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ABSTRACT

For each finite simple group G there i1s a conjugacy class C'¢ such that each
nontrivial element of G generates G together with any of more than 1/10 of
the members of C'g. Precise asymptotic results are obtained for the probability
implicit in this assertion.

1. Introduction

For any finite group G, let PC(G) denote the following probability:

PC(G) = in Pr{s’ € s%, (g,¢') = G}.
(G) = max. min Pr{s' €57 (g,5) = G}

Thus, for at least one conjugacy class Cg = s, PC(G) is a lower bound for the proportion of members of
C¢ each of which generates G together with any given nontrivial ¢ € G. We will prove the following two
theorems.

Theorem 1. For every finite simple group G, PC(G) > 1/10.

Theorem II. (a) liminf{PC(G) | G is simple} = 1/2.
(b) If (G;) is any sequence of pairwise nonisomorphic finite simple groups, then lim PC(G;) = 1 unless (G;)
contains a subsequence of one of the following sorts:
o (Asm,), in which case imPC(Asp;) = 3/4;
o (Ap,m) for primes pj,fm and a fixed odd integer m > 1, in which case IlmPC(A, ) = 1 — 1/m?;
or
o (Q(2m; + 1,q)) for a fixed prime power ¢, in which case imPC(2(2m; +1,¢)) =1—1/q.

In the last part of Theorem II, ¢ 1s allowed to be even; and in fact, the theorem states that the
groups Q(2m + 1,2) = Sp(2m, 2) are “worst” from our PC point of view. These theorems relate to various
known results of a similar flavor. In [Di,KaLu] it was shown that a random pair of elements of a finite simple
alternating or classical group G generates G with probability approaching 1 as |G| — co; the same was proved
in [LiSh2] for the exceptional groups of Lie type. In [GKS] it was shown that 1;2ienG Pr{h € G: {(g,h) = G}

does not approach 1 as |G| — oo, where GG ranges through all alternating groups, or through all simple
classical groups over a given field (but this minimum does approach 1 if G ranges over all classical simple
groups of a given dimension). Thus, it is natural to introduce some way to restrict the choices of elements
of G; we do this by using conjugacy classes. For any a,b € G write P,(b) = Pr{a’ € a“ : (a’,b) # G}; note
that P,(b) = Py(a) = Pr{a’ € a%,b' € b : (a’,b') # G}. Then PC(G) = max. 1;216%(1 — Ps(g)). Thus, we
focus on estimating Ps(g) for carefully chosen s and all g # 1. We will see that an “asymptotically optimal”
class Cg = s is not at all uniquely determined by G. Note that the theorems do not contain the results in
[Di,KaLu,LiSh2].

Theorem I implies, in particular, the following property of simple groups, called “1% generation” (cf.

[DT, Wol):
Corollary. Any nontrivial element of a finite simple group G belongs to a pair of generators of G.

This can be proved using less effort than we employ here for Theorem I.

The proofs of the theorems rest on the classification of finite simple groups. However, when G is
alternating or classical, a more elementary proof of Theorem T is possible (but with a poorer bound); the
case PSL(d, q) is contained in [Ka3], using very elementary methods, while the alternating groups are dealt
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with in (7.1) below. All proofs of this type of result follow similar patterns: bounding the number of ways not
to generate G by using information concerning maximal subgroups of GG. This is why P,(b) was introduced;

cf. (2.2).

2. Fixed point ratios; notation

For any action of a group G on a set X, and for any g € G, consider the set Fixx(g) of fixed points of
g, and the fized point ratios

n(g,X) = [Fixx(¢)|/1X| and  pu(G,X) =min{u(g,X)[g €, g#1on X}

These are related to PC(G) as follows. Let s € G be such that its conjugacy class s¢ generates G. If
g € G —Z(G), then Pi(g) = Py(s) < EMEM(S) |9¢ N M|/|g%|, where M(s) is the set of all maximal
subgroups M of (G containing s (the maximal overgroups of s). If M& denotes the conjugacy class of M,
then

ulg, M) =g 0 M|/|g% < [M]|/]¢°]. (2.1)

In particular,

Pig)< Y. plg, M), (2.2)

MeM(s)

Thus, it suffices to estimate p(G, X) for suitable choices of X. Note, however, that (2.2) is a crude estimate,
since it ignores the overlaps of members of M(s).

