Some large trivalent graphs having small diameters William M. Kantor*

This note concerns an improvement of a result of Babai-Kantor-Lubotzky [BKL]. In that paper it was shown that there is a constant C such that every nonabelian finite simple group G has a set S of T generators for which $d(G,S) \leq C\log|G|$. Here, S was a carefully chosen generating set for G, and d(G,S) denotes the diameter of the corresponding undirected Cayley graph. This bound is best possible, since a simple count (the "Moore bound") shows that $d(G,S)+1\geq \log_{2|S|}(|G|)$.

In this note we will decrease |S| so as to have |S|=2 and $|S \cup S^{-1}|=3$ in case G=PSL(n,q) with $n \ge 10$:

<u>Theorem</u>. If $n \ge 10$ then there is a trivalent (undirected) Cayley graph for G=PSL(n,q) whose diameter is O(log|G|).

Moreover, there is an algorithm which, when given $g \in G$, finds a word in S representing g in $O(\log |G|)$ steps (i. e., multiplications and inversions of elements of S). Actually, we will only need to assume that $n \ge 8$ when q is even. There are analogous results obtainable by similar arguments for all the finite simple groups of Lie type, provided that the ranks are not too small. Steinberg [Ste] obtained two generators for each finite group of Lie type; but his generators do not include an involution, and his argument does not produce the desired diameter bound.

Proof. Given a generating set S, the diameter d(G,S) of the corresponding Cayley graph can be interpreted group-theoretically as the maximum of the lengths of the elements of G as words in $S \cup S^{-1}$. We will work inside of SL(n,q), where q is a power of a prime p. In order to obtain a trivalent graph we will find a set $S=\{s,g\}$ consisting of two matrices, one of which has order 2, such that the corresponding diameter is $O(\log|G|)$.

For $1 \leq i,j \leq n$ with $i \neq j$ let $x_{ij}(\alpha)$ be the matrix with 1's on the diagonal, (i,j)-entry $\alpha \in \mathbb{F}_q$, and 0's elsewhere. Then $X_{ij} := \{x_{ij}(\alpha) \mid \alpha \in \mathbb{F}_q\}$ is isomorphic to the additive group of \mathbb{F}_q , $U := \langle X_{ij} \mid 1 \leq i < j \leq n \rangle$ is the group of all upper triangular matrices with 1's on the diagonal, and $U = \prod_{i < j} X_{ij}$ with the $\frac{1}{2}n(n-1)$ factors written in any order. If e_1, \dots, e_n is the standard basis of \mathbb{F}_p^n ,

for $1 \le i < n$ let r_i and s be the matrices of the transformations behaving as follows:

$$\begin{split} &r_i\text{: }e_i\longrightarrow e_{i+1}\longrightarrow -e_i\text{ and }e_jr_i=e_j\text{ for }j\text{=}i\text{, }i+1\text{, }\text{ and }\\ &s\text{: }e_1\longrightarrow e_2\longrightarrow \cdots\longrightarrow e_n\longrightarrow (-1)^{n+1}e_1\text{ .} \end{split}$$

 $\text{Then } r_{i+1} = r_1^{s^i} \text{ (where } g^h := h^{-1}gh \text{ in any group)} \quad . \quad \text{If } t \in \mathbb{F}_q^* \quad \text{ write } h_1(t) := \text{diag}\Big(t^{-1}, t, 1, \dots, 1\Big),$

^{*} This research was supported in part by NSF grant DMS 87-01794 and NSA grant MDA 904-88-H-2040.

 $h_{i+1}(t) := h_1(t) s^i \text{ and } H_i := \langle h_i(t) \mid t \in \mathbb{F}_q^* \ \rangle \text{ for } 1 \leq i < n, \text{ so that } H := \prod H_i \quad \text{is the group of all diagonal } H_i := \langle h_i(t) \mid t \in \mathbb{F}_q^* \ \rangle$

matrices in SL(n,q). Also let $d_1 := diag(-1,1,\dots,1)$ and $d_{i+1} := d_1^{s^i}$; note that det $d_i = -1$ and $d_i^2 = -1$

Calculating with 2×2 matrices, we find that (for any $t\neq 0$ and α)

$$x_{i,i+1}(\alpha)^{h_i(t)} = x_{i,i+1}(\alpha t^2), \ \ h_i(t)^{r_i} = h_i(t)^{-1}, \ \ r_i^{d_i} = r_i^{-1} \ \ \text{and} \ \ r_i^{4} = 1.$$

Let θ denote a generator of $t \in \mathbb{F}_q^*$.

Case: q is odd and n≥12. Write

 $g:=r_1d_1\cdot h_3(2)r_3d_3\cdot h_5(2\theta)r_5d_5\cdot d_7\cdot x_{9,10}(1)d_9 =$

We will show that $S:=\{s,g\}$ behaves as required.

Clearly, det g=1 and $g^2=1$. In particular, $|S \cup S^{-1}|=3$.

