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o Introduction. 

Throughout this paper V always will denote a design with "t; points, k > 2 
points per line, and>' = 1 line through any two different points. Let G <:: 
Aut (V). I will primarily be interested in the case in which G either is 2-
transitive on the points of VOl' is transitive on the flags (incident point-line 

pairs) ofV. Note that 2-transitivity implies flag-transitivity since>. = 1. 
The subject matter has been separated partly along historical lines, but 

more significantly as regards the use of the classification of finite simple 
groups. §I involves comparatively little in the way of group-theoretic back­
ground (in p<U'ticul<U', it concerns results noticea,bly predating the aJorernen­

tioned classification). §II describes the main results that use properties of 
simple groups. Finally, §III reverts to a more combinatorial and very much 
less group-theoretic problem: the construction of new flag-transitive designs. 

No attempt has been made to be encyclopedic. See [fl, §§2.:3, 'i.'I], [:31] 
and [:3] for other surveys of similar material with somewhat d.ifferent ern­
ph<:),ses. 

I Pre-classification. 

The most beautiful result concerning the type of question being considered 
here is the Ostrom- Wagner Theorem [,If I]: If V i8 a finile proiective plane 
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having a i-lransilive col/inealion g1'Ol11', lhen 1) '" I'G(2, q).' This was pre­
ceded by some special cases: Ost rom [,17] and II all and lIughes [28] had 
handled 2-transitive projective planes of nonsquare orders2

; while slightly 
later but independently, Wagner [fvl] had proved that a finite projective 
plane is desarguesian if it admits a collineation group transitive on ordered 
quadrangles of points. The groundbreaking precursors ['17, fvl] of ['Ifl] con­
tained germs of ideas used in that paper - and led to the collaboration by 
those authors. This was the first time 2-transitivity produced a complete 
classification of finite geometries. Since then the notion of a geometric classi­
fication in terms of (l, group-theoretic hypothesis ha,s become cornrnonpbu:e. 
That W(l,S not the c()'se :35 yea,rs ()'go, <Hid it is (l, rnea,sure of these p<),pers' 

influence that this type of hypothesis is now regarded as a natural extension 
of Klein's )';rlangen program." 

Another fundamental question studied in ['Ifl] was that of an affine plane 
V admitting a 2-transitive or line-transitive collineation group G. It was 
shown that V must be a translation plane if Gis 2-transitive on points (the 
c()'ses in which k is odd <Hid not a square, or k = 22r+1 for some e, had 

been dealt with earlier in ['17, '18]). Under the seemingly weaker hypothesis 
of line-transitivity, it was first shown that this implies flag-transitivity"', 
and then that 1) must be a translation plane provided that k satisifes any 
of the following conditions: k is even, k is odd and not a square, or k is 

a prime power. Later, VVagner [56] proved that k must be a prime power, 
thereby completing the general case: if1) is an alfine 1'lane admilling a line­
lransilive col/inealion g1'Ol11' G, lhen 1) is a lranslalion 1'lane and G conlains 
lhe lranslalion g1'Ol11'. This result contains the Ostrom- Wagner Theorem" as 
a more or lessG immed.iate consequence. The classification and construction 
of flag-transitive affine planes will be discussed further in §§II,III. 

1 Moreover, they also showed that any 2-transitive collineation group of PGp, q) con­
tains the "Ii1,1,le projective group"', i.e., PS L(3, q). 

2(htrom onJy considered planes of odd order. This led Hall and Hughes to study the 
even order version of his theorem. Roth resuHs were included in [15, 20.9.8]. 

;IOn the other hand, Ostrom inJorms me that, for him, the idea of characteriy,ing 
desarguesian planes in terms of groups came from Hall's work on cyclic difference sets 
[14] . 

.; A simple counting argument proves Utis for affine planes and, more generally, when 

klu. 
sSee [57] for hjstorical comments on Utis, including the remark that one shouJd refer to 

the projt'clivt' and ajlint: vt'n;on8 of aft: 08lrorn~ v'Vagner Tlft:ort:rn. I n recent conversations, 
VVagner made the same remark to me, whjle Ostrom made related comments. 

6This is really not at all a straightforward consequence: its proof occupies (at least) 
1'1'.366-382 of [15]. 

2 



Soon after the appearance of ['Ifl] II all conjectured that any Steiner triple 
system (Le., k = :3) with a 2-transitive group G must be a projective space 
over G/<'(2) or an affine space over GI-'(:3) [16,17]. lIis approach to this 
conjecture W(l,S to study the nature of the subsp<u:et'l generated by tri(Hlgles 

by investigating the behavior of involutory automorphisms of Steiner triple 
systems. lie showed that (l, 2-tr<Hlsitive triple system V must conta,jn (l, 

subspace isomorphic to I'G(2,2) or AG(2,;3), and then used this to prove 

that if G is lransilive on lhe ordered q11adr11ples of "independenl" IXiinls, 
lhen ]) ~ I'G(d,2) or AG(d,;3) for 80me d. Later, Bruck observed that 
his work on commutative I'vlouf(Hlg loops could be used to obt(),in the S'Hne 

conclusion from a weaker hypothesis: transitivity on ordered triangles [17]; 
[fl, pp.100-101]. In [16] there is also a discussion of further connections 
between designs (Hid 2-tnHlsitive groups. 

In H158 lIall proposed the above conjecture on Steiner triple systems to 
Wagner. Instead of that question, Wagner [55] was led to a related one: 
whether all 2-transitive collineation groups of finite projective spaces could 

be determined. After a variety of special cases (e.g., [55, 52, 2fl, ;30]) a com­
plete determination of all such groups was finally obtained independently in 
[,16] and [6]. The latter proofis especially combinatorial in unexpected ways, 
a crucial ingredient being generalized hexagons. Neither of those proofs used 
any group theory beyond very elementary facts about Sylow subgroups of 

permutation groups. On the other hand, as will be observed later, the clas­
sification of finite simple groups can be used to obtain a far stronger result. 

