Symplectic spreads from twisted fields

L. Bader W.M. Kantor G. Lunardon

1 Introduction

A symplectic spread of PG(2n + 1, q) is a spread of the symplectic polar space W(2n + 1, q) defined by a nonsingular alternating bilinear form on a (2n+2)-dimensional vector space over GF(q), i.e., a set of $q^{n+1}+1$ pairwise disjoint maximal totally isotropic subspaces. Note that a symplectic spread of PG(3,q) is equivalent, under the Klein correspondence, to an ovoid of the quadric Q(4,q).

For any q and n, a regular spread of PG(2n+1,q) provides an example of a symplectic spread ([4], [15], [16]). Many examples of symplectic spreads of PG(2n+1,q) are known when q and n are even ([6], [7]). There are also examples having $q=2^{2e+1}$ and n=1 ([13] Chap. 4), and these lead to further examples having $q=2^{2e+1}$ and n any odd integer by the method indicated at the start of §2. When q is odd, relatively few examples of nonregular spreads of W(2n+1,q) have been published; and each of them arises from a translation plane of dimension 2 over its kernel ([8], [14]; cf. §2 below).

In this note we prove that the spreads defined by some of Albert's twisted fields [1] are symplectic; we also observe that this is true for the spread of the Hering plane of order 27 [5]. Moreover, we will see that the symplectic spreads of W(5,q) associated with commutative twisted fields of dimension 3 over GF(q), q odd, arise from some partial ovoids and partial spreads of W(7,q) related to a description of the generalized hexagon $^3D_4(q)$ in PG(9,q) (see [12]).

As we write this paper, it appears that every known finite translation plane arising from a symplectic spread has the property that its dimension over its kernel is 2 or odd.

2 Known examples

Let F = GF(q) and $V = F^{2n+2}$. Let F have degree t over a subfield K = GF(s), and let tr denote the trace map $F \to K$. If $(\ ,\)$ is a nonsingular alternating bilinear form on V, then [x,y] = tr(x,y) (with $x,y \in V$) defines a nonsingular alternating bilinear form on the K-space V. Any symplectic spread Σ of the polar space W(2n+1,q) associated with the bilinear form $(\ ,\)$ can also be regarded as a symplectic spread Σ^* of W(2t(n+1)-1,s) with respect to $[\ ,\]$ (see [6] and [7]). The translation planes associated with Σ and Σ^* are identical. The simplest example of this construction arises when n=0 and Σ is a regular spread.

For q odd, the only published examples of symplectic spreads are those constructed via the above procedure starting from one of the following:

- a) the regular spread of PG(1,q);
- b) the spread of PG(3, q) associated with the Knuth semifield defined by $(a, b) \circ (c, d) = (ac + db^{\sigma}m, bc + ad)$, where m is a nonsquare in F = GF(q) and σ is a nontrivial automorphism of F (see [8] §5);
- c) the spread of $PG(3,3^{2e+1})$ represented, on the Klein quadric, by an ovoid of $Q(4,3^{2e+1})$ constructed in [8] using the Ree group ${}^2G_2(3^{2e+1})$;
- d) the spreads of $PG(3,3^e)$, $e \ge 3$, represented, on the Klein quadric, by the ovoid of $Q(4,3^e)$ constructed by Payne and Thas in [14].

3 Twisted fields

Take any finite field E of odd order, and a nontrivial automorphism ρ such that $-1 \notin E^{\rho-1}$. Note that a nontrivial automorphism ρ behaves in this manner if and only if E has odd degree over the fixed field E_{ρ} of ρ .

Let F = GF(q) be a subfield of E_{ρ} , and set n = [E : F]. Then the subspaces

$$\{ (0,y) \mid y \in E \}$$

 $\{ (x, mx^{\rho^{-1}} + m^{\rho}x^{\rho} \mid x \in E \} \quad (m \in E)$

of the F-space E^2 form a spread Σ of the corresponding projective space PG(2n-1,q); namely, $mx^{\rho^{-1}}+m^{\rho}x^{\rho}=0$ implies that mx=0 since $-1\notin E^{\rho-1}$.

