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0 Introduction.

Throughout this paper D always will denote a design with ¢ points, & > 2
points per line, and A = 1 line through any two different points. lel ¢ <
Aut (D). 1 will primarily be interested in the case in which (7 either is 2-
transitive on the points of T or is transitive on the flags (incident point-line
pairs) of . Note that 2-transitivity implies flag-transitivity since A = 1.

The subject matter has been separated partly along historical lines, but
more significantly as regards the use of the classification of Linite simple
groups. §1 involves comnparatively litlle in the way of group-theoretic back-
ground {in particular, it concerns results noticeably predating the aforemen-
tioned classification). 8IT describes the main results that use properties of
sitaple groups. Finally, 8§11 reverts to 2 more combinatorial and very much
less group-theoretic problem: the construction of new Hag-transitive designs,

No attempt has been made to be encyclopedic. See [9, §82.3, 4.4], [31]
and [3] for other surveys of similar material with somewhat different em-
phases.

I Pre-classification.

The most beautiful result concerning the type of question being considered
here is the Ostrom-Wagner Theorem [49): If D 4s a finile projeciive plane
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kaving a 2-Iransilive collinealion group, then D 22 PG(2,¢).0 This was pre-
ceded by some special cases: Ostrom [17] and Hall and Hughes [28] had
handled 2-iransitive projective planes of nonsquare orders?; while slightly
later but independently, Wagner {54] had proved that a finite projective
plane is desarguesian il it admils a collinealion group Lransilive on ordered
quadrangles of points. The groundbreaking precursors {47, 54] of [49] con-
tained germs of ideas used in that paper — and led to the collaboration by
those authors. This was the first time 2-transitivity produced a complete
classification of inite geometries. Since then the notion of a geometric classi-
fication in terms of a group-theoretic hypothesis has become commonplace.
That was not the case 35 years ago, and it is a measure of these papers’
inlluence that this type of hypothesis is now regarded as a natural extension
of Klein’s Erlangen program

Another fundamental question studied in [19] was that of an affine plane
T admitiing a 2-transitive or Hne-transitive collineation group . It was
shown that D must be a translation plane if (¢ is 2-transitive on points {the
cases in which % is odd and not a square, or k& = 24°! for some ¢, had
heen dealt with earlier in [47, 48]). Under the seemingly weaker hypothesis
of line-transitivity, it was first shown that this implies flag-transitivity?,
and then that D must be a (ranslation plane provided that & satisiles any
of the following conditions: & is even, £ is odd and not a square, or £ is
a prime power. Later, Wagner [56] proved that & must be a prime power,
thereby completing the general case: if D is an affine plane admitting a ltine-
transitive collinealion group (G, then D s a transtation plane and (¢ conlains
lhe transtaiion group. This resull contains the Ostrom-Wagner Theorem® as
a more or less® immediate consequence. The classilication and construction
of Hag-transitive affine planes will be discussed Turther in §8I1111.

"Mareover, they also showed thal any 2-transitive collineation group of PG(2, 9) van-
fains the “little projective group”, ie, PSLE, ¢

2Ostrom only considered planes of odd order. This led Hall and Hughes {0 study the
even order version of his theoram. Both resulls were included in [15, 20.5.8].

On the other hand, Ostrom informs me that, for him, the idea of characterizing
desarguesian planes in terms of groups came from Halls work on cyclic difference sets
[14].

*A simple counling argument proves this for affine planes and, more generally, when
klw.

“Zee [57] for historical comments on this, incleding the remark that one should refer fo
the projective and affine versions of the Ostrom-Wagner Theorem. ln recent conversations,
Wagner made the same remark to me, while Ostrom made related comments,

®This is really not at all a straightforward consequence: its proof occupies (al least)

pp. 366-382 of [15].



Soon after the appearance of [19] Hall conjectured that any Steiner triple
system (i.e., & = 3) with a 2-transitive group (¢ must he a projective space
over (1(2) or an affine space over GF(3) {16, 17]. His approach to this
conjecture was to study the nature of the subspaces” generated by triangles
by investigating the behavior of involutory automorphisms of Steiner triple
systems,  He showed that a 2-transitive triple system D must conlain a
subspace isomorphic to PG2,2) or AG{2,3), and then used this to prove
that if (¢ is fransilive on the ordered quadruples of “independent” poinis,
then D = PG{d,2) or AG{d,3) for some d. later, Bruck observed that
his work on commutative Moufang loops could be used to obtain the same
conclusion from a weaker hypothesis: transitivity on ordered triangles [17];
19, pp. 100-101]. In [16] there is also a discussion of further connections
between designs and 2-Lransilive groups.

In 1858 Hall proposed the above conjecture on Steiner triple svstems to
Wagner. Instead of that question, Wagner [53] was led to a related one:
whether all 2-transitive collimeation groups of finite projective spuces could
be determined. After a variety ol special cases (e.g., [55, 52, 29, 30]) a com-
plete determination of all such groups was finally obtained independently in
[16] and [6]. The latter proof is especially combinatorial in unexpected ways,
a crucial ingredient being generalized hexagons., Neither of those prools used
any group theory beyond very elementary facts about Svlow subgroups of
permulation groups. On the other hand, as will be observed later, the clas-
sification of finite simple groups can be used to obtain & far stronger result.