The general study of flag-transitive designs]) was initiated by lIigman 
and McLaughlin [26]. They showed that a flag-lransilive a11lomor1ihism 
g1'011p G is necessarily primilive on lhe IXiinls of]). They posed the prob­
lem of classifying the finite flag-transitive projective planes, and (by closely 
following ideas in ['Ifl]) proved that such planes are desarguesian if their or­
ders are suitably restricted. Significant progress in the case of projective 
planes was made much later in [50,51]' where it was shown that the order 
is (l, prime power except, perh;:)'ps, if G is a Frobenius group and -I; is prime. 

II Post-classification. 

The preceding results were obtained with relatively small amounts of group 
theory - in many cases, little more than one would find in an undergraduate 

7 A wb81)(JCt'of a design D is a set X of points such that the line through any two points 
of X is contained in X. 



course. The more recent trend ha,s been to use information concerning simple 
groups: first, group-theoretic results are used in order to determine the group 
G, and then all designs V corresponding to G are determined8

. In a sense 
this trend began around Ifl?:), before the classification offinite simple groups 
wa,s expected to be completed in this century, but nevertheless in the S'Hne 
spirit as post-classification work. 

In HI?:) lIering [21] annolHlced9 lhe dflerminalion of all alfine 1'lanes 

admilling a flag-lransilive g1'Ol11' lhal has a noncyciic COm1XJsilion facio,. 
iwmor1Jhic 10 an allernaling g1'Ol11' 0,. a g1'Ol11' of Lie lwe; see §IIIA for the 
list of such planes. This was part of a general program of his: the study of 
subgroups of G {,(d,q) of order divisible by some prime., dividing q<1 - I but 
not dividing qi - I whenever I <:: i < d. 'O In the case of an affine plane, d 
is even, ., certainly divides q<1/2 + I, and hence ., is a factor of the order of 
any flag-transitive collineation group. 

The results in Hering's generaJ progl'<Hn aJso (),pply to an even more 
important situation: determining all transitive linear grOl1]JS (subgroups of 
G{,(d, q) transitive on the nonzero vectors of the underlying vector space). 
The proof of his results on such groups has appeared in [22,2:3] in the generic 
case, when some noncyclic composition factor is an alternating group or a 
group of Lie type; while in [2:3, p. 16'1] lIering states that the unpublished 
manuscript [2fl] "contains the correspond.ing investigation for the known 
sporadic grou pst'. Ani ndependent proof of the enu meration of all transitive 
linear groups is presented in [:3fl, Appendix I], also using the classification 
of finite simple groups. Note that such an enumeration is equhraJent to the 
determination of all point-transitive collineation groups of finite projective 
spaces (and hence, in particular, contains as a very special case the much 
more elementary result in [fI6, 6] concerning 2-transitive collineation groups). 

Any finite 2-transitive group either has a simple normal subgroup or an 
elementary abelian regular normal subgroup [5, p. 202]. The classification of 
finite simple groups produces a list in each of these cases. When there is a 
simple normal subgroup most of the work towards such a list is contained in 
[8]; the case in which there is an elementary abelian regular normal subgroup 
is equhralent to obtaining a list of all transitive linear groups, a question that 

I'F'or example, three 36 _point examples in IliA arise from the same 2-hansitive group. 
In the ca.<;e of solvable groups, numerous examples can arise from the same group, as is 
seen in §§IIIH,C. 

9 Apparently only a small portion [20] of the proof of this has appeared in print. 
lOSuch a prime divisor of qd - 1 almost always ex.ists [58]. The only exceptions are: 

d = 2 when q is a Mersenne prime, and d = 6, q = 2. 



was just discussed. Both of these are lists presented, for example, in [:Bj. 
lIall returned to the question of 2-transitive Steiner triple systems 1) in 

[18], and proved his earlier conjecture: 1) '" I'G(d,2) or AG(d,:3) for 80me 
d. lIis proof used the classification of 2-transitive groups having a simple 

normaJ subgroup, since the c()'se in which there is 'HI elernent,u',V aJwli<HI 
regular normal subgroup had already been handled in [1:3j. The same result 
concerning 2-transitive Steiner triple systems was obtained independently 

and at the same time by Key and Shult [:38], using a method similar to 
II ali's: the stabilizer G"y in G of two points ;T,IJ must fix a third point 
z (the third one on the line (, through ;T and il); and 2-transitive groups 

can then be checked to see which have this property and then tested to see 
whether {;T,Ij,Z}G is the set of lines of a design. At essentially the same 

time the determination of all 2-transitive designs with A = 1 and arbitrary 
k was given in [:3:3], using the same basic approach but slightly more about 

the nature of G;ry in e.H:h 2-tr<Hlsitive group. In that more genera'! setting, 
If - {;T,l/} must be a union of orbits of G;ry and its size k - 2 must satisfy 

the conditions k - 11-" - 1 and -" :> k2 - k + 1; any such union is then readily 

examined to see if, together with {;T, ill, it produces a design." Also at 
roughly the S'Hne time (l, speciaJ c()'se of the result for genera'! k wa,s proved 
in [7] for a model-theoretic application - again using the classification of 
2-transitive groups. 