Moreover, this spread is symplectic with respect to the following alter-

nating form:

$$((x_1, y_1), (x_2, y_2)) = tr(x_1y_2 - x_2y_1),$$

where tr denotes the trace map $E \to F$. Namely, all of the subspaces under consideration are totally isotropic:

$$tr(x\{my^{\rho^{-1}} + m^{\rho}y^{\rho}\}) - tr(y\{mx^{\rho^{-1}} + m^{\rho}x^{\rho}\})$$

$$= tr(mxy^{\rho^{-1}}) - tr(m^{\rho}x^{\rho}y) + tr(m^{\rho}xy^{\rho}) - tr(mx^{\rho^{-1}}y)$$

$$= tr(m^{\rho}x^{\rho}y) - tr(m^{\rho}x^{\rho}y) + tr(m^{\rho}xy^{\rho}) - tr(m^{\rho}xy^{\rho}) = 0.$$

This spread arises from a semifield. A presemifield for it is $(E, +, \circ)$, where $m \circ x = mx^{\rho^{-1}} + m^{\rho}x^{\rho}$ for $m, x \in E$; and this is isotopic to the presemifield defined by $m * x = mx + m^{\rho}x^{\rho^2}$, which produces one of Albert's twisted fields [1]. Note that E_{ρ} is the kernel of the resulting translation plane.

Remark 1. The following collineations of the above twisted field plane are symplectic transformations:

$$(x,y) \mapsto (x,y+u \circ x)$$

 $(x,y) \mapsto (ax,a^{-1}y)$

for all $u \in E$, $0 \neq a \in E$. Also, for any $\theta \in \text{Aut}E$ the collineation $(x, y) \mapsto (x^{\theta}, y^{\theta})$ preserves the alternating form up to the field automorphism θ , and yields a collineation. The three types of mappings just described generate the full translation complement of the plane [1].

Remark 2. One could try to generalize these examples as follows. Start with two automorphisms $\rho \neq 1$ and σ of E, and nonzero elements $a, \ell \in E$; again assume that $F \subseteq E_{\rho}$ and $-1 \notin E^{\rho-1}$. Then the F-subspaces

{
$$(0,y) | y \in E$$
 }
{ $(x, \ell^{\rho-1} a^{\rho} m^{\sigma \rho} x^{\rho} + a m^{\sigma} x^{\rho^{-1}} | x \in E$ } $(m \in E)$

of E^2 form a spread that is symplectic with respect to the alternating form $((x_1,y_1),(x_2,y_2))=tr(\ell(x_1y_2-x_2y_1))$, where tr is as before. However, this spread is equivalent to the previous one: since

$$\ell^{\rho-1}a^{\rho}m^{\sigma\rho}x^{\rho} + am^{\sigma}x^{\rho-1} = \ell^{-1}\{(\ell am^{\sigma})(x^{\rho-1}) + (\ell am^{\sigma})^{\rho}(x^{\rho-1})^{\rho^2}\},$$
 we obtain the same twisted field as before.

Remark 3. If ρ has order 3, then the above presemifield is isotopic to the one defined by $m \cdot x = m^{\rho} x^{\rho^2} + x^{\rho} m^{\rho^2}$, which produces a commutative twisted field of dimension 3 over its centre (compare §5).

Remark 4. As F is a subfield of the centre E_{ρ} of the twisted field, Σ is S_{∞} -regular by [10] Teorema 5.

Let Σ be a spread of any projective space. Let $A, B \in \Sigma$ with $A \neq B$. We recall that

4 The Hering plane of order 27

Let F = GF(3), and define an alternating form on $V = F^6$ by $((x_i), (y_i)) = x_1y_6 - x_6y_1 + x_2y_5 - x_5y_2 + x_3y_4 - x_4y_3$. Hering [5] defined a subgroup $G \cong SL(2,13)$ of GL(6,3), and showed that $\Sigma = \{S_{\infty}g \mid g \in G\}$ is a spread of PG(5,3), where $S_{\infty} = F \times F \times F \times 0 \times 0 \times 0$. In [5], G is given as the group generated by three matrices r, h, s, and it is an easy calculation to check that these all preserve the above alternating form. Since S_{∞} is totally isotropic with respect to this form, Σ is symplectic. Dempwolff [3] has shown that this spread, as well as the case n = q = 3 appearing in §3, are (up to isomorphism) the only nonregular spreads in W(5,3).

