 7 is injective. If not, its kernel must be an ideal
whose intersection with § is non-trivial. But then dim7(h) < dimb
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giving a contradiction with the fact that 7w(h) = h1 @ b has dimension
dim by + dim hs = dim b. U
Denote by
g =g'(4)
the subalgebra of g(A) generated by all Chevalley generators e; and f;.

Proposition 1.4.4 Let b/ C § be the span of o, ..., «a,.
(i) g=n_@h &ny.
(i) " = [g,9]-

Proof (i) It is clear that n_ @ §’ &ny C g’. Conversely, if a Lie word in
the Chevalley generators is not equal to zero and belongs to b, it follows
from the relations that it belongs to §’.

(ii) It is clear that g’ is an ideal in g, and it follows from (i) that g/g’ &

h/b’ is abelian, so [g,g] C g/. Conversely, oy = [e;, fi], e; = [3a, eq],

and fi:[fh%a;/]aso g’C[g,g]. U
Let s = (s1,...,5,) € Z". The s-grading
g=EPai(s)
JEL

of g is obtained by setting

gj(s) = @ga

where the sum is over all & = )", k;a; € Q such that ), s;k; = j. Note
that

dege; = —deg f; = —s;, degh=0.

The case s = (1,...,1) gives the principal grading of g.

Lemma 1.4.5 If an element a of ny (resp. n_) commutes with all f;
(resp. all e;), then a = 0.

Proof Note that in the principal grading g_; = span(fi,..., f,) and
g1 = span(ey,...,e,). So [a,g—1] = 0. Then

> (adg)'(adb)a
4,7>0

is an ideal of g contained in ny. This ideal must be zero, whence a = 0.
O
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Proposition 1.4.6 The center of g and g’ is
c={hebh|(a,h)=0foralli=1,...,n} (1.18)

Moreover, dime¢=n — /.

Proof Let c € g be central and ¢ =), ¢; be decomposition with respect
to the principal grading. Then [c,g_1] = 0 implies [¢;, g—1] = 0, whence
¢; = 0 for ¢« > 0 and similarly ¢; = 0 for ¢ < 0. So ¢ € h, and then
0 = [¢,e;] = {ay,c)e; implies ¢ € ¢. Converse is clear. Finally, ¢ C b/,
since otherwise dimc¢ > n — /. Ul

Lemma 1.4.7 Let I, I5 be disjoint subsets of {1,...,n} such that a;; =
0=ay foralli € I,j € I. Let Bs = Y,c; kiPVaq (s = 1,2). If
a = B1 4+ P2 is a root of g, then either B, or Po is zero.

Proof Let i € I1,j € Iy. Then [a),e;] = 0,[a),e] = 0,[es, fj] =
0,[ej, fi] = 0. Using Leibnitz formula and Lemma 1.4.5, we conclude
that [e;,e;] = [fi, f;] = 0. Denote by g®*) be the subalgebra generated
by all e;, f; for i € I,. We have shown that gV and g(® commute.
Now, since gq is contained in the subalgebra generated by g(*) and g
it follows that it is contained in one of them. |

Proposition 1.4.8

(i) g is a simple Lie algebra if and only if det A # 0 and for each
pair of indices 1,7 the following condition holds:

there are indices i1,...,1s such that a;;, a;, i, ... a;,; # 0. (1.19)

(i) If the condition (1.19) holds then every ideal of g either contains
g’ or is contained in the center.

Proof (i) If det A = 0, then the center of g is non-trivial by Proposi-
tion 1.4.6. If (1.19) is violated, then we can split {1,...,n} into two non-
trivial sunsets I; and I such that a;; = aj; = 0 whenever i € I,j € I5.
Then g is a direct sum of two ideals by Proposition 1.4.3. Conversely, let
det A # 0 and (1.19) hold. If i C g is an ideal, then i contains a non-zero
element h € . By Proposition 1.4.6, ¢ = 0, and hence [k, e;] = ae; # 0
for some j. Hence e; € i, and o] = [ej, f;] € i. Now from (1.19) it
follows that e;, f;, a}/ € i for all i. Since det A # 0, b is a span of the
a)’s, and i = g.

(ii) is proved similarly—exercise. O
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We finish with some terminology concerning duality. Note that A*
is also GCM, and (h*, 11V, 1) is its realization. The algebras g(A) and
g(A") are called dual to each other. Then the dual root lattice

QY = i Zay
i=1

corresponding to g(A) is the root lattice corresponding to g(A%). Also,
denote by

AV c QY

the root system A(A?) and refer to it as the dual root system of g.

1.5 Examples

The following clumsy but easy result will be useful for dealing with
examples:

Proposition 1.5.1 Let g be a Lie algebra over C and b be a finite
dimensional abelian subalgebra of g with dimbh = 2n — £. Suppose
I = {a1,...,an} is a linearly independent system of h* and 11V =
{af,..., )} a linearly independent system of b satisfying (o), a;) =
ai;. Suppose also that ey, ..., ey, f1,..., fn are elements of g satisfying
relations (1.12)-(1.15). Suppose e1,...,en, f1,..., [n and b generate g
and that g has no non-zero ideals i with iNh = 0. Then g is isomorphic
to g(A).

Proof There is surjective homomorphism 6 : g(4) — g. The restriction
of § to h C g(A) is an isomorphism onto h C g, cf. Remark 1.3.4. So
kerd N = 0. It follows that ker @ C t. In fact, ker @ = ¢, since g has no
nonzero ideal i with iNnh = 0. |

Example 1.5.2 Let

2 -1 0 0 0 0 0

-1 2 -1 0 0 0 0

0o -1 2 -1 0 0 0
A=A, =

0 0 0 0 -1 2 -1
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We claim that g(A) = sl,,+1. We take b C sl,,1+1 to be diagonal matrices
of trace 0. Let ¢; € h* be the ith coordinate function, i.e.

gi(diag(ay,...,an)) = a; (1<i<mn).
Now take
Q=g —Ei1, ) =€ — €141 (1<i<n),
and
e = €iiv1, Ji=C€iy1 (1<i<n).

It is easy to see that all assumptions of Proposition 1.5.1 are satisfied.
For example, to see that sl,.1 does not contain nonzero ideals i with
iNh =0, note that any such ideal would have to be a direct sum of the
root subspaces, and it is easy to see that no such is an ideal. In fact, an
argument along these lines shows that sl,,11 is a simple Lie algebra, i.e.
it has no non-trivial ideals. Note that the roots of sl,,;1 are precisely

gi—gj  (I<i#j<n+l),

with the corresponding root spaces ge, ¢, = Ce;;.
Moreover, a similar argument shows that if g is a finite dimensional
semisimple Lie algebra with Cartan matrix A, then g = g(A).

Before doing the next example we explain several general construc-
tions.
Let g be an arbitrary Lie algebra. A 2-cocycle on g is a bilinear map

Y:gxg—C
satisfying

Py, ) = —d(z,y)  (z,yeq), (1.20)

(gl 2) + oy 2)a) + o((zaly) =0 (eyzeg).  (L21)
If ¢ is a 2-cocyle and
g=90Cc
for some formal element ¢, then g is a Lie algebra with respect to
[z 4+ Ac,y + pe] = [z, y] + P(2,y)e.

We refer to g as the central extension of g with respect to the cocycle 1.
Let D : g — g be a Lie algebra derivation, i.e. D is a linear map and

D([z,y]) = [D(2), 4] + [, D(y)]  (z,y € 9).
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Let
g=9gdCd
for some formal element d. Then § is a Lie algebra with respect to
[+ Ad, y + pd] = [z, y] + Ad(y) — pd(z).

We refer to g as the Lie algebra obtained from g by adjoining the deriva-
tion D. Sometimes we use the same letter d for both d and D.

A typical example of derivation comes as follows. Let g = ®; € Zg;
be a Lie algebra grading on g. Then the map g sending x to jx for any
T € g is a derivation.

Let

L=C[t,t™ 1],
and for any Lie algebra g define the corresponding loop algebra
L(g) =L@g.
This is an infinite dimensional Lie algebra with bracket
Pox,Qeyl=PRery (PQEL zycg).

If (-]) is a bilinear form on g, it can be extended to a L-valued bilinear
form

([)e: L(g) x L(g) = L
by setting
(P@z|Q®y) = PQ(x]y).

We define the residue function

Res : L — C, Zciti —C_q.
i€

Lemma 1.5.3 Let (-|-) be a symmetric invariant bilinear form on g.

The function ¢ : £L(g) x L(g) — C defined by
da
v(a,) = Res (2}p)

is a 2-cocycle on L(g). Moreover, Y(t' @ z,t! ® y) = id; —;(z|y).
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Proof Note that

Yt @r,t! ®y) = Res(it'™ ' @z/t! @y);
= Resit"t ! (aly)
_ {ew mii=o

0 otherwise

from which (1.20) follows. Moreover, we have

Yozt @ytfez) = vt |yl t"©:2)
(i+ )= yllz) ifit+j+k=0
0 otherwise

Now, if i+j+k #0, (1.21) is clear. If i + j + k = 0, the required sum is

—k([z, yll2) —i(ly, 2l|=) — j([z, 2]ly)
= —k([z,yllz) —i([z, yl[2) — j([z, 9l]z) = 0
since the form is symmetric and invariant. |

If g is a simple finite dimensional Lie algebra it possesses unique up to
a scalar non-degenerate symmetric invariant form (+|-), so Lemma 1.5.3
allows us to define a 2-cocycle ¥ on L(g), and the previous discussion
then allows us to consider the corresponding central extension

L(g) = L(g) ® Cc.

Moreover, £(g) is graded with degt! ® z = j, degc = 0. We then have
the corresponding derivation

d:L(g) — L(g), ! @x— jt! @x, crs 0.
Finally, by adjoining d to £(g) we get the Lie algebra
L(g) := L(g) ® Cc Cd,
with operation

[t™ @z + Ae+ pd, t" @ y + Aic+ pad)
= ({t"T" @ [z,y] + pnt" @ y — prmt™ @ x) + My, _n(zly)e.

Example 1.5.4 Let A = Agl) = ( 2 _22> . We claim that
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sometimes also denoted 5/1\2 First of all recall that the non-degenerate
symmetric invariant form on sl, is just the trace form

(zly) = tr(zy)  (2,y € sla).
Then
(e, f) =1, (h,h) =2, (e;e) = (e;h) = (f,h) = (f, ) = 0.
Now set
h=Ch® Cco Cd
and note that dim b = 2n — /. Next define
ay =c—1®h, af =10h
and ag, a1 € h* via
(ai,af) =2, {aj,af) =2 (0<i#£j5<1)
and
(ag,c) =0, (ag,d) =1, {aj,¢) =0, {aq,d) =0.
It is clear that we have defined a realization of A. Next set
c=t®f, e1=1®e, fo=t"'®e, L =11

It is now easy to check the remaining conditions of Proposition 1.5.1.
Indeed,

lei, ] = dija, [h,ei] = ai(h)es, [h, fi] = —au(h)fi  (h€b)

follow from definitions. Next, 5/1\2 is generated by b,eq,eq, fo, f1: if m
is the subalgebra generated by them, then clearly 1 ® slo C m. Set
i:={xe€sly|t®xecm Wehave f €i,801#0. Also, if z €1,y € sls,
then [z,y] € i, thus i is an ideal of sly, whence i = sly, and t ® slo C m.
We may now use the relation

toet oy =t"ery (k>0

to deduce by induction on k that t* ®sly C m for all £ > 0. Analogously
th ® sly C m for all k < 0.

It remains to show that 5/1\2 has no non-zero ideals i having trivial
intersection with f. For this we study root space decomposition of 5/1\2
Let 6 € b* be defined from

5(aY) =d8(ay) =0, 8§(d)=1.
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We claim that the roots are precisely
{1 +kd | keZ}U{kd | ke Z\ {0}}.
Indeed,

Hai+ks = (C(tk ® 6)7 J—ai+ks = (C(tk & f)a (k € Z)
and
grs =C(t"@h)  (keZ\{0}).

Since § = a; + ag, positive roots are of the form {(k + 1)a; + kay,
koqg + (k + 1)ag, (k4 1ag + (k+ 1)as} for k € Z>o.

Let i be a non-zero ideal of 5/1\2 which has trivial intersection with b.
It follows from Lemma 1.3.2 that some ¢’ ® x € i where = = e, f or h.
Take y to be f,e or h, respectively. Then (z|y) # 0, and

[tz t " @yl =[x,y +i(zly)ceinb,
and hence
[z, y] + i(z|y)c = 0.

since [z,y] is a multiple of 1 ® h, we must have ¢ = 0, whence [z,y] =
0. But since i = 0 we cannot have x = h, and then [z,y] = 0 is a
contradiction.

In conclusion we introduce the element Ay € h* which is defined from

Ap:ay — 1, af =0, d— 0.

Then {ap, a1, Ao} and {1, d, Ag} are bases of h*.
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Invariant bilinear form and generalized
Casimir operator

2.1 Symmetrizable GCMs

A GCM A = (ayj;) is called symmetrizable if there exists a non-singular
diagonal matrix D = diag(ey,...,&,) and a symmetric matrix B such
that

A=DB. (2.1)

If A is symmetrizable, we also call g = g(A) symmetrizable.

Lemma 2.1.1 Let A be a GCM. Then A is symmetrizable if and only
if

ai1i2a1‘21‘3 e aikil = aigilaigig e am-k

for all iy, ia,... i € {1,...,n}.

Proof If A is symmetrisable then a;; = €;b;5, hence
Wipi9QAigig + - - Aigiq = di1 . dikaimam_g e Gy,
aizilaim .. 'a’hik = di1 .. -dikbigh bigiz e bilikv

and these are equal since B is symmetric.

For the converse, we may assume that A is indecomposable. Thus for
each ¢ € {1,...,n} there exists a sequence 1 = jy,...,j; =i with

Aj1j2 Agjags - - - Ajr_15: # 0.
We choose a number €1 # 0 in R and define

Qi i R 7
g; = JtJt—1 J2J1 £1. (22)

Aj152Ajags -+ - Ajp 15,

26
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To see that this definition depends only on 4, not on the sequence chosen
from 1 to ¢, let 1 = kq,...,k, =i be another such sequence. Then

Ajpjiy - - Ajaga _ Akyky 1 - - - Ckoky

b
Aj1ja Ajags -+ Aje_1jy A1k Qkoks - - - Qky_1ky

since it is equivalent to

A1ko Qo kg + - - akt_liaijt_l e aj21 = OQky1Qksky - - - aiku_lajt_ljt . 611]'27

which is one of the given conditions on the matrix A. Thus ¢; € R is
well defined and ¢; # 0.

Let bij = Clz'j/e’:‘i. It remains to show that bij = bji or CLij/Ei = CLji/Ej.
If a;; = 0 this is clear since then a;; = 0. If a;; #0, let 1 =j1,...,5: =
© be a sequence from 1 to i of the type described above. Then 1 =
Jis---,7Jt,7 is another such sequence from 1 to j. These sequences may
be used to obtain €; and ¢; respectively, and we have

g = @517
QA5

as required. O

Lemma 2.1.2 Let A be a symmetrizable indecomposable GCM. Then
A can be expressed in the form A = DB where D = diag(e1,...,&,), B
is symmetric, with €1,...,e, positive integers and b;; € Q. Also D is
determined by these conditions up to a scalar multiple.

Proof We choose €1 to be any positive rational number. Then (2.2)
shows that we can choose all £; to be positive rational numbers. Mul-
tiplying by a positive scalar we can make all ; positive integers. Also
bij = a;;/¢; € Q. The proof of Lemma 2.1.1 also shows that D is unique
up to a scalar multiple. ]

Remark 2.1.3 If A is symmetrizable, in view of the above lemma, we
may and always will assume that €;,...,¢, are positive integers and
B is a rational matrix.

2.2 Invariant bilinear form on g
Let A be a symmetrizable GCM as above. Fix a linear complement b”
to b’ in b:
b= b, ® b”-
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Define a symmetric bilinear form (-|-) on h by the following two condi-
tions:

(al-v\h) = (ay,h)g; (h €b); (2.3)
(hl|h//) — O (h/,h” e h”)-
Note that
(af|a)) = bijeie;. (2.5)
Lemma 2.2.1

(i) The kernel of the restriction (-|-)| is c.
(ii) (:|-) is non-degenerate on b.

Proof (i) is clear from (1.18).
(ii) Tt follows from (i) and Proposition 1.4.6 that the kernel of (-|-) is
contained in b’. Now if for all h € b we have

0= (i cia |h) = <§: cigia, h),
i=1 i=1

whence Ezl cie;c; = 0, and so all ¢; = 0. ]

Since (+]-) is non-degenerate we have an isomorphism v : h — h* such
that

(v(h1), ha) = (halh2)  (h1,h2 € D),
and the induced bilinear form (+|-) on h*. Note from (2.3) that
v(e)) = i (2.6)
So, by (2.5),
(aslay) = bij = asje; " (2.7)

Since all €; > 0 (Remark 2.1.3), it follows that

(aila;) > 0 (1<i<n). (2.8)
(ile) < 0 (i #7).
v 2 e
Qy - (ailai) ( z)- (210)

So we get the usual expression for Cartan matrix:
2(cvi|yy)

Y7 )
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Example 2.2.2 (i) If A is as in Example 1.5.2, then the Gram matrix
of (+|-) in the basis o, ..., a;
be the trace form restricted to b.

(ii) If A is as in Example 1.5.4, choose h” := Cd. Then the Gram

matrix of (-|-) in the basis ay,ay,d and the transported form in the

is A itself. In fact, we may take (-|-) to

basis ag, a1, Ag is

2 -2 1
-2 2 0 |,
1 0 0

while the Gram matrix of the same forms in the bases af,c,d and
Qaq, 5, AO is

2 00
0 0 1
0 1 0

Theorem 2.2.3 Let g be symmetrizable. Fix decomposition (2.1) for
A. Then there exists a non-degenerate symmetric bilinear form (-|-) on
g such that

(i) (-]) is invariant, i.e. for all x,y,z € g we have

([, 9]l2) = (2lly, 2]). (2.11)
(:])]p is as above.
(8, 83) =0 of .+ B #0.
(1) gamg_. %s non-degenerate for o # 0.

ii)
(111)
)
) [xa ] (x|y) ( )forxega,yég,a,aeA.

(v

Proof Set g(N) := @j-v:_Ngj, N =0,1,..., where g = ®jczg; is the
principal grading. Start with the form (:|]-) on g(0) = b defined above
and extend it to g(1) as follows:

(filei) = (il f;) = dijei, (@olg+1) =0, (g+1/g+1) = 0.

An explicit check shows that the form (-|-) on g(1) satisfies (2.11) if both
[z,y] and [y, z] belong to g(1). Now we proceed by induction to extend
the form to an arbitrary g(N), N > 2. By induction we assume that
the form has been extended to g(IN — 1) so that it satisfies (g;|g;) = 0
for |i],|j| < N—1withi+j #0, and (2.11) for all z € g;,y € g;,2 € g
with |i + j|,|7 + k| < N — 1. We show that the form can be extended
to g(IV) with analogous properties. First we require that (g;|g,;) = 0 for
all |i],|7] < N with ¢ + j # 0. It remains to define (z|y) = (y|x) for
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T € gn,Yy € g_n- Note that y is a linear combination of Lie monomials
in f1,..., fn of degree N. Since N > 2, each Lie monomial is a bracket
of Lie monomials of degrees s and ¢t with s +t = N. It follows that y
can be written in the form

y=> [uwi,vi]  (ui €9 a vi €8p,) (212)
where a;,b; > 0 and a; + b; = N. The expression of y in this form need
not be unique. Now define

(zly) := Z([%ui]lvi) (2.13)

The RHS is known since [z, u;] and v; lie in g(N —1). We must therefore
show that RHS remains the same if a different expression (2.12) for y is
chosen. In a similar way we can write x in the form

r=> w2l (w;€ac,, 7 € ga)
J
where ¢;j,d; > 0 and ¢; +d; = N. We will show that
D (wyllzgy) =Y ([, willvs)-
j i
This will imply that the RHS of (2.13) is independent of the given ex-

pression for y. In fact it is sufficient to show that

(wjl [z, [wi, vil]) = ([[wy, 25], willvi)-

Now
([[wy, 25], uilvi) ([wy, wil, 25]|vi) + ([wy, [25, will|vi)
([wy, willlz5, vil) = ([, wil] [[w;, vi])
([wy, ual|lzg, vil) = ([wy, vi [z, wa])
(wj|fuz, [z, vi]]) = (wjl[vs, 25, wi]])
= (wjl[z;, [wi, vi]]).

We must now check (2.11) for all z € g;,y € g;,2 € g with |i +
Jl, 17 + k] < N. We may assume that ¢ + j + k = 0 and at least one of
], 141, 1k| is N. We suppose first that just one of |i|, |j|, |k| is N. Then
the other two are non-zero. If |i| = N then (2.11) holds by definition of
the form on g(N). Similarly for |k| = N. So suppose |j| = N. We may
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assume that y has form y = [u, v] where u € g4, v € gp, a +b = |N|, and

0 <la|] < 4],0 < |b] < |4]- Then

([z,9]lz) = ([=, [u,]]]2)
([[v; 2], u]|z) + ([, ul, v]|2)
([v; 2][[w, 2]) + ([, u]|[v, 2])
([, 0l[[z, u]) + ([, u]l[v, 2])
(][, [z, ul]) + ([[u, [v, 2]])
([[[u, 0], 2])
= (zlly, 2)).

Now suppose two of |i],|j|, |k| are equal to N. Then ¢, j, k are N,—N,0

in some order. Thus one of x,y, z lies in h. Suppose x € . We may

again assume that y = [u,v]. Then

([z,9]]2) = ([=,[u,]]|2)
= ([l,ul,v][2) = ([, 0], u]l2)
= ([z, [, 2]) = ([, v]|[w, 2
= ([[u, [v, 2]]) = (2[[v, [
([[[u, v], 2])
= (2lly, 2)-

1) (by definition of (:|-) on g(N))
u,z]]) (by invariance of (+|]-) on g(N —

If z € b the result follows by symmetry. Finally, let y € h. Then
we may assume that z = [u,v] where u € gq,v € gy, a +b = k, and

0 < |a| < |k],0 < |b| < |k|. Then

@lly,2]) = (2lly; [u,]])
= (@l [y,v]]) + ([[ly, u],v])
= ([= ullly,v]) + ([z, [y, ulllv) ~ (by definition of (-|-) on g(NV))
= ([[z,ul,y]lv) + ([, [y, u]]|[v)  (by invariance of (-|-) on g(NV —
= ([[=9],u]lv)
= ([z,y]|[u,v]) (by definition of (:|-) on g(N))
= ([z,y]l2).

By induction, we have defined a symmetric bilinear form on g which
satisfies (i) and (ii). Let i be the radical of (+|-). Then i is an ideal in g.
If i £ 0 then iNh #£ 0, which contradicts Lemma 2.2.1(ii). Thus (-]-) is

non-degenerate.

1)

1)
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The form also satisfies (iii), since for all h € h,x € go,y € gp, using
invariance, we have

0= ([h, 2]ly) + (z[[h, y]) = ((a; h) + (B, b)) (2[y)-

Now (iv) also follows from the non-degeneracy of the form.
Finally, let « € A, x € go,y € g3, h € h. Then

([z, 9] = (zly)v~ (@) |h) = (zly, h]) = (x[y){e, k) =0,
which implies (v). O

The form (+|-) constructed in the theorem above is called the standard
invariant form on g. It is uniquely determined by the conditions (i) and
(ii) of the theorem (indeed, if (:|-); is another such form then (-|-) —
(:])1 is too, but its radical is non-trivial ideal containing b, which is a
contradiction).

Throughout (-|-) denotes the standard invariant form on symmetriz-
able g.

Example 2.2.4 (i) The standard invariant form is just the trace form
on §l,41 is the trace form.

(ii) The standard invariant form on sly is given by

(" @ zlt" @ y) O, —ntr (2y),
(Ce+ Cd|L(sl)) = 0,
(cle) = (dld) = 0,
(cJd) = 1.

2.3 Generalized Casimir operator

Let g be symmetrizable. By Theorem 2.2.3(iii),(iv), we can choose dual
bases {e&’)} and {e(_’)a} in g, and g_,. Then

(@ly) =Y (@eCD)wlel)) (2 € ga, ¥ € ga)- (2.14)

S

Lemma 2.3.1 If a,8 € A and z € gg_q, then in g ® g we have
Yol @zl =", A @ef). (2.15)

t
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Proof Define a bilinear form (-|-) on g ® g via

(z @ylrr @ y1) = (z]x1)(yly1)-

Taje e € go, f € g—p. It suffices to prove that pairing of both sides of
(2.15) with e ® f gives the same result. We have, using (2.14),

S ol ellews) = Y (€ hle)((zelf)

> (Ehle) eI )
= (el[f,z]).
Similarly,
S 2l @efle® £) = (2 €llf),
t
as required. O

Corollary 2.3.2 In the notation of Lemma 2.3.1, we have

Z[e(fgé,[z,efj)]] = Z 2, el B eg) (in g), (2.16)
S ez el = —Zze(t)ﬂe(ﬂt) (inU(g)). (2.17)

Definition 2.3.3 A g-module V is called restricted if for every v € V.
we have g,v = 0 for all but finitely many positive roots c.

Let p € b* be any functional satisfying
(pal)=1 (1<i<n).

Then, by (2.10),

(plai) = (ailai)/2 (1 <i<n). (2.18)
For a restricted g-module V' we define a linear operator 1y on V as
follows:

QO =2 Z Ze(—leegj)
a€EAL i

One can check that this definition is independent on choice of dual bases.
Let u1,uo,... and u',u?,... be dual bases of . Note that

(Alp) = Z<A7ui><u,ui> (A1 €b). (2.19)

i
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Indeed,
M) = @'V Hw)
= Z(V‘IQ)Iui)(v‘l(u)\ui)
= Z<)\7U1><Hau2>
Also,
[Zuiui,x]:z((a|a)+2y*1(a)) ( € ga)- (2.20)
Indeed,

(3

= Z(a,ui><a,ui>x +z (Z ut (o, u;) +ui<a,ui>> .

% %

[Zuzul,m] = Z(a,ui)xui—l—Zui(a,uiﬂ

Define the generalized Casimir operator to be the following linear
operator 2 on V:

Q:=20"1p) + Zulul + Q.