Flag-transitive projective planes were almost determined in [:35]: sl1ch 
a plane is desarY11esian if G is nol a i-'1'Olieni11s g1'011p of prime degree (t he 
Frobenius c()'se remains elusive, but presumably occurs only for IY;(2,2) 
and I'G(2, 8)). The fact that the order of such a plane can be assumed to 

be a prime power [50, 51] was not used. Instead, group-theoretic results 

were used in order to obtain a list of the odd degree primitive permutation 
representations of all non sporadic nearly simple l2 groups - a result obtained 

independently in ['IOj. This result does not itself use the classification of fi­

nite simple groups, but of course for applications the sporadic groups must 
be handled individually. In the case of a projective plane, -" is odd and G 
is point-primitive, and these were the only assumptions ultimately made: a 
p1'Oiective plane 1) admilling a IXiinl-primilive co/linealion g1'011p G is de­
sarY11esian e];Cfpl, perhaps, if G is eilher a reg11lar or i-'1'Olieni11s g1'011p of 
prime degree':; [:35j. The corresponding result concerning affine planes was 

11 Unlike [18,38]' in [33] lists of all 2-hansitive groups were used, not just of those having 
simple normal subgroups. 

12 A group H is nearly 8irnple if S :::; H :::; Aut S for a nonabelian simple group S. 
clThe regular and F'robenius cases are the same as that of a (planar) difference set in a 

5 



conjectured in [:}I]: an alfine plane admilling a Ix,inl-primili1Je co/linealion 

g1'OUp is a lranslalion plane. When -" is even this is essentially contained in 
['Ifl], while for odd -" it was proved in [27] using the aforementioned result 
on primitive permutation groups of odd degree. 

It is remarkable that an al most corn plete detel'm i nation of all flag-transitive 
designs]) has now been announced [,I]: eilher]) musl be one of lhe e"am­
pies lisled bdo1/) in § I I lA, or -" is a prime IX'lI)fr and G is isomor1,hic 10 a 
subg1'Oup of lhe I-dimensional alfine g1'OUp Arr,(I,-") = {z f-0 (Jz" + b I (J I 
0, b E Gh,,), 'P E Aut Gh,,)}. (Thus, either]) is known or G is dull!) This 
result, containing the main ones in [18, :38, :3:3, :35] as very special cases, uses 
far more knowledge of the structure of simple groups than in those papers. 
In [:35] it was first necessary to reduce to the case of a nearly simple group G, 
which W(l,S rmule relatively e;:),sy due to the behavior of involutions on (l, pro­
jective plane. In the general case the reduction was more involved [:3], and 
led to very different situations in which G either has an elementary abelian 
regula,r normaJ subgroup or'is ne<:)'riy simple. Both of these c()'ses were very 

difficult to handle, involving numerous results concerning the maximal sub­

groups and the representations of the finite simple groups. The geometry of 
the situation is, of course, not lost; but the crucia,l ingredient becomes the 
group-theoretic analysis. 

III Post-past-classification: examples. 

III.A The classification in [,I] consists of the following list: 

projective and affine spaces; 

the designs with -" = q3 + 1 and A: = q + 1 associated with the nat­
ura'! 2-tr<Hlsitive permutation representations of the unit.u',V groups 
1'8lJ(:3, q) 01' the Ree groups 2GAq); 

designs associated with the action of 1'8 r,(2, q), q even, on the set of 

-" = &q(q - 1) non-secants of a conic (A: = &q); 

affine planes: 

the nearfidd plane of order A: = fl [fl, p. 2:30], [12], 

Iiering's plane of order A: = 27 [Hl], 

group of prime order [14]. 

6 



Liinebur!',-Tits planes of order k 
['11] : 

22(2r+l), one for e.u:h (' > 

two desi!',ns with v = 72fl and A: = fl ansm!', from the occurremce of 
.) D(2, n) as a transitive linear su b!',roup of G D( 6, i3) [25]; 

or the flag-transitive !',roup G lies in affine !',roup AI' D(1, v), where v 
is (l, power of (l, prirne p. 

The last case on this list produces open and important problems. Unlike 
the situation with [nost of the exaInples listed (l,hove, in this c(,"se the sa,ule 

!',roup can act flag-transitively on many different desi!',ns (see below). Is 
there a hope for a complete classification of these designs? I suspect not. 
My evidence is the number of examples described below, to!',ether with their 
sornewhat wild ()'ppea,J'(lIlce. In (l,ny event, this c(,"se involves signiHcaIltly 
less !',roup theory than in either of the precedin!', two sections! Instead, 
it depends on properties of finite fields: the set of points can and will be 
viewed as the set of elements of the field I" = Gl"(v). The lines will be all 
of the translates of the set of lines throu!',h O. In most cases (but not all, 
see (1) below), when I"is viewed as a vector space over a suitable subfield 
{( = GI"(q), each line throu!',h 0 will be a {(-subspace. 

Therefore, for most of the constructions below a set of 8 of {(-subspaces 
of I" will be !',iven, frequently obtained as distortions of a subfield D = 
GHA:) = Gl"(q"') of 1". All of the translates of the members of 8 produce 
an incidence structure 1)(8), and this is a desi!',n with ,\ = 1 iff the followin!', 
conditions hold: each member of 8 has size A:, 181 = (v - 1 )I(A: - 1), and 
distinct rnernhers of S have only 0 in connnon. 

)"01' 0' Eli'" let tt denote the 1( -linea>!' traIlsfornlation z ~ nz TromP' to 
itself. 

III.B Affine planes. 

lIere I" = G I"( v) = G I"( q2'" );Iet "bar" denote its involutory automorphism. 
Let" E 1"* have order (q'" + l)(q - 1). Constructions (i-iii) below produce 
nondes(l,rgnesiaIlfla,g-traJlsitive plaIles of order k for every non-prirne prirne 
power A: except in the cases A: = 4 or 8 (when all affine planes are desar­
!',IJesian) and A: = 22i for some i :> 2. These and the ones in the precedin!', 
subsection (l,re the only knownfla,g-trallsitive nondes(l,rgnesiaII aJline plaJles. 
There is no such plane when A: = 16 [10], butit seems likely that such planes 
exist when iis sufficientlylar!',e. 
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(i) If"t; = q2"', q is even, n > 1 is odd, l' E Ghq2) - f(, T:f, ~ f\ is the 

trace map, and h(;1') = T(;1') + 1';1' for ;1' E f" then 

Sr = {.,ih( f,) I 0 <:: i <:: q"'} 

p1'Odl1CeS an alfine plane 1)( Sr) having lhe flag-lransilive g1'Ol1p {z f-0 .,' z+w I 
,,' E (,,), ~w E I,'} [:32]. J'~ach such plane is nondesarguesian if qH > 8. 