5 A remark on the generalized hexagon ${}^3D_4(q)$

Let $q = p^r$ be any odd prime power. Let F = GF(q) and $E = GF(q^3)$, and let tr and N denote the trace and norm maps $E \to F$, so that $tr(a) = a + a^q + a^{q^2}$ and $N(a) = a^{1+q+q^2}$ for $a \in E$. Define a nonsingular alternating bilinear form on the 8-dimensional F-space $V = F \times E \times E \times F$ by

$$((\alpha_1, b_1, c_1, \delta_1), (\alpha_2, b_2, c_2, \delta_2)) = \alpha_1 \delta_2 - \alpha_2 \delta_1 - tr(b_1 c_2 - c_1 b_2),$$
 in order to produce a symplectic geometry $W(7, q)$.

Write $\tilde{E} = E \cup \{\infty\}$. Let $p_{\infty} = \langle (0,0,0,1) \rangle$ and $p_a = \langle (1,a,a^{q+q^2},N(a)) \rangle$ with $a \in E$. The set $\mathcal{O}_3 = \{ p_i \mid i \in \tilde{E} \}$ is a partial ovoid of W(7,q) [12].

For
$$a \in E$$
, let

$$\begin{split} T_{\infty} &= \{\,(0,0,c,\delta) \mid c \in E, \delta \in F\,\} \\ T_{a} &= \{\,(\alpha,b,-\alpha a^{q+q^{2}} + a^{q}b^{q^{2}} + a^{q^{2}}b^{q}, \\ &-2\alpha N(a) + tr(a^{q+q^{2}}b)) \mid \alpha \in F, b \in E\,\}. \end{split}$$

Each T_i is a totally isotropic 3-space, and $\Sigma = \{T_i \mid i \in \tilde{E}\}$ is a partial spread of W(7,q) (see [12]). Properties of the partial ovoid \mathcal{O}_3 and the partial spread Σ have been discussed in detail in [12]. Here we only recall the following:

 $[\]Sigma$ is called an (A, B)-regular spread if, for any $C \in \Sigma$, there exists a regulus containing A, B and C which consists of elements of Σ . Moreover, Σ is called A-regular if Σ is (A, B)-regular for all $B \in \Sigma - \{A\}$ (for more details, see [10]).

²The definitions of \mathcal{O}_3 and Σ that appear in [12] are equivalent to the ones mentioned here, under the following change of coordinates: $(\alpha, b, c, \delta) \mapsto (\delta, b^{q^2}, b^q, c, b, c^q, c^{q^2}, \alpha)$ (compare [6] and [11], p. 130, for the case in which q is even). The present descriptions of \mathcal{O}_3 and Σ implicitly appear in the construction of the ${}^3D_4(q)$ -hexagon as a coset geometry

(1) p_i is the unique point of \mathcal{O}_3 incident with T_i ; (2) the stabilizer of \mathcal{O}_3 in the group PSp(8,q) acts 2-transitively on both \mathcal{O}_3 and Σ ; and (3) ([12], Lemma 4.5 (4)) for any $i \in E$, any totally isotropic line of W(7,q) through p_i is incident with at most one of the elements of $\Sigma - \{T_i\}$.

Fix any $i \in E$. If $j \in E$, let $U_j = \langle p_i, T_j \cap p_i^{\perp} \rangle$. This is a maximal totally isotropic subspace of W(7,q) such that $p_i \in U_i \subset p_i^{\perp}$. Moreover, for any distinct $j, h \in \tilde{E}$ we have $U_i \cap U_h = p_i$.

Fix any $j \in \tilde{E} - \{i\}$. The subspace $T = p_i^{\perp} \cap p_j^{\perp}$ is a 5-dimensional symplectic geometry W(5,q).

Then $\Sigma_i = \{ U_h \cap T \mid h \in E \}$ is a symplectic spread of PG(5, q).

As the stabilizer of \mathcal{O}_3 in PSp(8,q) is 2-transitive on \mathcal{O}_3 , the spread Σ_i does not depend on the choice of the elements i, j in E.

