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1 Introduction

A symplectic spread of PG(2n + 1,q) is a spread of the symplectic polar
space W(2n + 1,¢q) defined by a nonsingular alternating bilinear form on a
(2n+2)— dimensional vector space over GF(q), i.e., a set of ¢"T' +1 pairwise
disjoint maximal totally isotropic subspaces. Note that a symplectic spread
of P(G(3,¢q) is equivalent, under the Klein correspondence, to an ovoid of the
quadric Q(4, q).

For any ¢ and n, a regular spread of PG(2n + 1, ¢) provides an example
of a symplectic spread ([4], [15], [16]). Many examples of symplectic spreads
of PG(2n + 1,¢) are known when ¢ and n are even ([6], [7]). There are also
examples having ¢ = 2**t! and n = 1 ([13] Chap. 4), and these lead to further
examples having ¢ = 2?°*! and n any odd integer by the method indicated
at the start of §2. When ¢ is odd, relatively few examples of nonregular
spreads of W(2n + 1, ¢) have been published; and each of them arises from a
translation plane of dimension 2 over its kernel ([8], [14]; cf. §2 below).

In this note we prove that the spreads defined by some of Albert’s twisted
fields [1] are symplectic; we also observe that this is true for the spread of
the Hering plane of order 27 [5]. Moreover, we will see that the symplectic
spreads of W (5, ¢) associated with commutative twisted fields of dimension
3 over GF(q), ¢ odd, arise from some partial ovoids and partial spreads of
W (7, q) related to a description of the generalized hexagon *Dy4(q) in PG(9, q)
(see [12]).

As we write this paper, it appears that every known finite translation
plane arising from a symplectic spread has the property that its dimension
over its kernel is 2 or odd.



2 Known examples

Let F = GF(q) and V = F**t2_ Let F have degree { over a subfield K =
G'F(s), and let tr denote the trace map F' — K. If ( , ) is a nonsingular
alternating bilinear form on V, then [z,y] = tr(x,y) (with z,y € V) defines
a nonsingular alternating bilinear form on the K —space V. Any symplectic
spread ¥ of the polar space W(2n + 1, ¢) associated with the bilinear form
(, ) can also be regarded as a symplectic spread ¥£* of W (2t(n+1)—1, s)
with respect to [ , | (see [6] and [7]). The translation planes associated
with ¥ and ¥* are identical. The simplest example of this construction arises
when n = 0 and ¥ is a regular spread.

For ¢ odd, the only published examples of symplectic spreads are those
constructed via the above procedure starting from one of the following:

a) the regular spread of PG(1,q);

b) the spread of PG(3,q) associated with the Knuth semifield defined by
(a,b)o(¢c,d) = (ac+ db"m,bc 4 ad), where m is a nonsquare in F' = GF(q)
and o is a nontrivial automorphism of F' (see [8] §5);

c) the spread of PG(3,3%°t!) represented, on the Klein quadric, by an
ovoid of Q(4,3**!) constructed in [8] using the Ree group 2G4(3%“*1);

d) the spreads of PG/(3,3°), e > 3, represented, on the Klein quadric, by
the ovoid of Q(4,3°) constructed by Payne and Thas in [14].

3 Twisted fields

Take any finite field £ of odd order, and a nontrivial automorphism p such
that —1 ¢ E*~'. Note that a nontrivial automorphism p behaves in this
manner if and only if £ has odd degree over the fixed field £, of p.
Let F' = GF(q) be a subfield of E,, and set n = [E : F]. Then the

subspaces

1(0,y)[yc E}

{(x,mz"" +mPzf |z €L} (meEFK)
of the F'—space E? form a spread ¥ of the corresponding projective space
PG(2n — 1, q); namely, mz?" +mPz? = 0 implies that ma = 0 since —1 ¢
Ert,

Moreover, this spread is symplectic with respect to the following alter-



nating form:

((z1,91), (22,92)) = tr(z1y2 — zap),
where tr denotes the trace map £ — F. Namely, all of the subspaces under
consideration are totally isotropic:

tr(z{my?”" + mPy?}) — tr(y{mz*"" + mPz"})

= tr(may?”) — tr(mPx"y) + tr(mPzy®) — tr(mz”" y)

= tr(m’z’y) — tr(m’zy) 4+ tr(m’zy”?) — tr(mPzy”) = 0.

This spread arises from a semifield. A presemifield for it is (F,+,0),
where m o # = ma?” + mPfz” for m,z € E; and this is isotopic to the
presemifield defined by m * z = maz + mfz?", which produces one of Albert’s
twisted fields [1]. Note that F, is the kernel of the resulting translation plane.

Remark 1. The following collineations of the above twisted field plane

are symplectic transformations:

(2,9) = (3 + u 0 2)

(z,y) = (az,a™'y)
for all u € K, 0 # a € F. Also, for any § €AutF the collineation (z,y) —
(2% y%) preserves the alternating form up to the field automorphism 6, and
yields a collineation. The three types of mappings just described generate
the full translation complement of the plane [1].

Remark 2. One could try to generalize these examples as follows. Start
with two automorphisms p # 1 and o of F, and nonzero elements a,( € F;
again assume that F' C F, and —1 ¢ E*~'. Then the F —subspaces

{(0,y)[yeE}
{(z, 007 aPm??2? + am°z”" |z € E} (m € E)
of E? form a spread that is symplectic with respect to the alternating form
((x1,91), (x2,y2)) = tr(l(x1y2 — x2y1)), where tr is as before. However, this
spread is equivalent to the previous one: since
P aPmPx? + am®zP | = ﬁ_l{(ﬁam’)(mp_l) + (ﬁam“)p(:z:p_l)pZ)},
we obtain the same twisted field as before.
Remark 3. If p has order 3, then the above presemifield is isotopic to

the one defined by m - z = m?z?" + 2’m*”, which produces a commutative
twisted field of dimension 3 over its centre (compare §5).