For any group G, let u(G) = max{u(G,X) | G is nontrivial and primitive on X}. The proof of Theorem
IT for classical groups over fields of size ¢ — oo uses (2.2) together with a difficult general upper bound for

#(G) obtained by Liebeck and Saxl:

Theorem 2.3 [LiSa]. Suppose that S is a simple group of Lie type over GF(q), and S < G < AutS. Assume
that S is not isomorphic to any 2—dimensional linear group, and that S % PSp(4,3). Then u(G, M%) < 4/3q
for any maximal subgroup M of G.

In order to use this for Theorem IT we merely need to choose s so that |M(s)| stays bounded as ¢ — co.
The next section provides some more precise bounds for classical groups in natural permutation actions. For
exceptional groups G of Lie type we will use the more precise bounds for p(G) in [FM1,FM2].

We will use (2.2) in conjunction with another simple observation:

Lemma 2.4. Let A < B < (. If all G-conjugates of A lying in B are B-conjugate, then A lies in
[Ng(A): Np(A)|/|Ng(B): B| conjugates of B.

3. Some fixed point ratios for classical groups

Let G be a classical (linear) group defined on a d-dimensional vector space V over GF(q) (or GF(q¢?)
in the unitary case). In each case we need to consider the number of fixed points of an r-element g whose
order modulo scalars is the prime r. Write C' = Cy (g).

In this section we will provide bounds on (g, M%) for various subgroups M of a classical group G.
When G = PSL(d, q) stronger unpublished results are known [Sh]; for the remaining classical groups [Pu]
contains related estimates when ¢ is sufficiently large.

3.1. SL(d,q)

Proposition 3.1. Let G = SL(V) = SL(d,q), and let S denote the set of all k—spaces of V, where
1<k <d/2. Then

() #(G.S4) < 2/¢*, and

(i) u(G,S1) <min{1/2,1/q+1/¢*""}.

Proof. Let g € G act nontrivially on Sg. We may assume that g is either semisimple or unipotent. There
are three cases to consider:



Case A. g 1s semisimple and acts homogeneously on V with each irreducible submodule of dimension e
with 1 < e|k and k|d.

Case B. g s semusimple and does not act homogeneously on V. Then V = V; @ V5 for nonzero subspaces
Vi having no common (g)-irreducible constituent, where dimV; = e and 1 < e < d/2.

Case C. g is unipotent.

As usual, write [Z] .= |Sk| (a “Gaussian coefficient”), or just [Z] when the field is evident.

Lemma 3.2. If Case A holds, then u(g,S;) < 1/¢*.

Proof. Since Fixg, (z) can be viewed as the set of k/e—spaces of a d/e—dimensional GF(¢®)-space,
d/e
(g, Si) = / () /XU (/Y4 (E]€) fk(d=R) < 1 1ok

Lemma 3.3. Assume Case B holds. Then

(a) u(g,Sk) <2/¢";

(b) ifk =1, then pu(g,Sk) < 1/q+ 1/¢%"1; and
(c) if g = 2, then p(g,Sy) < 1/¢* for k < 2.

Proof. Note that Fixg,(g) is contained the set T of k—spaces which are of the form X; @ X2 with X; C V}.
Here, T has size

mln{e k}

(3.4) S(e @ (d—e); k) = H [ ] .

Thus, we may apply Lemma 3.6 below in order to conclude that (a) and (b) hold.
If ¢ = 2 and k < 2, then (c) follows easily after noting that g cannot as a scalar on both V; and V5. O

Lemma 3.5. Assume Case C holds. Then

(a) u(g,Sk) < 2/¢"; and
(b) if k =1, then u(g,Sk) < 1/q.

Proof. We may replace g by a polynomial in g and hence assume that the minimal polynomial of g is
(T —1)% Let W =[g,V] and e = dimW. Then W C Cy(g) and hence e < d/2.

Given a j—space J of W with j < k, we will count the number of g-invariant k—spaces U of V that
intersect W in J. Here U/J is an g—invariant subspace of V/.J such that 0 = (U/J)n(W/J) D [U/J,g], s
that U/J is a (k—j)-space of Cy,s(g). Clearly dimCy,;(g) = (d—j)—dim[V/C,g] = (d—j)—(e—j) = d—e
Thus, .J produces at most [Z:j] choices for U. Tt follows that the number of g-invariant k—spaces of V' that
intersect W in a j—space is at most [Je] [Z:j] . Then |Fixg, (g)| is bounded above by the quantity S(e®(d—e); k)
n (3.4), and (a) follows from Lemma 3.6 below.