The general study of fag-transitive designs  was initiated by Higman
and McLaughlin [26]. They showed that a flay-lransilive auvlomorphism
group (7 is necessarily primilive on the poinls of D They posed the prob-
lem of classifying the finite Hag-transitive projective planes, and (by closely
following ideas in [49]) proved that such planes are desarguesian if their or-
ders are suitably restricted. Sigoificant progress in the case of projeciive
planes was made much later in [50, 51], where it was shown that the order
is a prime power except, perhaps, if (¢ is a Frobenius group and @ is prime.

IT Post-classification.

The preceding results were obtained with relatively small amounts of group
theory — in many cases, little more than one would find in an undergraduate

TA subspuceol a design D is a set X of points such that the line through any two poinls
of X is contained in X.



course. The more recent trend has been to use information concerning simple
groups: first, group-theoretic results are used in order to determine the group
(+, and then all designs D corresponding to (F are determined®. In a sense
this trend began around 1973, belore the classification of finite simple groups
was expecled Lo be completed in this century, but nevertheless in the same
spirit as post-classification work.,

In 1973 Hering [21] announced® ihe delermination of all affine planes
admitiing « fag-transitive group that has a noncyclic composilion faclor
isomorpkic to an allernaling group or a group of Lic type; see §IILA for the
list of such planes. This was part of a general program of his: the study of
subgroups of G L{d, ¢) of order divisible by some prime s dividing g” —1 but
not, dividing ¢ — 1 whenever 1 < ¢ < d.'% In the case of an affine plane, d
is even, & certainly divides _qd/ 2 4+ 1, and hence s is a factor of the order of
any flag-transitive collineation group.

The results in Hering’s general program also apply to an even more
important situation: determining all Iransilive Hnear groups (subgroups of
(r1.{d, g) transitive on the nonzero vectors of the underlying vector space).
The proof of his results on such groups has appeared in [22, 23] in the generic
case, when some noncyclic composition factor is an alternating group or a
group of Lie type; while in [23, p.164] Hering states that the unpublished
manuscript [24] “contains the corresponding investigation for the known
sporadic groups”. An independent prool of the enumeration of all transitive
linear groups is presented in [39, Appendix 1], also using the classification
of finite stmple groups. Note that such an enumeration is equivalent to the
delermination of all point-transilive collineation groups of finite projective
spaces (and hence, in particular, contains as a very special case the much
mote elementary result in [46, 6] concerning 2-transitive collineation groups).

Any finite 2-transitive group either has » simple normal subgroup or an
elemmentary abelian regular normal subgroup {5, p. 202]. The classification of
finite simple groups produces a list in each of these cases. When there is a
sitaple normal subgroup most of the work towards such & list is contained in
[8]; the case in which there is an elementary abelian regular normal subgroup
is equivalent to obtaining a list of all transitive linear groups, a question that

#For example, three 3%-point examples in 111A arise from the same Z4ransitive group.
In the case of solvable groups, numerons examples can arise from the same group, as is
seen in §EITIR.C.

? Apparently only a small portion [20] of the prool of this has appearad in prini.

WSach a prime divisar of ¢¥ — 1 almost always exisis [38l. The only exceplions are:
d = 2 when g is a Mersenne prime, and d = 8, g = 2.



was just discussed. Both of these are lists presented, for example, in [33].

Hall returned to the question of 2-transitive Steiner triple systems 7% in
18], and proved his earlier conjecture: T = PG{d, 2) or AG(d,3) for some
d. His prool used the classification of 2-transitive groups having a simple
normal subgroup, since the case in which there is an elementary abelian
regular normal subgroup had already been handled in [13]. The swmne result
concerning 2-transitive Steiner triple svstems was obtained independently
and at the same time by Key and Shult [38], using a method similar to
Hall’s: the stabilizer (7, in ' of two points @,y must fix a third point
z {the third one on the line £ through @ and y); and 2-transitive groups
can then be checked to see which have this properly and then tested Lo see
whether {z, 9,217 is the set of lines of a design. At essentially the same
tirne the determination of all 2-transitive designs with A = 1 and arbitrary
k was given in [33], using the same basic approach but slightly more about
the nature of (ry, in each 2-transitive group. In that more general setting,
. —{x,y} must be a union of orbits of (¢, and its size & — 2 must satisfy
the conditions & — 1j# — 1 and # > &% — k& + 1; any such union is then readily
examined to see if, together with {z,y}, it produces a design.!'' Also at
roughly the same time a special case of the result for general & was proved
in [7] for a model-theoretic application — again using the classification of
2-transitive groups.