Example 2.3.4 (i) Let g = sl3. Then we have
Q=h+h(1/2)h+2fe=ef + fe+ h(1/2)h,

ie. Q= o, for a pair {v'} and {v;} of dual bases of sl,. This is a
general fact for a finite dimensional simple Lie algebra.
(ii) Let g = sly. We can take a pair of dual bases u' and u; of b as

follows
{a),e,d} and {(1/2)ay,d,c},
and
207 (p) = o +4d.
Finally,

+oo

“+o0 “+o0
Qo =Y _(tFR)(E*h) + 2> (T ) (tFe) +2) (¢t Fe)(t* ).

k=1 k=0 k=1
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For the purposes of he following theorem consider root space decom-

position of U(g):
U(g) = P Us,
BeQ

where
Ug ={u € U(g)|[h,u] = (B, h)u for all h € h}.
Set
Us = U NU(g),

so that U(g') = Dgeq Up-

Theorem 2.3.5 Let g be symmetrizable.
(i) If V be a restricted g'-module and u € U, then

[Q0,u] = —u(2(p|a) + (a]a) + 2v (a)). (2.21)

(i1) IfV is a restricted g-module then @ commutes with the action of
gonV.

Proof Note that elements of h commute with Q since ) is of weight
0. Now (ii) follows from (i) and (2.20). Next, note that if (i) holds for
we Ul and u; € Ué, then it also holds for uu; € Uf/H-B

[Qo,uu1] = [Qo,u]uy + u[Qo, u1]
= —u(2(ple) + (a|a) + 207 (a))w
—uui (2(plB) + (B18) +2v~1(8))
= —uu (2(ple) + (afa) + 207 (a)
+2(alB) + 2(pl8) + (B18) +2v71(8))
= —uui(2pla+B) + (a+ Bla+ B) + 20 (a + §)).

Since the e,,’s and e_,,’s generate ¢, it suffices to check (2.21) for
U = e,,; and e_,,. We explain the calculation for e,,, the case of e_,,
being similar. We have

Qorea] = 23 Y (1% ea)els) + e, ea])
a€EAL s

= 2eacalea+2 D D (€€ ea el + L) en)).
aeA\{ai} s
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Note using Theorem 2.2.3(v) that
206 _a;sCai)ea; = =20 ()ea, = —2(ai|oi)ea, — 2eq,v (),
which is the RHS of (2.21) for u = e,,. So it remains to prove that
Z Z )y ea;]el) 4 et (=) 116l eq,]) = 0. (2.22)
aeA \{ai} s
Applying (2.17) to z = e,,, we get

Yo D e cael) + Bl en))

a€h\ai} s
= Z Z([e(fl,eai]egf)— Z Z 704 a; 760&1 ((Jth)rai‘
aceA;\{a;} s aceA\{a;} t

If a +a; € A, the last term is interpreted as zero. If @ — a; &€ A,
then [e(_sl)l, €a;] = 0. Thus we may assume a = [ + a; in the first term
with g € A, in view of Lemma 1.4.2, which makes that term equal to
2o BeA\{ar} Zt[e(_tzg_ai,eal]egia , which completes the proof of (2.22).

O

Corollary 2.3.6 If in the assumptions of Theorem 2.3.5, v € V is a
high weight vector of weight A then

Q(v) = (A + 2p|A)v.
If, additionally, v generates V, then
Q= (A4 2p|N) Iy

Proof The second statement follows from the first and the theorem. The
first statement is a consequence of the definition of £ and (2.19). O
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Integrable representations of g and the Weyl
group

3.1 Integrable modules
Let

93) = Ce; + CO&I\/ +Cf;.

It is clear that OB isomorphic to sly with standard basis.

Lemma 3.1.1 (Serre Relations) Ifi # j then

(ade;)' " %ie; =0, (adfi)' "% f; =0. (3.1)
Proof We prove the second equality, the first then follows by application
ofw. Let v = f;, 0;; = (ad f;)* =% f;. We consider g as a g(s)-module via

adjoint action. We have ¢;u = 0 and a/v = —a;;v. So, by representation
theory of sis,

61‘91']' = (1 — aij)(—aij — (1 — aij) -+ 1)(&(1 fi)iaij fj = 0 (Z # _])

It is also clear from relations that exf;; = 0 if k # 4,7 or if K = j and
a;; # 0. Finally, if £ = j and a;; = 0, then

ejli; = lej, [fis fi]] = [fir af] = ajifi = .
It remains to apply Lemma 1.4.5. Cl

Let V be a g-module and = € g. Then « is locally nilpotent on V if
for every v € V there is N such that Vv = 0.

Lemma 3.1.2 Let g be a Lie algebra, V' be a g-module, and x € g.

() If y1,92,... generate g and (adx)Ney; = 0, i = 1,2,..., then
ad z is locally nilpotent on g.

37
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(i) If v1,ve,... generate V as g-module, ad x is locally nilpotent on
g, and zNiv; =0, i =1,2,..., then x is locally nilpotent on V.

Proof Since ad z is a derivation, we have

k

(ada) [y, 2] = 3 (’;) (ad 2)'y, (ad 2)" 2],

i=0
This yields (i) by induction on the length of commutators in the y;’s.
(ii) follows from the formula

- i\ ki
o= ; (’:) (ad z)ia)a*, (3.2)

which holds in any associative algebra. |
Lemma 3.1.3 Operators ade; and ad f; are locally nilpotent on g.

Proof Follows from the defining relations, Serre relations, and Lemma 3.1.2(i).
O

A g-module V is called h-diagonalizable if
v=Dn
A€h*

where the weight space V) is defined to be
VA ={v € V]lhv = A(h)v for all h € h}.

If Vi # 0 we call A a weight of V', and dim V) the multiplicity of the weight
A denoted multy A. h’-diagonalizable g’-modules are defined similarly.

A g (resp. g')-module V is called integrable if it is b (resp. b’)-
diagonalizable and all e;, f; act locally nilpotently on V. For example
the adjoint g-module is integrable.

Proposition 3.1.4 Let V' be an integrable g-module. As a g(;y-module,
V' decomposes into a direct sum of finite dimensional irreducible b-
tnvariant submodules.

Proof For v € V) we have

eiffv ="k —k+ X\ a!)fF v+ fFew.
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It follows that the subspace

U:= Z Cfkemv

k,m>0

is (g(;)+h)-invariant. Since e; and f; are locally nilpotent on V', dim U <
0o. By Weyl’s Complete Reducibility Theorem, U is a direct sum of
irreducible h-invariant g;)-submodules (for h-invariance use the fact that

kemy and fFe™ v are of the same a-weight if and only if they are
of the same h-weight). It follows that each v € V lies in a direct sum
of finite dimensional h-invariant irreducible g(;-modules, which implies

the proposition. ]

Proposition 3.1.5 Let V' be an integrable g-module, A € h* be a weight
of V, and «; a simple root of g. Denote by M the set of all t € Z such
that X + ta; is a weight of V', and let my := multy (A + ta;). Then:

(i) M is a closed interval [—p, q] of integers, where both p and q are
either non-negative integers or oo; p —q = (\, o) when both p
and q are finite; if multy A < oo then p and q are finite.

(i) The map e; : Vaita, — Vat(t+1)a, is an embedding for t €
[—p, —(\, @) /2); in particular, the function t — my is increasing
on this interval.

(iii) The functiont — my is symmetric with respect tot = —(\, ;) /2.

(iv) If A and X\ + «; are weights then e;(Vy) # 0.

(v) If A+ o (resp. XA — ;) is not a weight, then (A, ;) > 0 (resp.
(\aY) <0).

(vi) A — (N, o))y is also a weight of V and

multy (A — (A, o Ya;) = multy \.

Proof Set U := 3, .y Vatka,- This is a (g(;) +bh)-module, which in view
of Proposition 3.1.4 is a direct sum of finite dimensional h-invariant
irreducible g(;)-modules. Let p := —inf M and ¢q := supM. Then
p,q € Z4 since 0 € M. Now everything follows from representation
theory of sl using the fact (A +ta;, o) =0 for t = —(\, o)) /2. O

3.2 Weyl group

For each ¢ = 1,...,n define the fundamental reflection r; of h* by the
formula

ri(A) = A — (N o))y (A epr).
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It is clear that r; is a reflection with respect to the hyperplane

Ti={xeb” [ (\af) =0}

The subgroup W = W(A) of GL(h*) generated by all fundamental re-
flections is called the Weyl group of g. The action r; on h* induces the
dual fundamental reflection rY on h. Hence the Weyl groups of dual
Kac-Moody algebras are contragredient linear groups which allows us
to identify them. We will always do this and write r; for /. A simple
check shows that the dual fundamental reflection 7} is given by

ri (h) =h — (h,aq)af

Proposition 3.2.1

(i) Let V' be an integrable g-module. Then multy A = multyw(A) for
any X\ € b* and w € W. In particular, the set of weights of V is
W -invariant.

(ii) The root system A is W-invariant and mult o = multw(a) for
alla e AyweW.

Proof Follows from Proposition 3.1.5. |

Lemma 3.2.2 If a« € Ay and ri(a) < 0 then o = «;. In particular,
A\ {a;} is invariant with respect to r;.

Proof Follows from Lemma 1.4.2. |

If @ is a locally nilpotent operator on a vector space V', and b is another
operator on V such that (ada)™b = 0 for some N, then

(expa)b(exp —a) = (exp(ad a))(b). (3.3)

Indeed, using induction and (3.2), we get

k
(ada)® :Z ( >akjbaj7

j=0

E%
>
~—
S
—
My
—~
|
—_
~
<
‘@
<
~
I

Zku Z lel 7(a'ba’)

k>0 i+j=k

= Y (ada)().

k>0
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Lemma 3.2.3 Let w be an integrable representation of g in V. For
1=1,...,n set

ri = (expm(f;))(expm(—e;))(expm(fi)).
Then
(i) rF(Va) = Vi

(i) r2d € Autg;

(i) 2y =7,
Proof Let v € V. Then
BT () = 1 (h(v) = (L R)IF() i {aph) =0, (3.4)

Next we prove that

This follows from
(r7) (e )rf = m(—ay), (3.6)

and, in view of (3.3), it is enough to check (3.6) holds for the adjoint
representation of sla. Applying (3.3) one more time, we see that it is
enough to check (3.6) for the natural 2-dimensional representation of
slo. But in that representation we have

epfim (P 0), epleen=(F ), (0 !
sz*117 Xp z*o 1a i*l Oa

which implies (3.6) easily.

Now, any h € h can be written in the form h = A’ 4 ca;’, where ¢ is a
constant and (a;, h'Y = 0. Then using (3.4) and (3.5), we have

h(rf (v)) = (AR = (X e )T (v) = (A ri(h)r] (v) = (ri(A), )7 (v),

K2

which proves (i).

For (iii), take h € h and write it again in the form h = h' + cay
as above. Then it is clear that 72k’ = k', and we just have to prove
that 724 (o)) = —a. This can be done as above calculating with 2 x 2
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matrices, or, if you prefer, here is another argument.

(expad f;)()) = ) +2f;;
(expad (—e;)) (o) +2fi) = o +2e +2f;i —2a) — 2e;
—Oéiv + 2f;;
(expad f;)(—a) +2f;) = —a —2fi +2fi
= —a/.

(ii) follows from (3.3) applied to the adjoint representation:

ridfe,y] = (expad fi)(expad (—e;))(expad (fi))(adx)(y)
= (expad f;)(expad (—e;))(expad (f;))(ad z)
x (expad (—f;))(expade;)(expad (—f;))
x (expad f;)(expad (—e;))(expad (fi))(y)
= @) (y)
= [ (@), ().

Proposition 3.2.4 The bilinear form (-|-) on b* is W-invariant.

Proof Note that |r;(c;)]? = | — a;]? = |ay|?. Now let A, ® € h* and
write A = ca; + A\, ® = day + ¢ where (M) = (p|a;) =0, and ¢,d are
constants. Then r;(A) = A — cay, 7(P) = ¢ — day, so

(ri(A)|ri(®) = (A = cailp — doi) = (A, ) + (caildai) = (A]®).

3.3 Weyl group as a Coxeter group

Lemma 3.3.1 If «; is a simple root and ry, ...15, (o) < O then there
exists s such that 1 < s <t and

Tig oo T Tg = T4y oo Ty oot

s

Tiy
Proof Set By = ri,,, ...74,(a;) for k <t and B; = a;. Then 3; > 0
and By < 0. Hence for some s we have 8,1 < 0 and §; > 0. But
Bs—1 =1, 0s, s0 by Lemma 3.2.2, 85 = o, and we get

a;, = w(a;), where w=r;_ ...7. (3.7

s
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By Lemma 3.2.3, w = W[, for some w from the subgroup of Aut g gen-
erated by the r2¢. Applying @ to both sides of the equation [g,, §_a,] =
Cay, we see that Cw(ay’) = Cay . Since (w(a;), w(ay)) = (s, ) = 2,
we now conclude that

w(e)) = o). (3.8)

It now follows that r;, = wryw™":

wriw T (A) = ww ) = (wH ), @ Yaw) = A — (), 04;/5>ai5 =7, (N).

It remains to multiply both sides of r;, = wr;w™! by 74, ...7r;._, on the
left and by 5, ...r;,7; on the right. U

Decomposition w = 1y, ...r;, is called reduced if s is minimal among

all presentations of w as a product of simple reflections r;. Then s is
called the length of w and is denoted ¢(w). Note that detr; = —1, so

detw = (=)™ (w e W). (3.9)

Lemma 3.3.2 Let w =1y, ...15, € W be a reduced decomposition and
a; be a simple root. Then
(i) L(wr;) < L(w) if and only if w(a,) < 0;
(ii) (Exchange Condition) If £(wr;) < £(w) then there exists s such
that 1 < s <t and

TiST¢.§+1 e T’it = Tis+1 e ritri

. Now, if

Proof By Lemma 3.3.1, w(a;) < 0 implies £(wr;) < £(w)
= l(wr;r;) <

w(a;) > 0, then wr;(a;) < 0 and it follows that ¢(w)
£(wr;), completing the proof of (i).

(ii) If £(wr;) < £(w) then (i) implies w(o;) < 0, and we deduce the
required Exchange Condition from Lemma 3.3.1 by multiplying it with
Ti._, .-.T5, on the left and r; on the right. U

Lemma 3.3.3 {(w) equals the number of roots a > 0 such that w(c) < 0.

Proof Denote
n(w) = [{a € Ay | w(a) < 0}.
It follows from Lemma 3.2.2 that n(wr;) = n(w) £ 1, whence n(w) <
L(w).
We now apply induction on ¢(w) to prove that {(w) = n(w). If {(w) =
0 then w = 1 (by convention), and clearly n(w) = 0. Assume that
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lw) =1t >0, and w =1y ...75_ 1. Denote w' = r;...7;,_,. By
induction, n(w’) = ¢t — 1. Let (y,...,B:—1 be the positive roots which
are sent to negative roots by w’. By Lemma 3.3.2(1), w’(«;,) > 0, whence
w(ay,) < 0. It follows from Lemma 3.2.2 that r;, (61), ..., 7, (Bi—1), o,
are distinct positive roots which are mapped to negative roots by w, so

n(w) > L(w). O
Lemma 3.3.4 (Deletion Condition) Let w = r;, ...7;,. Suppose
l(w) < s. Then there erist 1 < j < k < s such that
W= Ty T Ty T
Proof Since £(w) < s there exists 2 < k < s such that
Uriy oooriy) <Ll(riy ...rip_ ) =k —1
. Then by Lemmas 3.3.2(i) and 3.3.1,
Tiy oo Tip = Tiy oo Tiy o Tig
for some 1 < j < k. O

Now for 1 < i # j < n define

if aijaji = 0,
lf aijaji = 1,
mij = if AijQj5; = 2,
if QA5 = 3,

8&1%03[\’)

if AijAjq Z 4.
Lemma 3.3.5 Let 1 <i# j <n. Then the order of (r;r;) is m;;.

Proof The subspace Ra; 4+ Roy; is invariant with respect to r; and r;,
and we can make all calculations in this 2-dimensional space. The ma-
. . . -1 —ay 1 0
trices of r; and r; in the basis a;, a; are %3 and ,

0 1 —Qj; -1
-1 s Qs
+ i di ) . The charac-
7(1]'1' 1
teristic polynomial of this matrix is A* + (2 — a;ja;;)A + 1, and now the
result is an elementary calculation. |

respectively. So the matrix of r;r; is (
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Proposition 3.3.6 W is generated by r1,...,7, subject only to the
Cozxeter relations

r7=1 (1<i<n), (3.10)

7

(rirj)™ =1 (1<i#j<n), (3.11)

where w™ s interpreted as 1. So W is a Cozeter group.

Proof This is a general fact. All we need is Deletion Condition. We
need to show that every relation

ry...7; =1

s

in W is a consequence of (3.10) and (3.11). We have detr; = —1 for all
i, so s = 2q. We apply induction on ¢g. If ¢ = 1 the relation looks like
Si,8i, = 1. Hence s;, = 5;11 = s;,. So our relation is 8121 =1, which is
one of (3.10).

For inductive step, rewrite the given relation as follows:

Tiy oo TigTigir = Ting -+ Tigyo- (3.12)
Then £(ri, ...74,74,,,) < q+1, so by the Deletion Condition,

Tiq ...TiqTiq_H =T ...7’1'_7.

T/'z; "'riq+1 (313)

for some 1 < j < k < g+ 1. Now, unless j = 1 and k = ¢ + 1, this is
a consequence of a relation with fewer than 2¢ terms—for example, if
J > 1, (3.13) is equivalent to

o

T‘i2-~-7'7:q7"iq+1:7"1:2-~-7"1:»~-- k"'riq+1'

J

So, by induction, (3.13) can be deduced from the defining relations. The
relation

—~ —~ o
Til...Tij...Tik...Tiq+l —T‘Z‘2q...7"iq+2

has 2¢g — 2 terms, so is also a consequence of the defining relations.
Therefore (3.12) is a consequence of the defining relations, unless j =1
and k =q+ 1.
In the exceptional case (3.13) is
Tiy ~-~Tiqriq+1 = Tiy ...Tiq,
or

Ti1-~-Tiq:Ti2~-~Tiq+1- (314)
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Now we write (3.12) in the alternative form
Tigy ...’I”i2q’l"il =1. (315)

In exactly the same way this relation will be a consequence of the defining
relations unless

Ti2~--7"iq+1:7"is-~-7"iq+z- (316)
If this relation is a consequence of the defining relations then (3.12) is
also a consequence of the defining relations by the above argument, and
we are done. Now, (3.12) is equivalent to
7“1‘37“1‘27“2‘3 e Tiqriq+17“iq+27“iq+l e ’I“i4 = 1, (317)
and this will be a consequence of the defining relations unless
TigTiogTig « v - ’I“iq =TiyTig - - ’I“iq’l“iq+1,

We may therefore assume that this is true. But we must also have
(3.17). So r;, = ri,. Hence the given relation will be a consequence of
the defining relations unless r;, = r;,. However, an equivalent forms of
the given relation are also 7y, ...74, 75 = 1, 745 ... 75,7575, = 1, ete.
Thus this relation will be a consequence of the defining relations unless

Ty =Tiy = =T4,_, and ry, =15, =+ =71y, . Thus we may assume
that the given relation has form (r;,r;,)9 = 1. Then m;,;, divides ¢, and
the relation is a consequence of the Coxeter relation (3.11). O

3.4 Geometric properties of Weyl groups
Let (hg,II,I1V) be a realization of A over R, so that

(h, Ha Hv) = ((C ORrR h]Ra Hv Hv)
Note that hg is W-invariant since Q¥ C hg. The set
C={hebr|{a;,h)y>0fori=1,...,n}

is called the fundamental chamber, the sets of the form w(C) are called
chambers, and their union

X = UW w(C)

is called the Tits cone. There are corresponding dual objects CV, XV,
ete. in bp.

Proposition 3.4.1
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(i) For h € C, the group Wy, :={w € W | w(h) = h} is generated by
the fundamental reflections contained in it.

(ii) The fundamental chamber is the fundamental domain for the ac-
tion of W on X, i.e. every W-orbit intersects C' in exactly one
point. In particular, W acts reqularly on the set of chambers.

(i) X ={h € br | (o, h) < O for a finite number of « € Ay}, In
particular X is a convex cone.

(iv) C={h ebr | h—w(h) =, ca), where ¢; >0, for any w €

(v) The following conditions are equivalent:

(a) |[W| < ooy
(b) X = br;
(c) |A] < oo;
(d) |AY] < .

(vi) If h € X then |Wh| < oo if and only if h is an interior point of

X.

Proof Take w € W and let w = r;, ...7;, be a reduced decomposition.
Take h € C and assume that b’ = w(h) € C. We have («a;,,h) > 0,
hence (w(w;,),w(h)) = (w(a;,), k'Y > 0. It follows from Lemma 3.3.2(i)
that w(e;,) < 0, hence (w(w;,),h") < 0, and (w(a;,),h’) = 0, whence
(aj,,h) = 0. Hence r; (h) = h. Now for the proof of (i) and (ii) it
suffices to apply induction on £(w).

(iii) Set X' := {h € br | {(a,h) < 0 for a finite number of o € AL }.
Let h € X’ and w € W. Then (a,w(h)) = (wla,h). Only finitely
many positive a’s are sent to negatives by w™!, see Lemma 3.3.3. So X’
is W-invariant, and clearly C C X’. Therefore X C X’. To prove the
converese embedding, take h € X' and set M), := {a € At | (o, h) <
0}. By definition Mj is finite. If M), # &, then some simple root
a; € My. But then it follows from Lemma 3.2.2 that |M,, )| < |My|.
Now induction on |M}| completes the proof of (iii).

(iv) D is clear. The converse embedding is proved by induction on
s = £(w). For s = 0 the result is clear and for s = 1 it is equivalent to
the definition of C. Let s > 1 and w =1y, ...7;,. We have

h—wh)=(h-—ry...r5,_ (R)+7riy ...ri._ (R —ri (h)).

It follows from (the dual version of ) Lemma 3.3.2(i) that r;, ... 7, _, () €
QY , which implies that the second summand is in QY. The first sum-
mand is there too by inductive assumption.
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(v) (a) = (b). Let h € bhg, and choose an element h’ from the (finite)
orbit W-h for which ht (' —h) is maximal. Then b’ € C, whence h € X.

(b) = (c) Take h in the interior of C. Then (a,—h) < 0 for all
a € AL, and it remains to apply (iii).

(¢) = (a) It suffices to prove that the action of W on the roots is
faithful. Assume that w(a) = « for all « € A, and w = r;, ...7;, be a
reduced decomposition. But then w(a;,) < 0 by Lemma 3.3.2(i).

(d) & (a)is similar to (¢) < (a), but using dual root system.

(vi) In view of (ii) we may assume that h € C. Then by (i), Wy
is generated by the fundamental reflections with respect to the roots
orthogonal to h. The action of W} on b induces the action of W}, on
b’ := hr/Rh. Moreover, this induced action allows us to identify W},
with a Weyl group W’ acting naturally on §’. By (v), this group is finite
if and only if its X' = §’ O

Example 3.4.2 (i) Let g = sl,41. Then r; acts on €1,...,6,41 by
swapping €; and €;41, from which it follows that W = S, ;. Introduce

Ai,..., A, € 5" as the dual basis to oy, ..., a):

Then
cV = R>oA1 @ -+ - @ R>oA,.

and XV = h5.
(ii) Let g = slo. Then by = Ray; ® RJ & RAg and the sum (Ray) &
(R§ & RAy) is orthogonal. Moreover,

ro:ar— —ay +26, §— 08, Agr— a;— 05+ Ag;
rirare —ar, o 054, Ao = Ao,

whence
ror1(Aay + pd + vAg) = A+ v)ag + (g —2A —v)d + vAg.  (3.18)
Consider the affine subspace
b1 ={Aebr | (\c) =1} Chg,

invariant with respect to the action of W. So W acts on h with affine
transformations. Elements of hi are of the form

Ao + /J(; + Ao ()\,/J, € R)

Moreover, it is clear that ro and 71 act trivially on d. So the action of
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W on b7 factors through to give an action of W on b3 /RJ which can be
identified with Ra;. We will denote the induced affine action of w € W
on Ray via w. An easy calculation gives:

1 Aoy — —Aay, T Aap — —Aag + aq,
whence
ToT1 ()\Ckl) = )\Ckl —+ o

is a ‘shift’ by ;. It follows that the image W of W is a semidirect
product

W = ZX]SQ.

In fact the map w — w is injective. This follows from the fact that every
element of W can be written uniquely in the form 75 (rory)* where k € Z
and € =0 or 1. Thus

W:ZX]SQ.
Next,
1
C={daq+pd+vAy|0< A< 51/}

It follows from (3.18) that

1
(ror))*C = {Aar+pd +vho|v >0, kv <A< (k+ §)V}
1
ri(ror)*C = {hay 4+ pd+vAe|v >0, —(k+ 5)1/ <A< —kv},
whence

X ={d a1+ pd +vAo | v > 0}.

In terms of the affine action, C' gets identified with the fundamental
alcove

1
Caf:{)\a1|0§)\§§}7

which is the fundamental domain for the affine action of W on Raj.



4

The Classification of Generalized Cartan
Matrices

4.1 A trichotomy for indecomposable GCMs
Let v = (vy,...,vy,) € R™. We write

v>0 if all v; > 0

and

v >0 if all v; > 0.

We consider v € R™ as row or column as convenient.

Definition 4.1.1 A GCM A has finite type if the following three con-
ditions hold:
(i) det A # 0;
(ii) there exists u > 0 with Au > 0;
(iii) Aw > 0 implies u > 0 or u = 0.
A GCM A has affine type if the following three conditions hold:
(i) corank A =1 (i.e. rank A =n —1);
(ii) there exists u > 0 with Au = 0;
(iii) Au > 0 implies Au = 0.
A GCM A has indefinite type if the following two conditions hold:

(i) there exists u > 0 with Au < 0;
(ii) Au >0 and w > 0 imply u = 0.

Remark 4.1.2 What we really have in mind in this. Let v = ujay +

cooF UpQy, and u = (U1,...,u,) € R™ be the corresponding column
vector. Then Au is the column vector ({y,aY), ..., (v, a)).

50
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2 _
Example 4.1.3 Let a,b be positive integers, and A = (—b ;).

Then A is of finite (resp. affine, resp. indefinite) type if and only if
ab < 3 (resp. ab =4, resp. ab > 4).

We will prove that an indecomposable GCM has exactly one of the
three types above.

Lemma 4.1.4 Let v* = (v;1,...,vin) € R™ fori=1,...,m. Then there
exist x1,...,T, € R with

Zvijxj>0 (z:l,,m)
j=1

if and only if
)\1U1+"‘+)\mvm:03 )\1,...7>\m20

mmplies Ay = --- = A\, = 0.

Proof Consider the usual scalar product (z,y) = z1y1 +. . . pYyy for two
vectors x,y € R™. Suppose there exists a column vector x = (z1,...,2,)
such that (vi,z) > 0 for all i. Suppose Ajv! + -+ + A\ v™ = 0 with all
A; > 0. Then

Mt 2) -+ A (0™, x) = 0.