Claim 1. All elements of $x_{34}(\mathbb{F}_p)$ have length $O(\log p)$. For,

g': =
$$gg^{s^2} = r_1 d_1 \cdot h_3(2) \cdot h_5(\theta) \cdot h_7(2\theta) r_7^{-1} \cdot x_{9,10}(1) \cdot x_{11,12}(1) d_{11}$$

g'4 = $h_2(16)h_5(\theta^4) x_{9,10}(4)$

$$g^{4} = h_3(16)h_5(\theta^4)x_{9,10}(4)$$

$$[g^{\mathsf{'4}},g^{\mathsf{'4s}}]s^{\mathsf{-8}}g^{\mathsf{'}} = [x_{9,10}(4),x_{10,11}(4)]s^{\mathsf{-8}}g^{\mathsf{'}} = x_{9,11}(16)s^{\mathsf{-8}}g^{\mathsf{'}} = x_{13}(16)g^{\mathsf{'}} = x_{13}(16)^{r_1d_1h_3(2)} = x_{23}(8).$$

Thus, $x_{34}(8)=x_{23}(8)^s$ has length O(1), while $x_{34}(8)^{g'}=x_{34}(8\cdot 2^2)$. Now, as in [BKL], use Horner's Rule to express an arbitrary $t{\in}\mathbb{F}_p$ in the form

$$t = 8(t/8) = 8\sum_{i=0}^{m} b_i 2^{2i} = (\cdots(8b_m 2^2 + 8b_{m-1})2^2 + \cdots)2^2 + 8b_0$$

where m<log p and the b_i are integers satisfying $0 \le b_i < 2^2$. Then

$$x_{34}(t) = (\cdots((x_{34}(8)^b{}^m)^g{}^ix_{34}(8)^b{}^{m-1})^g{}^i\cdots)^g{}^ix_{34}(8)^b{}^0$$

has length O(log p), as claimed.

Claim 2. All elements of $X_{56}=x_{56}(\mathbb{F}_q)$ and X_{65} have length $O(\log q)$. For, all elements of

 $x_{56}(\mathbb{F}_p) = x_{34}(\mathbb{F}_p)^{s^2} \text{ have length O(log p)}. \quad \text{If } a \in \mathbb{F}_p \text{ then } x_{56}(a)^g = x_{56}(a\theta^2). \quad \text{By writing an arbitrary element of } \mathbb{F}_q \text{ in the form } t = \sum_{i=0}^m a_i \, \theta^{2i} \, , \text{ where } m < \log_p q \text{ and } a_i \in \mathbb{F}_p, \text{ we can proceed as above to see that each element of } X_{56} \text{ looks like}$

$$x_{56}(t) = (\cdots (x_{56}(a_m)^g x_{56}(a_{m-1}))^g \cdots)^g x_{56}(a_0)$$

for some $t \in \mathbb{F}_q$ and hence has length $O(\log q)$. Now conjugate by g in order to obtain the claim-

From this point on the arguments in [BKL] can be used, essentially verbatim. We will merely outline them; the reader is referred to that paper for the details. First one shows that all elements of $L_{12}:=\langle X_{12},X_{21}\rangle\cong SL(2,q)$ have length $O(\log q)$, and hence in particular r_1 and all elements of H_1 do. Then so does $z:=sr_1$. Note that $U\subset YY^sY^{s^2}\cdots Y^{s^{n-1}}$ where $Y:=X_{12}$ X_{12}^z X_{12}^z X_{12}^z $\cdots X_{12}^{z^{n-2}}$, and there are cancellations occurring in these products since $s^k(s^{k+1})^{-1}=s^{-1}$ and $z^k(z^{k+1})^{-1}=z^{-1}$. It follows that each element of Y has length $O(n\cdot\log q)$, so that each element of Y has length Y also has length Y also has length Y also has length Y and each element of Y has Y also has Y has Y has Y hence Y has length Y has Y

Case: q is odd and n=10 or 11. This time write $g := h_1(\theta)r_1d_1 \cdot h_3(2\theta)r_3d_3 \cdot d_5 \cdot x_{78}(1)d_7$ and $S := \{s,g\}$, and calculate:

$$\begin{split} g' &:= ggs^2 = h_1(\theta) r_1 d_1 \cdot h_3(2) \cdot h_5(2\theta) r_5^{-1} \cdot x_{78}(1) \cdot x_{9,10}(1) d_9 \\ f &:= [(ggs^2)^4]^{s^{-2}} = h_1(16) x_{56}(4) \\ f^2 &= h_1(16^2) x_{56}(8). \\ v &:= f^{s^4} = h_5(16) x_{9,10}(4) \\ f^{-1}f^v &= x_{56}(4 \cdot 16^2 - 4) \end{split}$$

Thus, $x_{56}(b)$ has length O(1) for some $b \in \mathbb{F}_p^*$ (i.e., $b=4\cdot 16^2-4$ or 8), and hence so does $x_{34}(b)=x_{56}(b)s^{-2}$. Since $x_{34}(b)^g=x_{34}(4b)$, as before it follows that all elements of $x_{34}(\mathbb{F}_p)$ have length $O(\log p)$. Then the same is true of $x_{i,i+1}(\mathbb{F}_p)$ for each i, and hence also of $[\cdots[[x_{23}(\mathbb{F}_p),x_{34}(1)],x_{45}(1)],\cdots,x_{n1}(1)]=x_{21}(\mathbb{F}_p)$ (since n is bounded!). Now $r_1=x_{12}(1)x_{21}(-1)x_{12}(1)$ has length $O(\log p)$, and then so does $g'':=gr_1$, where $x_{12}(a)^{g''}=x_{12}(a\theta^2)$. Now proceed as before.