If H is any g—invariant hyperplane containing Cy (g), then every g-invariant 1-space is contained in H.
Thus, if £ = 1, then u(g,Sk) < 1/¢, which proves (b). O

We now turn to a combinatorial observation that is crucial for the above arguments. Recall that
S(e @ (d — e); k) was defined in (3.4) for 1 <k <d/2and 1 <e <d/2.
Lemma 3.6. (a) S(e @ (d — e); k)/|Sk| < 2/4".
(b) Ifk =1, then S(e @ (d —e); k)/|Sk| < 1/q+ 1/¢%~ L.

Proof. Recall that S(e @ (d — e); k) counts a set of k—spaces of a d-dimensional GF(q)-space V. Namely,
write V = V] @ V3 where dimV; = e. Then S(e @ (d — €); k) is the size of the set T of all pairs (X, X3) of
subspaces X; of V such that a X; C V; and dimX; 4+ dimXs = k.

We begin by disposing of two special cases of the lemma. If ¥ = 1, then

ITI/1Skl = {(a° = D+ (¢ =D}/ ("= D) < {(a =)+ @' = 1)} /(q* = 1),
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so that (a) and (b) are clear. If e = 2 and d = 2k, then

ITI/Sel = {2(¢" = D(¢" " = 1)+ (¢ + D(¢" = D} /(¢* = D)(¢** ™' = 1) < 2/¢*

Consequently, for the remainder of the proof, assume that
(3.7) k> 2;ife =2 then d > 2k.

Let m; denote the projection onto V; compatible with the decomposition V= V@& V;. Define ¢; : S — T
by ¢1(W) = (W NV, ma(W)) and @o(W) = (m (W), W N Va).

Let S} and S? be disjoint copies of Sy, and define 7 : S} USZ — T by 7(Wi, Wa) = (1 (Wh), @a(Ws)).
We claim that

(3.8) |7~ Y X1, X2)| > ¢* for each (X1, X5) €T,

from which it follows that |T|/|Sk| < 2/¢%, as desired.
Fix (X1, X2) € T with dimX; = j < e. First note that

o7 (X1, Xs)| = [Hom(Xs, Vi /X1)| = gle=9)(F=0)
|§02_1(X1,X2)| = |Hom(Xy, Va/X5)| = g (d=e=k+i).

Namely, if @ € Hom(X3, V1/X1) and elements of V1 /X, are viewed as subsets of V', then {a(z2) + 22| 22 €
X5} lies in 7 1(X1, X2); and this construction easily reverses.
Then |30;1(X1,X2)| > 1 for i = 1,2, and we will prove the following, which implies (3.8):

(3.9) lo7 H(X1, X2)| > ¢* fori=1or?2.

If j=0or k then (e —j)(k—j) > ek >korj(d—e—k+j)> k(d—e) >k, respectively, and (3.9) holds.
We now assume that 0 < j < &, and divide the remainder of the proof of (3.9) into various cases:
Case 1. e < k and j < ¢/2.

Here (e — j)(k — ) > (¢/2)(k —¢/2) > (e/2)(k/2) > k provided that e > 4. Since 0 < j < /2, the only
remaining possibility is (e, 7) = (3, 1), in which case (e — j)(k —j) = 2(k — 1) > k by (3.7).
Case 2. e < k and j > ¢/2.

Here j(d—e—k+j) > (e/2)(d—e—k+e/2) > (¢/2)(k—e/2) > k for e > 4. This leaves the possibilities
e=j<3or(ej)=1(3,2),(21).

Ife=j, then j(d—e—k+j)>jld—k)> k. If (e,5) = (3,2), then j(d —e—k+j)=2(d—k-1) >
2k—-1)>k. If(e,j) = (2,1), then j(d —e—k+j)=d—k — 1> k by (3.7).
Case 3. e > k and j < k/2.

Here (e — j)(k—j) > (e — k/2)(k/2) > (e/2)(k/2) > k if e > 4. By (3.7), the only remaining possibility
is (e,7) = (3,1), and then (e — j)(k —j) = 2(k - 1) > k.
Case 4. e > k and j > k/2.

Since d > 2e, and j > k/2> 1 by (3.7), we have j(d—e—k+j)>jle—k+37)>jk/2) >k O

3.2. The remaining classical groups

Let G be a classical group on a d-dimensional vector space V of Witt index m > 2 over the field
F = GF(q°) (or GF(¢?) in the unitary case). We will need to consider the action of G on totally singular
subspaces and on nonsingular spaces. (We use the term “totally singular” instead of separating into “totally
isotropic or totally singular” subspaces according to the type of space V'.) Let TS and NS;, denote G-orbits
of totally singular and nonsingular k—spaces, respectively (there are two orbits of totally singular m-spaces
when G = Q% (2m, q); in this paper “nonsingular” subspaces are those having 0 radical.).