This implies \; = 0 for all 1.
Conversely, suppose Aot + -+ -4+ X\, v™ = 0, A; > 0 implies \; = 0 for
all 7. Let

S = {imi | \i >0, i&» = 1}.
=1 i=1

Define f : S — R by f(y) = ||yl| := Vy?+---+y2. Then S is a

compact subset of R™ and f is a continuous function. Thus f(5) is a
compact subset of R. Hence there exists x € S with ||z|| < ||2'|| for
all ’ € S. Clearly z # 0 since 0 € S by assumption. We will show
(vi, ) > 0 for all i as required. In fact we will show more, namely, that
(y,z) >0 for all y € S.

Now S is a convex subset of R™. So for y # « we have ty+(1—t)x € S
for all 0 <t < 1. By the choice of z,

(ty+ (1 —t)z,ty+ (1 —t)z) > (x,x)
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or
ty —x,y—x)+2(y —z,z) > 0.

As t can be made arbitrarily small, this implies (y —z,z) > 0 or (y,z) >
(z,x) > 0.

O]

Proposition 4.1.5 Let C be an m x n matriz over R. Suppose u > 0
and Ctu > 0 imply uw = 0. Then there exists v > 0 with Cv < 0.

Proof Let C' = (c;;) and consider the following system of inequalities:

—Zcija:j > 0 (i=17...,m),
j=1
zj > 0 (j=1,...,n).

We want to use Lemma 4.1.4 to show that this system has a solution.
Thus we consider an equation of the form

m n
Z )\i(—Cﬂ, R _Cin) + Z/.Lj&‘j =0,
i—1 j=1

where A\;, 1; > 0 and ¢; is the jth coordinate vector in R™. Then
m
ZMCM:M (G=1...,n).
i=1

Let u = (A1,...,Am). Then C'u = (p1,...,p,). Thus we have u > 0
and C*u > 0. This implies u = 0 and C*'u = 0. Thus all \; and p;
are zero. Hence Lemma 4.1.4 shows that the above inequalities have a
solution. Thus there exists v > 0 with Cv < 0. |

‘We now consider three classes of GCM A. Let

Srp = {A] A has finite type}
Sa = {A]| A has affine type}
S; = {A] A has indeterminate type}

It is easy to see that no GCM can lie in more than one of these classes.
We want to show that each indecomposable GCM lies in one of the
three classes.

Lemma 4.1.6 Let A be an indecomposable GCM. Then v > 0 and
Au > 0 imply that u > 0 oru = 0.



4.1 A trichotomy for indecomposable GCMs 53

Proof Suppose u > 0, u # 0 and u ¥ 0. Then we can reorder 1,...,n so

P Q
R S’> where

Pissxsand Sis (n—s)x (n—s). Now all entries of the block @
are < 0 since A is GCM, and if @) has a negative entry, then Au has a
negative coefficient, giving a contradiction. Thus ¢ = 0, whence R = 0
by definition of GCM. Now A is decomposable, a contradiction. ]

that u; = -+ =us =0 and ugq1,...,u, > 0. LetA(

Now let A be an indecomposable GCM and define
KA:{U|AUZO}

K 4 is a convex cone. We consider its intersection with the convex cone
{v | v > 0}. We will distinguish between two cases:

{u|u>0, Au>0} # {0},
{v|u>0, Au>0} = {0}.

The first of these cases splits into two subcases, as is shown by the next
lemma.

Lemma 4.1.7 Suppose {u | u > 0, Au > 0} # {0}. Then just one of
the following cases occurs:

Ky C {u|lu>0}uU{0},
Ks = {u]|Au=0} and K4 is a 1-dimensional subspace of R™.

Proof We know there exists u # 0 with v« > 0 and Au > 0. By
Lemma 4.1.6, u > 0. Suppose the first case does not hold. Then there
is v # 0 with Av > 0 such that some coordinate of v is < 0. If v > 0
then v > 0 by Lemma 4.1.6, so some coordinate of v is negative.

We have Au > 0 and Av > 0, hence A(tu + (1 —¢)v) > 0 for all
0 <t < 1. Since all coordinates of u are positive and some coordinate
of v is negative, there exists 0 < ¢ < 1 with tu + (1 —¢t)v > 0 and
some coordinate of tu + (1 — t)v is zero. But then tu + (1 —t)v =0 by
Lemma 4.1.6. Thus v is a scalar multiple of u. We also have

0=A(tu+ (1 —t)v) = tAu + (1 — t) Av.

Since Au > 0 and Av > 0 this implies Av = Au = 0.

Now let w € K4. Then Aw > 0. Either w > 0 or some coordinate
of w is negative. If w > 0 then w > 0 or w = 0 by Lemma 4.1.6.
Suppose w > 0. Then by the above argument with u replaced by w, v



54 The Classification of Generalized Cartan Matrices

is a scalar multiple of w, hence w is a scalar multiple of u. Now suppose
some coordinate of w is negative. Then by the above argument with v
replaced by w, w is a scalar multiple of u. Thus in all cases w is a scalar
multiple of u. Hence K4 = Ru = {u | Au=0}.

Finally, both cases cannot hold simultaneously since in the first case
K 4 cannot contain a 1-dimensional subspace. |

We can now identify the first case in the lemma above with the case
of matrices of finite type.

Proposition 4.1.8 Let A be an indecomposable GCM. Then the follow-
ing conditions are equivalent:

(i) A has finite type;
(i) {u|u>0, Au >0} # {0} and K4 C {u|u >0} U{0}.

Proof (i) = (ii) Suppose A is of finite type. Then there exists u > 0
with Au > 0. Hence {u | u > 0, Au > 0} # {0}. Also, det A # 0.
Thus {u | Au = 0} is not a 1-dimensional subspace. Hence (ii) holds by
Lemma 4.1.7.

(ii) = (i) There cannot exist v # 0 with Au = 0 for this would give a
1-dimensional subspace in K 4. Thus det A # 0. Now there exists u # 0
with v > 0 and Au > 0. By Lemma 4.1.6, u > 0. If Au > 0, A has finite
type. So suppose to the contrary that some coordinate of Au is zero.
Choose the numbering of 1,...,n so that the first s coordinates of Au

are 0 and the last n — s are positive. Let A = (Z g) where P is s X s

and S is (n —s) x (n —s). The block @ # 0, since A is indecomposable.
We choose numbering so that the first row of @ is not the zero vector.

Then
A — P Q\ (u'\ [(Pu'+Qu?
S \R S/ \w?)  \Ru'4Su?)’

and Pu! + Qu? = 0 and Ru' + Su? > 0. We also have u',u? > 0.
Thus Qu? < 0 since the entries of @ are non-positive, and the first
coordinate of Qu? is negative. Hence Pu' > 0 and the first coordinate
of Pu' is positive. Since Ru' + Su? > 0 we can chose £ > 0 such that
R(1 +¢e)ul + Su? > 0.

1
We now consider instead of our original vector u = < 2), the vector
U
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1
<(1 —;g)u ) > 0. We have

4 (14!  [Pu'+Qu?+ePu' ePu!
u? S\ Rut +Su?+eRut)  \R(1+e)ul +Su?)’
The first coordinate and the last n — s coordinates of this vector are

1 1
positive and the remaining coordinates are > 0. Thus A (( + ; Ju > >
U

0 and the number of non-zero coordinates in this vector is greater than
that in Au. We may now iterate this process, obtaining at each stage at
least one more non-zero coordinate than we had before. We eventually
obtain a vector v > 0 such that Av > 0. U

We next identify the second case in Lemma 4.1.7 with that of an affine

GCM.

Proposition 4.1.9 Let A be an indecomposable GCM. Then the follow-
ing conditions are equivalent:

(i) A has affine type;
(ii) {u | u >0, Au >0} # {0}, Ka = {u | Au =0}, and K4 is a
1-dimensional subspace of R™.

Proof (i) = (ii) Suppose A is of affine type. Then there exists u > 0
with Au = 0. It follows that {u | u >0, Au > 0} # {0}. Also A\u € K4
for all A € R. It follows from Lemma 4.1.7 that we are in the second
case of that lemma.

(ii) = (i) Note first that corank A = 1. Also there exists u # 0 with
u > 0 and Au > 0. By Lemma 4.1.6, u > 0. So there exists v > 0 with
Au > 0. But K4 = {u | Au = 0}, so Au = 0. Finally, Au > 0 implies
Au = 0. U]

Proposition 4.1.10 Let A be an indecomposable GCM. Then
(i) A has finite type if and only if A® has finite type;
(i) A has affine type if and only if A® has affine type.

Proof Let A be of finite type. There does not exist v > 0 with Av <0
(Av <0 = A(—v) >0 = (—v) >0 = v < 0). So by Proposi-
tion 4.1.5, there exists u # 0 with u > 0 and A'u > 0. So

{u|u>0, A'u >0} # {0}.
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By Lemma 4.1.7, either
Kt C {’LL|U>O}U{0}

or Kae = {u | A'u = 0} and this is a 1-dimensional subspace. Now
det A # 0, so det A* # 0. Thus the latter case cannot occur. The former
case must therefore occur, so by Proposition 4.1.8, At is of finite type.
Let A be of affine type. Again, there does not exist v > 0 with Av < 0
(Av <0 = A(—v) > 0, which is impossible in the affine case). So by
Proposition 4.1.5, there exists u # 0 with u > 0 and A'u > 0. So

{ulu>0, A'u >0} # {0}.
By Lemma 4.1.7, either
Ky C{U|U>O}U{O}

or Kqe = {u | A'u = 0} and this is a 1-dimensional subspace. Now
corank A = 1 so corank A? = 1. This shows that we cannot have the first
possibility. Thus the second possibility holds, and by Proposition 4.1.9,
we see that A? has affine type. a

We may now identify the case not appearing in Lemma 4.1.7.

Proposition 4.1.11 Let A be an indecomposable GCM. Then the fol-
lowing conditions are equivalent:

(i) A has indefinite type;

(i) {u|u>0, Au>0} = {0}.

Proof If A has indefinite type then u > 0 and Au > 0 imply u = 0.
Conversely, suppose {u | u > 0, Au > 0} = {0}. Then the same
condition holds for A?, ie. {u |u > 0, A'u > 0} = {0}. Indeed this
follows from Lemma 4.1.7 and Propositions 4.1.8, 4.1.9, 4.1.10. But then
Proposition 4.1.5 implies that there exists v > 0 with Av < 0. Thus A
has indefinite type. |

Theorem 4.1.12 (Trichotomy Theorem) Let A be an indecompos-
able GCM. Then exactly one of the following three possibilities holds: A
has finite type, A has affine type, or A has indefinite type. Moreover,
the type of A is the same as the type of At. Finally,

(i) A has finite type if and only if there exists u > 0 with Au > 0.
(ii) A has affine type if and only if there exists u > 0 with Au = 0.
This u is unique up to a (positive) scalar.
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(iil) A has indefinite type if and only if there exists u > 0 with Au < 0.

Proof The first two statements have already been proved. We prove the
third statement. Let u > 0.

(i) Assume that Au > 0. A cannot have affine type as then Au > 0
would imply Au = 0. A cannot have indefinite type as then v > 0 and
Au > 0 would imply w = 0. Thus A has finite type. The converse is
clear.

(ii) Assume that Au = 0. A cannot have finite type as then det A = 0.
A cannot have indefinite type as then v > 0 and Au > 0 would imply
u = 0. Thus A has affine type. The converse is clear, and the remaining
statement follows from Proposition 4.1.9.

(iii) Assume that Au < 0. Then A(—u) > 0. A cannot have finite
type as this would imply —u > 0 or —u = 0. A cannot have affine type
as and A(—u) > 0 would then imply —u = 0. Thus A has indefinite
type. The converse is clear. |

Lemma 4.1.13 Let A be an indecomposable GCM.

(i) If A is of finite type then every principal minor Ay is also of
finite type.

(ii) If A is of affine type then every proper principal minor Ay is of
finite type.

Proof By passing to an equivalent GCM we may assume that J =
{1,...,m} for some m <n. Let K = {m+1,...,n}. Write

_(A; Q
(59

(1) We have Au > 0 for some u = (:”) > 0. We have
K

Ajug + Qug
Au = .
“ ( Ruy + Sug )

We have Ajuy; + Qug > 0. But Qug <0, so Ayuy > 0.

(ii) Asin (i) we get Ajuys+Qugi = 0, and Qugi < 0 implies Ajuy; > 0.
Suppose if possible Aju; = 0. Then Qux = 0, and since uxg > 0
this implies that @ = 0, which contradicts the assumption that A is
indecomposable. Hence we have uy > 0, Ajuy; > 0, Ajuy; # 0. This
implies that A; cannot have affine or indefinite type. |
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Remark 4.1.14 In proving results of this section we have never used
the full force of the assumption that A is a GCM. Namely we nowhere
needed that a;; = 2 and a;; € Z.

4.2 Indecomposable symmetrizable GCMs

Proposition 4.2.1 Suppose A is a symmetric indecomposable GCM.
Then:

(i) A has finite type if and only if A is positive definite.

(ii) A has affine type if and only if A is positive semidefinite of corank
1.

(iii) A has indefinite type otherwise.

Proof (i) Let A be of finite type. Then there exists u > 0 with Au > 0.
Hence for all A > 0 we have (A + A)u > 0. Thus A + AI has finite
type by Trichotomy Theorem. (Note that A + Al need not be GCM,
but see Remark 4.1.14.) Thus det(A + M) # 0 when A > 0, that is
det(A —AI) # 0 when A < 0. Now the eigenvalues of the real symmetric
matrix A are all real. Thus all the eigenvalues of A must be positive.

Conversely, suppose A is positive definite. Then det A # 0, so A has
finite or indefinite type. If A has indefinite type there exists u > 0 with
Au < 0. But then u!Au < 0, contradicting the fact that A is positive
definite. Thus A must have finite type.

(ii) Let A have affine type. Then there is u > 0 with Au = 0. The
same argument as in (i) shows that all eigenvalues of A are non-negative.
But A has corank 1, so 0 appears with multiplicity 1.

Conversely, suppose A is positive semidefinite of corank 1. Then
det A = 0 so A cannot have finite type. Suppose A has indefinite type.
Then there exists u > 0 with Au < 0. Thus u; Au < 0, which contradicts
the fact that A is positive semidefinite.

(iii) follows from (i) and (ii). O

Lemma 4.2.2 Let A an indecomposable GCM of finite or affine type.
Suppose that a;,i,Qiyis - - - Gij_ i, Qiriy, 7 0 for some integers iq,..., 1
with k > 3 such that i1 # io,i2 # i3,...,ik—1 7# ik, ik 7# 11. Then A is
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of the form
2 -1 0 O 0o 0 -1
-1 2 -1 0 0O 0 0
0o -1 2 -1 0 0 o0
(4.1)
0O 0 0 0 -1 2 -1
-1 0 0 O 0o -1 2
Proof Choose integers i1,...,7; as in the assumption with minimal

possible k. We thus have

ai,;, #01is (r,8) € {(1,2),(2,3),...,(k,1),(2,1),(3,2),...(1,k)}.

The minimality of k implies that a;.;, = 0 if (r,s) does not lie in the
above set.

Let J = {i1,...,ix}. Then the principal minor A; of A has form

2 -1 0 0 - 0 0 —S
—S81 2 —T9 0 . 0 0 0
0 —S89 2 -rs ... 0 0 0
Ay = (4.2)
0 0 0 0 ce —Sk—2 2 —TE—1
~r, 0 0 0 ... 0 —sp1 2

with positive integers r;,s;. In particular we see that Aj; is indecom-
posable. Now A; must be finite or affine type by Lemma 4.1.13. Thus
there exists u = (uq,...,u;) > 0 with Ayu > 0. We define the k x k
matrix

M := diag(ui ', ..., uy ) Aydiag(us, . .., ug).

B
Then m;; = u; "a;;u;. Thus

D omig=u Yy (Ag)ijuy = 0.
i

J
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In particular, Zij m;; > 0. Now we have

2 - 0 0o ... 0 0 -5}
sy 2 —=rh, 0 ... 0 0 0
o 0 —s4 2 —rf ... 0 0 0
0 0 0 0 .. —si, 2
0 0 0 ... 0 —si, 2

where r, = ui_qu;uiﬂ, st = u;llsiui and ug41 is interpreted as u;. We
note that 7, s; > 0 and r}s; = r;s; € Z. We also have

Dmiy =2k — (1] 4 8) o = (1] + ).
j

A4 # > \/rish = \/ris; > 1, hence r; 4+ s; > 2. Since Zij m;; > 0,
we deduce that 7} + s; = 2 and r}s} = 1. Hence r;s; = 1, and since r;, s;
are positive integers, we deduce that r; = s; = 1, i.e. Ay is of the form
(4.1).

Let v = (1,...,1). Then v > 0 and Ayv = 0. Thus Ay is affine type
by Theorem 4.1.12. Lemma 2.1.1 shows that this can only happen when
Ay = A. O

Theorem 4.2.3 Indecomposable GCM of finite or affine type is sym-
metrisable.

Proof 1If there is a set of integers i1, ...,%; as in Lemma 4.2.2, then we
know that A is of the form (4.1), in particular it is symmetric. Otherwise
A is symmetrizable by Lemma 2.1.1. O

Theorem 4.2.4 Let A be an indecomposable GCM. Then:

(i) A has finite type if and only if all its principal minors have posi-
tive determinant.
(ii) A has affine type if and only if det A = 0 and all proper principal
minors have positive determinant.
(iii) A has indefinite type if and only if neither of the above conditions
holds.

Proof (i) Suppose A has finite type. Then A is symmetrizable by The-
orem 4.2.3, hence A = DB where D = diag(ds,...,d,) with d; > 0 and
B symmetric, see Lemma 2.1.2. Theorem 4.1.12 shows that A and B
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have the same type. By Lemma 4.1.13 all principal minors of B have fi-
nite type, hence by Proposition 4.2.1 they all have positive determinant.
Then the same is true for A.

Conversely, let all principal minors of A have positive determinant.
Suppose there is a set of integers i1,...,ix with &k > 3 such that i; #
’iQ,iQ 7é ig, . aik—l 7é ik,ik 7£ ’il and QiqigQigig « ++ Agg 145 Aigiy 7é 0. As in
the proof of the previous theorem, A; has form (4.2). Analyzing 2 x 2
and 3 x 3 principal subminors we conclude that Ay is of the form (4.1).
But then det A; = 0, giving a contradiction. Thus there is no such
sequence i1, ...,7; and so A is symmetrizable by Lemma 2.1.1. Hence
A = DB where D = diag(ds,...,d,) with d; > 0 and B symmetric
of the same type as A. Now, it follows from the assumption that all
principal minors of B have positive determinant, so B is of finite type.

(ii) If A has affine type, then det A = 0 and all proper principal minors
have finite type so have positive determinants by (i).

Conversely, supppose det A = 0 and all proper principal minors have
positive determinants. As above, we have two cases:

(a) there is a principal minor of the form (4.1). Since det A; = 0 we
must have A = A, which is affine type.

(b) A is symmetrizable, in which case we reduce to the symmetric case
as above. |

4.3 The classification of finite and affine GCMs

To every GCM A we associate the graph S(A), called the Dynkin dia-
gram of A, as follows. The vertices of the Dynkin diagram are labelled
by 1,...,n (or the corresponding simple roots «j,...,a,). Let i,j be
distinct vertices of S(A). The rules are as follows:

(a) If a;jaj; = 0, vertices 4, j are not joined.

(b) If a;; = a;; = —1, vertices 4, j are joined by a single edge.

(c) If a;; = —1, aj; = —2, vertices 4, j are joined as follows
‘i‘l
v )

(d) If a;; = —1, aj; = —3, vertices 4, j are joined as follows
‘$,

t )
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(e) If aj; = —1, a;; = —4, vertices i, j are joined as follows
%’
T ]

(f) If a;; = —2, a;; = —2, vertices 4, j are joined as follows
=

)
(g) If a;jaj; => 5, vertices i, j are joined as follows

|aijl, |ajil

i J
It is clear that the GCM is determined by its Dynkin diagram.
Moreover, A is indecomposable if and only if S(A) is connected.

Theorem 4.3.1 Let A be an indecomposable GCM. Then:

(i) A is of finite type if and only if its Dynkin diagram belongs to
Figure 4.1. Numbers on the right give det A.

(ii) A is of affine type if and only if its Dynkin diagram belongs to Fig-
ures 4.2 and 4.3. All diagrams there have £+ 1 vertices. Numeric
marks are the coordinates of the unique vector § = (ag,as,...,as)
such that A§ = 0 and the a; are positive mutually prime integers.
Each diagram X,El) in Figure 4.2 is obtained from the diagram
Xy in Figure 4.1 by adding a vertex labeled ag and preserving the
labeling of other vertices.

Proof We first prove that the numeric marks in the diagrams from Fig-
ures 4.2 and 4.3 are the coordinates of the unique vector § = (ag, a1, . .., as)
such that A0 = 0 and the a; are positive mutually prime integers. Note
that Ad = 0 is equivalent to

2a; = ijaj for all 4
J

where the sum is over all j which are linked with ¢; moreover if the
number of edges between ¢ and j is equal to s > 1 and the arrow points
to i then then m; = s, otherwise m; = 1. Now check that the marks work
in all cases. Now from Theorem 4.1.12 we conclude that all diagrams
from Figures 4.2 and 4.3 are affine and ¢ is unique.

Since all diagrams from Figure 4.1 are proper subdiagrams of diagrams
from Figures 4.2 and 4.3, Theorem 4.2.4 implies that they are of finite
type. It remains to show that if A is of finite (resp. affine) type then
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S(A) appears in Figure 4.1 (resp. Figures 4.2 and 4.3). We establish this
by induction on n. The case n = 1 is clear. Also, using the condition
det A > 0 and Theorem 4.2.4, we obtain:

finite diagrams of rank 2 are Ay, Co,Go;  (4.3)
affine diagrams of rank 2 are Agl), Ag2); (4.4)
finite diagrams of rank 3 are As, B3, C3; (4.5)
affine diagrams of rank 3 are Aél), C’él), Ggl), D§2), Af), fo’). (4.6)
Next, from Lemma 4.2.2, we have

if S(A) contains a cycle, then S(A) = Aél). (4.7

Moreover, by induction and Lemma 4.1.13,
Any proper subdiagram of S(A) appears in Figure 4.1. (4.8)

Now let S(A) be a finite diagram. Then it does not have graphs
appearing in Figures 4.2 and 4.3 as subgraphs and does not have cycles.
This implies that every branch vertex has type D, since otherwise we
would get an affine subdiagram or a contradiction with (4.8). Using
(4.8) again we see that there is at most one branch vertex, in which case
it also follows that S(A) is Dy, Fs, E7, or Eg. Similarly one checks that
if S(A) has multiple edges then it must be By, Cy, Fy, or G3. Finally, a
graph without branch vertices, cycles and multiple edges must be Ay.

Let S(A) be affine. In view of (4.7) we may assume that S(A) has no
cycles. In view of (4.8), S(A) is obtained from a diagram in Figure 4.1
by adjoining one vertex in such a way that every subdiagram is again in
Figure 4.1. It is easy to see that in this way we can only get diagrams
from Figures 4.2 and 4.3. |

Proposition 4.3.2 Let A be an indecomposable GCM. Then the follow-
ing conditions are equivalent:
(i) A is of finite type.
(ii) A is symmetrizable and the (-|-) on hg is positive definite.
(iii) W] < 0.
(iv) |A| < 0.
(v) g(A) is a finite dimensional simple Lie algebra.
(vi) There exists o € Ay such that o+ a; € A for alli=1,.

Proof (i) = (ii) follows from Theorems 4.2.3 and 4.2.4.
(i) = (iii). In view of Proposition 3.2.4, W is a subgroup of the
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orthogonal group G := O((-|-)), which is known to be compact. If we
can check that W is a discrete subgorup, it will follow from general
theory that W is finite. To see that W is discrete it suffices to find an
open neighborhood U of identity e in G with U N W = {e}. Consider
the action of G on hgr and fix an element h in the interior C of the
fundamental chamber. We get a continuos map ¢ : G — G - h. Take
U:=p 1(0).

(iii) = (iv) follows from Proposition 3.4.1(v).

(iv) = (vi) is obvious.

(vi) = (i). Let @« € A4 be such that « + o; ¢ A for all i. By
Proposition 3.1.5(v), (a, @) > 0 for all . Write & = uja; + -+ - + upay,
with non-negative coefficients u;. Then u = (uy,...,u,) > 0, u # 0,
and Au > 0. By Trichotomy Theorem, A is finite or affine type, and in
the latter case we have (a, ) = 0 for all i. But then o # «;, and so
a—a; € A4 for some ¢ by Lemma 1.4.5, hence a—a;+20; = ata; € A
in view of Proposition 3.1.5(vi), giving a contradiction.

Finally, i) = (v) follows from Proposition 1.4.8 and (v) = (iv) is
obvious. U]
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Fig. 4.1. Dynkin diagrams of finite GCMs
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A§1> «==—>e
1 1
1
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Fig. 4.2. Dynkin diagrams of untwisted affine GCMs
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Fig. 4.3. Dynkin diagrams of twisted affine GCMs
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Real and Imaginary Roots

5.1 Real roots

A root o € A is called real if there exists w € W such that w(a) is a
simple root. Denote by A* and AT the sets of the real and positive real
roots respectively. If A is of finite type, then induction on height shows
that every root is real.

Let o € A*. Then oo = w(c;) for some w and some i. Define the dual
real root a¥ € (AV)' by setting

a’ =w(a)).

This definition is independent of the choice of the presentation o =
w(cey;). Indeed, we have to show that the equality u(a;) = «; implies
u(a;') = o}, but this has been proved in Lemma 3.3.1, see (3.8). Thus

we have a canonical W-equivariant bijection bijection A™ — (AVY)re.
For v € A™, define the reflection

Ta:H* = b A= A= (A aY)a.

Since (o, ") = 2, it is indeed a reflection. If o = w(a;), then wr;w=! =

To, SO We have ro, € W.

Proposition 5.1.1 Let a € A™. Then:

(i) multa =1;

(i) ka is a root if and only if k = £1.

(iil) If B € A, then there exist non-negative integers p,q such that
p—q={0,a") such that 3 + ka € AU{0} if and only if —p <
k<gq, keZ.

(iv) Suppose that A is symmetrizable and let (-|-) is the standard in-
variant bilinear form on g. Then

68
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(a) (ala) > 0;
(b) ¥ =2v"a)/(ale);

c) ifa=Y" kia;, then k; (ai‘a’) € 7Z for all i.
i (afa)

(v) if £a € 11, then there exists i such that

|ht ()| < |ht .

(vi) if @ > 0 then a¥ > 0.