It follows that we lose no generality by letting $p_i = p_{\infty}$ and $p_j = p_0$. Then $T = \{ (0, b, c, 0) \mid b, c \in E \} \text{ and, for all } a \in E,$ $U_a = \{ (0, b, a^q b^{q^2} + a^{q^2} b^q, \beta + tr(a^{q+q^2} b) \mid b \in E, \beta \in F \}$

$$U_{a} = \{ (0, b, a^{q}b^{q^{2}} + a^{q^{2}}b^{q}, \beta + tr(a^{q+q^{2}}b) \mid b \in E, \beta \in F \}$$

$$S_{a} = U_{a} \cap T = \{ (0, b, a^{q}b^{q^{2}} + a^{q^{2}}b^{q}, 0) \mid b \in E \}.$$

Moreover, as $U_{\infty} = T_{\infty}$, we have

$$S_{\infty} = U_{\infty} \cap T = \{ (0, 0, c, 0) \mid c \in E \}.$$

The symplectic spread is $\Sigma_{\infty} = \{S_i \mid i \in E\}$. It arises from the presemifield mentioned in Remark 3, and hence from a commutative twisted field having dimension 3 over its centre. It was this example that led us to the additional symplectic spreads in §3.

Some perfect 1-codes 6

Let $\Gamma(q)$ be the graph having the totally isotropic planes of W(5,q) as vertices, two vertices F_1 and F_2 being adjacent if and only if $F_1 \cap F_2$ is a line. Then $\Gamma(q)$ is a metrically regular graph. A perfect 1-code of $\Gamma(q)$ is a subset C of $q^3 + 1$ pairwise disjoint totally isotropic planes, i.e., a symplectic spread (for further information, see [15] §3, or [6] §11). Thus, the symplectic spreads in §§3,4 produce perfect 1-codes of $\Gamma(q)$.

indicated in [9].

³Then every other vertex of $\Gamma(q)$ has distance 1 from a unique vertex in C.

References

- [1] A.A. Albert, On the collineation groups associated with twisted fields, in Calcutta Math. Soc. Golden Jubilee Commemoration volume (1958/59), part II, 485-497.
- [2] P. Dembowski, Finite Geometries, Springer-Verlag (1968).
- [3] U. Dempwolff, Translation planes of order 27, Preprint 1992.
- [4] R.H. Dye, Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. (4) 114 (1977), 175-194.
- [5] C. Hering, Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27, Abh. Math. Sem. Hamb. 34 (1969), 203-208.
- [6] W.M. Kantor, Spreads, translation planes and Kerdock sets. I, SIAM J. Alg. Disc. Meth. 3 (1982), 151-165.
- [7] W.M. Kantor, Spreads, translation planes and Kerdock sets. II, SIAM J. Alg. Disc. Meth. 3 (1982), 308-318.
- [8] W.M. Kantor, Ovoids and translation planes, Can. J. Math. 34 (1982), 1195-1207.
- [9] W.M. Kantor, Generalized polygons, SCABs and GABs. *Buildings and the Geometry of Diagrams*, Springer Lecture Notes **1181** (1984), 79-158.
- [10] G. Lunardon, Proposizioni configurazionali in una classe di fibrazioni, Boll. Un. Mat. Ital. 13-A (1976), 404-413.
- [11] G. Lunardon, Varietà di Segre e ovoidi dello spazio polare $Q^+(7,q)$, Geom. Ded. **20** (1984), 121-131.
- [12] G. Lunardon, Partial ovoids and generalized hexagons, *Proceedings of Deinze Conference "Finite Geometries and Combinatorics"* (to appear).
- [13] H. Lüneburg Translation Planes, Springer-Verlag, Berlin, 1980
- [14] S.E. Payne and J.A. Thas, Ovoids in Q(4, q), q a power of 3, Preprint 1992.

- [15] J.A. Thas, Two infinite classes of perfect codes in metrically regular graphs, J. Comb. Theory (B) 23 (1977), 236-238.
- [16] J.A. Thas, Ovoids and spreads of finite classical polar spaces, Geom. Ded. 10 (1981), 135-144.

Addresses of the authors:

Laura Bader Dipartimento di Matematica II Università di Roma Via della Ricerca Scientifica I-00133 Roma (Italy)

William M. Kantor Department of Mathematics University of Oregon Eugene, OR 97403 (USA)

Guglielmo Lunardon Dipartimento di Matematica e Applicazioni Compl. Univ. Monte S. Angelo - Edificio T Via Cintia I-80126 Napoli (Italy)