Flag-transitive projective planes were almost determined in [35]: such
a plane is desarguesion if G is nol a Frobenivs group of prime degree {the
I'robenius case remains elusive, but presumably occurs only for P@{(2,2)
and PG(2,8)). The fact that the order of such a plane can be assumed to
be a prime power [50, 51] was not used. lnstead, group-theoretic resulis
were used in order to obtain a list of the odd degree primitive permutation
representations of all nonsporadic nearly simple'? groups —a result obtained
independently in [40]. This result does not itself use the classification of fi-
nite simple groups, but of course for applications the sporadic groups must
be handled individualiv. In the case of a projective plane, ¢ is odd and ¢
is point-primitive, and these were the only assumptions ultirmately made: a
projeciive plane D admilting a point-primitive collineation group G is de-
sarguesion excepl, perhaps, if (7 is either a regular or Frobenius group of
prime degree' [33]. The corresponding result concerning affine planes was

Wiinlike [18, 38], in [33] lists of all 2-transitive groupe were usad, not just of those having
simple normal subgroups.

VA group His nearly simple it § € H < Aut 5 for a nonabelian simple grounp 5.

""The regular and Frobenius cases are the same as thal of a (planar) difference set in a



conjectured in [34]: an affine plane admilling a poini-privmitive collineation
group is o franstalion plane. When # is even this is essentially contained in
[49], while for odd » it was proved in [27] using the aforementioned result
on primitive permutation groups of odd degree.

11 is remarkable thatl an almost complete determination of all fag-transitive
designs T has now been announced [4]: either D musi be one of lhe exam-
ples tisted below in §1ILA, or v is a prime power and (G is isomorphic to a
subgroup of the |-dimensional affine group AUVL{1,u) = {z > az¥ + b | a #
0.5 e GF(%), ¢ € Aut GF{#)}. (Thus, either D is known or G is dulll) This
result, containing the main ones in [18, 38, 33, 35] as very special cases, uses
far more knowledge of the structure of simple groups than in those papers.
In [35] it was first necessary to reduce Lo the case of a nearly simple group &,
which was made relatively easy due to the behavior ol involulions on a pro-
jective plane. In the general case the reduction was more involved [3], and
led to very dilferent situations in which ¢ either has an elementary abelian
regular normal subgroup eoris nearly simple. Both of these cases were very
difficult to handle, involving munerous results concerning the maximal sub-
groups and the representations of the finite simple groups. The geometry of
the situation is, of course, not lost; but the crucial ingredient becomes the
group-theoretic analysis.

IIT Post-post-classification: examples.

ITIILA  The classification in [1] consists of the following list:
projective and alline spaces;

the designs with @ = ¢° + 1 and & = ¢ + 1 associated with the nai-
ural 2-transilive permutation representations of the unitary groups
PSU(3, ) or the Ree groups *(7,(q);

designs associated with the action of PSL(2,q), ¢ even, on the set of
P 3 o revnie (£ o— LY
v = zq{g— 1) non-secants of a conic (k = gk

affine planes:

the nearfield plane of order £ =9 [9, p. 230}, {12],

Hering’s plane of order & = 27 {19],

group of prime order [14].



Liineburg-Tits planes of order & = 22027t one for each ¢ > |
s

two designs with # = 729 and & = 9 ariging from the occurrence of
SE(2,13) as a transitive linear subgroup of GL(6,3) [25];

or the flag-transitive group (7 lies in alline group ATL{1, v), where «
is a power of a prime p.

The last case on this list produces open and fmportant problems. Unlike
the siluation with most of the examples listed above, in Lhis case the same
group can act flag-transitively on many different. designs (sec below). s
theve a hope for a complele classificalion of lhese designs? 1 suspect not.
My evidence is the number of examples described below, together with their
somewhat wild appearance. In any event, this case involves significantly
less group theory than in either of the preceding two sections! Instead,
it depends on properties of finite fields: the set of points can and will be
viewed as the set of elements of the field £ = G/#7(#). The lines will be all
of the translates of the set of lines through 0. In most cases (but not all,
see (1) below), when £ is viewed as a vector space over a suitable sublield
K = (I'(g), each line through 0 will be a K-subspace.

Therelore, for most of the constructions below a sel of & of K-subspaces
of F' will be given, frequently oblained as distortions of a subfield L =
GE(k) = GF(g™) of . All of the translates of the members of & produce
an incidence structure D(S), and this is a design with A = 1 iff the [ollowing
conditions hold: each member of & has size &, |8| = (v — 1)/(& — 1), and
distinet members of & have only U in common.

For oo € F* let & denote the K-linear transformation z +— «z from F' o
itself,

ITIILB Affine planes.

Here I = GF{v) = GF{g*"); let “bar” denote its involutory automorphism.
Let s € £ have order (g™ + 1}g — 1)}. Constructions (i-iii} below produce
nondesarguesian fag-transitive planes of order £ for every non-prime prime
power k except in the cases & = 4 or 8 {when all affine planes are desar-
guesian) and & = 2% for some ¢ > 2. These and the ones in the preceding
subsection are the only known Hug-transilive nondesarguesian alline planes,
There is no such plane when & = 16 [10], but it seems likely that such planes
exist when 7 is sulliciently Large.