Proof The proposition is true if « is a simple root, see (2.8), (2.10), and
Proposition 3.1.5. Now (i)-(iii) follow from Proposition 3.2.1(ii), and
(iv)(a),(b) from Proposition 3.2.4.

(iv)(c) follows from the fact that a¥ € >, Za) and the formula

v (O‘i‘az v
= kil 5.1

which in turn follows from (iv)(b).

(v) Assume the statement does not hold. We may assume that o > 0.
Then —a € CV, and by Proposition 3.4.1(iv) applied to dual root system,
—a +w(a) > 0 for any w € W. Taking w such that w(a) € II we get a
contradiction.

(vi) Apply induction on ht «. For ht @ > 1 we have by (v) that
ht r;a < ht «, for some i, and r;a > 0. By induction, 7;(a") = (r;a)Y >
0, whence o > 0. O

Lemma 5.1.2 Assume that A is symmetrizable. Then the set of all
a=3, kia; € Q such that

ki(oilas) € (a|@)Z  for all i (5.2)

is W -invariant.

Proof 1t suffices to check that r;a again satisfies (5.2), i.e

(ki — (aloy))(@ilev) € (ale)Z,

or
2(alay) € (a|a)Z,

which follows from (5.2):

2e) = 3T el = ek esky) € (el)Z
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U

Let A be an indecomposable symmetrizable and (-|) be a standard
invariant bilinear form. Then for a real root « we have («|a) = (a;]a;),
where «; is one of the simple roots. We call « a short (resp. long) root
if (o|a) = min;(o;]e;) (resp. (a]a) = max;(a;|a;)). This definition
is independent of the choice of the standard form since « is a linear
combination of simple roots.

Note that if A is symmetric then all simple roots are of the same length
(so they are both short and long). If A is not symmetric and S(A) has m
arrows directed in the same direction then A has m+1 different lengths,
as the arrow is directed from a longer to a shorter root. Hence if A
is not symmetric in Figure 4.1 then every root is either long or short.
Moreover, if A is not symmetric and affine and its type is not Aéi) for
¢ > 1, then every real root is either short or long. In the exceptional
case there are three root lengths for real roots. We use notation

re re re
As ) 1> Al

to denote the set of all short, long, and intermediate roots, repspectively.
Note that a is a short real root for g(A) if and only if o is a long
real root for g(A?). Indeed, by Proposition 5.1.1(iv)(b)

2v71(a) 21/71(04)) 4
(ala) * (a]e) (aa)’
Throughout this chapter: we normalize the form so that (o;|a;)

are mutually prime positive integers for each connected component of
S(A). In particular, if A is symmetric then (o;|a;) =1 for all 4.

(@”]aY) = (

| (5.3)

5.2 Real roots for finite and affine types

Throughout this section we assume that A is finite or affine type.

Ifa=73" kia; € Q then (ala) =37, ; kikj(asa;). Now, (as]a;) € Q
for all 7, j. Thus there exists a positive integer d such that (os|a;) € 17
for all 4, j. Thus if (a|e) > 0 then (a|a) > 1. Hence there exists m > 0
such that

m = min{(a|a)|a € Q and (afa) > 0}.

Lemma 5.2.1 Let a =), kija; € Q.

(i) If (aja) = m then +a € Q4.
(ii) If ki(asley) € (a|a)Z for all i then o € Q.
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Proof If +a ¢ @4, then o = B—~ for 3,7 € Q4+ and supp SNsuppy = <.
Hence (8]y) < 0 and

(ala) = (BIB) + (v1v) = 2(Blv) = (BIB) + (v]v)-

All proper principal minors of A have finite type, so, considering con-

nected components 31,...,0, of 8 we have (B|8) = (61|01) +
(6r18r) > 0. Hence (8|8) > m. Similarly (y]y) > m. Hence (aja) > 2m,
which proves (i).

Next, (ii) is clear if (a|a) = 0, so assume that (a|a) > 0. Then

(818) Z’“ (cilas) + > 2kikj (ail)

) = T

Zk az|az Zaw k; al|a,)> ez,

1<j

where all indices in the summations are assumed to belong to supp 3.
Since (B]6) > 0, it follows that (5]5) > (a]a). Similarly (v|y) > (o]«).
So (ala) > (B]8) + (7]7) > 2(«|e). This contradiction yields (ii). O

Proposition 5.2.2

_{Q—Zkaz€Q|(o¢|a)>O and k; ((1:0‘3) € Z for all i}.

Proof ”C” is obvious for the short roots, follows from Proposition 5.2.4
for long roots, and from (5.4) for intermediate roots. Conversely, let
a be as in the right hand side. Then w(a) € +£Q4 for any w € W
be Lemmas 5.1.2 and 5.2.1(ii)). We may assume that « € @4, and let
8= Zf:o kio; be an element of {w(a) | w € W} N Q4+ with minimal
possible height. Since (8|5) > 0, we have Zf:o Ei(o;|B) > 0. As all
ki > 0, there is ¢ with (a;|8) > 0, and (8,q)) = 2% > 0. So
ri(8) = B — (B, )a; has smaller height, and r;(8) ¢ Q4. But by
Lemmas 5.2.1(ii) and 5.1.2, £r;(8) € Q4, so ri(8) € —Q+. Hence
B3 = ka; for some positive integer k. Thus m’ = (8|3) = k?(cila;). So

k! (?’}a;) = &, whence k = 1, and we are done. O

Proposition 5.2.3 Let A be an indecomposable GCM of finite or affine
type. Then

AFY ={a e Q] (ala) =m}.
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Proof Suppose a € Q satisfies (a|a) = m. By Lemma 5.2.1(i), we may
assume that o € Q4. Consider the set

{w(a) [weW}NQy.

We choose an element 3 = Y k;«; in this set with ht 8 minimal. Since
(818) = (a]a) = m, we have

Since k; > 0 and m > 0 there exists ¢ with («;|8) > 0. Then (3, ) > 0.
So r;(8) has smaller height than 3, whence s;(8) € —Q4, using the
previous lemma. It follows that 0 = ra; for some positive integer r.
Since (ra;|ra;) > r*m, we have r = 1. Hence 3 € A™ and a € A also.

Conversely, if o € A® then o = w(«;) for some ¢ and (a|a) = (a;|ev;).
However, we have seen in the previous paragraph that the short simple
roots have (a;|a;) = m, so (a|a) = m also. O

Note from Proposition 5.2.3 that m is achieved on simple roots, so m
is just min; (o;|a;). The following easier result follows immediately from
Proposition 5.2.2.

Proposition 5.2.4 Let A be an indecomposable GCM of finite or affine
type, and

M = max{(a|a) | a« € A™}.
Then

(cvilevi)

(ala)

AF={a= ko €Q|(alo) = M, k € Z for all i}.

Proposition 5.2.5 Let A = Agi) and m' = (o;|a;) for 1 <i<{. Then

A* ={ae Q| (ala)=m'}.

Proof Let a = Zf:o kio; € Q satisfy (a|a) = m/. We just need to
check that

(ci|vi)
(alo)

ks € Z for all i. (5.4)

/

Indeed the condition k; ((aa}z)) € Z is obvious for i # 0 since (a;|a;) = m



5.3 Imaginary roots 73

fori=1,...,f/ —1 and 2m/ for i = £. It just remains to show that kg is
even. We have

14 4
(ala) = ki(aolao) + 2koki (colon) + (Z | Zai)
i=1 =1

¢
= kg(aolao) + kokrato(az|o) + Z k7 (cvilo)

i=1
+ Z kikjaij(ai|ai).
1<i<j<t
Thus (a|a) € k2(ao|ag) + Zm/. But (ala) = m, so k3(aglag) € Zm'.

Since (ap|ag) = m'/2, we have k2 /2 € Z, whence kq is even as required.
O

5.3 Imaginary roots

If a root is not real it is called #maginary. Denote by A™ and Ai_f_“ the
sets of the imaginary and positive imaginary roots respectively.

Proposition 5.3.1

(i) The set AT is W-invariant.
(ii) For o € A'™ there exists a unique (positive) root 3 € —CV which
is W -conjugate to .
(iil) If A is symmetrizable then the root « is imaginary if and only if
(o) < 0.

Proof (i) As A C A\II and the set I\ {a;} is r;-invariant, it follows
that A" is W-invariant.

(ii) Let v € AT and 8 be the element of minimal height in W -« C
A.. Then 8 € —CV. Indeed, if (3,a)) > 0 then r;3 € AL has smaller
height. Uniqueness of 3 follows from Proposition 3.4.1(ii).

(iii) If « € A™. Since the form is W-invariant, as in (ii), we may
assume that a = Zz kio; € —C" and k; € Z,. Then

(ala) = 3 kilalas) = 3~ Zlasla,a)) <0,

i

The converse follows from Proposition 5.1.1(iv)(a). O
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For o = )~, kja; € Q define the support of a, denoted supp «, as the
subdiagram of S(A) of the vertices ¢ such that k; # 0 and all edges
connecting them. By Lemma 1.4.7, supp « is connected. Set

K={a €@y \{0}|{a,a) <0 for all i and supp « is connected}.
Lemma 5.3.2 K C A",

Proof Let a =3, kia; € K. Set
Qo ={y€A;i|y<a}

The set €2, is finite, and it is non-empty since the simple roots appearing
in decomposition of « belong to €. Let 3 = )", m;c; be an element of
maximal height in Q. Note by definition

Next,
supp 0 = supp a.

Indeed, if some i € supp« \ supp 3, we may assume that (3, ;") < 0,
whence 8 + «; € Q, by Proposition 3.1.5(v), giving a contradiction.

Let A; be the principal minor of A corresponding to the subset supp «.
If Ay is of finite type then (o, ) < 0 for all ¢ implies & = 0 giving a
contradiction (see the argument in the proof of Proposition 4.3.2). If A
is not of finite type, then by Proposition 4.3.2(vi),

P:={jesuppal|k; =m;}#@.

We aim to first show that P = suppa, and so « = 3 € A;. Let
R be a connected component of subdiagram suppa \ P. By (5.5) and
Proposition 3.1.5(v),

(B,a)y >0 forallie€ R. (5.6)

Set 3 = ,cpmic;. Then
<ﬁ',a;’> = <ﬁva,’v> - Z m;ag;.
jEsupp a\R

Now (5.6) implies (3, ;') > 0 for all i € R and (#',a}) > 0 for some
jER.
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Let Agr be the principal minor corresponding to the subset R, and u
be the column vector with entries m;, j € R. Since

(#af)=> aym;  (i€R),
JER
we have u > 0, Apru > 0, and Apru # 0. It follows that Ay is not affine
or indefinite type, hence it is finite type. Now let

CV/ = Z(kl — ml)al
i€eR
We have k; —m; >0foralli € R,anda— ="
Thus for 1 € R we have

(a=paf) =" > (kj—myay =Y (ki —mia; = (¢, ),

jEsupp o\ P JER

i€Esupp a\P(ki - mi)ai'

since R is a connected component of supp o\ P. Thus
(@ 0f) =(a,0f) = (B,0) (i €R)

Now (a, ) <0 since a € K and (8,a)) > 0 by (5.6), so (¢/,a)) <0
for all i € R. Now let u be the column vector with coordinates k; — m;
for i € R. Then we have u > 0 and Apyu < 0. Since Ay has finite type
Ap(—u) > 0 implies —u > 0 or —u = 0, giving a contradiction. This
completes the proof of the fact that « € A.

Finally, 2a satisfies all the assumptions of the lemma, so « € A, and
by Proposition 5.1.1(ii), o« € Al O

Theorem 5.3.3 A" =], .y w(K).

Proof 72" follows from Lemma 5.3.2 and Proposition 5.3.1(1). The
converse embedding holds in view of Proposition 5.3.1(i),(ii) and the
fact that supp « is connected for every root a. |

Proposition 5.3.4 If a € Aif‘ and r a non-zero rational number such
that rac € Q, then ra € AIm,

Proof In view of Proposition 5.3.1(i),(ii) we may assume that o € —CVN
Q4. Since « is a root, its support is connected, so a € K. Then ra € K
for any r > 0 as in the assumption. By Lemma 5.3.2, ra € Ai}r’". ]

Theorem 5.3.5 Let A be indecomposable.
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(i) If A is finite type then A™ = &.
ii) If A is affine type then AI™ = {nd | n € Zwo}, where § =
+
Ef:o a;a; and a; are the marks in the Dynkin diagram.
iii) If A is indefinite type then there exists a positive imaginary root
Y g Y
a =Y. kia; suchthat k; >0 and (o, o)) <0 foralli=1,...,n.

Proof By the definition of types and Remark 4.1.2, the set

{ae Q[ (o, ai) <0}
is {0} if A is finite type, is Zd is A is affine type, and there exists
a =) . ka; such that k; > 0 and (o, ) <Oforalli=1,...,n,if A
is indefinite type. Now apply Theorem 5.3.3. |

We call a root o null-root if a|pr = 0, or equivalently (a, ;) = 0 for
all 7. It follows from Theorem 4.1.12 that if « is a null-root if and only
if supp « is affine type which represents a connected component of the
diagram A and o = k¢ for k € Z. We call a root « isotropic if (a]a) = 0.

Proposition 5.3.6 Let A be symmetrizable. A root « is isotropic if and
only if it is W-conjugate to an imaginary root 3 such that supp 3 is a
subdiagram of affine type in S(A).

Proof Let a be an isotropic root. We may assume that o > 0. Then « €
A" by Proposition 5.1.1(iv)(a), and « is W-conjugate to an imaginary
root 3 € K such that (3, ) < 0 for all ¢, thanks to Proposition 5.3.1(ii).
Let 3=),cpkic; and P = supp 3. Then

B18) = ki(Bla;) =0,
i€EP
where k; > 0 and
(Blas) = Gl (8.aY) <0

for all i € P. So (8,a;) =0 for all i € P, and P is an affine diagram.
Conversely, let 3 = kd§ be an imaginary root for an affine diagram.
Then

(818) = k*(8]8) = k* Z%‘(ﬂ%‘) =0

since (4, o) = 0 for all 4. |
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Affine Algebras

6.1 Notation

Throughout we use the following notation in the affine case:

e A is an indecomposable GCM of affine type of order ¢ + 1 and

rank £.

ag,ai, - .., ap are the marks of the diagram S(A) (note that ag =
1, unless A = Agi) in which case ag = 2).

ay,ay,...,a) are the marks of the dual diagram S(A") (this di-

agram is obtained from S(A) by changing direction of all arrows
and preserving the labels of the vertices). Note that in all cases
ay = 1.

The numbers

¢
hi:zai, hY ::Zaiv
i=0 ‘

are Coxeter and dual Cozxeter numbers.

r € {1,2,3} refers to the number 7 in the type X](C,“).

c = Zfzo aya) is the canonical central element. By Proposi-
tion 1.4.6, the center ¢ of g is Cec.

§ = Yt yaia;. Then A™ = {+§,4+25,...}, A™ = {5,25,...},

see Theorem 5.3.5.

6.2 Standard bilinear form

We know that A is symmetrizable. Moreover,

A= diag(Z—S, B (6.1)

’ oV
0 ay

7
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for a symmetric matrix B. Indeed let § = (ag,...,as)! and 6V =
(ay,...,a))'. If A= DB where D is a diagonal invertible matrix and
B is a symmetric matrix then Bd = 0, and hence 6!B = 0. On the other
hand, (§¥)*A = 0 implies (6§¥)*DB = 0, whence BD§" = 0, and since
dimker B = 1, we get D§" is proportional to J.

Fix an element d € b such that

(aj,d) =0 fori=1,...,¢, (g, d) = 1.

d is defined up to a summand proportional to ¢ and is called energy
element. Note that {ag, oy, ..., o), d} is a basis of . Indeed, we must
show that d is not a linear combination of oy, y,...,a). Otherwise
d= Zf:o wier), and A'u > 0, Alu # 0, giving a contradiction with the
affine type of A?.

Note that

g=g,0] ®Cd

Following §2.2, define the non-degenerate symmetric bilinear form (-|-)
on h by

(@fla)) = %aij (0 <i,j<0);
J
(f|d) = bipag  (0<i<0);
dd) = o.
It follows that
(cayy = 0 (0<i<o);
(cle) = 0
(cld) = ao.

By Theorem 2.2.3, this form can be uniquely extended to g so that all
conditions of that theorem hold. The extended form (-|-) will be referred
to as the normalized invariant form.

Next define Ay € h* by
(Ao, o) = b0, (Ao,d) =0.
Then
{ag,...,a1,A}

is a basis of h*.
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The isomorphism v : h — h* defined by the form (-|-) is given by

v ai
via) - —oy
\/ Ly

a;

l/:dl—>a()A0.

We also have that

V:icrs 0.

The transported form (+|-) on h* has the following properties:

(viley) = Cga” (0<i,5<¥);
(ailAo) = dioag (0<i<¥);
(AolAo) = 0;
(Gla) = 0 (0<i<o)
(619) 0;
(0]Ag) = 1.

It follows that there is an isometry of lattices

QY (A) = Q(A"). (6.2)
Denote by f(; (resp f)R) the C-span (resp. R-span) of of,..., ).

The dual notions f)* and f)R are defined as similar linear combinations of
ai,...,ap. Then we have decompositions into orthogonal direct sums

o

h=b ®(Ce+Cd), b* =b* @ (C5+ CAg).
Set
br :=bs +Rc+Rd,  b% = bi+RA) + RS,

By Theorem 4.2.4, the restriction of the bilinear form (-|-) to hr and by
(resp. b +Rec and hi + RY) is positive definite (resp. positive semidefi-
nite with kernels Rc and RJ).
For a subset S C h* denote by S the orthogonal projection of S onto
h*. We have
A2 — A
2(\, ¢)

Indeed, A — X = by A+ bad. Applying (+6), we deduce that by = (\|J) =

A—A= (Ao + 5 (Nebt, (Ao £0).  (6.3)
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(A, c). Now, |A|2 = |A|2 + 2b1bs, which implies the required expression
for by. The following closely related formula is proved similarly:

A=A+ (N e)Ag + (A|Ag)d. (6.4)

Define p € h* by
(od) =0, (paly=1 (0<i<).
Then (6.4) gives
p=p+h"A. (6.5)

6.3 Roots of affine algebra

Denote by E the subalgebra of g generated by e; and f; fori=1,...,¢.

This subalgebra is isomorphic to g( ;1) where ,Z is obtained from A by
removing Oth row and Oth column. This is a finite dimensional simple
Lie algebra whose Dynkin diagram comes from S(A) by deleting the Oth
vertex, see Proposition 4.3.2.

Indeed, let

0= {a1,...,ar}, O ={af,....a)}.

Then b, 1‘01, IV is a realization of ;1, and since [e;, f;] = o, gis generated
by e;, fi for i = 1,...,¢ and b, and the relations (1.12)-(1.15) hold. So
there is a homomorphism from ﬁ(;l) onto a We claim that 5 has no

[e]
non-trivial ideals which have trivial intersection with . Otherwise, if i
is such an ideal let € i be a non-zero element of weight o # 0. Then

«a 6&, where
A= ANb*. (6.6)

We may assume that « is the smallest positive root for which such x
exists. Then

[fi,x] =0 (i=1,...,0).
But it is also clear from the relations that [fy,z] = 0. By Lemma 1.4.5,
x = 0. This contradiction proves that there is a homomorphism from
g(jl) onto g. Since g(jl) is simple by Proposition 1.4.8(i), this homo-
morphism must be an isomorphism.
We will also use the notations

Av=ANA,, Q=ZA, Q'=ZA".
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o] o o
As and A; for the sets of short and long roots in A, respectively, and

V([)/ for the Weyl group for &
Note that ay = 1 implies

QY =QY ®Zc  (orthogonal direct sum). (6.7)

We denote by AL® and AJ® the sets of short and long real roots, re-
spectively. For type Agi)
intermediate length.

we denote by A the set of real roots of

Proposition 6.3.1

(i) If r =1 then A™ = {a+nd | o 6&, ne€Z}, and a+nd € A
is short if and only if o 6& is short.

(ii) Ifr=2 or 3 and A # Aéi) then
A¥ = {a+nd| aegs, n € 7},
A° = {a+nrd|a E&l, n € Z}.
(iii) If A= AS) for £ > 1 then

1 o
AF = {§(a+(2n—1)5) | €Ay, n€Z},
A° = {a—i—né\ae&s, n € 7},
A° = {a+2n6|a€&l, n €7}

(iv) If A= AP then

1 o
A = {§(a+(2n—1)5) | €A, neZ},
A = {a+2nd |« 6&, n € Z}.

(v) AT 47§ = A,
(vi) A% = {a € A% withn > 0}U A

Proof (v),(vi) follow from (i)-(iv).

Suppose that A # Aéi). Then &SC Are. Let « e&s. Then (a|a) = m.
Hence for n € Z we have (a + nd|a + nd) = m. By Proposition 5.2.3,
a+né e AY.

Conversely, let 5 = Zf:o k;a; € A, By Proposition 5.2.3,

(B — kod|B — kod) = (B|B) = m.
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Since ag = 1, we have 3 — kgd = Zle(k‘i — koa;)a;. So by (6.6) and
Proposition 5.2.3 again, we deduce that 8 — kyd E&S, thus the short
roots have the required form.

We now consider the long roots. Note that &lC A, Let a =
Yo kiay €A;. Then (a + néla + nd) = (ala) = M. By Propo-
sition 5.2.4, we have k (o) e 7 for § = 1,...,¢. By the same

i (ala)
proposition o + nd € Aj® if and only na; (?;Izs) € Zfori=0,....40
Now (o]ay) = 2;1:7 so the condition is n% € Z. Note also that

(Oéo|0(0) = 2.
First suppose that g is a long root, i.e. we are in the case (i). Then
\

29 ¢ 7. Hence a+ nd € AT for all n € Z.

(afa)
Conversely, let § = Zf:o kia; € Aj°. By Proposition 5.2.4, (8 —

kod|B — kod) = (BI8) = M, and k{258 € Z for i = 0,...,0. We
(v |a)

53 € Z also since (aglay) = 20 and (8]8) = 2. We

a; ’
£

now conclude that have 8 — kod = >, _; (ki — koa;)o e& by (6.6) and
Proposition 5.2.4 again, and so the long roots have the required form.

(o)) =2, and so n

have kga;

Now suppose that aq is a short root, i.e. we are in the case (ii). Note
that r = A9 Thys

[CHEDN
2¢) )
(aa)
Since aj =1 this lies in Z for all i = 0,..., £ if and only if n is divisible

by r. Thus by Proposition 5.2.4, o +rnd € Aj° for all n € Z.
Conversely, let § = Zf:o kia; € Aj°. By Proposition 5.2.4, (8 —
koS|B — kod) = (BB8) = M, and k; 2% ¢ 7 for i = 0,...,0. In

(B18)
particular, kg (C(Yg}gg’) = % € Z. We have
(ailos) ko
koa; =a; — €Z
(1) r

for i = 1,...,¢, as (a4]ey) = 255 and (8|8) = 2r. Thus by Propo-
sition 5.2.4, 8 — kod = Zle(ki — koa;)ay eﬁl by (6.6) and Proposi-
tion 5.2.4 again, and so the long roots have the required form.

The proof of (iii) and (iv) is similar. O

Proposition 6.3.1 will also follow from explicit constructions of affine
Lie algebras given in the next chapter.
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Remark 6.3.2 A =A \{0} in all cases, except Agi), in which case the

— o
root system A is not reduced, and A is the corresponding reduced root
system.

Introduce the element
¢
0:=6 —agag = Zaiai EQ . (68)
i=1

We have
(010) = (6 — apapld — apayp) = a%(a0|a0) = 2ay.

Thus (|0) = M ifr=1o0r A= AS,), and (0|0) = m otherwise. In all
cases it follows from Propositions 5.2.3 and 5.2.4 that 0 6£+. Moreover,

(0¥10) = =,

ag =v (6 —0) =c—aph".

Proposition 6.3.3 Ifr =1 or A = Agi), then 0 € (£+)l and 0 is the
unique root in A of mazimal height (= h — ag). Otherwise 6 € (&)s
and 0 is the unique root in 23 of mazimal height (= h —1).

Proof One checks that all simple roots in & of the same length are
W-conjugate (this is essentially a type As argument). Hence As and A,

are the orbits of V([)/ on & Moreover,
0,0y = (0 — apag, @) = —apai >0 1<i<y).

Hence 6 is in the fundamental domain of V([)/, which determines the short
or long root uniquely. The height of 8 is easy to compute from the
definition. Finally, if 8’ is a maximal height root in the W-orbit of roots
in & of the same length as 0, then a standard argument shows that 6’
is in the fundamental chamber, hence 6’ = 6. |

If A is a matrix of finite type, we assume that the standard invariant
form (:|-) on g(A) is normalized by the condition (a|a) = 2 for a € Ay,
and call it the normalized invariant form.
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Corollary 6.3.4 Let g be an affine algebra of type X](\;). Then the ratio
of the restriction to the subalgebra S of the normalized invariant on g to

o
the normalized invariant form on @ is equal to r.

6.4 Affine Weyl Group
Since (4, ) = 0 for all 4, we have w(d) = ¢ for all w € W. Denote by
I/?/ the subgroup of W generated by 71, ...,7rs. Asr;(Ag) = Ag for i > 1,
V([)/ acts trivially on CAg + CJ. It is also clear that a* is I/f/—invariant. So
the action of I/f/ on IC))* is faithful, and we can identify I/?/ with the Weyl

[e] [e]
group of of g also acting on h*. Hence I/?/ is finite.
We have

rora(A) = A+ (A, (0Y) — ((A,0Y) + %(9V|9V)<)\,c>)5. (6.9)

Indeed,
rorg(A) = 71o(A— (X, 0Y)0)
= A=\ a)ag— (X, 0Y)(0 — (0, a5 o)
Y ag>aio(5 —0)— (0, 6)0 + (A, 676, ag>aio(5 i
= >\+(<>"7O‘g> —(\0Y) — M)g
ag ag
+(_<A,a(jg> N <A,9vc>lie,ag>)5

— A+ (ad) — a0 8Y) — (1.0 6,0)) - 6
00000

= A+ (A c—aph”) —ap(\,0Y) — (N, 0V)0,c— apd”))v(8Y)
7(<)‘707 a00v> . <)‘79v><0acf a09v>)5

ao ao

which easily implies (6.9).
Set

o

1
ta(A) = A+ (A, c)a— ((Aa) + 5(0404)()\70))5 (AEDh*, acbh).
(6.10)
Then (6.9) is equivalent to rorg = t,(gv).
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Proposition 6.4.1 Let o, 3 El;, w EVc[)/. Then
(i) tatp =tatp-
(i) wtaw™ = ty(a)-
Proof The linear map t, : h* — bh* is uniquely determined by the
properties
ta(N) = A=(Aa)d if (\,¢) =0, (6.11)
ta(hy) = Ao+a-— %(0404)5. (6.12)
since {a;,c¢) =0 and (Ag,c) = 1. If (A, ¢) = 0 then
tatsN) = talA = (N9)9)
A= (Na)s — (A1B)(3 — (3]a)o)
= A= (ANa+p)d
= tats(A),
since (d|a)) = 0, and
wtaw™ () = w(w ()~ (w ()]a)?)
A — (Mw(w))d
= tw(a)(A)a
since (w1 (\),c) = 0 and w(d) = §. Also
1
lats(h) = talbo+ B 5(318)9)
= Ao+a— (al)d+ 8- (Bla)d — S(BI8)6 ~ (3la)9)
= Mo+ (a+h) - gla+ ot
= tatp(No),
using (d]|a) = 0 again, and
wtow N (Ag) = w(Ao+a— %(a|a)5)
= Ao ula) - (@)
= tw(oe) (AO)v

since w™(Ag) = w(Ag) = Ag. This proves (i) and (ii). O
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Now define the lattice M in bhj. Let Z(I/;/ -0V) denote the lattice in
hr generated over Z by the finite set I/f/ -0V, and set

(o)

M = v(Z(W -0Y)).