Uemenls 1',1" E G h q2) - f\ P1'Odl1ce i80mor1Jhic planes iff 1" + 1 = k( l' + 1)" 
fo,. 80me k E f\", 'P E Aut Ghq2). (See (2) below for a sketch of proofs of 
these ()'ssertions in (l, more generaJ setting.) 

However, there (l,re no other known ex,unples of nondes(U'guesi'HI aJfine 

planes of even order having solvable flag-transitive groups. Note that each of 

these planes admits a shar1J/Y flag-transitive collineation group {z ~ "IZ+~W I 
.,' E (.,'I-'),w En (since (q'" + l,q - 1) = 1). 

The ("hove pl(HleS (l,l'ose in (l, cod.ing-theoretic context. They have 'HI 

unusuaJ property: there is (l, nonsingula,r aJternating form on the f(-sp<H:e 

V (namely, (;1', iJ) f-0 T(;1'Y + XiJ)) that vanishes on each member of Sr. The 
possible implications of this property for the internal structure of an affine 
pl(Hle have rerna,jned 'HI open question for 10 yea,rs. 

(ii) If q and n are odd, b E V satisfies b = -b, 1 I (J E Gal( f,1 f\), and 
h(;1') = ;1' + /);1'J for ;1' E V, then 

p1'Odl1CeS an alfine plane 1)( S"J) having lhe flag-lransilive g1'Ol1p {z f-0 .,' Z + 
w I .,' E (.,), w E V} [:36]. This description generalizes one due to Suetake 

[5:3]. In [:36] it is shown that if1)(S(J)"" 1)(S~T) lhen T = '; 1)(S(J)"" 
1)(S(-l.J-,); and 1)(S(.J) "" 1)(S~.J) iff c = ,,':"Jb" fo,. 80me " E f,", 'P E 
Aut V. See (:3) below for a sketch of the lll'oofs of similar assertions in a 

more generaJ setti ng. 

An example of a plane 1)(S"J) with q'" = 27 is given in ['1:3]; see [5:3]. A 
flag-transitive plane of order q'n = 125 is presented in [+1] that has an element 

inducing a transitive cyclic group on the line at infinity; presumably this 
pl<:Hle is another instance of a plane V(Sry,iT), but this remains to be proved. 

(iii) If q'" == 1 (mod 'I), if b, f, and h al'e as in (ii), and if (J E Gal( VI f\) 
IS nontrivial on If, then 
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p1'Odl1CeS an alfine plane 1)( 8(,q) having a flag-lransilive g1'Ol1p generated by 

{z f-0 .,'z + wi.,' E (.,2), w E V} and z f-0 bzq [:36]. This description again 

generalizes one due to Suetake [5:3]. In [:36] it is shown that if lhe fi];ed field 
of (J is 1"'OlxTly conlained in {, lhen lhere is no cydic col/inealion g1'Ol1p 
lransilive on lhe line al infinily (such a group clearly exists in Oi)). It is 

also shown that if1)(8(,q) ~ 1)(8~'T) lhen T = '; 1)(8(,q) ~ 1J(8;-1.q-,); 

and 1)(8(,q) ~ 1)(8~,q) iff c = ",-qb'" for 8Ome" E {,X U b{,", 'P E Autf.'. 

VVhen n = 2, 1,1 C<HI be viewed (),s (l, fl-d.irnensiona,l vector sp.H:e over 

f\. This c()'se ha,s received the most attention, (Hid W(l,S the first to produce 

examples. In [12] two flag-transitive planes of order 25 were constructed and 
shown to be the only nondes(U'guesi'HI Ha,g-tra,nsitive pl(HleS of that order. 
The general case when n = 2 is found in [:12, 1, 2]. 1~)1Je1'Y nondeSarf}l1esian 

alfine plane of order q2 admilling a flag-lransilive g1'Ol1p lying in A)' {,( I, q"), 
and for which 8 is a sft of i-dimensional G H q)-SIJaces. is i80mor1Jhic 10 a 
plane 1)(8(,.J Namely, q cannot be even [5:3]; while for q odd this assertion 
is essentially contained in [1,2] with a different description of the sets 8(,,,. 

Ov) If q"', b, ("" and h are as in Oi) (so that n is odd), if (J E Gal( VI {() 
is nontrivial on {" and if I' E V is such that liP; is fixed by (J but is not a 
squa,re in If, then 

p1'Odl1CeS an alfine plane 1)( 8~q) having a flag-lransilive g1'Ol1p generated by 

{z f-0 .,'z+w I.,' E (.,2), wEn and z f-0 III' [:37] (compare (6) below). This 

construction does not depend on the choice of It, (Hid produces the S'Hne 

planes as in (iii) when q'" == I (mod 'I). If the fixed field of (J is properly 
conta,jned in If then there is no cyclic collineation group tl'<Hlsitive on the 

line at infinity. There is again an isomorphism criterion similar to those seen 
e;:)'riier. 

There is an affine plane of order 27 constructed in ['15] having a flag­
transitive group lying in AI'{,(I,272 ) and having no element inducing a 

transitive cyclic group on the line at infinity. I suspect that this plane is one 
of those constructed in Ov). 

III.C Designs that are not planes. 

The remainder of this paper is concerned with the construction of designs, 
other than planes, that admit flag-transitive automorphism groups contained 

in AI'{,(I,"")' This question has received surprisingly little attention. The 
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only known construction methods depend heavily on delicate <U'ithmetic 
questions involving finite fields. The construction below in (1) makes this 
very plain, while those in (2) and (6) seem to have too many potential 
v'()'riations. Consequently, a complete classification seems doubtful. 