(i) Ifw=¢g*, giseven, n > lisodd, r € GF(¢*)— K, L. — K is the
trace map, and f:.(;ir,) ="T{x)+ re for x € L, then

S, = {sHI)|0<i<q"}

produces an affine plane DS, ) having the flag-transitive group {z — s’z 4w |
¢ e (s),w e F} [32]. Each such plane is nondesarguesian if ¢* > 8,
Flernenis v,v' € GF(g?)~ K preduce isomorplic planes iff v/ +1 = k(r +1)%
Jor some k € K*, ¢ € Aut GF(g?). (See (2) below for a sketch of proofs of
these assertions in a more general setting.)

However, there are no other known examples of nondesarguesian alline
planes of even order having solvable flag-transitive groups. Note that each of
these planes admits a sharply Hag-transitive collineation group {z +— 24w
e (1w e 1) (since (g7 4+ 1,¢— 1) = 1)

The above planes arose in a coding-theoretic context. They have an
unusual property: there is a nonsingular alternating form on the A -space
7 (namely, {x, y) = T{2g + Ty)) that vanishes on each member of &,.. The
possible implications ol this property for the internal structure of an alline
plane have remained an open question for 10 years,

(i) 11 ¢ and n ave odd, b € F salisfies b = —b, 1 &£ ¢ € Gal(L/K), and
flz) =a + ba” for z € I', then

S ={s'(L) |0 <i < g"}

produces an affine plane D(Sp ) having the flag-lransilive group {z v &z 4
w | s € (&), w € F} [36]. This description generalizes one (‘iu:\ to Suetake
(53], 1o [36] it is shown that if D(S] ) = ?{S’ ) then v = o D(S) o) =
D(S;1 )i and DS} ) = DSL,) iff ¢ = o' 776 for some o € I”, p €
Aut 170 See (3) below for a sketch of the proofs of similar assertions in a
more general setting.

An example ol a plane D(S; ) with ¢™ = 27 is given in [13]; see [53]. A
flag-transitive plane of order g™ = 12515 presented in [14] that has an element
inducing a transitive cyclic group on the line at infinity; preswmably this
plane is another instance of a plane D{(8; ), but this remains to be proved.

(i) If g™ =1 (mod 4), il b, L and & are as in (ii), and il o € Gal{ #'/K')
is nontrivial on [, then

S; . = sy 0<i< ~ DY u{sPR(bL) |0 < i < < Lig" - 1)}

L
z



produces an affine plane D(S] ) having a flag-transilive group generated by
{zw Sz 4w | & € (&), we F}and z — 527 [36]. This description again
generalizes one due to Suetake [53]. In [36] it is shown that if ke fized field
of o is properly contained in I then lhere is no cyclic collineation group
transitive on the line al infinity (such a group clearly exists in (ii)). It is
also shown that if D(S; ) = DISL.) then v = o= DS} )= DS )
and D8] )= D(S, ) Ml ¢ = o' 77h for some « € LF UDL", @ & Aut I,
When # = 2, I can be viewed as a 4-dimensional vector gpace over
K. This case has received the most altention, and was the first to produce
exarmples. In [12] two Hag-transitive planes of order 25 were constructed and
shown to be the only nondesarguesian Hag-transitive planes of that order.
The general case when # = 2 is found in [42, 1, 2]. Every nondesarguesion
affine plane of order ¢* adnuitting a flag-transilive group tying in AUVL(1, ¢"),
and for which 8 is a sel of 2-dimensional ((F(q)-spaces, is isomorphic lo a
plane D( S;w)‘ Namely, g cannot be even [53]; while for g odd this assertion
is essentially contained in {1, 2] with a dilferent description of the sets S;,tg.

(iv) Il g™, b, L, s and foave asin (ii) (so that » is odd), if o € Gal{ ¥/ K)
is nontrivial on L, and if g € £* is such that g is fixed by ¢ but is not a
square in £, then

Sy = {.s*?‘ih.([,) [0<i< %{q”’ -y {;mzéh([,) 0<i< %{q”’ -1}

produces an affine plane D(S] ) having a flag-lransilive group generated by
{z s sztw] s € (8%, we I} and 2 — 7 [37] {compare (6) below). This
construction does not depend on the choice of g, and produces the same
planes as in (iii) when ¢™ = 1 {mod 4). Il the fixed field of ¢ is properly
contained in £ then there is no cyclic collineation group transitive on the
line at infindty. There is again an isomorphism criterion similar to those seen
carlier,

There is an affine plane of order 27 constructed in [45] having a flag-
transitive group lying in ATL{1,27%) and having no element inducing a
transitive cyclic group on the line al infinity, 1 suspect thal this plane is one
of those constructed in (iv).

III.C  Designs that are not planes.