Lemma 6.4.2
(i) If A is symmetric or r > ag then M = Q =Q.
(i) In all other cases M = v(QV) = v(QV).

Proof Tf r = 1 then 6" is a short root in AV, see Proposition 6.3.3. So
WY = ESY It is known (Exercise 6.9 in Kac) that for the finite type
the short roots generate the root lattice, so we have M = I/(év), which
implies the result for r = 1.

Similarly if agr = 2 or 3, then 6V is a long root in &V, so W -6Y =

&2/, whence M =@Q. Finally, for Ag) we have v(0V) = 260. Hence

M = %Z &:é again. |

Corollary 6.4.3
(i) If A is not of types Bél),Cé1)7F4(1),G(21),A$), then M =7 &:

Zf:l La.
(i) If A is of types Bél),Cél),Ff),Gél), then

M=ZA= Y Za;+ Y. Zpa,

o o
a; €Ay a; €EAs

where p = 3 for Gél) and 2 in the other cases.
111 18 of type , then
i) If A is of type AZ), th
1o A 1

The lattice M considered as an abelian group acts on h* by the formula
(6.10). This action is faithful in view of (6.11),(6.12).

Denote the corresponding subgroup of GL(§*) by T and call it the
group of translations. In view of (6.9) and Proposition 6.4.1(ii), T is a
subgroup of W.

Proposition 6.4.4 W = T'x V?/
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Proof Since I/?/ is finite and T is a free abelian group, we have V?/ NnT =

{1}. Moreover, 1o = t,gvyrg € T V([)/, so T and I/f/ generate W. Finally
T is normal in W by Proposition 6.4.1(ii). O

Observe that t,gvy = rore has determinant 1, and since 7' is generated
by the elements wtu(QV)ufl, all elements of T' have determinant 1.
For s € R set

be:={rebr|{Xc) =1}
Note that b} is W-invariant, so W acts on b} with affine transformations.
The elements of h7 are of the form

¢
Z c;oy + bo + Ao (b, c; € R)
i=1
Since W acts trivially on 4, the action of W on b factors through to

give an action of W on hi /Rd. Note that the last space can be identified
with

Ra1+---+Ro¢g=hi§

via
J4 14
Z Ci; + bo + A() = Z C; 0.
=1 =1

[e]
We use this identification to get an affine action of W on h. The affine

transformation of hi corresponding to w € W is denoted by af(w), so
that

af(w)(A) =w(A) (A ehy).

Proposition 6.4.5 Let w EI;IJ/, m € M, X € hg. Then af(w)(A) = w(N),
af(tm)(A) = A+ m.

Proof The first statement follows from w(d) = §,w(Ag) = Ag. For the
second one, using (6.11) and (6.12), we get

_— 1
af (b )(N) =t A+ Ag) = A = (Am)d + Ao+ m — §(m|m)§ =A+m.

O

Corollary 6.4.6 The affine action of W on by is faithful.
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Proof Suppose t,w € W for m € M,w evf/ acts trivially on hg. Then
af(t,w)(0) = 0 implies m = 0, i.e. t,,, = 1. But W acts faithfully on b,
so w = 1 also. O
Corollary 6.4.7 sy acts on b as the reflection in the affine hyperplane

Tps = {Aeba| (A0) = 1}.

Proof For A € [(;ﬁ, we have
ro(A) = tuev)ra(X) = ro(N)+v(0) = A= (X, 07)0+1(0) = A= ((\|)-1)v(8"),

and the result follows. ]

Define the fundamental alcove
Cur= (N ehh| (Maw) >0 for 1 <i<fand (\6) <1}.

Proposition 6.4.8 Cy; is the fundamental domain for the action of W

on bp.

o -
Proof Consider the projection 7 : b7 — bhg, A — A. It is surjective and
af(w) om = 7mow for w € W. Moreover

71 (Cur) = CV N B

It remains to note that C¥ N b7 is the fundamental domain for the W-
action on hj. |

We complete this section with the list of explicit constructions related
to the root systems of finite type. We identify Q and QV via the non-
degenerate form (-|]-). Let R™ be the standard Euclidean space with
standard basis €1, ...,&,.
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6.4.1 Ay

Q:Qv:{ZkiEiERé+1|ki€Z7 Zki:()}’

A={ei—g|1<i#j<l+1},
H:{ai:€i—€i+1|1§€§£},
9261_55-‘1-17

W 2 Sy = {all permutations of the ¢;}.

6.4.2 D,

Q=Q"={> ke, R | ki € Z, > _k; € 2L},

A={te;+e;|1<i<j<i}
O={o =¢e1—€2,...,00 1 =€p-1 — ¢, 0y = £g_1 + €4},
0 =¢eq + .

6.4.3 Es

Q=Q" :{Zkisi eR®|allk; € Zorall k; € %+27 > ki €22},
A:{isij:zs;|1§i<j§8}

U{%(:I:sl + ...+ ¢eg) even number of minuses},
M={a;=¢iy1 —€i12 |1 <i <6}

1
Uf{ar = 5(51*62*"'*€7+58)7048:€7+58};

0 =¢e1+ .
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6.4.4 B,
1
Q=0Q 7{2 kiei €R |a11kZ€Zorallkl€2+Z,§ k; = 0},

1
U{i(i& + .-t eg) (four minuses)},
= {a;=¢ciy1 —€ip2 |1 <i <6}
1
U{O&7 = *(—81 —€o — €3 — €4+ €5 +¢€6+ €7 —|—68)},

2
0:52751.

6.4.5 Eg

6 6
1
0=Q'= {21: kigs + Vkrer € RT | all ki € Z or all k; € 5 +Z, 21: k; =0},

1
Uf5 (e £+ Feg) & V2¢7 (three minuses)} U {#v/2¢7},
Hz{aiZSi—EH_l | 1§Z§5}

1
U{O{G = 5(—61 —Eg —€3+E&4+E5+ 56"’) + \@67)},
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Affine Algebras as Central extensions of
Loop Algebras

7.1 Loop Algebras

Affine algebras of type X él) are called untwisted. In this chapter we will
describe an explicit construction of untwisted affine algebras. Recall the
material from §1.5. In particular, £ = C[t,t~!], and let ¢ be a bilinear
form on £ defined by

P(P,Q) = Res Q.

One checks that

e(P,Q)=—¢(Q,P), (7.1
p(PQ,R)+ ¢(QR,P) +¢(RP,Q) =0  (P,QReL). (72

Note that Cartan matrix A of type X 151) is the so-called extended
Cartan matriz of the simple finite dimensional Lie algebra g= g( ;1),

where the matrix ;1 obtained from A by removing the Oth row and
column is of type X,. Consider the loop algebra

£@y:£®g.

o
Fix a non-degenerate invariant symmetric bilinear form (-|-) on g. It

can be extended to a L-valued bilinear form (-|-); on E(B) via

(P®zlQ®y): = PQ(z]y).
Also set

V@) = (M), (abeL@).

91
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We know from Lemma 1.5.3 that ¢ is a 2-cocycle on L(S), and
Ot @, ! @y) =id; —j(z|y).
As in §1.5, we have a central extension

L(g) = L(g) & Cc

corresponding to ¢. Moreover, Z(B) is graded with deg t/ @z = j, degc =
0. We then have the corresponding derivation

d:E_(E)HZ(s), tH@x— jt! @z, c— 0.

Finally, by adjoining d to E_(E) we get the Lie algebra

£(8) == £(8) & Ce & Cd,
with operation

[t @z + e+ pd, t" @y + Ne+ p'd
(" @ [z, y] + pnt™ @ y — W'mt™ @ ) + My, —n(z|y)e.

7.2 Realization of untwisted algebras

Let @ be the Chevalley involution of 37 &C h* be the root system of E},

{ai,...,ap} be a root base of A and

Hy, ... H

be the coroot base in b, E1,..., Ey, Fi,..., F; be the Chevalley genera-
tors, 6 be the highest root in &, and let
- @k

acAU{0}

be the root space decomposition. Choose Fjy 659 so that
o 2

(Fol w (Fo)) = =7,

(016)

and set
o

Eo = —w (F())
Then by Theorem 2.2.3(v), we have
[Eo, Fo] = —6". (7.3)
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The elements FEy, E1, ..., E, generate the algebra El since in the adjoint
representation we have g= U(ﬁ+)(E0).

Return to the algebra ﬁ(a) It is clear that Cc is the (1-dimensional)
center of /.E(El), and the centralizer of d in ﬁ(ﬁ) is the direct sum of
Lie algebras Cc @ Cd & (1® B) From now on we identify g with the
subalgebra 1® gc E(B) Further,

h:=h &Cc e Cd
is an (¢4 2)-dimensional abelian subalgebra of ﬁ(a) Continue X € h* to

a linear function on § by setting (A, ¢) = (A, d) = 0, so h* gets identified
with a subspace of h*. Denote by § the linear function on b defined from

50 = 5 d = 1
o =0 (00
Set
eo = t® Ky,
fo = tTTOR,
e, = 1®E; (1<i<y)
fi = 19F (1<i<¥)
From (7.3) we get
2
= _¢—0. 4
[eOafO} (9|9)C (7 )

Note the following facts on the root decomposition

L@ = P L.

aeAU{0}
with respect to b:
ﬁ(g)O = b7
A = {jo+v[jeZ veAtU{ji|jeZ\{0}},
L(@)js+y = P8,

o

L£(9);s = tj®l;-
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Set
I = {aw:=50-0,a1,...,04},

2
v = {of := chﬂv,a\{ =1Q Hy,...,a) :=1® Hy}.

Note in view of Proposition 6.3.3(i) that our element 6 agrees with
the one introduced in (6.8), whence
A= (o, a5))osi j<e- (7.5)
So (h,II,I1V) is a realization of A.

Theorem 7.2.1 ﬁ(&) is affine Kac-Moody algebra g(A), b is its Cartan
matriz, II and 11V are its root and coroot bases, and eg, . .., ez, fo, ..., feo
are Chevalley generators.

Proof We apply Proposition 1.5.1. All relations are easy to check (or
have already been checked).

Further, we will prove that ﬁ(fﬁ) has no non-trivial ideals i with i N
h = {0}. Indeed, if i is such an ideal, then by the Weight Lemma,

in ﬁ(ﬁ)a # {0} for some a = j§ +~ € A. So some t/ @ x € i for some
j €Z and z 657, x #0,v € AU{0}. By taking y GE,V such that
(2]y) # 0, we gt

[t/ @ x,t77 @yl =j(zly)e+ [zl € hNi.
Hence j(z|y)e + [z,y] = 0. Since [z,y] €h we deduce that j = 0. Since
a = jé+ #0, we have v # 0. Then 0 # [z, y] €h Ni. Contradiction.
Finally we prove that the e;, f; and h generate ﬁ(&) Let g1 be the sub-

algebra in ﬁ(a) generated by the e;, f; and . Since E1,..., Ey, F1,..., Fp
generate El, we deduce 1® EC g1. Let

i={zecgtorecal)
Then eg =t ® Eg € g1, 80 Ep €1, and i # 0. Also, if x € i,y EE!, then

[e] [e] o [e]
whence i is an ideal of g. Since @ is simple we have i =8 or t® 9C g;.
We may now use the relation

t@z, " @yl =" @[,y
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to deduce by induction on k that t*® BC g1 for all £ > 0. In an analogous

way, starting with fo = t~! ® F, we can show that t *® EIC g1 for all
k> 0. ]

Corollary 7.2.2 Let g be a non-twisted affine Lie algebra of rank ¢+ 1.
Then the multiplicity of each imaginary root in g is £.

Let (+]-) be the normalized invariant form on g (see the end of §6.3).
Extend it to ﬁ(ﬁ) by

(PozlQoy) = (Rest'PQ)(zly) (r,yed, P.Qe L),
(Ce+Cd|L(8) = 0,

(cle) = o,

(dd) = o,

(cld) = 1

The definition implies
(t' @ zlt! @ y) = i (zly).
We get a non-degenerate symmetric bilinear form. In order to check
invariance, let us consider the only non-trivial case:
(d, Poa]|Qey) = (d|[Poz,Q®y]).

The left hand side of this equality is
dP dP
t— = —
(- ©alQ @ y) = (Res -Q)(xly),
while the right hand side is
dP dP
(dPQ® [z,y] + (Res —-Q)(zly)c) = (Res —-Q)(]y).
Finally, the restriction of (-|-) to h agrees with the form defined in §6.2.
Note that the element c is the canonical central element and d is the
energy element.
Let El:ﬁ_ ®hod 1%+ be the canonical triangular decomposition of E!
Then the triangular decomposition of /.i(El) is

£(9)
o= (tT'CtY e me @ f(;)) eCitYon_,

n_®&heéng, where

N, = ((Cl]® G- @h)®Clon, .
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The Chevalley involution of g can be written in terms of @ as follows
wP(t) @+ A+ pd) = P(t7H)® & () — Ac — pd.

Set

t=Cc+ Z Os5-

s€Z\{0}

Then t is isomorphic to the infinite dimensional Heisenberg algebra with
center Cc. Indeed, t = Cc ©yez\q0) t° @ b, and the only non-trivial
commutation is

[t°®@ h,t™° @ K] = s(h|l).

7.3 Explicit Construction of Finite Dimensional Lie Algebras

Let @ be the root lattice of type Ay, Dy, or Ey, and let (:|-) be the
normalized form on @), i.e.

A ={a| (a]a) = 2}.
We then also have (a|a) € 2Z for all o € Q (explicit check). Let
e:Q xQ — {1}
be a function satisfying the ”bilinearity” condition for all o, @', 8’ € Q:
ela+d,B) =ela,Be(d,B), ela,B+05")=c(a,B)e(, ), (7.6)
and the condition
e(a,) = (=D)IV2 (0 eQ). (7.7)

We call such ¢ an asymmetry function. Substituting « + § to the last
equation we get

e(a, B)e(B,0) = (1) (o, 8 € Q). (7.8)

An asymmetry function can be constructed as follows: choose an orien-
tation of the Dynkin diagram, and let

o . R |

e(aj,5) = —1 ifi=jorif o—od
. . P S | i g
g(as,5) = 1 otherwise, ie. if 0«0 or o 0,

and extend by bilinearity. An easy check shows that the required con-
ditions are satisfied.
Now let us h be the complex hull of @ and extend (:|-) to h. Take
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the direct sum of h with 1-dimensional vector spaces CE,, one for each
a e A:

g=he (P CE.).

acA

Define the bracket on g as follows:

[h,h'] =0 if h,h' € b

[h, Ea] = (hla)Eq ifheh aeA

[Eo, E_o] = —a ifaeA (7.9)
[Ea,Egl =0 ifa,0€A, a+08¢AU{0}

[Ea,Eg} = €(Oz,ﬂ)Ea+5 ifa,B,a+p€A

Define the symmetric bilinear form on g extending it from b as follows:

{(h|Ea)O ifheh, aeA

(BalEs) = —6u_5 ifa,feA (7.10)

Proposition 7.3.1 g is the simple Lie algebra of type Ay, Dy or Ey,
respectively, the form (:|-) being the normalized invariant form.

Proof To check the skew-commutativity it suffices to prove that [E,, Eg] =
—[Es, Eo] when «, 8,a+ 3 € A. Note that

atfeA & (¢ff) =7F1 (o, B € A). (7.11)

Now the required equality follows from (7.8).

Next we check Jacobi identity for three basis elements x,y, z. If one
of these elements is in h, the Jacobi identity trivially holds. So let
x=FE.y=Egz=E, fa+p,a+~v, 0+~ ¢&AU{0}, the identity
holds trivially, so we may assume that « + 5 € A U {0}.

If @« + 8 =0, consider four cases:

(1) at~ & AU{0)

(2) a+yora—~vy=0;

(3) a+ vy € A;

(4) a—~v € A.

The Jacobi identity holds in cases (1) and (2) in view of (7.11). In
case (3) it reduces to e(—a, o + y)e(a,y) = (&|y), which follows from
the bilinearity and (7.7). The case (4) is similar.

Thus we may assume that o + 5, + v, 5+ v € A, for the remaining
cases follow either trivially or from bilinearity of e. So («|f) = (a]y) =
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(B]y) = —1, whence |a + 3+ 7|?> = 0, so a + 8+ = 0 using positive
definiteness of the form. So Jacobi identity boils down to

e(B;M(B+7) = —e(a, B)a+ P) + e, 7)(a+7),

which holds by bilinearity again.
Thus g is a Lie algebra. Let

IT= H\/ = {O[l,... aae}a €; = E(Xw fl = _E—ui'

We can now apply Proposition 1.5.1. To check that the form is invariant
is straightforward. O



8

Twisted Affine Algebras and Automorphisms
of Finite Order

8.1 Graph Automorphisms

Let A be of finite type Xy. Let o be a permutation of {1,..., N} such
that a,(i)o(j) = aij. Such o can be thought of as a graph automorphism
of the Dynkin diagram of A. Let g = g(A). It is clear that such graph
automorphism defines an automorphism, denoted by the same letter o
and called graph automorphism of g:

T80, € eo(ys fir foy, @ o ag .

The interesting graph automorphisms are listed in Figure 8.1:
Our first main goal is to determine the fixed point subalgebra g”. We
consider the linear action of o on V := by given from

J(ai):ag(l—) (1<i<N).
For each orbit J of o on {1,..., N} define
1
oy :szaj. (8.1)
jeJ
Then the oy form a basis of V' as J runs over the o-orbitson {1,..., N}.
Note that o is the orthogonal projection of a;; onto V7. We see from
Figure 8.1 that the following possible situations for the orbits J are
possible:
1) =1
(2) ‘J| =2,J= {jaj/}a oj + ay € A;
B3) [ =3, J=1{5,7" 7"} o + oy, + ajr oy +ajr & A
(4) ‘J| = 2) J = {jaj/}a Qi + Qi €A.
These are referred to as orbits of types Ay, A1 X Ay, A1 x A1 X Ay, and
As, respectively.

99
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1 2 l

o o o o -0 —0o o 9
Aoy o o o - -0 o o

2020 — 1 {41

Qi = Q2 41—4

1 2 /-1
L
Asp_1 [
20—1 20 —2 {+1

Qg = Q20—

14
Diya 0—0—0—04—o—<:
1 2 -1 41

aj— o (1<i<l), apr apr1, Qepr = ag

2 1
SES

Es
4 5

2 1
Dy 3
4

a1 — 3, 3 F— 04, Q4 — 1, G2 > (2

Fig. 8.1. Graph automorphisms

Lemma 8.1.1 The vectors .y, ag for distinct o-orbits J, K form a base
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of a root system of rank 2 as follows:

J K Type of root system
-~

«—e

<
(iid) <§ —

*—o
*—o

«—e
*——o

Finally, if no node in J is connected to any node in K then the type of
the root system is Ay x Aj.

Proof This is an easy calculation. Suppose for example that we have
case (v) with roots numbered

10— 2
4 e—e 3
Then
S a1 + oy o _azt o3
J = 2 bl K — 2 M
So
1
(ajlay) = 5(041\041)7
1
(axlax) = J(ala),
1
(aslax) = —5(ai|a),
This is what was claimed. ]

Corollary 8.1.2 Let I17 be the set of vectors ay for all o-orbits J on
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{1,...,N}. Then TI? is a base of a root system of the following type:
Type I Order of ¢ Type 117

Ay 2 By
Agpq 2 Ce
Dyyq 2 By
Dy 3 G 2
Es 2 F,

Now let A be the root system in V¢ with base 117 and Weyl group
W7 and Cartan matrix A?. In view of Lemma 8.1.1 and Corollary 8.1.2,
we know the type of this Cartan matrix and:

Lemma 8.1.3 Let I, J be distinct o-orbits o-orbits on {1,...,N}. Then

0 Yoicrai;  foranyj e Jif I has type Ay, Ay X Ay or Ay x Ay X Ay
P 23 e ai forany j € J if I has type As

Lemma 8.1.4 There is an isomorphism W7 — Wl :={w e W | wo =
ow} under which the fundamental reflection ry € W corresponding to
ay maps to (wo)y € W, the element of mazimal length in the Weyl
group Wy generated by the r;,i € J.

Proof Observe first that W' acts on V. Next, we claim that (wq); €
W1 for each J. Indeed, UTJU*1 = 74(;) implies oWio~t = Wy, so
o induces the length preserving automorphism of Wy, hence (wq)s is
invariant.

Now, note that (wg)s|yve = 7. Indeed, using the defining property of
the longest element we have

() ens) = ()5 S0 05) = =75 Sy = e
jed jeJ
Moreover, if v € V7 and (as|v) = 0 then (o fv) = 0 for all j € J,
whence (wp)s(v) = v.

Next, we show that the elements (wg); generate W!. Take w # 1 in
W1, Then there exists a simple root a; with w(a;) < 0. Let J be the
o-orbit of j. Then w(q;) < 0 for all i € J. Now (wp) s changes the signs
of all roots in A ; but of none in A\ A ;. Hence ¢(w(wp) ) < {(w). Now
apply induction on the length.

We may now define a homomorphism W' — W? by restricting the
action of w € W1 from V to V7, which maps (wg); to r; and so is
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surjective. To see that the homomorphism is injective, take w # 1 in
W1, We saw that there exists a g-orbit J such that w(a;) < 0 for all
i € J, whence w(ay) # ay. |

From now on we identify W7 and W1,
For each o € A denote by «? its orthogonal projection into V7.

Lemma 8.1.5

(i) For each v € A, a7 is a positive multiple of a root in A°.

(ii) Let ~ be the equivalence relation on A given by o ~ < af
s a positive multiple of 3°. Then the equivalence classes are the
subsets of A of the form w(AT) where w € W7 and J is a o-orbit
on{l,...,N}.

(iii) There is a bijection between equivalence classes in A and roots in
A given by w(AT) — w(ay).

Proof We first show that each o € A lies in w(AT) for some w €
W and some o-orbit J. We have cwoo ™' = wg, so wg € W°. By
Lemma 8.1.4 the elements (wg); generate W7, and so we can write
wo = (wo)y, ---(wo)y,. Let a« € A*. Then wo(a) € A~. Thus there
exists ¢ such that

(w0) s - (wo) s, (@) € AT,

but
(wo) ., (Wo) 7yy - - - (W0) s, () € AT
Hence
(W0) 4 - - - (w0) s, () € AT,
that is
a € (wo)y, .- (wo) gy (A7),
and

—a € (wo) g, - (wo) sy, (w0) 1, (AT).

Now consider the projection a? for a € A}r. If J has type A1, A1 x Ay
or Ay x Ay x Ay then Aj =11y, so a® = «y. If J has type As, then
II; = {aj,aj} and AT = {a;, o, a; + ;s }, and

a"{a‘] if a = o or oy,
205 fa=a;+aj.
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Thus for « € Aj, we know that o is a positive multiple of ay. Hence
for o € w(AT) with w € W7 we know that o is a positive multiple of
w(ay) € A%, proving (i).

*) for w € W lie in
the same equivalence class. Suppose w(A¥) and w'(A};) lie in the same
class for w,w’ € W7 and orbits J, K. Then w(ay) = w'(ax) € A°
or w'lw(ay) = ak. Consider the root w'tw(a;) € A for j € J.
The root has the property that (w'~'w(a;))” = ak. So w''w(ay)
is a non-negative linear combination of the aj for & € K. Hence
wtw(l;) C Ak, and so w'~lw(AT) C Ak. By symmetry we also
have w'w™(A}) C AY. Hence we have equality, that is w(A¥T) =
w'(A}), which completes the proof of (ii).

We now know that the elements of each set w(A

Now, any root in A has form w(a.) for some w € W7 and some o-
orbit J. The set of the roots a € A such that ” is a positive multiple of
w(ey) is w(AY), as shown above. Thus w(AT) — w(ay) is a bijection
between equivalence classes of A and elements of A?, giving (iii). |

Theorem 8.1.6 Let A be of finite type, and o be a graph automorphism
of g = g(A). Then g° is isomorphic to g(A7).

Proof For each o-orbit J on {1,..., N} we define elements e, f7,aY of
g% by
er=Y ¢ fr=) fi aj=) of
JjeJ jedJ jed

if J is of type Ay, Ay x Ay or Ay x A1 X Ay, and
e =V2» e fr=V2) [, ay=2) af

= jeJ jed
if J is of type As. Then the aY form a basis of h?. One checks us-
ing Lemma 8.1.3 that h? together with IT = {a;},IIV = {a¥} give a
realization of A% and the relations (1.12-1.15) hold.

Thus the subalgebra gy of g7 generated by the elements e, f7, @Y is a
quotient of g(A7). Since the dimension of h7 is the same as the dimension
of the Cartan subalgebra of g(A?%), we deduce that g; is the quotient
of g(A%) by an ideal whose intersection with the Cartan subalgebra is
trivial. But we know that among such ideals there is the largest one t
so that g(A%)/v = g(A7), the simple finite dimensional Lie algebra of
type A%. Moreover, the root spaces of g(A?) are 1-dimensional. Now
it follows that g3 = g and it is isomorphic to g(A?) by dimension
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considerations. Indeed, consider the decomposition of A into equivalence
classes given by Lemma 8.1.5. For each equivalence class S let

g5 = Qaesba-

Then o(gs) = gs, and g = h7 ® Y o 9%. Now dimgg < 1 for each
equivalence class S. This is clear if S has type Ay, Ay x Ay or Ay x
Ay x A;. Suppose S has type Az. Then S = {a, 8, a + 8} with o(ga) =

93, 0(98) = 9o, 0(8a+8) = Bat+p- Take non-zero e, € go,e3 € ggs.
Then o(eq) = Aeg,0(eg) = A 'e,. Hence o(lea, e5]) = [Neg, A7 les] =
—[ea, es]. It follows that gZ = C(eq + Aeg). We thus have

dimg? < dimbh? +|A/ ~ | =dimh? 4+ |A7| = dim g(A7),
which completes the proof. |

If o is of order r (recall that r = 2 or 3) set = €2™/7 and g(*) be
the n'-eigenspace of o on g for 0 < i < r. Note that g(®©) = g7, and

g= P o,

0<i<r

is a Z/rZ grading. In particular, each g@ is a g?-module.
Proposition 8.1.7 g is an irreducible g”-module.