Remark on antomorphism gronps. Assume that 1) = 1)(8) is as 
above, and that 1) is not an affine space 01' plane. Since Aut 1) is flag­
transitive, Aut1) <:: AI'{,(I,''') by ['I]. This is useful for the discussion of 
the question of isomorphisms among the designs constructed below. (Note, 
however, that much less than the full strength of ['I] is needed for the de­
termination of Aut V - and even less is needed for the applications to iso­
morphism questions.) In the case of affine planes the situation is noticeably 
simpler: all that will actually be required is that the group of translations 
z ~ z + ~w is normal in Aut V, and this is standard in the case of an affine 
plane. It would be interesting to have a simple, purely geometric, canonical 
description of the group of translations for the designs constructed below. 
(llere is a simple description that is not quite geometric enough and only 
works when q > 2. )<\)1' any point ;T let G("I denote the group of all auto­
morphisms of 1)(8) fixing all lines through ;T. If;T Ii}, 1 I ij E G("I and 
1 :ft h E G(YI' then g-Ih- I gh is a nontrivial translation; moreover, each 
nontrivial translation arises in this manner.) 

Remark on isomorphism testing. The following is a strategy for 
determining whether 01' not two of these designs 1) = 1)(8) and 1)' are 
isomorphic (compare [;36]). WLOG 1) and 1)' have the same set of points 
and even the same automorphism group. If g:V --' V'is an isomorphism 
then (Aut 1))11 = Aut 1)' = Aut 1). WLOG ij fixes O. Assume that 1) is not 
an affine space 01' plane. By the preceding paragraph Aut 1) <:: AI' {,( 1, ',,), 

and hence 9 conjugates the unique minimal normal subgroup {z ~ z + ~w I 
wEn of Aut 1) to itself. 

There is a subgroup ("0) of V of prime order that lies in no propel' 
subfield of V (by [58]; cf. 10). Then 1"01 divides (" - 1 )I(A: - 1) and hence 
also IAut 1)1, so that "0 E Aut 1) in each case below. Since G{,( V) has cyclic 
Sylow I,'ol-subgroups, 9 can be adjusted in order to have it normalize (,'0).1<1 
Then ij has the form z f-0 nz" with n E V, 'P E Aut V. After a further 
adjustment of ij, WLOG 'P = 1. Now it is just a question of calculating with 
the specific definitions of 1) and 1)' in order to see whether some such n can 
exist. An example of such a calculation is given in (:3). 

(1) Assume that A: :> ;3 and MA: - 1)1'" - 1. Let /J be the subgroup of 

141n fad, thjs is automatic since it is already known that Aut1):::; ArL(l, u). 
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V of order k. For some choices of V and /J it is known that the set of all 
irna,ges of /J under the tl'<Hlsforrnations z ~ ak - I z+~w, a E V", ~w E I'" form 
(l, design with A = 1. (Jl~x<Hnples where this phenomenon occurs (l,re "Netto 

triple systems" having k =;3 and'" == 7 (mod 12). For other examples, see 

[·1]. ) 
The conditions required for this construction to produce (l, design (l,re 

extremely delicate. For example, when ." - I = Mk - I) the construction 

would produce a flag-transitive projective plane (and does so when ." = 7 or 
7:3) - and every shar1Jly flag-transitive projective plane arises in this manner. 

(2) It is occasionally possible to impose the structure of a flag-transitive 

design on each of the lines of a flag-transitive design - at least when the 
latter design is an am ne space. I i) 

(2a) Let V = GV(,,) = GV( q2nd) ~ ",' = GV(q2n), and let 

G = {z f-0 tz + w I w E V, t E V and It I divides (q2",1 - 1)( q - 1)/( qn - I)}. 

Then IChl = q2n(qn + I)(q - I) iff ((q2",1_ I)(q- I)/(qn - I), q2n - I) = 

(qn+ I)(q-I); and this occurs ifr(d,(qn-I)/(q-I)) = 1. In this situation, 
,.;G is the set of lines of AG(d,q2n). Note that (h, acts faithfully on ,.;. 

Now equip I,.' with the structure of a nondesarguesian affine plane ad­

mitting Gv; as a flag-transitive group (examples have been given above in 
0) and Oi)). Temporarily call the lines of the affine plane ,.; "sublines". 
Clearly, each subline is contained in just one line, namely, ,.;. Consequently, 

the images of the sublines under G produce a design V admitting G as a 
flag-transitive group. 

Once (l,ga,in there (l,re (U'ithrnetic conditions involved in this construction, 

but there is an addhional v<u'iable: the specific affine plane inserted into 
,.;. Claim: The s11bspace ,.; of 1) can be recovered from 1). For, Aut 1) <:: 
AI' r.( I, q2wl) , so that there is only one subgroup of Aut 1) isomorphic to G; 
and all subgroups isomorphic to Gv; are conjugate. But I,.' is a subspace of V 
and is imrariant under the group (h.;, while (h.; has exactly one point-orbit 
of size 1",'1- This proves the Claim. It follows that nonisomor1Jhic planes 
prod11ce nonisomor1Jhic designs. 

This simple approach also can be applied to examples in (I), but it 
merely gives another design arising in (I). 

(2b) The above construction can be varied somewhat, using a slightly 
d.ifferent group G so as to make (h.; coincide with the flag-transitive group 

lSln [4] this is called my "in.flation trick"'. However, "free lunch trick'" would be a more 
appropriate description. 
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arising in Oii).For example,let l" = Gl"(v) = Gl"(q2wl) ~ E = Gl"(q2"') ~ 
D = Gl"(q"'), where q'" == 1 (mod 4); let (J E Gal(l"/f() be nontrivial on 
D;let bEE with b'ln = -b; and let G be generated by {z f-+ tz + w I 
w E l", t E l"* and It I divides (q2wl - 1 )(q - 1 )/2(q'" - I)} and z f-+ bz". 
Then (h is isomorphic to the group in Oii) iff ((q2"'d - 1)(q - 1)/2(q"'-
1), q2'" - 1) = (q'" + 1 )(q - 1 )/2; and this occurs if, for example, nis odd 
and (d,(q"'-I)/(q-l)) = L In this situation, EGis the set offines of 
AG(d, q2"') , and any plane from Oii) can be inserted into E exactly as in 
(2a). Once again, nonisomorphic planes from Oii) produce nonisomorphic 
designs, each of which is not isomorphic to any constructed in (2a) if the 
fixed field of (Jis properly contained in Gl"(q") 

(i3) The construction of planes in 0) can be generalized as follows. 
Consider a prime ]1, powers q > 1 and I > 1 of]1, and an integer n > 1 

such that ]1 X n. Let 

l" = Gl"(v) = Gl"(qf",), D = Gl"(q"), 1'0 = Gl"(qf) and I( = Gl"(q). 