The remainder of this paper is concerned with the construction of designs,
other than planes, that admit Bag-transitive automorphism groups contained
in ATL(1,#). This question has received surprisingly little attention. The



only known construction methods depend heavily on delicate arithmetic
questions involving finite fields. "The construction below in (1) makes this
very plain, while those in (2) and (6) seem to have too many potential
rariations. Consequently, a compleie classilication seerns doubtlul,

Remark on automorphism groups. Assume that D = D(8) is as
above, and that 7 is not an affine space or plane. Since Aut?? is Hag-
transitive, AutD < AU'L{1,%) by [4]. This is useful for the discussion of
the question of isomorphisms among the designs constructed below, (Note,
however, that much less than the full strength of [4] is needed for the de-
termination of Aut D — and even less is needed {or the applications to iso-
worphisin questions.) In the case of affine planes the situation is noticeably
sitapler: all that will actually be required is thal the group of translations
z e z 4w is normal in Aut D, and this is standard in the case of an afline
plane. It would be interesting to have a simuple, purely geometric, canonical
description of the group of translations for the designs constructed below.
(Here is a simple description that is not quite geometric enough and only
works when ¢ > 2. lor any point @ let () denote the group of all auto-
morphisms of D(S) fixing all lines through 2. Il @ £ », 1 # g € Gy and
14 hc€ G(W then g~ h='gh is a nontrivial translation; moreover, cach
nontrivial translation arises in this manner.)

Remark on isomorphism testing. 'The following is a strategy for
determining whether or not two of these designs P = D(S) and D are
isomorphic (compare [36]). WLOG D and D’ have the same set of points
and even the same avtomorphism group. If ¢:D — D’ is an isomorphism
then (Aut D)7 = Aut D’ = Aut. D, WLOG ¢ fixes 0. Assume that 7 is not
an affine space or plane. By the preceding paragraph AutD < AVL(1, @),
and hence g conjugates the unique minimal normal subgroup {z — z 4+ w |
w € F} of Aut D toitsell,

There is a subgroup {sq) of F* of primme order that lies in no proper
subfield of [7 (by [38]; ¢f. ). Then |so| divides {# — 1)/{k — 1) and hence
also [Aut D}, so that sp € Aut T in each case below. Since GL{F') has cyclic
Sylow |spl-subgroups, g can be adjusted in order to have it normalize {sg)."*
Then ¢ has the form z v oz with o € £, ¢ € Aut F. After a further
adjustment of g, WLOG @ = 1. Now it is just a question of calculating with
the specific definitions of P and 7 in order to see whether some such o can
exist. An example of such a calculation is given in (3).

(1) Assume that & > 3 and &(& — D)}w — 1. Let B be the subgroup of

In fact, this is antomatic since it is already known that Awt D < ATL(1, %),

10



I of order £. For some choices of £ and B it is known that the set of all
- - b— ke 1

images of B under the transformations z — a* 'z 4w, a € I, w € F, form
a design with A = 1. (Examples where this phenomenon occurs are “Netto

triple systems™ having & = 3 and » = 7 (mod 12). TFor other examples, see
.

The conditions required for this construction Lo produce a design are
extremely delicate. lor example, when # — 1 = k{k — 1) the construction
would produce a Hag-transitive projective plane (and does so when # — T or
73) — and every sharply flag-transitive projective plane arises in this manner.

(2) 1t is occasionally possible to impose the structure of a fag-transitive
design on each of the lines of a Hag-transitive design — al least when the
latter design is an affine space.t?

(2a) Let F' = GF{(x) = GF{g*™) D F = GF(¢*), and let

G={zmtztw|we b te 1™ and [#] divides (¢*™ = Dig—1)/(¢" = D).
Then |Gl = ¢ (q" + Dig = 1) ilf ({(¢®™ — L){g— 1)/{g" = 1), ¢*" =~ 1) =

(g™ + 1)(g—1); and this occurs iff {d,{¢g™—1)/{g—1)) = 1. In this situation,
1 is the set of lines of AGH( d,q?""). Note that (g acts [aithfully on £,

Now equip £ with the structure of a nondesarguesian affine plane ad-
mitting 7z as a fag-transitive group (examples have been given above in
(i) and {ii)). Temporarily call the lines of the alline plane E “sublines”™.
Clearly, each subline is contained i just one line, namely, £. Consequently,
the images of the sublines under ¢ produce a desien D admitting G as a
Hag-transitive group.

Once again there are arithmelic conditions involved in this construction,
but there is an additional variable: the specific alline plane inserted into
. Claim: The subspace K of T can be recovered from D, For, AutD <
AL, qg’”"’f), so that there is only one subgroup of Aut D isomorphic to G
and all subgroups isomorphic to 7z are conjugate. But F is a subspace of D
and is invariant under the group GGz, while (g has exactly one point-orbit
of size |E]. This proves the Claim. It follows that nenisemorphic planes
produce nonisomorphic designs,

This simple approach also can be applied to examples in (1), but it
merely gives another design arising in {1).

(2h) The above construction can be varied somewhat, using a slightly
different group (7 so as to make (G coincide with the flag-transitive group

Y“In [4] this is called my “inflation trick”. However, “free lunch frick” would be a mors
appropriate description.



arising in (iii). For example, let £/ = GF{x) = GF{(¢*™) D K = GF{(¢*™) D
f. = GF(g"), where ¢" = 1 (mod 4); let o € Gal{#'/K)} be nontrivial on
[; let b € F with " = —b; and let ¢ be generated by {z v tz 4+ w |
w € F,t € F* and ] divides (¢*™ — 1){(g — 1)/2(¢" — 1)} and z ~ 527,
Then Gz is isomorphic to the group in (ii) i ((g ‘ZM - 1)(g = 1)/2(¢" —
1),¢" = 1) = (¢" + 1){g— 1)/2; and this occurs if, for example, n is odd
and {(d,(¢™ — 1)/{qg = 1)) = 1. In this situation, £% is the set of lines of
AG(d, ¢*™), and any plane from (i) can be inserted into £ exactly as in
{2a). Once again, nonisomorphic planes from (iii}) produce nonisomorphic
designs, each of which is not isomorphic to any constructed in {2a) if the
fixed field of ¢ is properly contained in F(g").