Proof 1If i = 0 this is clear. Let i # 0. Suppose first that A =
As¢—1,Dyyq1 or Eg (and so r = 2, i = 1). Let {a,} be a 2-element
orbit of ¢ on A and E,, Eg be the corresponding root elements such
that o(E,) = Eg. Then E, — Es € gV, and, moreover, such elements
yield a basis of g(*) as we run through all 2-element orbits. The roots
o, € b* have the same restriction to h, and this restriction is the
weight of E, — E3 with respect to h”. The highest weight of the g7-
module gV thus comes from the highest 2-element orbit. Explicit check
shows that the highest 2-element orbits are:

for Agg_1: (@1 4+ + g9, a0+ - + @2e—1);
for Dyy1: (o0 +- -+ o1 +ag, a1 + -+ ap_1 + ay);
for Eg: (041 + 2ai0 4+ 23 + a4 + a5 4+ ag, a1 + as + 2a3 + 2a4 + a5 + Ck(;).

Moreover, in this three cases the subalgebra g has type Cy, By, or Fy,
respectively. For the standard labellings of the corresponding Dynkin
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diagrams, the highest weights for the g”-module g(*) are:

for Cp: a1 + 200 + - -+ + 201 + ap = wo;
for Bp: o +ag + -+ a1 + ap = wy;
for Fy: aq + 2ai0 + 3as + 204 = wy.

Note that in all cases we get the highest short root 6y as the highest
weight. Now

202 —¢—1, for Cy,
dimg(l) =dimg—dimg’ =< 2+ 1, for By,
26, for Fy,

which according to Weyl’s dimension formula is the dimension of the
irreducible module with the highest weight 6y. The argument for D,
and Ag, is similar. ]

To get a precise multiplication table for the non-simply-laced finite di-
mensional Lie algebras, it is convenient to change our notation. Roughly
speaking we drop indices o from objects related to the fixed points of
o (so A% becomes A) and use primes ' to distinguish the objects corre-
sponding the big Lie algebra g (so A becomes A’. To be more precise, A’
is the root system of type (Xn,r) = (Dy+1,2), (A2e—1,2), (Eg,2), (D4,3)
with roots o/ € A/, simple roots o] ..., )y, etc. Let g’ = g(Xy’) be
the corresponding Lie algebra, and o the graph automorphism of g’ as
before. We already know that g := g’? is a simple Lie algebra of type

By, Cy, Fy, G,

respectively. In all four cases fix an orientation of the Dynkin diagram
X which is o-invariant, and let £(«, 3) be the corresponding asymme-
try function, which is then also o-invariant. This gives us an explicit
realization
g/ - h/ S5 @ CE&/
a’ €A

as in (7.9). It is easy to see that

pra' o), By B,y (o €A (8.2)

is an automorphism of g’ which agrees with the graph automorphism o
on the generators, so 0 = u. Note that there are no o-orbits of type Ao,
since we are staying away from type Agy. Moreover, there is a bijection
between o-orbits on A’ and the root system A := A?, given by mapping
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an orbit J = {o/,...} toa/? = ﬁ > acy @ Sowe can (and will) identify
the og-orbits on A’ with elements of A.

For a € A denote E, = ), El,, (note we have identified elements
a € A with o-orbits on A’). Similarly, for simple roots a,...,ap € A

we have a; = ‘Q—H(ZQ,EM o’')—this is just the formula (8.1) in our new

notation. Let h = §’?, the subspace with basis a1,...,a;. Then
g=g¢"=bho PCE,.
acA

Moreover, the normalized invariant form (-|-)" on g’ is o-invariant and
so it restricts to the invariant form (:|-) on g, which is non-degenerate
and invariant. Moreover (+|-) is normalized since we already know that
the single orbit elements o’ correspond to the long roots a € A, and so
(a]a) = (/|) =2 for a € A;.

Proposition 8.1.8 Let A = Ag;UA; be a non-simply-laced root system
of finite type in FEuclidean space br with root lattice Q. Set r = 2 if
A =By, Cy, or Fy, and r = 3 if A = Gy. Let us b be the complex hull
of br and extend (-|) to b. Let

g:h@(@CEa)~

acA
Define the bracket on g as follows:

[h,h'] =0 if hyh' € b

[h, Eq] = (h|a)E, ifheh, acA

[Eo, E_o] = —a if a € A\

[Eo, E_o] = —ra if a € Ay

[Ea, Esl =0 ifa,B €A, a+ 8¢ AU{0}

[Eo, Egl = (p+ 1)e(e,)Eatp if a,B,a+ [ € A where p € Z>g
is maximal with o — pB € A and
o € a,f € f are representatives
such that o/ + 3 € a+ 3

The normalized bilinear form (-|-) on g is given by extending (-|) as
follows:

— _ _604,—B ifOQﬂ € Al
(h7Ea) - 07 (EOMEﬂ) - { _,’,60"76 ZfO[75 c As

Proof We just need to check the relations. The first one is obvious. For
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the second, working in g’ we get
[h, Ea] = ) (hla')Efy = (hla)E
a'ca

since orthogonal projection of every o’ € a to § equals a.. The third and
fourth relations follow from

BorB_o) =Y EL, DY E 5= B E ==Y d.
a’'Ca fca a’Ca a’Ca

The fifth relation comes from the following (easy) fact: if a+ 3 ¢ AU{0}
then o/ + 3" ¢ A’ U{0}.
For the last relation, we have
[Ea,Egl =[>_ E.,., Y Ej]= > e(@’,8)Ely -
a'Ea BER o’ Ea, B EB,a’ +B'EA!

Now note that o/ + 3’ € a+ § and (¢, 3') is the same for any repre-
sentatives o/ € a, 3 € 8 such that o/ + 3’ € A’. Next check explicitly
that each E, 4 appears (p + 1) times. O

8.2 Construction of Twisted Affine Algebras
In this section we construct explicit realization of affine algebras of types

Xz(\;) with » > 1, referred to as twisted affine algebras. Let S be a finite
dimensional Lie algebra of type Xy, and ¢ be its graph automorphism

of order r. Then ¢ extends to a graph automorphism of ﬁ(ﬁ) denoted
again by ¢ and given by
o:crce, d—d tre—t ®o(x) (IEB)

27 /7

Set n=e and define a twisted graph automorphism of [Z(El) by

T:icre, ded t@re Tt @o(z) (meﬁ)

Proposition 8.2.1 We have

L(g(Age_1))” = g(AD ),
AR),

¢
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Proof We will skip the proof for Aéi). Let 5: o( :21), where ;1 is of type
Ag¢—1,Dpy1, Eg or Dy. If r =2 then we have

£(g) = > e (8)7) & d @ e (@) e Cea Cd,
nez kezZ
whereas if r = 3, then
L) = > (#re@)e) (e g )@ ("2 @(9)?)@CcaCd.
nez nez nez

Let E1,...,EN,F1,...,FN,H1,...,Hy be the standard generators of
9. Pick a representative 6y €A of the highest 2- or 3-element o-orbit on
A, cf. the proof of Proposition 8.1.7. Specifically we pick

for Agp_1: 0p = ag + g + -+ - + agp_3;

for Dyy1: 0p = a1 + -+ + a1 + ay;

for Fg: 0g = a1 + 200 + 203 + a4 + a5 + ag;
for Dy: g = as + a1 + as.

Choose elements g, EEQO,FGO 65_90 so that [Ego,Fgo} 6y, and sim-
ilarly Eq9,), Fr(9,)- Now choose the elements e;, fi, a; ﬁ(&) as fol-
lows:
Aggp_q:
1 2 -1
o
2w 120—2 041

e;=1® (B + Far—y), [i =1® (Fi+ Fa—;), o =1® (H; + Ha—;) (1<i<d),
eg:1®Eg, fg:1®Fg, az/::l@Hg
o =t ® (Fo, — Fo(a)), fo=1""@ (Egy — Eo(ay)), a0 =1® (=05 — (9(60))") + 2c.

Dg+1:

o—o—<:£
1 2 —T>ep 41

ee =1® (B +Ee+1) fi=1® (Fz + Fry1), af =1@ (Hp+ Hepa)
o =t ® (Foy — Fo(ay)), fo=1""@ (Egy — Eo(ay)), ag =1® (=05 — (9(60))") + 2c.
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EGZ
1 2
>
5 4
ei =10 (Ei+FEs_), fi=1® (F;+ Fs_;), of =1® (H; + Hg_;) (1<i<2),
es=1Q®E3, fs=1®Fs, af =1® Hj
e =10FEs, fa=10F;, of =1® Hg
eo =1 ® (Fo, = Fy(p), Jo=1""& (Eo, — Eq(a)): g =1® (=0 — (c(60))") + 2c.
D42
1 2
32}-
4
e1=10FE;, fi=10F, of =1® Ho,
€g = 1®(E1 +E3+E4), fg =1®(F1—|—F3—|—F4), 045/ =1®(H1 —|—H3+H4)
€0 =t ® (Fpy + 17 Fy(ag) +1Fo2(00))s fo =171 @ (Egy +1Eg(a0) + 1 Eo2(ay)),
ag =1® (=65 — ((60))" = (6%(60)") + 3c.
Let
h=1® h &Cc @ Cd.
Note that
h? = h” = span(ay,ay,...,a)) ® Cc® Cd.
Define the elements aq,...,a; € (h7)* to be the restriction from bh*
of the roots aq,...,ap € h*, respectively, in types Agp—1 and Dyyq.

Define the elements aq, s, a3,a4 € (h7)* to be the restriction from
h* of the roots a1, as,as,a¢ € h*, respectively, in type Fg. Define
the elements aq,as € (h7)* to be the restriction from h* of the roots
g, a1 € h* respectively in type Dy. Also, in all cases, we define g to
be the restriction from h* of § — 6.

We next claim that (h7,II,IIV) is a realization of the Cartan matrix
A’ of type X](\;). We know from Theorem 8.1.6 that

<O‘;/v O‘j> = a;j
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for 4,5 > 1. The ¢ x ¢ matrix with entries (o, a;) for 1 <i,5 < £ is

non-singular, so o, ..., ) and o, ..., ay are linearly independent. We
have (d, ;) = d;0, whence «ag, aq, ..., ay are linearly independent. Also
¢ appears in «f, whence oy, ..., ) are linearly independent. For

the remaining entries of the Cartan matrix, note that

where a; are the marks of the diagram X](\;). We also note that

E a;0; = o<7 .

Now
¢ ¢
v _ .V _ A A
(o), a0) = (), 6 — § :ajO‘j> == § ;a5 = Ao;0 = Qo
Jj=1 Jj=1
fori=1,...,¢. Moreover,
\ Vv ! /
(ag, ) = (re— E al oy, o) E ajja = agag; = ag;

for j =1,...,¢. Finally,
<Oq\3/,040> = <—1®95/ — 1®a(90)v _ ..-—|—rc7—90+(5> = <9(¥,90> =2,

since (a(6p)Y, 60) = 0.

We next verify relations (1.12-1.15). The relation (1.12) is easy and
the relation (1.13) is obvious. For (1.14,1.15), if ¢, 5 > 1, then we already
know that

[ e5] = ajjes, oy, fi] = —ai; f; (8.3)

For j =1,...,¢ we have

¢
\ — Vol o — 4/ .
g, €5] = [re— E:a aje E:a ‘]—_E a; Qi€ = Qg;€j5,
=1
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and similarly we get [og, f;] = —ag;fj for j = 1,...,£. Also, for i =
1,...,¢ we have
[O‘;/aeo] = [ay,t@ (F90 JrnilFU(@o) + )]

= t® <aiv7 _90>(F90 + n_ng(go) + .. )

J=1
¢
= = aija5)e
j=1

= Gjo€o-

Similarly we have [a), fo] = —a;0fo. We also have
ol eo] = [1&(=0) —0(60)" — ... )t @ (Foy + 1 Fogap) +-..)]
2t © (Foo + 1 Fogoy) + )]
= 260.

Similarly we have [ay, fo] = —2fo. Ffinally, for h = ¢ and d the relations

[h,ei] = (h,ai)e; and [h, f;] = —(h, o) f; are easy to check.

We next prove that the elements eg, e, ..., e, fo, f1,---, f¢ together
with h7 generate ﬁ(B)T Denote by g; the subalgebra generated by
this elements. We know that eq,...,ep, f1,..., f¢ generate (E{)" So the
degree 0 part of ﬁ(E)T lies in g;.

Suppose first that r = 2. We have ey = t ® (Fp, — Fy(5,)) € g1 and
Foy — Fr9y) € (E)(l). Now, it is easy to see that the elements y € (El)(l)
for which ¢t ® y € g1 form a non-zero submodule of the (El)"—module
(3)(1). Since this module is irreducible, we conclude that ¢t ® (3)(1) C g1
Now we can find elements z,y € (E)(l) such that [z,y] # 0. Then
[t®z,t®y] =1t?>® [z,y] is a non-zero element of g;. Now the set of all
z € (S)" such that t? ® z € gy is an ideal of (B)”, and (Eol)" is simple, so
?® (B)" C g1. The relations

Port*toy = "oyl (r,y€(9)7)

2ozt @y = 230,y (e @), ye @)

can then be used to show by induction on k that ¢! ® (B)” C g1 and

12+l @ (E)(l) C g1 for k > 0. The argument for & < 0 and for r = 3 is
similar.
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Finally we must show that ﬁ(E)T has non non-trivial ideals i with
iNh™ = (0). Decompose ﬁ(E)T into root spaces with respect to h”. We

first suppose that r = 2. Then ﬁ(S)T is the direct sum of h7 and the
following weight spaces:

2k @ ()7 with weight 2k6;

t2k+1 @ ()1 with weight (2k + 1)6;

Ct** ® E,, with weight a + 2k§ where {a} is a one-element orbit
of o on &;

Ct?* @ (Eq + E,(a)) with weight a + 2k§ where {o, ()} is a
two-element orbit of o on &;

Ct?* ! @ (Eq — Ey(a)) with weight o+ (2k +1)§ where {a, o()}

o
is a two-element orbit of o on A.

By the Weight Lemma, if ¢ # 0, then it has a non-zero element z in one
of these root spaces. Then we can find an element y in the negative root
space such that [z,y] is a non-zero element of 7.

When r = 3 a similar argument can be applied. This time the weight
spaces are

3% @ ()7 with weight 3k6;
t3%+1 ® () with weight (3k + 1)0;

t3%+2 @ (§)?) with weight (3k + 2)6;

Ct** @ E, with weight o + 3ké where {a} is a one-element orbit

of o on &;

Ct3*@(Ea+Ey(a)+Ex2(a)) with weight a+3ké where {o, o(a), 0% ()}
is a three-element orbit of o on &;

Ct3* ! @ (Eo + 07 Ey(a) + 1Ex2(a)) with weight a + (3k + 1)8
where {a, (), 0?(a)} is a three-element orbit of o on A.

Ct3%2 @ (Ea + NEg(a) + 1 ' Ey2(a)) with weight a + (3k + 2)8
where {a, (), 0?(a)} is a three-element orbit of o on A.

O

Corollary 8.2.2 The multiplicities of the imaginary roots are as follows:
(i) Type Aéi) : the multiplicity of any ko is £;

(ii) Type Aéi)_l: the multiplicity of any 2kd is £ and the multiplicity
of any (2k +1)6 is £ —1;
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(i) Type Déi)l: the multiplicity of any 2kd is £ and the multiplicity
of any (2k +1)6 is 1;

(iv) Type Eé2): the multiplicity of any 2kd is 4 and the multiplicity of
any (2k +1)6 is 2;

(v) Type Df’) : the multiplicity of any 3k¢§ is 2 and the multiplicity
of any (3k + 1) and (3k + 2)6 is 1.

o

Proof By the previous theorem, the multiplicity of rkd equals dim(h)?,

o

and the multiplicity of (2k 4 1)§ in cases (i)-(iv) equals dim(h)™), etc.
O

8.3 Finite Order Automorphisms

Let g be a simple finite dimensional Lie algebra of type X . Let i be a
diagram automorphism of g of order r. Let E;, F;, H; (i = 0,1,...,N)
be the elements of g introduced in §7.2, and let ag, a1, ...ay be the
roots attached to Fy, F1, ..., En, respectively. Recall that the elements
FEy, Eq,..., En generate g, and that there exists a unique linear de-
pendence Ef:o a;a; = 0 such that the a; are positive relatively prime
numbers. Recall also that the vertices of the diagram Xz(\;) are in one-
to-one correspondence with the E; and that the a; are the labels at this
diagram.

Lemma 8.3.1 Every ideal of the Lie algebra L(g, ) is of the form
P(t")L(g, p), where P(t) € L. In particular, a mazimal ideal is of the
form (1 — (at)")L(g, 1), where a € C*.

Proof Let i be a non-trivial ideal of £(g, 1), and

x=Y P (t)®a;, €i
7.8

where 0 < j < r is such that j = j (mod r), P; ,(t) € £, and a5 , € g;
are linearly independent. We show that

Q") P (1) L(g,p) Ci

for all Q(t) € L. Let hg = h* be the Cartan subalgebra of gz = g". We
can assume that x is an eigenvector for hg with weight o € b3. If o # 0,

taking [z,t/ ® a_j] with a_j of weight —a;, instead of x, we reduce the
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problem to the case « = 0 and j = 0, i.e. aj s € hg. Let v € b5 be the
root of gg such that (v,a; ) # 0. Then the element y O

Theorem 8.3.2 Let s = (sg, 81,---,8¢) be a sequence of non-negative
relatively prime numbers; put m =r Zf:o a;s;. Then

(i) The formulas
Tor + By /B (0< 5 < 4)

define (uniquely) an mth order automorphism o, of g.

(ii) Up to conjugation by an automorphism of g, the automorphisms
0sr all mth order automorphisms of g.

(i) The elements o5, and oy . are conjugate by an automorphism
of g if and only if r = r’ and the sequence s can be transformed
to the sequence s’ by an automorphism of the diagram X](\;).

Proof See Kac. ]



9

Highest weight modules over Kac-Moody
algebras

9.1 The category O

For an h-diagonalizable g-module V' we denote by P(V') the set of weights
of V. For A € h* denote

DO = {ueb |p< )

The category O is defined as follows. Its objects are g-modules V
which are h-diagonalizable with finite dimensional weight spaces and
such that there exists a finite number of elements Ay,...,As € h* such
that

P(V)C D(A)U---UD(X).

The morphisms in O are homomorphisms of g-modules. By the Weight
Lemma, any submodule or quotient module of a module from category
O is also in O. Also, a sum and a tensor product of a finite number
of modules from O is again in O. Finally, every module from O is
restricted.

A highest weight vector of weight A is a A-weight vector v in a g-
module V' such that nyv = 0. A g-module is a highest weight module
with highest weight A € h* if it is generated by a highest weight vector
of weight A. If V is such a module and vy € V' is a highest weight vector
of weight A, then

V=U@n_)on, V=EPW, Va=C-vy, dimVa<oo (A€bh).
A<A

In particular V€ O. Now form the Verma module
M(A) =U(g) ®u(e,) Ca,

where by = ny & bh and C, is the 1-dimensional by -module with the

116
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trivial action of ny and the action of h with the weight A. Let us write
va:=1®1e M(A).

This is a highest weight vector and M (A) is a highest weight module
with highest weight A. By PBW, M (A) restricted to U(n_) is a free
module of rank 1 on basis v,.

Lemma 9.1.1 Suppose V is a highest weight module with highest weight
A. Then there is a unique up to scalars surjective homomorphism from
M(A) onto V.

Proof By adjointness of tensor and Hom,
Homg (M (A), V) = Homg, (Cy, V).

It is clear that the last Hom-space is 1-dimensional. |

Proposition 9.1.2 M(A) has a unique mazimal submodule M'(A), and
the quotient

L(A) := M(A)/M'(A)

s an irreducible g-module. Moreover, every irreducible module in the
category O is isomorphic to one and only one L(A), A € b*. Finally,
Endg(L(A)) =C- IL(A)'

Proof If M is a proper submodule of M (A) then M, = 0, hence the sum
of all proper submodules of M (A) still has the trivial A-weight space, so
is still proper. This proves the existence of a unique maximal submodule,
whence L(A) is irreducible. Next, let L be an irreducible module in O.
Pick a maximal weight A of L, an let v € L. It follows that v generates
L, so by Lemma 9.1.1, L is a quotient of M (A), whence L = L(A). The
last claim is easy to check using the fact that dim L(A)x = 1. O

A vector v in a g-module V is called primitive (of weight \) if v is a
weight vector (of weight \) and there exists a submodule U C V such
that v 4+ U is a highest weight vector in V/U. Every module V € O is
generated by its primitive vectors. Indeed, let V' be the submodule of
V' generated by the primitive vectors. If V/ # V. then V/V’ contains
a highest weight vector, any preimage of which is a primitive vector.
Actually, even more is true:
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Lemma 9.1.3 Any module V € O is generated by its primitive vectors
as an n_-module.

Proof Note first that a weight vector v € V' is not primitive if and only
if v e Um_)Up(ny)v, where Up(g) stands for the augmentation ideal of
U(g). Indeed, for a weight vector v

U )Up(ny)o = Um)U(ny)npo =Um)U(ny)U(h)nyo = Ulg)npv

is the g-submodule generated by nv.

Now it follows that every non-primitive vector is obtained by appli-
cation of some elements from n_ to elements of higher weights. This
implies the lemma using boundedness from above of P(V). O

9.2 Formal Characters

Unfortunately, a module V' in O need not have a composition series. So
we cannot define things like multiplicities [V : L(A)] in the usual way.
The following provide a substitute for this:

Lemma 9.2.1 Let V € O and A € h*. Then there exists a filtration
V=V,oVieiD:---DW=0

and a subset J C {1,...,t} such that
(i) if j € J then V;/V;_1 =2 L(\;) for some Aj > X;
(i) if j & J then (V;/Vi_1), = 0 for every pn > A.

Proof Let
a(V,\) = dimV,.

n=A
This is a well-defined non-negative integer. We prove the lemma by
induction on a(V,A). If a(V,A\) = 0 then 0 = V, C V; = V is the
required filtration, with J = @. If a(V,;\) > 0, let u be a maximal
weight of M such that ;1 > A. Choose a non-zero weight vector v € V,,
and let U = U(g) - v. Clearly U is a highest weight module. Hence it
has a unique maximal submodule U’. Now we have

ocU' cUcCV

with U/U’" = L(p) and p > 0. Since a(U’, \) and a(V/U, ) are both
less than a(V, A), we now can proceed by induction. O
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Lemma 9.2.2 Let V € O, p € b* and let X be such that A < p. Consider
the corresponding filtration from Lemma 9.2.1. Then the number of
times p appears among the {\; | j € J} is independent of the choice of
filtration and also the choice if .

Proof We first observe that a filtration with respect to A is also a
filtration with respect to p when g > X. Also, the multiplicity of L(u)
in such filtration is the same whether it is regarded as a filtration with
respect to A or pu. Thus to prove the lemma it will be sufficient to
take two filtrations with respect to p and show that L(u) has the same
multiplicity in each. The following variant of the proof of the Jordan-
Holder theorem achieves this. Let

V=VWwwoWw>o>---D>V, =0, (9.1)
V=VD>V/>---DV,=0 (9.2)

be two such filtrations of lengths {1 and ls. We use induction on min(ly, l3).
If min(ly,l2) = 1 then either V is irreducible and the two filtrations are
identical or u is not a weight of p and L(u) does not appear in both
filtrations. Thus suppose min(ly,l2) > 1.

Assume first that V3 = V{. Then consider two filtrations

Vi---2V, =0,

ViD---DV,=0
of V1. By induction they give the same multiplicity of L(u), and the
filtrations for V' are obtained by adding the additional factor V/V;, which
is the same for both. So we are done in this case.

Next, assume that V7 # V{. Suppose first that one contains the other,

say V1 C V{. Then V/V; is not irreducible, so p is not a weight of V/V;.
Thus neither V/V} nor V/V{ is isomorphic to L(u). Let

VoUu;>---2>U,=0,

be a filtration of V; of the required type with respect to p. We then
consider the filtrations
VowoU---2U, =0, (9.3)
VoVioVioU DU, =0.
These are filtrations of the required type with respect to u. Moreover,

L(p) has the same multiplicity in (9.1) and (9.3), since they have the
same leading term V;. Similarly L(u) has the same multiplicity in (9.2)
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and (9.2). Finally, L(x) has the same multiplicity in (9.3) and (9.4),
since since none of V/V1,V/V{, V] /V; is isomorphic to L(y). Thus L(u)
has the same multiplicity in (9.1) and (9.2), as required.

Finally, we assume that neither of Vi, V/ is contained in the other.
Let U = V3 NV{ and choose a filtration of U of the required type with
respect to u:

UoU;>---D>U, =0.
We then consider the filtrations

VoviboUoU---D>U,=0, (9.5)
VoV/ioUDU;--- DU, =0.

These are filtrations of the required type with respect to p. This is clear
since

Vi/U= W+ V)V, VI/U=WVi+V)/V.

Now L(u) has the same multiplicity in (9.1), (9.5) and in (9.2), (9.6),
since they have the same leading term. It is therefore sufficient to show
that L(p) has the same multiplicity in (9.5) and (9.6). These filtrations
differ only in the two first factors. If V3 + V5 = V then we have

V/Vi = VU, VIV =V,

and we are done. If V1 +V{ # V then V/V; and V/V] are not irreducible.
In this case p is not a weight of V/V; and V/VY, so it is not a weight
of V1/U. Thus none of V/Vy, V4 /U, V/V{, V//U is isomorphic to L(1u).
This completes the proof. |

Now, let V € O and p € h*. Fix A € h* such that A < p and construct
a filtration as in Lemma 9.2.1. Denote by [V : L(p)] the number of times
p appears among the {\; | j € J} and call it the multiplicity of L(p) in
V. In view of Lemma 9.2.2, the multiplicity is well-defined.

Given amodule V' € O, we have by definition that all its weight spaces
are finite dimensional. The idea of the formal character is to record the
dimensions of each of these weight spaces in one ”book-keeping devise”
or a generating function. Since there may be infinitely many weights in
P(V), we are going to have to work with certain formal infinite sums.

