Some large trivalent graphs having small diameters
William M. Kantorx

This note concerns an improvement of a result of Babai-Kantor-Lubotzky [BKL]. In that
paper it was shown that there is a constant C such that every nonabelian finite simple group G has
aset S of 7 generators for which d(G.S) = Clog|G|. Here, S was a carefully chosen generating set
for G, and d(G,S) denotes the diameter of the corresponding undirected Cayley graph. This
bound is best possible, since a simple count (the "Moore bound") shows that
d(G,S)+1zlogy(IG)-

In this note we will decrease |S| so as to have |S|=2 and |SUS™1|=3 in case G=PSL(ng) with
n=10:

Theorem. If n=10 then there is a trivalent (undirected) Cavley graph for G=PSL(n.q)

whose diameter is O(log|G|).

Moreover, there is an algorithm which, when given g=@, finds a word in S representing g
in O(log|Gl) steps (i. e., multiplications and inversions of elements of S). Actually, we will only
need to assume that n=8 when g is even. There are analogous results obtainable by similar
arguments for all the finite simple groups of Lie type, provided that the ranks are not too small.
Steinberg [Ste] obtained two generators for each finite group of Lie type; but his generators do not

include an involution, and his argument does not produce the desired diameter bound.

Proof. Given a generating set S, the diameter d(G,S) of the corresponding Cayley graph
can be interpreted group-theoretically as the maximum of the lengths of the elements of G as words
in SUS-1. We will work inside of SL{(n,q), where q is a power of a prime p. In order to obtain a
trivalent graph we will find a set S={s,g} consisting of two matrices, one of which has order 2,
such that the corresponding diameter is O(log|Gl).

For 1<i,j=n with i=j let Xi]—(OC) be the matrix with 1's on the diagonal, (1,j)-entry «elF,, and
0's elsewhere. Then Xij :={Kij(05) | o € ]Fq} is isomorphic to the additive group of I,
U:=<Xij | 1<i<j<n) is the group of all upper triangular matrices with 1's on the diagonal, and
Uzl_l X, with the sn(n-1) factors written in any order. If e,... e, is the standard basis of ]Fg ,

i<j
for 1<i<n letr; and s be the matrices of the transformations behaving as follows:
£ e — e, — -¢ and ef; = e; for j=i,i+1, and

5.6y ey — o —e, — (F1)nvle; .

Then t

i+1

=r1Sl (where gh:=h-lgh in any group) . If t@Fc’“1 write h,(t):= diag(t‘l,t,l,...,l),
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hi+1(l:):=h1(t)51 and Hy=(hy(t) | LQF; » for l<i<n, so that H:zl_lHi is the group of all diagonal

1

matrices in SL{n,q). Also let d,:=diag(-1,1,...,1) and d;_;:= dlsl ; note that det d; = -1 and d? =
1.

Calculating with 2x2 matrices, we find that (for any t=0 and o)

w1 (@Y = x| (e2), B@= a7 1Y = and rt=1.
Let 8 denote a generator of telF C*l .
Case: q is odd and n=12. Write
g:=r1dq~h3(2)r3d3-h5(20)rsds-d7xg 10(1)dg =
0% 'o
U1 ol O O O O
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We will show that S:={s,g} behaves as required.

Clearly, det g=1 and g2=1. In particular, |SUS1|=3.

Claim 1. All elements of x34(IF,) have length O(log p). For,

g:=gg = r1d1~h3(2)h5(0)h7(20)r771-xg 10(1)x 1y 12(1)dyy

g'4= h3(16)h5(04)xg 10(4)

[g4e '45]5‘_8@-":[!{9,10(4) X101 1(4)]5_85:39,11(1 ﬁ)s_gg'=1€13(1 6)e'=x5(16)1%1:2) —x,.(8).
Thus, x34(8)=x,3(8)% has length O(1), while X34(8)gl=}{34(8'22)- Now, as in [BKL], use

Horner's Rule to express an arbitrary t€lF, in the form

m
L= 8(18) =8 622 = (-+(80,,22+80,, )22+--)22+8b,
i=0
where m<log p and the b, are integers satisfying O<b;<22. Then
x34(0)=C+((x34(8)"m)F x34(8)m-1)F ++1) x34(8)0
has length O(log p), as claimed.
Claim 2. All elements of Xse=x56(IF,) and X5 have length O(log q)- For, all elements of




)1:56(]131))=:|i;,,4(]Fp)S2 have length O(log p). If a€lF, then X56(a)g|=X56(a82). By writing an arbitrary

m

element of IF, in the form t=Zai Bzi , Where m<logpq and a,&lF,, we can proceed as above to see
i=0
that each element of X5¢ looks like
X56(t) = (- (X5¢(am)* Xs56(am-1))" )" X56(a0)
for some telF, and hence has length O(log q). Now conjugate by g in order to obtain the claim.