{3) The construction of planes in (i) can be generalized as follows.
Congider a prime p, powers ¢ > 1 and f > 1 ol p, and an integer 0 > 1
such that pfn. Let

F = GF(0) = GF(g'™), L = GF(q"), Fy = GF{g" ) and K = GF{q).

Assume that ((¢"—1)/{g—1), [—1) =1 (if [ < g this states that (n, f—1) =
1). 'There are norm maps N — £ and Ngify — K and trace maps
Tl — K and Ty:fy — K. Let s € I have order (¢/™ — ig—1)/{g" =1
so N(s) € KN,

Let # € Fy — K be such that the polynomial identity No(z -+ +) =
af Tol No(#)/v)z + Nolr) holds in Fiz] (e.g., il f = 3 then this condition
is %imph ihat To(r) = 0). fu € L then f\z(zf + ?) = ]Igm_(f(u+ P e
awf + T ?),/?)uf b4+ Nol(r). (For, since (f,n) =1, {g™ |0<§< f}and
{g10 5 i < [} both induce all the slesirite ol Gal(Fy/ K).)

Claim: & = [s{(Kex T ++E) |0 < i< (¢ = 1)/ (" = 1)}
pma’u(fs a design D(S,) with A = 1 and flayg-transitive group {z — 'z 4+ w
&€ {s), we F}. (When f =2 these designs are just the planes in (i) with
r+ 1 in place of i in that case T{z) +re = (T(x)+ 2) + (r + 1)z with
T{e)+ 2 € KerT))

To see this, first note that dimg{Ker T+ +K'} = 0 (since KerT" C L,
r e bty — K and 0 f= K). Consequently, it suffices to show that the
conditions U0 # u + rk = f{u’ + rk'), where w, 2’ € Ker T, £, k' € K, and
0<i<(gf™ = 1}/ (g™ — 1), lead to a contradiction. Since w, &k € [, apphlng
N yields

uf $To( No(r)/ryuded T 4 No(r )b = N{s W +To( No(r) /ey b~ 4 No(# )&}
(of =N (YD) F T No(r) /o) wbd T =N (' BT No(0) (B =N (HET) =0

12



where N{si) € K. Now apply T n(f\ig(?')(é;f iz N{Sé\)ﬁ?’f\)) = {} {since
(KerT) = Ker T’ and T(z) = na for x € K). However, pfn. Thus, k = y&'
where ¢ = N (s )énd g e K. It lollows that

{uwgu)f—f-”ig{"v ?)/';{fj = M= yu')
= (wf — gl ) + To(No(r)/r)ug! %71 — gf/b Ty =0

Now (u— g/}~ is 0 or ~To(No(r)/r)p! =%~ and so lies in K. But
({g"=1)/{g=1), f—=1) =1 by hypothesis, so that u —yu’ € A NKer T" = 0.
Now our original equation v + vk = s'(w' 4 rk’) asserts that y = &, so that
'€ K. Then i{g—1)= 0 {mod (¢ - %)(g— 1)/{g™=1)), which contradicts
the fact that 0 < i < (g™ — 1)/(¢g™ — 1). This proves the Claim.

Ciaim: Whenn > 2, D(8,) = DY) iff v/ = ar¥ for somex € K™, ¢ €
Aut G I(gl). For, one direction is easy. Suppose that D(S,) = D(Sy).
Hy the remark on isomorphism testing, WLOG an isomorphism ¢ has the
form z s oz for some o € F*. It suffices to show that v+ & = +'K, so
assume that +K # # K. By replacing g by g5 for some 1, WLOG af Ker 7'+
rK) = Ker T+ ¢’ K. Then dimglaKerT NKerT) = (n—1)—1 > 0, so0
that o € L. Also, v’ = afu + rk) for some v € KexT, & € K. Then
# e (&?f,)"’{z + ;r'{oz!'.;)"’{z for 0 <4 < n, where on, ok € L. Adding these
equations yields nr’ = ky + rky, where by, ks € K and ne’ £ 0. Then
0 = (& — now) + r(ky — nak), while + € [, so that nok =k, € K. 'T‘h:\n
o€ K, KerT + v = RKer T + 'K, and hence {by intersecting with Fy)
K — ' K, which is not the case. This proves the Claim. It is not dJEh(,uiL
to check that the Claim also holds when = 2.