So let £ be the C-algebra whose elements are series of the form

Z exe(N)

Aeh*
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where ¢y € C and ¢y = 0 for X outside the union of a finite number of
sets of the form D(u). The sum of two such series and the multiplication
by a scalar are defined in the usual way. The product of two such series
also makes sense if we use the rule e(A)e(u) = e(A+ ) and note that to
calculate the coefficient of a given e(v) in the product of two elements
in £ only involves calculating a finite sum. Under these operations &
becomes a commutative associative C-algebra with identity e(0).
Given a module V' € O, define its formal character to be

ch V= (dimVy)e()) € £.
A€h*

By definition, we have

ch(VeW)=chV+chW, ch(V®W)=chVchW.

Proposition 9.2.3 Let V € O. Then

chV =" [V:L(\)ch L()).

Aeh*

Proof Let

p(V)=chV = > [V :L(\)ch L().
Aeh*

Note that ¢(V) € £. Moreover, p(L(A)) = 0 and, given a SES of
modules

0—-Vi—->Vo—-V3—-0

we have ¢(V2) = (V1) + ¢(V3). Now let us focus on a particular A and
V. By Lemma 9.2.1, there exists a filtration

V=V,oVi1DDVp=0

such that, setting W; := V;/V;_1, we have either W; = L();) for some
A; > A or that (W;), = 0. In the former case o(W;) = 0. In the latter
case p(W;) has e(\)-coefficient 0. This was for all A, so (V) =0. [

Lemma 9.2.4 For any A € h* the formal character of the Verma module
18 given by

ch M(\) =e()) H (1— e(_a))—multa.

aEAL
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Proof Follows from PBW-theorem and freeness of M(\) over U(n_).
O

Assume that A is symmetrizable and let (-|-) be the standard form
on g. Recall from Corollary 2.3.6 that if V' is a g-module with highest
weight A, then

Q= (A+pl*—[p])Iv.

Proposition 9.2.5 Let V' be a g-module with highest weight A. Then

chV = > exch M()), (9.7)
ASA, [Mpl2=|Atpl2

where cy € Z, cp = 1.

Proof In view of Proposition 9.2.3, we may assume that V' = L(A).
Using the same proposition, for any p we deduce

ch M(p) = Z cuvch L(v),

v<p

for some non-negative integers c,,, with ¢, ,, = 1. We know that c,,, # 0
if and only if M () contains a primitive vector of weight v. Using the
action of the Casimir we deduce that ¢, , = 0 unless |u+ p|* = |v + p|*.

Set B(A) = {\ < A | |A+p|> = |A + p|?}, and order elements of this
set, A1, Ag,... so that A; > A; implies ¢ < 5. Then

ch M(/\Z) = Z Ci7jCh L()\j),
J

with ¢; ; = 1 and ¢; ; = 0 for j > 4. So we can solve this system of linear
equations to complete the proof of the lemma. |

9.3 Generators and relations

Recall from chapter 1 that g = g/v, and vt = v; @ v_ where vy are ideals
of g defined by t2 =tNny. Set tp, =tNgq.
We deal with some general lemmas first.

Lemma 9.3.1 Let 0 : g — g be a surjective homomorphism of Lie
algebras with kernelv. Let ¢ : U(g) — U(g’) be the corresponding homo-
morphism between enveloping algebras. Then the kernel of ¢ is tU(g).
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Proof Since v is an ideal of g, tU(g) is a two-sided ideal of U(g). More-
over, tU(g) C ker p. Conversely, we have a homomorphism

a:U(g)/tU(g) — U(g')

induced by ¢. We consider the Lie algebra U(g)/tU(g) (with respect to
the commutator bracket). Define a map

g — Ulg)/tU(g)

as follows. Given 2’ € g’, choose 1 € g with 6(x1) = 2’. Then x; gives
rise to 1 € U(g)/tU(g). This map is well-defined and is a Lie algebra
homomorphism. By the universal property there is a map

B:U(g") — Ulg)/cU(g)

extending the constructed homomorphism of Lie algebras. It is readily
checked that a and (3 are inverse homomorphisms, and thus isomor-
phisms. 0

The two-sided ideal Uy(g) := gU(g) of U(g) is called the augmentation
ideal of U(g).

Lemma 9.3.2 gN (Up(g)?) = [g, 9]

Proof Since g C Up(g) and [x,y] = zy — yx in U(g), the embedding
g N (Uo(g)?) D [g,9] is clear. Conversely, let g = g/[g,g]. We have a
natural homomorphism U(g) — U(g) under which g N (Up(g)?) maps to
N (Up(g)?). Now g is abelian, so U(g) is a polynomial algebra. In such
a polynomial algebra, it is evident that g N (Up(g)?) = 0. It follows that
N (Up(g)?) lies in the kernel of g — g, and so gN (Up(g)?) C [g,9]. O

Lemma 9.3.3 Let v be a subalgebra of the Lie algebra g. Then t N
Wo(g) = [r,1].

Proof Since v C Up(r) and [z, y] = zy — yx in U(r), we have

[t,t] C tNeUy(r) C tNeln(g).

Conversely, let {r;} be a basis of v and extend it to a basis {r;,u;} of g.
The monomials [] " uj’ with Y- m; + Y n; > 0 form a basis of Uy(g)
and those with Y m; + > " n; > 2 and ) m,; > 1 form a basis of tUy(g).
Hence, each element of v NtUp(g) is a linear combination of monomials
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[Tr"u)” with Y n; =0 and Y m; > 2. Hence
tNtlo(g) C tNUp(x)? = [t,1],

where the last equality comes from Lemma 9.3.2 |

Proposition 9.3.4 The ideal vy (resp. t_) is generated as an ideal
in 4 (resp. n_) by those vy (resp. t_,) for which o € Q4+ \ II and

2(pla) = (ala).
Proof We define a Verma module M (A\) over g by
M()‘) =U(g) ®U(6+) Cx,

where b, = A, @ h and C, is the 1-dimensional b, -module with the
trivial action of n;. and the action of h with the weight A. As for the usual
Verma modules, one proves that M (M) has a unique maximal proper
submodule M’()\) and that as a U(fi_)-module, M()) is a free module
on the generator vy :=1® 1.

Consider the special case A = 0. Write v := 199 = 1®1 € M(O) Since
n_ is a free Lie algebra on f1,..., fn, U(n_) is a free associative algebra
on fi,..., fn. So as vector spaces,

Un_)=CleUm_)fi®---aUm_)f.

Thus U(n_)f1 @ - - @ U(n_)f, is a U(n_)-submodule of codimension 1
in U(n_). It corresponds to the subspace

@ Un-)fiv
i=1
of codimension 1 in M (0). Moreover, this subspace is a g-submodule

isomorphic to @}, M (—a;) since the vectors f; are easily checked to
be highest weight vectors of weight —a;, i = 1,...,n. It follows that

M'(0) = P UG- fiD = P M(—a).
i=1 i=1
Tensoring with U(g)®y () we get an isomorphism of U(g)-modules
U(g) ®ueg) M'(0) = P M(~a;). (9.8)
i=1

Let 7 : g — g be the canonical homomorphism. We define a map

A = U(g) QU (a) M’(O), a—1® a(v).
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This is a g-module homomorphism, where g acts on t_ via the adjoint
action. Indeed, for = € g,a € v_, we have

M([z,a]) =1® (za — az)(0) = w(x) @ a(0) = (A1 (a))

since 7(a) = 0. A similar calculation shows that A;([t_,t_]) = 0. So we
have a g-module homomorphism

Niv e ] — @M(—ai) 9.9)

by (9.8). More explicitly A is described as follows: write a € t_ in the
form a = ), u; fi, where u; € Up(n_), and the action of u; on f; is the
adjoint action extended to the universal enveloping. Then

Ma+ e v ]) =D m(u;)v;,
where v; is the highest weight vector of M (—a).

We claim that A is injective. Indeed, A(a + [t—,t_]) = 0 implies
m(u;) = 0 for all 4, hence u; € t_U(n_), see Lemma 9.3.1. So > u;f; €
t_Up(n_). Soa € t_Nt_Uy(n_) = [t_,r_] by Lemma 9.3.3. Thus we
have an embedding (9.9) in the category O.

Now let —« (o € Q4+ ) be a primitive weight of the g-module v_ /[t_, v_].
Note that o &€ II since no f; belongs to t_. Using the embedding and the
action of Casimir we deduce that (—a+p|—a+p) = (—a; +p| — a; +p)
for some 7. Since 2(p|a;) = (a;]ay) by (2.18), we get 2(pla) = (a]a).

By Lemma 9.1.3, v_/[t_,t_] is generated as an n_-module by the
representatives of those t_, for which o € A} \ II and 2(p|a) = (ala).
We want to deduce from it that v_ is generated as an n_-module by
such t, (equivalently the ideal of fi_ generated by such t_,). Let € be
the the n_-submodule generated by such t_,. Then €+ [t_,v_] = t_.
Suppose € # v_. Then v_ /¢ is an n_-module. Consider the submodule
[t_/t,v_ /8] of t_ /€ This is an n_-module whose weights are of the form
B+~ where [, are weights of t_ /€. Thus if « is a weight of t_ /¢ for
which | ht «| is minimal then a cannot be a weight of [t_ /¢, v_ /€]. Thus
[t_/t,v_ /€ # v_/¢, and this gives €+ [t_,t_] # t_, a contradiction.

This completes the proof for t_. The result for ¢t follows by applying
the involution @. O

Theorem 9.3.5 Let A be symmetrizable. Then the elements
(ade;)'"%ie;, i#j  (i,j=1,...,n), (9.10)
(ad f;)' "% f;, i#j  (4,j=1,...,n) (9.11)



126 Highest weight modules over Kac-Moody algebras

generate the ideals vy and v_, respectively.

Proof Denote by g the quotient of g by the ideal generated by all ele-
ments (9.10) and (9.11). The natural surjection g — g factors through
surjections g — g — g, thanks to Lemma 3.1.1. We have the induced

Q-gradation of g:
g= @ 9o

acQ

Let T (resp. t+) denote the image of ¢ (resp. t+) in g. We just need to
show that T, = 0 (then T_ = 0 too by applying ©). Otherwise, choose
the root a of minimal height among the roots a € Q4 \ {0} such that
(*4)a # 0 and let @ = 3" k;a;. Tt is clear that (), must occur in any
system of homogeneous generators of v as an ideal of ny. It follows
from Proposition 9.3.4 that (a]a) = 2(p|a).

We know that the Weyl group W acts on the weights of g = g/t and
that weights in the same W-orbit have the same multiplicity. The same
argument can be applied to g to give a similar result (the proofs in §3.2
relied only on Serre relations, which hold in g). Since

dim g, = dim g, + dim<t,

we see that W acts on the weights of ¥ and that weights in the same
W-orbit have the same multiplicity. It follows using Lemma 3.2.2 that
(*4+)r;a # 0 for any i. Now ht (r;a) > ht (o) implies (a;|a) < 0, whence
(o) < 0. But

2(pla) =2 Eilplai) = > kilailai) > 0.
This contradicts (a|a) = 2(p|a). O



10
Weyl-Kac Character formula

10.1 Integrable highest weight modules and Weyl group

Set
P = {eb |(hal)eZ(i=1,...,n)}
Pr = {DeP|l(\a/)>20(=1,...,n)},
Py, = (DeP|(Na))>0(@G=1,...,n)}

The set P is called the weight lattice, elements from P (resp. Py, resp.
Py 1) are called integral weights (resp. dominant, resp. regular dominant
weights). Note that P contains the root lattice Q.

Let V be a highest weight module over g with highest weight vector
v. It follows from Lemmas 3.1.2(ii) and 3.1.3 that V is integrable if and
only iffiNiv =0 for some N; >0 (i=1,...,n).

Lemma 10.1.1 The g-module L(A) is integrable if and only if A € Py.

Proof Follows from the previous paragraph and representation theory
of Slg. 0

Denote by P(A) the set of weights of L(A). It is clear that P(A) C P
if A\ € P. The following proposition follows from Lemma 10.1.1 and
Proposition 3.2.3.

Proposition 10.1.2 If A € Py, then for all w € W we have
multz ) A = multz ) w(N).

In particular, P(A) is W-invariant.

127
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Corollary 10.1.3 If A € P, then any A € P(A) is W-conjugate to a
unique p € P N P(A).

Proof Follows from Proposition 3.4.1. |

We let W act on the complex vector space € of all (possibly infinite)
formal linear combinations }, cxe(X) by

w(z cxe(N)) = Z cxe(wA).
A A

The space € contains £ as a subspace. However, the product of two ele-
ments P;, P, € £ doesn’t always make sense. If it does, then w(P P2) =
w(Py)w(Pe). Proposition 10.1.2 implies that

w(ch L(A)) = ch L(A) (we W, Ae Py). (10.1)

Consider now the element
R = H (1 —e(—a))multe c g,
aEA,
For w € W set
e(w) == (=1)"®) = dety- w.
We next claim that
w(e(p)R) = s(w)e(p)R  (w € W). (10.2)

Indeed, it is sufficient to check (10.2) for each fundamental reflection r;.
Recall that the set Ay \ {o;} is 7-invariant and mult r;(a)) = mult « for
a€e Ay So

ri(e(p)R) = (rie(p))(riR)
= e(rip)ri(l —e(—ay)) H ri(1— e(ia))multa
a€A\{a;}
= e(p—ai)(1 —e(a)) H (1 — e(—q))mmlte
a€A\{a;}
= —e(p)R.

10.2 The character formula

From now on we assume that A is symmetrizable and (-|-) is the standard
bilinear form on g.
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Lemma 10.2.1 Let A,A € P, A < A, and A+ X € P.. Then either
(A+ X)) =0 fori € supp (A — X) or (A|[A) > (A|X). In particular, if
A€ Py, N€ Py, and A < A, then (A|A) > (AN).

Proof We have A — X\ =" kja;, k; € Z,. Hence

(cvila)

(AJA) = (AX) = (A + XA =) = 3222

i

k; <A + A, Oézv>
Since (a;|a;) > 0 the result follows. O

Theorem 10.2.2 (Weyl-Kac character formula) Let g be a sym-
metrizable Kac-Moody algebra, and let L(A) be an irreducible g-module
with highest weight A € P,. Then

2wew E(W)e(w(A + p) — p)

Ch L(A) = HQGAJr(l _ e(_a))multa

(10.3)

Proof Multiplying both sides of (9.7) by e(p)R and using Lemma 9.2.4,
we get
e(p)Rch L(A) = Z exe(A+ p), (10.4)
A<A, [Atpl2=[A+p|?
for ¢y € Z with ¢4 = 1. By (10.1) and (10.2), the LHS of the last

equation is W-skew-invariant. Hence the coefficients in the RHS have
the following property:

ey =e(w)e, f wA+p) = p+ p for some w € W. (10.5)

Let A be such that cy # 0. Then by (10.5) we have c,,(x4,)—, 7 0 for all
w € W. Hence it follows from (10.4) that w(A+p) < A+pforallw € W.
Let u € {w(A+p) —p | w € W} be such that ht (A — p) is minimal.
Then p+p € Py and |+ p|?> = |A+p|%. Applying Lemma 10.2.1 to the
elements A + p € Py and p + p, we deduce that g = A. Thus ¢y # 0
implies A = w(A + p) for some w € W, and in this case ¢y = e(w), see
(10.5).

But A+p € Py, so by Proposition 3.4.1(ii), w(A+p) = A+ p implies
w = 1. Hence finally we obtain

e(p)Rh L(A) = 3 e(w)e(w(A + p) - p),
weW

as required. ]
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Take A = 0 in the Weyl-Kac character formula. Since L(0) is the
trivial module, its character is e(0) = 1g. This gives the following de-
nominator identity:

T (- e(-ap™™ = 3" c(we(w(p) - p).  (10.6)

a€Ay weW

Substituting into (10.3) we get another form of the Weyl-Kac character
formula:

Y wew E(w)e(w(A + p) — p)
wew Ewe(w(p) —p)

ch L(A) = (10.7)

Remark 10.2.3 In the proof of the Weyl-Kac formula we never used
the fact that L(A) is irreducible, but only that L(A) is integrable highest
weight module with highest weight A. This happens if and only if A € P,
and

FReDT 20 (i=1,...,n). (10.8)
Indeed, if L(A) is integrable, then clearly A € P,. Moreover, if the (10.8)
fails then one of the f;A’aile(vA) is a non-zero highest weight vector
of negative highest weight for the corresponding sls, which contradicts
integrability again. The converse follows from Lemmas 3.1.2(ii) and
3.1.3. We make two conclusions: first, if A € Py is dominant and V'
is an integrable module generated by highest weight vector of weight A
then V = L(A). Second,

L) = M)/ W) wy) (Me P (109)

Consider the expansion

II G —e(=a)—™ =" K(B)e(-p), (10.10)
aEA Beh*
defining the function
K:b —>7Z,
called the (generalized Kostant) partition function. Note that K(5) =0
unless § € Q4+, K(0) = 1, and for 8 € Q4+, K(fB) is the number of

partitions of § into a sum of positive roots. Now the character formula
for Verma modules can be rewritten as follows:

multM(A)/\ = K(A*)\) (1011)
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Now, substitute (10.10) to (10.3):

D (multpay Ne(\) = Y e(wle(w(A+p)—p) Y K(B)

A<A wew Beb*
= D) ew (=B+w(A+p)—p)
weW pgeh*
= Y Y WK wlA )~ (k).
weW Neh*

Comparing the coefficients at e()\), we obtain the (generalized) Kostant
multiplicity formula:

multpy A= Y e(w)K(w(A+p) — (A+p)). (10.12)
weWw

Assume now that A is of finite type and for any A € P denote

() = Zuwew SO tp) = p) _ Byew e(@)ew( + )
> wew e(w)e(w(p) — p) >wew E(w)e(w(p))

In particular, for A € Py, we have x(\) = ch L(\), but it makes sense
to consider x(A) for any A € P. It is interesting to specialize e(a) to
1 for all @. The result of such specialization in the expression x(A) is
denoted d(A). For example, if A € Py, then d(A\) = dim L(\). There is
a nice fomula for d(A) called the Weyl dimension formula:

[laea, (A +pla)

S VN7

(10.13)

To prove the formula, let £ be the ring for g defined in §9.2 and denote
by & the subring consisting of all finite sums . p n,e(p) with n, € Z.
Then we have in &g:

(3 clwe(wn)x) = 3 ewew(Ar+ p)). (10.14)

weWw weWw

Let A = R[[t]]. Then for each £ € P we have a ring homomorphism

be: &0 — A, e() — exp((El)t).
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We have
0e( 3 cwe(wn) = 3 w)exp((¢lwp))
wew weWw
= ) e(w)exp((ulwé)t)
wew
= 0, Z e(w)e(wf)).
weWw

In particular we have

0,( 3 elwewh+p) = Ory( Y cwewn))

weW weWw

= Oriple—p H (e(a) = 1))

aEA L

= exp(A+pl=p)t) J] exp((r+ pla)t) — 1)

aEAy

= NI O +ple)+...),

aEA L
where N = |A|. By putting A = 0 we obtain
0,03 e(we(wp)) = t¥( I (pla) +...).
weW aEA L
Thus by applying 6, to (10.14), we obtain

tCIT (pla) +.08,00) =tV CTT A+ pla) +...).

a€EA L aE€Ay

By canceling ¢tV and taking the constant term we obtain

II lyd) = T A+ ple).

aE€A acAy

10.3 Example: L(sly)
Consider the denominator identity for the case g = ﬁ(slg). Remember
from Example 1.5.4 that the positive roots are of the form «; + ké for
k € Z, and —aq +nd, né for n € N, and that they all have multiplicity

1. Denote e(—d) by g and e(—a1) by z. Then the left hand side of (10.6)
is

[Ta-gHa-g 2 —gz ).

n>0
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To compute the right hand side, remember from Example 3.4.2(ii) that
W = ZxSs, where the generators 1 € Z and s € Sy act on weights by
the following formulas

1 : ag—a;—2, §— 0, Ag — a1 — 6+ Ay,

s : ai+— —ag, 0+— 0, Ag— Ag.
Now, we can take p = a1/2 + 2Ay. So
1 : p—p+2a; — 39,
s 1 oprp—ar.
We deduce that

m i pr p+2mag — (2m? 4+ m)d,
sm i prp—(2m+ Dag — (2m* +m)é.

Now the right hand side of (10.6) is
S ce(wp)—p) = 3 e@mar — (@2m? +m)3)

weWw meZ
- Z e(—(2m 4+ 1)y — (2m? +m)0d)
meZ

= (el —han - My

kez
S SRS
kez
So the Weyl-Kac denominator identity for the easiest affine type Agl)
becomes
[[a-am—g""2)-g"h) =) (-1)"z"q

n>0 mMEZL

m(m—1)
2

This is a highly non-trivial Jacobi’s triple product identity. Let us divide
both sides by (1 — z) to get an equivalent form

. =2k _ o (2k+1) R
[Ta-am0-q"2)(1-q"z ):ZT‘J :

n>0 keZ

By various specializations we get more famous identities. For example,
take z = 1 in the second form to get

0(q)® = (4k + 1)g"CH+),
keZ
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where

e(g) =[] —q".

n>0

Another specialization is obtained by applying a homomorphism
0 : Clle(—ao), e(—a1)l] — Cllg]l, e(—ao) = ¢*°, e(—a1) — ¢**.
Then the first form specializes to

H (1 o q(soJrsl)n)(l o qso(n*1)+81n)(1 o q30n+51(n71))

n>0

e e

meEZ

Let us take (so,s1) = (1,1). We obtain

or

1-qP1-)1-¢*)1-¢")1-¢")1—-¢%...
= 1-2¢+2¢* —2¢° +2¢'0 — ...

This is a classical Gauss identity. Next take (sg,s1) = (2,1). We obtain

elg)= > (-1)"q

m(3m—1)
2

or

(1-(1-)1 -1 —gHY1-")(1-4°%...
e =P P4 =P R~

This is a classical Fuler identity.

10.4 Complete reducibility

Lemma 10.4.1 Let A be symmetrizable and V € O. Assume that for
any primitive weights A\, u of V' such that A > u one has

20+ plA = p) # (A= plA = p). (10.15)

Then V' is completely reducible.
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Proof Every module in O is locally finite over £ (this follows from the
fact that Q preserves weight spaces). It follows that V is a direct sum
of generalized eigenspaces for 2. We may assume that V is one such
eigenspace, i.e. 2 — al acts locally nilpotently on V for some a € C.
Now, let v be a primitive vector of weight A. Then there is a submodule
U such that Q(v) = (]A + p|2 — |p|*)v (mod U) (see Corollary 2.3.6).
Hence [A+p|? —|p|? = a, whence |\ +p|? = |u+p|? for any two primitive
weight A and p, which is equivalent to 2(A + p|A — p) £ (A — p|A — w),
which contradicts (10.15).

So we have proved that for two primitive weights A and p of V, the
inequality A > p implies A = p. This property actually implies complete
reducibility. Indeed, let V0 = @, LV/\O be the space of singular vectors
in V (i.e. vectors killed by ny ), where L is the set of singular weights.
Let v be a nonzero vector from V. Then U(g)v is irreducible. Indeed, if
this is not the case, there is a non-trivial submodule U C U(g)v, whose
maximal p weight would be singular and u < A. Therefore the U(g)-
submodule V' generated by V° is completely reducible. It remains to
show that V' = V. If this is not the case, consider a singular vector
v+ V' of weight p in V/V’. We have e;(v) € V' for all 4, and e;(v) # 0
for some i. But then, in view of Lemma 9.1.3, there exists a primitive
weight A > p + «; > u, giving a contradiction. |

Theorem 10.4.2 Let g be symmetrizable. Then every integrable module
from the category O is a direct sum of modules L(A), A € Py.

Proof In view of Lemma 10.4.1, it suffices to check that if A > p are
primitive weights and § := A — u, then

20\ + p,v=1(B)) # (B15)-

Since the module is integrable, we have
N o) €eZy (i=1,...,n)
for every primitive weight A\. But then

20+ p,vH(0) = (BIB) = A+ (A =0)+2p,071(B))
= (A+p+2p,071(9) >0,

Corollary 10.4.3
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(i) A g-module V€ O is integrable if and only if V is a direct sum
of modules L(A) with A € Py.

(ii) Tensor product of a finite number of integrable highest weight
modules is a direct sum of modules L(A) with A € Py.

10.5 Macdonald’s identities

From now on we assume that g is affine.
Recall the Kac’s denominator formula (10.6):

[T (= e(-ap™iie = 3 cwew(p) - p)

acAy weWw

We first assume that g is an untwisted affine algebra, ie. g = ﬁ(a)
Then

A = {a+n5|o¢€£,nEZ}U{nMnEZ,n#O}.
A, = {a+n6|a€£,n>0}U£+U{n6\n>0}.
The left hand side of the denominator formula can be expressed as

[T a-e-an]] ((1 —e(-n8)" T (1 —e(~a —na))).

o 0 o
Q€AY "> €A

We also recall that

W=TW, T={ta|acM}

where
() = A+ (A, — ((Ala) + 3 (ala)(A, )5
and
M= { Zle Loy for types A[(Zl)7 Dél), ELEU;
S tong 20 + Y. shore PLav; for types BV, OV, BV, GV,

In calculating the right hand side of the denominator formula we recall
that

o

bh=bh®Cc®Cd,  b* = ()" ®C5® CAo.

Accordingly A € h* can be written as

X=X +\ Ao + (A, d)d
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where 3)\6 ([;)* We also recall that p € h* satisfies
(p,d) =0, <p,a2\/>:1 (0<i<).
Since {p, c) = Zf:o ay = hY, we have
1) :;) +hV Ay
where pe (f;)* satisfies
(p,aly=1 (1<i<).

We now consider the right hand side of the denominator formula. Let

w € W have form w =10 t, where &EV?/ and o € M. Then

wip)—p = Wtalp) = p
= z%(p+hvcu—<<p|> %(ala) Y)6) = p
= w(p)—p+h'w(a)— ((pla)+ %OAOé)hv)‘S
— w(p)—p+hYw(a)—((P]a)+ a|a)hv)§.

since 1w (Ag) = Ag and (Ag,a) = 0 for « € M. Now the last expression
equals

. o o [e] h\/ (e} h\/ _ (o) o
& (Wart p—p—LF a|p;rhva) (P10

Denote
c(A) = (A+plA+p) = (plp)-
If A € (h)* then
c(A) = (A+ P\ P) — (P D).