Assume that ((q"'-1 )/(q-l), I -1) = 1 Ofr <:: q this states that (n, I-I) = 
1). There are norm maps N: l" -> D and No: 1'0 -> f( and trace maps 
T:D -> f( and 7a:I'o -> fC Let" E l" have order (qf'" -1)(q -1)/(q'" - 1), 
so N(,,) E fC 

Let l' E I'a - f( be such that the polynomiaJidentity No(;1' + 1') = 

;1'f + 7a(No(1')/1');1' + No(1') holds in 1''[;1'] (e.g., if I = i3 then this condition 
is simply that '1'0(1') = 0). If nED then N(n + 1') = II{;:~ (n + 1''1ni) = 

"f +7a(No(1')/1')"f- 1 + No(1'). (H)r, since (f,n) = 1, {q"'i 10<:: i < f} and 
{qi 10<:: i < f} both induce all the elements of Gal( 1'0/ f().) 

Claim:.'iT = {.s'(KerT + 1'f() I 0 <:: i < (qf'" -1)/(q'" -I)} 
p1'Oduces a design 1)(.'iT ) with>' = 1 and flag-transitive g1'Oup {z f-+ ,,' Z + w I 
,,' E (,,), w E l"}. (When I = 2 these designs are just the planes in 0) with 
l' + 1 in place of 1': in that case '1'(;1') + 1';1' = ('1'(;1') + x) + (1' + l)x with 
T(x) +;1' E KerT.) 

To see this, first note that dimK(KerT + 1'f() = n (since KerT C D, 
l' E I'a - f( and I'a n D = fn. Consequently,it suffices to show that the 
conditions 0 I n + 1'k = "i(n' + de'), where n, n' E KerT, k,k' E f(, and 
0< i < (qf'" -1)/(q'" -1), lead to a contradiction. Since n,k ED, applying 
N yields 

"f +7a( No( 1')/ 1')nAJ -I + No( l' )AJ = N ("iHn'f +7a( N o( l' )/1' )n' kif -I + No( l' )k'f} 

("f _ N ("i)n'f)+70( No( 1')/ 1')( nAJ -1- N ("i)n' kif -1)+ No( 1')( AJ - N ("i)k'f) = 0 
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where N("i) E f(. Now apply '1': n( No(r)(kf - N("i)k'f)) = 0 (since 
CKerT)f = KerTand '1'(;1') = n;1' for;1' E f(). [lowever,pfn. Thus, k = !Jk' 
where 1/ = N("i) and IJ E f(. It follows that 

(11. - IJII')f + 'lb( No( r)/1'(!Jf -I kif -I (11. - !In' ) 

= (llf - I/II/f ) + 'lb( l'Vo(r)/r)(n!Jf- 1 kif-I - I/II/k'f - I ) = o. 

Now (11. - !In')f-Iis 0 or -'lb(No(r)/r)!Jf-lk'f-1 and so lies in f(. But 
(( qn _ 1)/ (q - 1), f - 1) = 1 by hypothesis, so that 11. - !JII/ E f( n Ker 'I' = O. 
Now our original equation -n + 1'k = ,,1(U' + 1'k') ()'sserts that ;lj = "i, so that 
"i E f(. Then i(q-1) == 0 (mod (qfn_1)(q_1)/(qn_1)), which contradicts 
the fact that 0 < i < (qfn _l)/(qn -1). This proves the Claim. 

Claim: When n > 2, 1)(8,.) '" 1)(y,.,) iff 1" = en'" for some n E {(*, 'P E 
Aut Gl"(qf). For, one direction is easy. Suppose that 1)(8,.) '" 1)(8,.1). 
By the remark on isomorphism testing, WLOG an isomorphism ij has the 
form z f-+ nz for some n E 1"*. It suffices to show that TI( = 1" f(, so 
assume that rf( 11" f(. By replacing ij by ij.,i for some i, WLOG nCKerT+ 
rf() = KerT + r'f(. Then dimK(nKerT n KerT) = (n - 1) - 1 > 0, so 
that nED. Also, 1" = n(n + rk) for some 11. EKeI' '1', k E f(. Then 
1" = (CUI)'l!i + 1'(nk)"!i for 0 <:: i < n, where CUI, nk E D. Adding these 

("Iuations yields nr' = k, + rk2' where k" k2 E f( and nr' I O. Then 
0= (k, - rwn) + 1'(k2 - rwk), while l' rJ D, so that rwk = k2 E f(. Then 
n E f(, KerT + rf( = KerT + 1" f(, and hence (by intersecting with /'b) 
rf( = 1" f(, which is not the case. This proves the Claim. It is not difficult 

to check that the Claim also holds when n = 2. 
Claim: 1)(8,. ) is not an a{fine space AGU, q"}For, suppose it is. Note 

that the subspaces "iD, 0 <:: i < (qfn _l)/(qn -1), are the lines through 0 
of an AGU, q"} By the remark on isomorphism testing, an isomorphism ij 
may be assumed to have the form z f-+ nz for some n E 1"* . Multiply ij by 
a power of., in order to have CKerT + TI\)11 = D. Then nCKerT + rk) = D, 
so that nED and nr E D, where l' rJ D. This proves the Claim. 

As in 0), each of these designs admits a shar1Jly flag-transitive automor­
phism group {z f-+ ,,'Z + w I ,,' E (,,'1- ' ), wEn since (( qfn - 1 )/( qn -1), q-
1) = U, q - 1) = 1). 