Remark 4. As I is a subfield of the centre E, of the twisted field, ¥ is
S.o-regular! by [10] Teorema 5.

'Let ¥ be a spread of any projective space. Let A, B € ¥ with A # B. We recall that



4 The Hering plane of order 27

Let F = GF(3), and define an alternating form on V = F by ((z;), (y;)) =
T1Ye — TeyY1 + Tays — Tsyz + x3ys — x4ys. Hering [5] defined a subgroup
G = SL(2,13) of GL(6,3), and showed that ¥ = {S..¢ | ¢ € G} is a spread
of PG(5,3), where Sy, = F' x F' x F' x0x0x0. In [5], G is given as the
group generated by three matrices r, h, s, and it is an easy calculation to
check that these all preserve the above alternating form. Since S, is totally
isotropic with respect to this form, ¥ is symplectic. Dempwolff [3] has shown
that this spread, as well as the case n = ¢ = 3 appearing in §3, are (up to
isomorphism) the only nonregular spreads in W (5, 3).

5 A remark on the generalized hexagon 3D4(q)

Let ¢ = p” be any odd prime power. Let F' = GF(q) and E = GF(¢%), and let
tr and N denote the trace and norm maps £ — F, so that tr(a) = a—l—aq—l—aq2
and N(a) = a't7*7 for @ € E. Define a nonsingular alternating bilinear form
on the 8-dimensional F'—space V = F' x . x £ x F' by
(a1, b1, ¢1,61), (2, bay €2, 02)) = a6 — by — tr(bicy — ¢1by),
in order to produce a symplectic geometry W (7, ¢).
Write £l = E U {o0}. Let po = ((0,0,0,1)) and p, = ((1,a,a?*?, N(a)))
with a € E. The set O3 = {p; | i € E'} is a partial ovoid of W(7,q) [12].
For a € F, let
Tw =1(0,0,¢,6) |ce E,6€ F}
T, = { (o, b, —a?™" + a®b” + a? b,
—2aN(a) 4 tr(a®*b)) |a € F,be E }.
Each T is a totally isotropic 3-space, and ¥ = {T; | i € E} is a partial spread
of W(7,q) (see [12]). Properties of the partial ovoid O3 and the partial spread
¥ have been discussed in detail in [12].2 Here we only recall the following:

Y is called an (A, B)—regular spread if, for any C' € 3, there exists a regulus containing
A, B and C which consists of elements of X. Moreover, X is called A—regular if X is
(A, B)—regular for all B € ¥ — {A} (for more details, see [10]).

2The definitions of @3 and ¥ that appear in [12] are equivalent to the ones mentioned
here, under the following change of coordinates: (a,b,¢,8) — (6, bq2,bq,c,b,cq,cq2,a)
(compare [6] and [11], p. 130, for the case in which ¢ is even). The present descriptions of
O3 and ¥ implicitly appear in the construction of the 3 D4(q)-hexagon as a coset geometry



(1) p; is the unique point of O3 incident with T;; (2) the stabilizer of Os
in the group PSp(8,q) acts 2-transitively on both Oz and ¥; and (3) ([12],
Lemma 4.5 (4)) for any ¢ € E, any totally isotropic line of W(7,q) through
p; is incident with at most one of the elements of ¥ — {7}}.

Fix any i € E.If j € E, let U; = (p;, T; N p;L). This is a maximal totally
isotropic subspace of W(7,q) such that p; € U; C p;*. Moreover, for any
distinct j, h € E we have U; " U, = p;.

Fix any j € E — {i}. The subspace T = p;* N p;t is a 5-dimensional
symplectic geometry W (5, q).

Then ¥; = {U, N T | h € E} is a symplectic spread of PG(5,q).

As the stabilizer of O3 in PSp(8, ¢) is 2-transitive on Os, the spread ¥;
does not depend on the choice of the elements 7, j in E.

It follows that we lose no generality by letting p; = p, and p; = po. Then
T ={(0,b,¢,0) | b,c € £} and, for all a € F,

U, = {(0,b,a70" + a9, 3+ tr(a?*b) | be B, € F'}

Sy =U,NT ={(0,b,a’b” +a®b?,0) | be E}.
Moreover, as Uy, = T,,, we have

Seo =Us NT ={(0,0,¢,0) | c € E}.
The symplectic spread is Yo = {S; | € E}. Tt arises from the presemifield
mentioned in Remark 3, and hence from a commutative twisted field having
dimension 3 over its centre. It was this example that led us to the additional
symplectic spreads in §3.

6 Some perfect 1-codes

Let T'(¢) be the graph having the totally isotropic planes of W (5, q) as ver-
tices, two vertices F; and F, being adjacent if and only if 7 N F; is a line.
Then I'(¢) is a metrically regular graph. A perfect 1-code of 1'(¢) is a subset
C of ¢° +1 pairwise disjoint totally isotropic planes,® i.e., a symplectic spread
(for further information, see [15] §3, or [6] §11). Thus, the symplectic spreads
in §8§3,4 produce perfect 1-codes of I'(g).

indicated in [9].
3Then every other vertex of I'(¢) has distance 1 from a unique vertex in C'.
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