Claim: D(S,) is not an affine space AG( [, {f") For, suppose it is. Note
that the subspaces £°L, 0 <4 < {_qf * —1}/(g" — 1}, are the lines through 0
of an AG([f,¢™). By the remark on isomorphism testing, an isomorphism g
may be assumed to have the form 2« oz for some o £ £, Multiply ¢ by
a power of §in order to have (Ker T+ + K} = L. Then a(Ker 7'+ rk) = L,
so that o € L and or € [, where v € [.. This proves the Claim.

As in (i), each of these designs admits a sharply fag-transitive automor-
phism group {z — Fz+w | & € (77, w € F} since ((¢/"~ 1)/{¢g"~1), ¢~
1)=(f,g=1)=1).

Are many designs obtained in this manner? Do many elements ¢ £
(?If‘(qf) satisfy the identity Nola +7) = el + Tl Nolr)/r)ye 4+ No(r)? 1 do
not know any answer. Here is one easy example: if f = pthen 2? -z —¢, c €
(I°(p)", is irreducible over GEF{(p®) = GI(g) whenever pfe [11, p. 29], and
hence has a root v € GF{g?). Then r behaves as desived — but different

13



choices of ¢ produce elements » in the same coset of GHF{p)" in GF{ )
so up to isomorphism only one design is obtained in this manner for each
choice of p and e,

{41) The construction in (i} also can be generalized as follows.

Let me,n > 1, (me,n) = 1,mlg — 1 and F = GRg™) D L = GF(g") 2
K=GRg);letwe K~ héw order v and ¢ € ™ have order (¢™" — 1)(g—
DAgh=1)let | 4 o€ Gal{L/K) and let ¢ € Gal{#/K') be the ¢"th power
map; and let & € /' be such that 8 = whb. Write h{z) = = — 2" for 2 € I

Claim: Spe = {sB(L) |0 < i < (g™ = 1)/(¢" = 1)}
produces a a’eszgni’{é’;,ﬂ) with A =1 andﬂag transitive group {z — dz+w
g€ (s),we I} (When m = 2 this is the same construction as in (ii).)

Let T and N be the trace and norm maps £/ — [, The identity 1723 '{1—

by = 27— B holds in F[z] since the roots on both sides are w'h, 0 < i < m.
In particular, T(5) = 0 and N(b) = —(—b)". Also, for any w, v’ € L, N{u—
hu') = ]I;ZE' (2 — B" w') =u™ - ™.

Now we return to the Claim. First of all, £ is injective: if 2 — bz” = 0
with @ € L then ma = T(x) = T{ba?) = T(b)a? = 0, so that & = 0 since
mlg — 1. Next, (8) is transitive on 8, so it sullices to assume that 0
hiz) = shiy) € IS B L), where z,y € Land 0 < i < (g™ =1)/(g"—1),
and derive a contradiclion. Apply 'fV T,?T —pT " = N(s )({i =~ §ry),
so that 2 — N(s)y™ = 8" (2” — N(s )™ *)7 since N(s) € K is lixed i}&
o, If 2™ — N(s)y™ £ 0 then I'Jm( e N{s)y™)" ! = 1, where mlo ~
'i}‘; hypothesis, so that b(z™ — N(s ):jm)(“_' W g iy ¢ K, whereas b ¢ ..L.

Thus 2™ — N(s' Jy = 0. Now (z/g)m = N{& } € K, but (m,{g" — 1)/{g—
Mg = l,m,n) = 1,80 ¢fy = k € K. It f(}”()Wﬁ that ky — biky)” =
Sy — by”). Then & = qé, so that s79=1 = 1 which is impf}%%ibl:\ since
8] = (¢"" = Dig=1)/{g" = 1)and 0 < ¢ <{qm’” 1)/{g™ = 1). This proves
the Claim.

Moreover, if m > 2 then the lollowing are not dillicult to prove (as
in [36]): D(Sps) is nol an affine space, D(Shs) = Di(S-) iff 0 = 7 and
= o770 for some o € L*, @ € Aut [,

(5) The construction in (iii) also can be generalized as follows.

Again let I = GF(¢™) D L = GF(g") D K = GGF{q), where mlg — 1;
and assume that ¢" = 1 (mod 2m) if w is even. Let o € Gal(F/K), and
assume that ¢ acts nontrivially on L. Let #, w, 5, b, h and N be as in (1).
Then

&= {sMRBFL) | 0< F <m, 0< i< (g™ = 1)/mlg" = 1)}
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produces a design D{(Sy ) with A = | and flag-transitive group generated by
{zmdzdw | e (), we F}and 20 b2 (When m = 2 this is the
same as (iii).)

For, once again 8} _ consists of n-dimensional K-spaces, Clearly (§7) has
just meorbitson & . The translormation z v bz sends S a]=bp " 2])
1o s (B2 —b[bb7 27)7), where bi¥® € HPH L since (07) = (wh) = wi;
and A(0™ L) = h{ L) since ™ € f.. This proves flag-transitivity.