Are Hla,ny designs obtained in this Hl<lIlJler'!Do HlaIIY elenlents l' E 
Gl"(qf) satisfy the identity No(;1' + r-) = ;1'f + 'lb( No(r)/r}1' + No(r}! I do 
not know a,ny (l,nswer. llere is one e;;),sy exaInple: if f = P then ;1;P -;1; - C, C E 
Gl"(p)*, is irreducible over Gl"(p") = Gl"(q) whenever pfe [11, p.2fl]' and 
hence has a root l' E G 1"( qP). Then l' behaves as desired - but different 



choices of c prod uce elements l' in the same coset of G l"(]J)* in G l"( qP)*, 
so up to isorflorphisrn only one design is obtained in this rnaIlner for e.u:h 
choice of]J and "-

(4) The construction in Oi) also can be generalized as follows. 
Let 1'n, n > 1, (1'n, n) = 1, 1'nlq - 1, and l" = G 1"( q""n) ~ D = G l"( q"'J ~ 

I( = G l"( q);let w E 1(* have order 1'n and" E l"* have order (q""n - 1)( q-
1 )/(qn -1 );Iet 1 ! (J E Gal( D/ f() and let 0 E Gal( l"/ f() be the qnth power 
map; and let bEl" be such that 1,0 = wb. Write h(;1') = ;1' - b;1'J for ;1' E l". 

Claim: ,'h,J = {.s'h(D) 1 0 <:: i < (q""n - 1)/(qn - I)} 
p1'Od11ces a design 1)( ,'h,J) with>' = 1 and flag-transitive g1'Oup {z f--+ ,,' Z + w 1 

,,' E (,,), wE l"}. (When 1'n = 2 this is the same construction as in Oi).) 
Let T and N be the trace and norm maps l" -> D. The identity II~o' (;1'-

1,0') = ;1''''' - b"" holds in 1''[;1' 1 since the roots on both sides are wib, 0 <:: i < 1'n. 
In particular, T(b) = 0 and N(b) = _(_b)"". Also, for any n,n' ED, N(n­
Im/) = IIi;.,;;' (n - 1,0' n') = n"" - IF'n'''''. 

Now we return to the Claim. First of all, his injective: if;1' - 1);1'J = 0 
with xED then m.;1' = T(x) = T(b;1'J) = T(b)xJ = 0, so that x = 0 since 
1'nlq - 1. Next, P)is transitive on ,'h,J' soit suffices to assume that 0 ! 
h(;1') = "i h(U) E h( D )n"i h( D), where ;1', IJ E D and 0 < i < (qn"" -1)/ (qn -1), 
and derive a contradiction. Apply N: ;1''''' - IF';1'Mn = N("i)(i/n -IF'IJmn ), 
so that x"" - N("i)U"" = b""(x"" - N("i)U"")J since N(,,) E E(is fixed by 
(J. If ;1''''' - N("i)IJ"" ! 0 then b""(x"" - N("i)U"")J-' = 1, where ml(J - 1 
by hypothesis, so that b(;1''''' - N("i)U"")k-li/"" E (w) c E(, whereas b f- D. 
Thus ;1''''' - N("i)U = O. Now (;1'/U)"" = N("i) E E(, but (1'n,(qn - 1)/(q­
l))l(q - 1,1'n,n) = 1, so ;1'/U = k E EC It foIlows that kU - b(kU)J = 
"i(U - bUJ). Then k = "i, so that "i(q-I) = 1, which is impossible since 
1,,1 = (qfim_l)(q_l)/(qn_l) and 0 < i < (q'M'_I)/(qn_l). This proves 
the Claim. 

Moreover, if 1'n > 2 then the foIlowing are not difficult to prove (as 
in [:36]): 1)(,'h,J) is not an affine SIJaCf, 1)(8b,J) ~ 1)(8b,T) iff (J = T and 
c = ,,' -J Ii" fo,. some" E ('*, 'P E Aut l". 

(5) The construction in (iii) also can be generalized as follows. 
Again let l" = Gl"(q""n) ~ D = Gl"(qn) ~ E( = Gl"(q), where 1'nlq - 1; 

and assume that qn '= 1 (mod 2m) if 1'nis even. Let (J E Gal( l"/ En, and 
assume that (J acts nontriviaIly on D. Let 0, w, '" b, hand N be as in (4). 
Then 



p1'Od11ces a design 1J( Sb,J) with ,\ = 1 and flag-transitive group generated by 
{z f-.+ ,,'Z + w I ,,' E ("m), wEI"} and z f--+ bzJ

• (When rn = 2 this is the 
same as (iii).) 

1"01', once a,ga>in S~,J consists of n-dirnensionall( -sp<H:es. Clea,rly (:srh) h;;)'s 

just rn orbits on S~,J' The transfol'rnation z ~ bz iT sends ([bj;-r] -b[lJiJ;yJD 
to "miJ([bbiJ;1JJ]_b[bbiJ;1JJt), where bbiJ E bHI D since (bJ)!! = (wb)J = wlF; 

and h(lF'D) = h( D) since IF' E D. This proves flag-transitivity. 
COnSe(IUently,it suffices to consider the possibility that h(;1J) = "mi h( bi IJ) 

for some X,IJ E D* and some i,j such that 0 <:: i < (qmn - l)/rn(q"'- 1) and 
o <:: j < rn.First note that 

N(bi1J - bbiJln N(bi)N(IJ - [bbiJ /bilin 

(-l( _b)m)i(IJm - [bbiJ /bi ]mlrn) 

since [bbiJ /bi ]!! = w[bbiJ /bi ]. 
Now ;1J m - IF';1J Jm = N("mi)( -1 )i(m-lI(bimIJm - bmbinw IJJm ), so that 

_ (_l)i(m-IIN("mi)(biIJ)m = IF'{xm _ (_l)i(m- II N("mi)( biIJ)my. 