We also write for A € (h)*,

o e(w)e(w(p)— P)

wew

2

When A € (h)* is dominant integral, x(A) is the character of the ir-
reducible g-module L(X). However ¢(\) and x(z(\) are defined for all
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X € (h)*. Using the denominator formula for 5 we have

S cwlewip) —p) = 33 e(@)e(@ (h¥a+ p)— 5)6(#5)
weWw QEM&/EV([)/
= Y etk (B)- 7)Y X (Ve =0 )
&EI/‘O/ aeM
— ey Y va)e =L,
a€&+ aeM
We now put
q = e(—0)

and equate the left- and right-hand sides of Kac’s denominator formula.
We obtain:

Theorem 10.5.1 (Untwisted Macdonald’s Identity)

T (-0 [T - ael-ap) = 3 & eyt e

n>0 aeg aeM

We have seen that in the special case the Macdonald’s identity gives
Jacobi’s triple product identity.

We next state Macdonald’s identities for the twisted affine algebras.
The right hand side looks the same as before, the only change being that
the appropriate lattice M should be taken in each case, see Lemma 6.4.2.

Theorem 10.5.2 We have L = R, where

R— Z )"( (hva)qc(hva)/ghv
aeEM

and L is given as follows:

2.
IT [0 TT a-et-a) T ("= ) (1-2"el-a)|
n>0 a€l, acld;

Agi)fl"

IT [0 T aeavet-a) T 0-e(-a)

>0 o o
n aEA, AN}
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(2) .
D€+1'

IT |-y T1 a-aet-ap T a-¢"e(-a)

n>0 a€A, €A,
B
IT [0y T] (-ae-a)) TT a-¢"e(-a)]
n>0 aégs (1621
DY
11 [(1—q3">2<1—q3"-1><1—q3"-2> I 0-ae-a) I] <1—q3"e<—a>>]
n>0 aeﬁs 01631,
where
Zf: Zov; for types Agi)_l, Dg_)l, Eé2), DS’)
2
M= Zai long %Zal + Zai short Zai fO’f' typ@ Agl)
%Zal for type Ag)

Example 10.5.3 In the case A(QQ) we get the following quintuple product
identity:

[T =g =gz A =g o)1 = ¢ 272 (1 = ¢* 2%
n>0

_ Z<an _ Z—3n+1)q7"<3';*1>_

neZ

10.6 Specializations of Macdonald’s identities

One way to specialize is simply replace e(a) with 1 for all « e& The

result of such specialization in the expression X (M) is denoted d (N,
which is given essentially by the Weyl dimension formula (10.13):

M,z APl

d(X) = 5
ek, (P le)
Remember that

p@)=T[0-q"

n>0
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is the Euler function. Now the specialization of the left hand side of the

untwisted Macdonald identity is p(q)HA! = (g)1™9. So we get
Theorem 10.6.1 (Macdonald’s ¢-function identity)

(P(Q)dimg _ Z d(hva)qc(h a)/2h )
aeM

Example 10.6.2

Type Aﬁl):
p(q)® = 3 (4n +1)g" 0,
nez
Type AS):
1
p@f= Y Z(6m1—3nz+1)(~3n +6n2 +1)
(n1,n2)€Z?
X (3n1 + 3ng + 2)q3n§_3n1n2+3"§+n1+n2).
Type C'él):
@(q)lo — Z (12711 - 67’12 —+ 1)(_6n1 + 6712 + 1)
(n1,n2)€Z?
X(QTLQ + 1)(3n1 + 1)q6n§—6n1n2+3n§+n1+n2).
Type Ggl):

1
pl@) = 15 (81 = 1202 + 1)(=12n1 + 24n2 + 1)
(n1,n2)€Z?
><(3n1 —3ng + 1)(12ny + 5)(—2n1 + 6n9 + 1)
x (4711 + 3)q4nf712n1n2+12n§+n1+n2)'

Theorem 10.6.3 (Macdonald’s twisted ¢-function identities) We
have L = R where

R— Z zl(hva)qc(hva)ﬂhv,
aeM
and L is given as follows:
2 1 2 _ ¢
AR o(a%)?p(a)* Hp(q?)
2 2 g
AS) 15 o)~ p(¢?) 2

2 2_yp_
Dé+)1-' gp(q)Q”lga(qQ)” ¢ L
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2
B o(q)*0(g%)%;
3
DY: p(a)p(¢?)".
Example 10.6.4
Type Agz):

0(q2e(@)e(e?)? =D (3n+ 1)+,
nez

Type Df) :

1
0(@)’e(®)’ = > 5 (811 — dny + 1)(~8ny +8nz + 1)
(n1,n2)€2?

X (8n1 + 3)(2ng + 1)q8n§—8n1n2+4n§+2n1+n2).

10.7 On converegence of characters

If we replace e()) in the formal character by the function
e:h—C, h el
we will get the (”informal”) character
chy :h—-C

of the module V' € O. Of course, now the questions of convergence arise.
Let Y(V) be the set of elements h € b such that the series converges
absolutely. Note that

chy(h) = trye" (heY(V)).
Define the complezified Tits cone X¢ by
Xe={o+iy| o € X,y € ha}

Set
Y = {hep] Z (mult a)[e ™M | < 0o},
ac€Ay
Yy = {hebh|Relaj,h) >N foralli=1,2... n} (N eRy).

Note by Proposition 3.4.1(iii) that Y C X¢. We also have

Xe= |J w(¥). (10.16)
wew

Lemma 10.7.1 Let V' be a highest weight module over g. Then
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(i) Y(V) is a convex set.
(i) Y(V) DY NY,.
(i) Y(V) 5 Yian.

Proof (i) is clear from the convexity of the function |e*| (a function f
is called convex if its domain D is a convex set and f(tz + (1 —t)y) <
tf(x)+(1—t)f(y) forany x,y € D and t € [0, 1]. Now each |e*| is defined
on h, and if the series ch y converges at h; and ho then the convexity
property guarantees that ch y converges at thy 4+ (1 — t)hs (actually to
a convex function)). Moreover, since V' is a quotient of some M (A), we
have

multy A < K(A — \),
which gives

37 (multy N)[e™M | < (eM]ST K ()00
AED” BEQ+

|6<A’h>| H (1 _ |e—(a7h)|)—multa’
ac€Ay

provided h € Yy. The product converges for h € Y. This proves (ii).
Now (iii) follows from (ii) since Y1, C Yy and also Y1,, C Y in view of
(1.16). U]

Lemma 10.7.2 Let T' C X¢ be an open convexr W -invariant set. Then

T C convex hull ( U w(T NYy)).
weWw

Proof Note that Ty := |J, e w(Yo \ Yo) is nowhere dense (interior of
closure is empty) in X¢. Hence every h € T lies in the convex hull of
T\ To=Uyew (T'NYy) applied to T' = Int Xc. O

For a convex set R in a real vector space denote by Int R the interior
of R.

Proposition 10.7.3 Let A € Py. Then
(i) Y(L(A)) is a solid (i.e. has mon-empty interior) conver W -
invariant set, which for every x € Int X¢ contains tx for all
sufficiently large t € R.
(ii) ch ray is a holomorphic function on Int Y (L(A)).
(iii) Y(L(A)) D IntY.
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(iv) The series 3, ey €(w)e® ™) converges absolutely on Int X¢ to
a holomorphic function, and diverges absolutely on b \ Int Xc¢.

(v) Provided that A is symmetrizable, ch 5y can be extended from
Y(L(A)) N X¢ to a meromorphic function on Int X¢.

Proof Set T = IntY. Then T is open, convex (see the proof of
Lemma 10.7.1(i)), and W-invariant. By Lemma 10.7.1(ii), we have
Y (L(A)) D YNYy. Furthermore, Lemma 10.7.1(i) and Proposition 10.1.2
imply that Y (L(A) is a convex W-invariant set. Now (iii) follows from
Lemma 10.7.2.

To finish the proof of (i), we have to show that X’ := {z € Int X¢ |
tx € Y(L(A)) for all sufficiently large ¢t € R} coincides with Int X¢. But
again X' is W-invariant, convex, and contains Yy by Lemma 10.7.1(iii).
So X' contains the convex hull of [ J,,c w(Yo) = Int Xc, the last equal-
ity being true by Lemma 10.7.2.

The convexity of |e*| implies that the absolute convergence is uniform
on compact sets. This implies (ii).

(iv) By Proposition 3.4.1(ii), all w(A + p) — (A + p) are distinct, and
also w(A+p) — (A + p) € —Q4+. Hence we have for all h € Yj:

|Z w(A+p) (A+p)h‘< Z |e ah>‘<oo

weWw a€Q4

Thus the region of absolute convergence of our series contains Yy and is
convex and W-invariant, so it contains Int X¢, as above. On the other
hand, let h € b\ Xc. Then the set A := {a € A% | Re(o, h) < 0}
is infinite by Proposition 3.4.1(iii),(vi), and for every a € A® we have
le{ra(Atr)h)| > |e(Ateh) | proving divergence at h.

(v) follows from (iv) and the Weyl character formula. O
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Irreducible Modules for affine algebras

Throughout g is affine.

11.1 Weights of irreducible modules

Let A € h*. Since Ag,Aq,..., Ay, 0 form a basis of h*, we can write
)\:SOA0+81A2+"'+S[AZ+85 (CZ',CE(C).

Note that A € P if and only if all ¢; € Z, and A € Py if and only if all
c; € Zzo.

Let A € Py. Then every weight p of L(A) is of the form A — mgag —
miaq —- - - —mgay for some m; € Z>q. Since (ay,c) = 0 we have (i, ¢) =
(X, c) for any weight p of L(\). Now, (A, ¢) = Zf:o al (N ) € Z>o.
This non-negative integer (A, ¢) is referred to as the level of the module
L(N).

Proposition 11.1.1 If L(\) has level zero, then A = sd for some s € C
and dim L(\) = 1.

Proof The first statement is clear and from the Weyl-Kac character
formula we get ch L(sd) = e(s0). O

From now on we concentrate on higher levels.
Theorem 11.1.2 Let A € Py and (A\,¢) > 0. Then u € P is a weight
of L(\) if and only if there exists w € W such that w(u) € Py and
w(p) < A

Proof Assume that p is a weight of L(\). We know that then w(u) is

144
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also a weight of L()) for all w € W. Take w for which the height of
A — w(p) is minimal. The minimality shows that (w(u), ) > 0, i.e.
w(p) € Py.

Conversely, assume that p € Py and g < A\. We have to prove that
w is a weight of L()\). Let y = A — « where a = Zf:o kia;. We may
assume « # 0.

We first show that every connected component of supp o contains an
i with (A, Y) > 0. Otherwise there exists a connected component S of
suppa with (A, ) = 0 for all i € S. We have L()\), C U(n_)—avy,
and by the PBW theorem, U(n_)_, is spanned by the monomials of
the form H/Be Ay ek_'% where > kg = « and each § involves simple
roots which lie in the same connected component of supp . Now, the
e_g with simple roots in different connected components commute with
each other, so we may bring the e_g with simple roots in S to the right
of the above product. But for such 8 we have e_gvy = 0. It follows that
Un_)_nvx =0, giving a contradiction.

Now let ¥ be defined by

U={yeQs|yv<a A—~isaweight of L(\)}.

The set ¥ is finite. Let 8 € ¥ be an element of maximal height. Then
0 < a. We need to show that 8 = «. Let 8 =) m;a;. We have m; < k;
for all . Let I ={0,1,...,£and J ={i € I | k; = m;}. Again, we need
to show that J = I. If not, consider the non-empty subset of I given by
suppa \ (suppa N J). This set splits into connected components. Let
M be one of them and take ¢ € M. Then A\ — ( is a weight of L(X) but
A—f—a; is not. Thus (A\—f,«a)) > 0. Also lanu, o)) > 0 since p € Py
and so (A — a, ) > 0. Thus we have

(o, af) < (A o) < (B,a)).

Let v = > cpr(kj —my)a;. We have kj —m; > 0 for all j € M. We
also have
(o) =" (ky —mj)ai;.
jeM

However (v, o)) = (a — 3, a)) since supp (a — ) = suppa\ J and M is
a connected component of suppa\ J. Thus (v, ) <0 for each i € M.

Let Ajps be be the principal minor corresponding to M. Let u be the
column vector with entries k; — m; for ¢« € M. Then we have u > 0
and Au < 0. It follows that Ap; does not have finite type, i.e. M = I.
Thus suppa = I and J = @. But then for all ¢ € I, A — § is a weight
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of L(A) but A — 3 — a; is not. Thus (A — B,a)) < 0 for all 4 € I.
Hence (o, ) < (A, o)) < (B,a)) for all i € I. We now have u > 0
and Au < 0. Since A is affine we deduce that Au = 0. This shows
that (o, ) = (B,)) for all ¢ € I. Hence (a,q;) = (\, ) for all
i, ie. (u,Y) = 0. But then we have {(u,c) = 0, and so (\,¢) = 0,
contradiction. |

Corollary 11.1.3 If i is a weight of L(X) then u— § is also a weight.

Proof Since p is a weight there exists w € W such that w(p) € Py.
Then w(p —6) = w(p) —§ € Py. Since w(u) — 6 < A it follows from the
theorem that w(u) — J is a weight of L(A). O

It follows from the corollary that p — id is a weight for all positive
integers 7. On the other hand, there exist only finitely many positive
integers i such that p+ 0 < A.

Definition 11.1.4 A weight p of L()\) is called an maximal weight if
1+ 9 is not a weight.

Corollary 11.1.5 For each weight p of L(\) there are a unique maximal
weight v and a unique non-negative integer i such that = v — id.

Proof Consider the sequence pu, pt + @6, 1 + 20, . ... There exists ¢ such
that w4 49 is a weight of L(A) but p+ (i + 1)d is not. Let v = p + id.
Then v is an maximal weight of L(A) and p = v — 0. If p =0/ — 4’6
where v/ is an maximal weight and 7’ is a non-negative integer we show
that v = ¢/ and 7 = ¢/. Otherwise we may assume that i < #’. Then
V' =v+ (i’ —1i)d is a weight. Then v+ is also a weight. Contradiction.

O

A string of weights of L()\) is a set v,v — §,v — 24,... where v is an
maximal weight. Each weight lies in a unique string of weights.

Lemma 11.1.6 The set of mazimal weights of L(X\) is invariant under
the Weyl group.

Proof Let w € W. Then p is a weight if and only if w(u) is a weight.
Thus if p is an maximal weight then w(u) is a weight but w(u) + 4§ =
w(p + ) is not a weight. O
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Corollary 11.1.7 Fach mazimal weight of L(\) has form w(u) where
w e W and p is a dominant maximal weight.

Recall the fundamental alcove
Cur={Nehh| (May) > 0for 1 <i<fand (\6) < 1}.
We also recall that
b* = b* & (CAo & C9),
and for A € h* we have
A=A+ (N Ao+ ag (N d)s

where A € b*. Let Q be the set of A given by A in the root lattice Q.

Proposition 11.1.8 Let A € P, have level K > 0. Then the projec-

tion map u — [ gives a bijection between the set of dominant maximal
weights of L(A\) and (A + Q) N kClys.

Proof Let p be a dominant weight of L(A). Then u= X — 3", m;a; for
m; € Z>o. Hence ji = \ — (>°; mia;) and so i € A+ Q.

Now g = i + kAo + ag {11, d)d. Since p € Py we have (i, af) > 0 for
i=0,...,0 Now (Ao,;) = (6,)) =0fori=1,..., £ So (ii,a)) >0
and hence (fi|a;) >0 for i =1,...,¢. We also have

(1l0) = (110) = (1|0 — aon) = (p,c) — (p,0q) =k — (p, ).

Since (u,ay) > 0 we have (f1/0) < k. Thus i € kC,. Hence the
projection maps dominant maximal weights of L()) into (A4 Q) NkCys.

We next show that this map is surjective. Let v € (A + Q) N kCys.
Since @; = a; fori = 1,...,L and &g = —ay '0 + ay '6 = —ay '0 we have

v=At+kiay+- -+ ke —koag 0 (k; € Z).
Since 0 = a1 + - -+ + agay we have
v=MA+ (m—koag )0 — (may — ki)ag — - — (mag — ke)ay.
Choose m € Z with m > k;/a; for i =0,...,£. Then
I/:/_\Jr(moaal)g*mlal7"'777%0&[

where m; = ma; — k; are non-negative integers for ¢ = 0,1,...,¢. Let
nw=A- Zf:o m;a;. Then

ﬂ:/_\+(m0aal)07m10zl7"'7771@0@21/.
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We next show that p € Py. For i =1,...,¢ we have

(mof) = (B, 0)) = (v,a)) > 0.
Also
(o) = (¢ —aod”) = k — (al6) = k — (v|6) = 0.

Hence p € Py and also p < A, so p is a weight of L()). Replacing p by
the maximal weight in the chain of weights containing x4 we may assume
that p is a dominant maximal weight. Thus our map is surjective.

To show that the map is injective, let u, ' be dominant maximal
weights of L(\) with i = g/. Writing u = fi + kAo + ag {1, d)d and
W=+ kAo +ag (1 d)S, we get p— ' = ag ! ((u, d) — (1, d))s. Now
A—p, A\ — ' € Q, hence p— ' € Q and agy*({u, d) — (', d))d € Q. This
shows that ag ' ((u,d) — (¢, d)) € Z. Thus p = p’ + 76 for r € Z. Since
u, ¢ are both maximal we must have r =0, i.e. p=p'. O

Corollary 11.1.9 The set of dominant mazimal weights of L(\) is fi-
nite.

Proof @ is a lattice in h* and A + Q is a coset of that lattice. On the
other hand the set kCj,¢ is bounded. Hence the intersection (5\+Q)ﬂkcaf
must be finite. O

We now have a procedure for describing all weights of L()). First
determine the finite set (A + Q) N kCur where k = (), c). For each
element v in this finite set there is a unique dominant weight u of L(\)
with 1 = v. This gives the set of all dominant maximal weights. By
applying elements of the Weyl group to these we obtain all maximal
weights. Finally, by subtracting positive integral multiples of § from the
maximal weights we obtain all weights of L(\).

We next consider the weights in a string u,u — 0,0 — 26,.... We
wish to show that the multiplicities of these weights form an increasing
function as we move down the string. In order to do this we introduce

t= @gmé-

mEeZ

the subalgebra

Thus t is spanned by h and the root spaces of the imaginary roots. This
algebra has a triangular decomposition

t=t_ahat,



11.1 Weights of irreducible modules 149

where t+ = Y., 8. One can define the category O of t-modules in
the usual manner. One can also define Verma modules for t:

M) =U®/UMt + Y UM —(Az)  (Aeh).
xE€h
Consider the expression

=233 el

>0 7
where {eg)} is a basis of g;s and {e(jgé} is the dual basis of g_;s. Thus

(e (J)|e(k)) 5jk, e ) (k)]

€5 € ]k’LC

Although the expression for €y is an infinite sum the action of €y on
any t-module in category O is well defined, since all but a finite number
of the terms will act as zero.

Lemma 11.1.10 Let A € h* and M (X) be the associated Verma module
fort. Let u € U(t)ys where m € Z\{0}. Then Qou—ufy acts on M(X)
in the same way as —2m(\, c)u.

€ (k) (k)

Proof Note that a basis element ey’ commutes with all e;5”, e"/s except

for e(J) So

Qou — ufly = 2(e (jzéegjé)e( 7 (]) (_126655)) 27"06(]) = —2r(\ c)e; (])

7"

on M(A). Thus the lemma holds if « is a basis element e%%. It follows
that the lemma also holds if u € g,,s. Next suppose that u = ujus
where on M () we have

Qou; — uiQ = —21r;(\, c)u; (1=1,2).
Then on M ()\)

Qou — UQO = Qou1u2 — U1UQQO
= w1Qous — 2r1 (A, cyu — u1 Qoug — 2r2 (A, c)u
= =2(r1 +r2)(\, c)u.

The required result now follows from the PBW theorem. O

Proposition 11.1.11 Let (A, ¢) # 0. Then the Verma module M (\) for
t is irreducible.
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Proof Suppose if possible that M ()) has a proper submodule K. Let v
be a highest weight vector of K. Then v € M (\)y_ms for some positive
integer m. Thus v = wwy for some u € U(t_)_,s. By the previous
lemma,

(Qou — ufdp)vy = —2m(A, c)uvy.
Thus Qv — uQovy = —2m(A, c)v. Now Qovy = 0 and Qv = 0 since

vy and v are highest weight vectors. By assumption this implies v = 0
giving a contradiction. |

We now restrict the g-module L(X) to t.

Proposition 11.1.12 Suppose A € P, with (\,¢) > 0. Then the
t-module L(\) is completely reducible. Its irreducible components are
Verma modules for t.

Proof Let
U={veL)|trv =0},

and pick a basis B of U consisting of weight vectors. Suppose that v € B
has weight p. Then we have a surjective homomorphism M (u) — U (t)v.
Now (u,c) = (A, ¢) > 0, so M(p) is irreducible and the homomorphism
M(p) — U(t)v is an isomorphism. Let V =Y _ U(t)v. This sum of
modules is a direct sum. Indeed, consider

U(tvnN Z U(t)'.

v’ €B,v'#v

vEB

Since U(t)v is irreducible the intersection is either trivial or U(t)v. In
the latter case v € >° i, U(t)v". This is impossible since

Uun Z Ut = Z Cv'.
v’ €B,v'#v v’ #v
Thus V = @,epU(t)v.

We wish to show that V' = L(A). If not consider the t-module L(X)/V.
Let p be a weight of L(\)/V such that p+id is not a weight for any i > 0.
Then tyL()\), C V,. Now consider the map Qg : L(A) — L(X). Since
the action of Qy preserves weight spaces (it is ”of weight 0”), we have
Qo : L(A) — L(A\). So L(\), decomposes as a direct sum of generalized
eigenspaces

LNy = &cec(L(A)p)c-
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Since L(A), ¢ V, there exists ¢ € C such that (L(\),)¢ ¢ V. Choose
v € (L(A\)y)¢ with v € V. Then
(Qo— ¢ =0

for k large enough, and Qv € V since t;L(\), C V. If ¢ # 0 the
polynomials (¢ — ¢)* and t are coprime so we can deduce v € V giving
contradiction. Hence ¢ = 0.

Now t;v # 0 since v € V and hence v € U. So there exists m > 0
and u € U(ty)ms with uv # 0 and tyuv = 0. Let v' = wv. Then v’ # 0
and Qpv’ = 0. Now all weights v of L(\) satisfy (v,c¢) = (A, ¢) so by
Lemma 11.1.10, we have

Qouv — uQlpv = —2m(A, c)uv,
that is
(Qo + 2m(\, ¢))v" = uQov.
It follows that
(Qo + 2m(\, e)*v = (Qo + 2m(\, ) uQpv = uQ3v,
and continuing thus we obtain
(Qo + 2m(\, &) = uQfv = 0.
But the polynomials (¢ + 2m(\,c))* and ¢ are coprime. Thus (£ +

2m(A, c))*v' = 0 and Qgv’ = 0 imply v’ = 0 giving a contradiction. [

Proposition 11.1.13 Let u be a weight of L(\) where A € Py with
(A,¢) > 0. Then dim L(\),—s > dim L(X),.

Proof Choose a non-zero element = € g_s and consider the action of z
on the t-module L(\). Since L(\) is a direct sum of Verma modules, it
is free as a module over U(t—), so  acts on it injectively. Thus we get
an injective map L(X), — L(\),—s. O

11.2 The fundamental modules for ;lg

By symmetry it suffices to determine the character of L(Ag). Note that
ap = —aj and the lattice Q = Zay, 0 = a1,0Y = o). The fundamental
alcove is given by

Cor = {A€b3| (\ar) >0, (\0Y) <1} ={Aebh|0< (\ar) <1}.



152 Irreducible Modules for affine algebras
Thus
(Ao +Q)NCat = {may |meZ, 0<2m <1} = {0}.

Thus L(Ag) has only one dominant maximal weight which must be the
highest weight Ag. The other maximal weights are transforms of Ag

under the affine Weyl group W. The stabilizer of Ay in W is I/(I)/: (r1).
So the maximal weights have the form

tma, (Ao) = Ao + may —m?§ (meZ)
The set of all weights of L(Ag) is
{Ag +may —m?5 —kd | m € Z,k € Zso}

The weights Ag + mai — m2§ have multiplicity 1 and the multiplicity
Ao +mai —m?2§ —ké is independent of m. To determine the multiplicity
of these weights consider Weyl-Kac formula

2 wew EW)e(w(Ao +p) — p)

ch L(AO) = HQGA+(1 — e(_a))multa
Now
ZE( Je(w(Ao + p) — ZZ (W e, (Ao + p) — p).
weW Sc 0 neZ

Now p = %al + 2Ag, hence

1
tnay (Ao +p) = 3N+ (3n + §)a1 — (3n% 4 n)d,

S0
tnay (Mo + p) — p = Ao + 3nay — (3n* 4 n)d.
Also
T1tna, (Ao + p) =3A0 — (Bn + %)al — (3n% +n)s,
SO
Titna, (Ao 4+ p) — p = Ao — (3n 4 1)y — (3n? + n)d.
Thus

Z e(w)e(w(Ao+p)—p) = e(Ao) Z (e(3nay)—e(—(3n+1)ay))e(—(3n*+n)d).

weWw nez
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We write e(—a;) = z and e(—d) = ¢'/2. Then our expression is
n(3n+1)
e(AO) Z (Z_?m - 23"+1)q .
neZ
Now we can factor this expression using Macdonald’s identity for type

A;i). So we get

E(Ao) H (1 _ qn)(l _ qnzil)(l o qnflz)(l o q2n71272)(1 B q2n—122)

n>0
= e(Ag)(1—2) H (1— g1 - g 211 - ¢"2)(1 — 12721 — 2 122)
n>0
= e(Ag)(1—2) H(1 — ¢ - an_l)(l _ q%z_l)(l )1 — q2n2—12)
n>0

2n—1

x(1+¢"T 2 H(1+q 7 2)

= e(Ao)(1—2) [T =21 — ") J[T(1 - ¢+ 477 2 1)1 +4
k>0 n>0

271,2—1 Z)

We now make use of the Macdonald’s identity for type Agl):

T - a1 — )1 ) = 3 (C1ymamg ™5™

n>0 meZ
Taking 2z’ = —2~1¢% we obtain
n— n— m2
[T - +a™ e +g™T ) =Y o™
n>0 MEZL
Hence

2

e(Ao)(1 — 2) [[w0(1 — ¢ (1 - ¢M/22) > mez U

IV = (1= 2) TTeso(1 — ¢*/2271)(1 — ¢4/22) (1 — ¢+/?)
= >nez €(Ao + nay — )
[Tiso(1 — e(=k0))
— Z e(Ag + nag — n?é) Zp(kf)e(_ké)
nez k=0
= 33 pk)e(Ao + nas —n?5 — k).
nezZ k>0
Hence:

Proposition 11.2.1 The weights of the fundamental module
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Proof
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