From this point on the arguments in [BKL] can be used, essentially verbatim. We will
merely outline them; the reader is referred to that paper for the details. First one shows that all
elements of L5:=(Xy5, X,7=SL(2,g) have length O(log q), and hence in particular r; and all

i} 2
elements of H; do. Then so does z:=sr;. Note that UCYYsYs - Vs" where Y:=X;, Xlzz Xlzz

n-2 } . ) .
XZZ , and there are cancellations occurring in these products since sk(sk+1)l=g1 and

zk(zE+1)1=z-1. Tt follows that each element of Y has length O(n-log q), so that each element of U
has length O(n'nlogq). Each element of H=H, HlS ---I—LSH also has length O(nlogq).
Moreover, if N:=(H,r, | l<i<n) then HIN, and each element of N/H=S; has {rH | l<i<n}-
length O(n) since the involution rH (of S-length O(nlog q)) can be identified with the transposition
(1,i+1)eS,. Then each element of N has S-length O(n2log q)=0(log|Gl), and hence so does each

element of G=UNU.

Case: q is odd and n=10 or 11. This time write g:=h,(0)r,d; h,(20)r,d>-d5x75(1)d7 and

S:={s.g}, and calculate:

g'= gg52 = hy(0)r;d{h3(2)-h5020)rs5 x75(1)x9 10(1)dg

£ = [(gg" > =h; (16)xs6(4)

f2 =h; (162 )x54(8).

v =15 = hs(16)x0,10(4)

£1£7 = x56(4-162-4)
Thus, x54(b) has length O(1) for some I:JE]F’I“j (i.e., b=4-162-4 or &) , and hence so does x34(b)=
Xss(b)s_z. Since X34(b)gl=}{34(4b), as before it follows that all elements of x34(IFp) have length
O(log p). Then the same is true of x;,(IF,) for each i, and hence also of
[ [[x23(F ) x34( )] xa5( D] - x0 (D] = %21 (Fp)  (since n is  bounded!). Now r(=
X1>(1)%71(-1)x15(1) has length O(log p), and then so does g":=gr,, where Xlg(a)g“=X12(a92)- Now

proceed as before.

Case: g is even. This time let g: = r -h,(O)r,-x73(1) and S:={s,g}. Then

g" = ggs=r,r5"h4(0)r hs(0)rsx78(1)xge(1)

(g'6)5_63= [K?s(l),1{89(1)]5‘_6g = X79(1)5_63= x13(1)8=x,3(1).
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Thus, 1{78(1)::{23(1)55 and gx7g(1)=r-h,(B)r, have length O(1), and hence so does
u:=gX78(1)(gX7g(1))53=r1-h4(9)-h7(9)r7. Since X45(a)“=}{45(a92) for all a, by using Horner's Rule
we find that all elements of X45 have length O(log q), and hence so do all elements of Xs4=(345)%.

Now proceed as before. O

It should be noted that a major difference between the cases of odd and even q is that, in the
former, in order to use the Horner's Rule argument from [BKL] we needed to have available hi(2)

in addition to hj(H) for some i and j. Those elements were introduced by having the additional
dimensions.

A very crude estimate for the diameter obtained in the above argument is d(G,S)< 1071og|Gl.

Remark. The analogue of the Theorem holds for the groups G=A, and 5,. We will only

indicate this here with an example. It is straightforward to use the methods in [BKL] to modify

this in order to handle the general case.

Let G=S,, with n=2k+1-1 and k odd. Identify the set X={0,1,... 2k-2} with Z and let

2k
X'={ x'| x&X } be another copy of X. Consider the n-set {oco} UXUX' and (letting x range over X)
the permutations

X e X, c0o— oo,

g: = (o0,0)(x — ax)(x' — [ax+a-1]"),

1

1
Lk
where a:=22( " 5o that a2=2 (mod 2k-1). (Note that x — ax fixes 0.) We claim that S:={t, g}

behaves as required: |SUS1|=3 and d(G,S)=0(log|Gl). First note that
g2 =(x —2x) (x'— [2x+1])
and (g2)r=(x—2x+1)(x' — [2x]) .
Every xeX isthe image of 0 by a word w(x) in {g2, (g2)} of length O(k)=O(log n): using

k a a a
Horner's Rule we can write x =y 221 =0"®) where w(x):=(g2) g2 {2y’ with all
0
a,c{0,1} (cf. [BKL]). Also, gk =(c0,0) since k is odd, so that (0,0) has length Olog n). If xeX
then the transposition (co,x)=(c0,0)") also has length O(log n). Then the same is true of every
transposition (cox)=(cox)t, xX.  Since each element of S, is a word of length O(n) in the

transpositions just constructed, this proves the claim. This time crude estimates vield that
d(G,S)<25nlog n.
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