If ;1Jm -( -1 )i(m-I I N ("mi)( biIJ)m I 0 then bm( {;1Jm -( _1 )i(m-I I N ("mi)( bi IJ )m}(J-II!m yn = 

1, and hence b{xm - (_l)i(m-IIN("mi)(biIJ)m}(J-II!m E F( (since F( con-

tains all rnth roots of 1), whereas ;1J, Ih IF' E D and b '1: D. 
Thus, ;1Jm = (_l)i(m-IIN("mi)(biIJ)m. But (_l)i(m- II = em for some 

e E D (as q'" == 1 (mod 2m) if rn - lis odd; use e = 1 if j(rn - l)is even), 
so that (x/eN("i)biIJ)m = 1 and hence ;1J/eN("i)biIJ E FC Then bi E D 
while (bi j1i = biwi , which successively imply: j = 0, e = 1, x = kIJ with 
k E F(, kIJ - bkIJJ = "mi(biIJ - b(biIJ)J) = "mi(IJ - bIJJ ) I 0, k = "mi, and 
rni(q - 1) == 0 (mod (qnm - l)(q - l)/(q'" - 1)). Since 0 <:: i < (qnm_ 
1)/rn(q'" - l),it follows that i = j = 0 and hence h(D) = "mih(bi D). 

COnSe(IUently, 1J(S;J) is a design with ,\ = L Clearly, the conditions 
on the parameters q, n,'rn are slightly different from those in (4) when rnis 
even, so Borne exaulples here do not (),ppeaJ' in (4). lIowever, there is (l, rnore 
significant difference between (4) and (5): if the fixed fidd of (J is IJr'OIXTly 
contained in D, then 1J(S;.J) has no a11tomor1Jhism fiJ;ing 0 and cyclically 
perm11ting S;,J' Also, for rn > 2,if 1J(S;,J) '" 1J(S~'T) then (J = T on D and 
c = ,,'-Jli" for some" E (b)D*, 'P E Aut 1"; while ifb and care rdated in 
this marmeT then 1J(S;.J) '" 1J(S~.J)' These are not hard to prove; see [:36], 
where questions of this sort (l,re ~:~xanlined in overly rninnte detail for the 
planes (iii). 
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(6) In order to generalize the construction in (iv), again let l" = G 1"( qmn) ~ 

D = Gl"(q") ~ [( = Gl"(q) with rnlq -1, and let iJ, w,", b, hand N be as 
in (4). Lastiy,let I' E l"* be such that N(II) is fixed by (J but N(II);is not 
an rnth power in D whenever 1 <:: j < rn. Then 

S~J = {"mill'+ll+"'+{P-' MDt 11 <:: j <:: rn, 0 <:: i < (q'M' - l)/rn(qn -1)} 

1'1'Od11ce8 a de8ign 1)( S~J) with), = 1 and flag·tranBiti1Je g1'0111' generated by 
{z ~ ,'/z+~w 1,'/ E ("m),~w Eli'} (Hid Z ~ jlZ{). 1''01', once again we Jind that 
S~:J consists of n-dirnensional suhsp<u:es, Itl+O+ ... +orn-lh(L)OTn = h(L) since 

1I'+II+"+IIm-'MDj1im E D, and Idl,'+II+"'+IIJ-'h(Dj1iJj1i 
II'+II+"'+{P MD){!J+'. This implies flag·transitivity, and leaves us to con· 
sider the possibility that h(;r) = "mi ll' M1Jj1iJ for some i,j, where II' = 
II' +II+"'+{P-' . This time we find that 

xm _ l/nxJm = N("mi)N(II')(1Jm _ bmlrnt = N("mi)N(II')(1Jm - bmlrn) 

since (b'nt = bm. Then xm _N("mi)N(II')1Jm = bm(xm_N("mi)N(II')1Jm)J 

since N(II') = N(II);is assumed to be fixed by (J. As usual,it foIlows 
that ;rm = N("mi)N(II')1Jn\ so that N(II') = N(II.);is an rnth power in 
D. By hypothesis, j = rn. Now (;r/N("i)N(II)1J)m = 1, and as in (5) we 
deduce successively that ;r = kN("i)N(II)1J with k E [(, kN("i)N(II)1J -
bkN("i)N(II)1JJ = N(II)(1J - b1JJ ) since II' = N(II.) is fixed by (J while 
N(,,) E [(, = kN("i) E [(, i = 0, and hence "mi ll 'MDj1im = h(D). 

COnSe(IU(mtiy, 1)(S(:J) is a design with), = 1, as re(luired. [Iowever, the 
isomorphisms among these designs, and the extent to which they do not 
alre<uly (l.rise from previous constructions, rernain to he studied. 

(7) Now the examples in (2) can be generalized further using (i3·6). The 
analogue of (2a) is as foIlows. Let rn> 2, n > 1, l" = G/"(qmnd) ~ E = 

G/"(qmn), and let G = {z f--+ tz + w I w E l", t E l"* and It I divides 
(qmnd _ 1 )(q _ 1 )/(qn - 1)}. Then IChl = q''''''(q'''''' - 1 )(q - 1 )/(qn - 1) iff 
((qnmA_1)(q_1)/(qn_1),qnm_1) = (q'M' -1)(q-1)/(qn-1); and once 
again this occursif(d,(qn-1)/(q-1)) = L In this situation, EGis the set 
of lines of AG( d, qm"} 

Now ()lluip E with the structure of a design with), = 1 admitting (h, as 
aflag·transitive group (e.g., one of those given above); temporarily caii the 
lines of 1'.' "suhlines t

'. The irna,ges of the suhlines lHlder G again produce a. 
design V <ulrnitting G (),s a.flag-traIlsitive group. As before, if nonisorflorphic 
fla,g-traIlsitive designs a.re inserted into 1'.' then nonisorflorphicfla,g-traIlsitive 
designs V a,re ohta>ined. 
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Thef'() is a similar version of (2b). 
It will corne (),s no surprise that all of designs obtained in this rna,nner 

from those constructed earlier can easily be described dif'()etly. 
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