Consequently, it suffices to consider the possibility that h(2) = (b y)
for some 2,y € L™ and some %, j such that 0 <4 < (¢"" — 1)/m(q" — 1) and
0 < § < m. First note that

= {=1{=b)"V (g™ = b7 /6]y

since [bb17 /077 = w[bb7 [B]. _
Now 2™ < §™z™ = N{&™)(=1)H0n—1pimym _ pmpimeyeny oo that

2" (1PN (B ) = 7 {2 — (=1 TN (&) By

If 2™ —( =1 =D N (™) (Big)™ £ O then &7 ({a7 —(=1)F0m—1 N (78) (b y)m Ho-1myn =
1, and hence B{e™ — (=1)70=D N () (biyy» Yo/ ¢ | (since K con-
tains all mth roots of 1), whercas @, 9,0 € L and b € L.

Thus, 2™ = {=1¥P-DN [ (Byy*. But (=171 = ™ for some
£ €L jasg" =1 (mod 2m) il m — 1 is odd; use £ = 1 if j(m — 1} is even),
so that {(z/¢N(s)b7y)" = 1 and hence z/IN{s)by € K. Then ¥ € L
while (bj)ﬁ = biw’, which successively imply: j = 0,¢ = 1,z = ky with
k€ K, ky— bky® = sy — bbiy)T) = ™y — by”) # 0, &k = &7, and
milg — 1) = 0 (mod (¢"™ — )¢ — 1)/{g" — 1}). Since 0 € 4 < {(g"™" —
1)/m{g™ — 1), it follows that i = § = 0 and hence A{L) = s™ h(B L).

Consequently, P(S; ) is a design with A = 1. Clearly, the conditions
on the parameters ¢, n, m are slightly different from those in { 1) when m is
even, so some examples here do not appear in (4). However, there is a more
significant difference between (4) and (5): if the fized field of o is properly
contained in L, then D{S; _} has no aulomorphism fizing U and eyclically
permuting S; . Also, for m o> 2, i Df Sho) ED(S,,) then o =1 on I and
¢ = &' for some o € (BYL7, @ € Aut Iy while if b and ¢ are velaled in
this manner then D(S; ) = DS, ). These are not hard to prove; see [36],
where questions of this sort are examined in overly minute detail for the
planes (iii).



{6) In order to generalize the construction in {iv), again let /7 = G F7{¢"™) D
f.=GF(¢") O K = GF(g) with m|g — 1, and let #, w, 5, b, h and N be as
in (4). Lastly, let g € F* be such that N{z) is fixed by ¢ but ¥{z)’ is not
an meth power in I whenever 1 < j < m. Then

S};"a — {smé;t'%“"'%{}}mzf:.([,){}} 1< j<m, 0<i< (g™ = 1)/mig" = 1)}

produces ¢ design D[S ) with A = | and flag-transilive group generated by

{zms dzdw | e we F}and z v iz’ Tor, once again we find that
2 . £ © % ) ]+{}%...%{}m“-§- g X e

Sy . consists of n-dimensional subspaces, je ML) = h{L) since

T gy S E L, and p(p!tft77 g F? e -
: : PR R E o 4 Py 3 4 i 3

p HE T R This implies flag-transitivity, and leaves us to con-

sider the possibility that h{z) = &*/h{(y)” for some 4,5, where ¢/ =

IOE ' This time we find that
& =BT = NN GO = 8y = NGTON GO - )

since ()" = ™, Then o™ — N(¢* YN/ )y™ = (2™~ NN (i )y™)"
since N{p'} = N{p) is assumed to be fixed by o. As usual, it follows
that 2™ = N{s™)N(¢')y™, so that N{p') = N{p) is an mth power in
I. By hypothesis, j = m. Now (z/N{s)N{(p)y)™ = 1, and as in {(5) we
deduce successively that z = EN(s)N{p)y with & € K, EN(sON(1)y —
BEN(SIN(1)y = s N{p)y — by®) since g/ = N(p) is fixed by o while
N(s) € K, ™ = kN(s') € K,i = 0, and hence s™Wh{L)"" = A(L).
Consequently, {5/} is a design with A = 1, as required. However, the
isomorphisms among these designs, and the exteni to which they do not
already arise from previous constructions, remain to be studied.

{7) Now the examples in (2) can be generalized Turther using {3-6). The
analogue of (2a) is as follows. let m > 2,0 > 1, F = GF{g"™™) O ¥ =
GFRg™), and let G = {z — tz+w | w € F,t € F* and || divides
(g™ — 1){g—1)/(g" = D}. Then |Gl = ¢™"g™ — Dilg— 1)/(g" — 1) iff
({g™ — D{g— DJ{g" = 1),47" = 1) = (¢™* = D){g — 1)/ {g" — 1); and once
again this occurs if (d,(g® —1)/{g— 1)) = 1. In this situation, K7 is the set
of lines of AG{d, ¢g™").

Now equip £ with the structure of a design with A = 1 admitting (g as
a flag-transitive group {e.g., one of those given above); temporarily call the
lines of & “sublines”. The images of the sublines under (¢ again produce a
design D admitting (7 as a flag-transilive group. As before, il nonisomorphic
Hag-transitive designs are inserted into £ then nonisomorphic Hag-transitive

designs D are oblained.



There is a similar version of (2h).
It will come as no surprise that all of designs obtained in this manner

from those construcied earlier can easily be described dirvectly.
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