$$\begin{split} & \underline{Case}; \ \ q \ \underline{is \ even}. \ \ This \ time \ let \ g:=r_1 \cdot h_4(\theta) r_4 \cdot x_{78}(1) \ \ and \ S:=\{s,g\}. \ \ Then \\ & g':=gg^s=r_1r_2 \cdot h_4(\theta) r_4h_5(\theta) r_5 \cdot x_{78}(1) x_{89}(1) \\ & (g'^6)^{s^{-6}}g=[x_{78}(1),x_{89}(1)]^{s^{-6}}g=x_{79}(1)^{s^{-6}}g=x_{13}(1)g=x_{23}(1). \end{split}$$

Thus, $x_{78}(1)=x_{23}(1)^{s^5}$ and $gx_{78}(1)=r_1\cdot h_4(\theta)r_4$ have length O(1), and hence so does $u := gx_{78}(1)(gx_{78}(1))s^3 = r_1 \cdot h_4(\theta) \cdot h_7(\theta)r_7$. Since $x_{45}(a)^u = x_{45}(a\theta^2)$ for all a, by using Horner's Rule we find that all elements of X_{45} have length $O(\log q)$, and hence so do all elements of $X_{54}=(X_{45})^g$. Now proceed as before. \Box

It should be noted that a major difference between the cases of odd and even q is that, in the former, in order to use the Horner's Rule argument from [BKL] we needed to have available h_i(2) in addition to $h_i(\theta)$ for some i and j. Those elements were introduced by having the additional dimensions.

A very crude estimate for the diameter obtained in the above argument is $d(G,S)<10^{7}log|G|$.

<u>Remark.</u> The analogue of the Theorem holds for the groups $G=A_n$ and S_n . We will only indicate this here with an example. It is straightforward to use the methods in [BKL] to modify this in order to handle the general case.

Let $G=S_n$ with $n=2^{k+1}-1$ and k odd. Identify the set $X=\{0,1,\dots,2^{k-2}\}$ with $\mathbb{Z}_{2^{k-1}}$, and let $X'=\{x'\mid x\in X\}$ be another copy of X. Consider the n-set $\{\infty\}\cup X\cup X'$ and (letting x range over X) the permutations

$$\begin{split} &t{:}\; x \longleftrightarrow x'\;,\; \infty \longrightarrow \infty,\\ &g{:}\; = (\infty,0)(x \longrightarrow ax)(x' \longrightarrow [ax+a-1]') \end{split}$$

$$\begin{split} g\colon &=(\infty,0)(x\longrightarrow ax)(x^{\scriptscriptstyle\prime}\longrightarrow [ax+a-1]^{\scriptscriptstyle\prime}),\\ \text{where } a\colon &=2^{\frac{1}{2}(k+1)} \text{ so that } a^2\equiv 2 \pmod{2^{k}-1}. \quad (\text{Note that } x\longrightarrow ax \text{ fixes } 0.) \quad \underline{\text{We claim_that }} S\colon =\{t,g\} \end{split}$$

behaves as required: $|S \cup S^{-1}| = 3$ and $d(G,S) = O(\log|G|)$. First note that

$$g^2 = (x \longrightarrow 2x) (x' \longrightarrow [2x+1]')$$

and
$$(g^2)^t = (x \longrightarrow 2x+1)(x^{\scriptscriptstyle '} \longrightarrow [2x]^{\scriptscriptstyle '}) \ .$$

Every $x \in X$ is the image of 0 by a word w(x) in $\{g^2, (g^2)^t\}$ of length $O(k) = O(\log n)$: using $\text{Horner's Rule we can write } x = \sum_{i=0}^k \quad a_i 2^i = 0 \\ \text{w(x)} \quad \text{where } w(x) := (g^2)^{t^a} \\ \text{(} g^2)^{t^a} \\ \text{(} g^2)^{t^a} \\ \text{with all } x \in \mathbb{R}^d \\ \text{with$

 $a_i \in \{0,1\}$ (cf. [BKL]). Also, $g^k = (\infty,0)$ since k is odd, so that $(\infty,0)$ has length $O(\log n)$. If $x \in X$ then the transposition $(\infty,x)=(\infty,0)^{w(x)}$ also has length $O(\log n)$. Then the same is true of every transposition $(\infty,x')=(\infty,x)^t$, $x\in X$. Since each element of S_n is a word of length O(n) in the transpositions just constructed, this proves the claim. This time crude estimates yield that $d(G,S)<25n\log n$

References

- [BKL] L. Babai, W. M. Kantor and A. Lubotzky, Small diameter Cayley graphs for finite simple groups. European J. Combinatorics 10 (1989) 507-522.
- [Ste] R. Steinberg, Generators for simple groups. Canad. J. Math. 14 (1962) 277-283.