In the next section we will prove Theorem I except in the case of very small-dimensional spaces. In
order to minimize the number of special arguments needed in small dimensions, we will be somewhat careful
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in this section about bounds—leading to relatively ugly-looking estimates. In this direction, we introduce
additional parameters m# m* for G, as follows

Sp(2m, q), godd  Qt(2m,q) Q (2n,q) Q2m+1,9) SU(2m,q) SU@2m+1,q)
m# m m—1 n 2m —1 2m+ 1
m

m* -2 m— 2 m—1 -1 m— 2 m—1

m
m
Note that m# > m—1. If z is any singular 1-space, then z*/z has exactly |TSm|/(qm# +1) totally singular
m — l-spaces. The meaning of m* will appear within the proof of (3.10). Both of these quantities will be
carried along during various fixed point estimates.

We will require an important and useful subgroup. Let () denote the centralizer of a given maximal
totally singular subspace W, where dimW = m > 2. Then ) has the following structure, with each indicated
module a natural one for GL(W), where in some cases we also use a GL(W)-invariant subgroup Z of Q:

Sp(2m, q) @ can be viewed as the space S?(W) of symmetric 2-tensors. This is a reducible GL(W)-
module if ¢ is even, in which case Sp(2m, ¢) is better viewed as Q(2m + 1, ¢)).

Qt(2m,q) QEWAW.
Q2m+1,9) Z=2WAW and Q/Z =W, where Z = Z(Q) if q is odd.
Q- (2m+2,q) Z(Q)=W AW and Q/Z(Q) = W.

SU(2m, q) @ can be viewed as the subspace WAW of W ® W spanned by all vAw = v Quw —-w®7v
with v,w € W.

SU@m+1,9) Z(Q)= WaW and Q/Z(Q)=W.

For subspaces A and B of W let A% B denote the subspace spanned by all of the vectors a % b for
a € A, b€ B, where % € {A, A}; and in the symplectic case, let A ©® B denote the subspace spanned by all
of the vectors a@b+b®aand c®cforac A, be B, ce ANB.

Lemma 3.10. If g acts nontrivially on the above g-invariant totally singular m-space W, then |Cq(g)| <
|QI/IE™ .

Proof. Let h denote the linear transformation of 1 induced by g, so h # 1.

First consider the case that A is unipotent. Let X be any hA-invariant 2-space of W on which A is
nontrivial, and let X = X3 C X3 C --- C X,;;, = W be an h—invariant sequence of subspaces with dimX; = i.
Then, for % € {A, A, ®}, h acts nontrivially on each of the 2-spaces (X;41 % X)/(X; * X),i=2,...,m—1.
Tt follows that dimCw x w(h) < dim(W % W) — (m — 2).

When h is semisimple we will prove that dimCy g w(h) < dim(WW % W) — (m — 2) also holds. Suppose
that the eigenvalues of A (over the algebraic closure) on W are ay,...,an,. Then dimCuy 4w (h) is the
number of ordered pairs (i, j) such that

(1) aja; =1fori<jif k=N
(i1) aja; = 1 for i < j if % = @ (in odd characteristic); or
(ii) aja; = 1for i < jif e = A.

It follows easily that dimCyw g w(h) is largest when h has only 2 distinct eigenvalues. A straightforward
computation yields the bound.

When G is SU2m + 1,q), Q(2m + 1,9) or Q= (2m + 2,¢), @ has an additional GL(W)-composition
factor, isomorphic to W. Here dimCyy (h) < dimW — 1 = m*. Then |Cg(h)| < [F|HmCw * w(h)+dimCuw(h)
implies the stated inequality. O

Remark. In fact, dimCyw (h) < dimW — 2 for those orthogonal groups in which A cannot induce a transvec-
tion on W, leading to a slightly better bound.

Lemma 3.11. (G, TS,,) < 2/[F|™" + 1/|F|™* < 5/2[F|™" if m > 3.

Proof. Let g € G act nontrivially on TS,,. Write C' = Cy (g). We consider 2 cases separately. Note that
the two cases overlap but contain all possibilities.



Case A. g is semusimple and has a 1-dimensional invariant subspace on V. Suppose first that V =
Vi L Vs is a nontrivial orthogonal decomposition of V' and that there are no {g)-homomorphisms from
V1 to V3, and that V; has dimension k& which is at least as large as dimV5. Note that in particular this
holds if Cy(g) # 0 (with {V1,V2} = {C,[g,V]}). In particular, every maximal totally singular g-invariant
subspace of V is spanned by ones of V; and V5. Then Fix,(TS,,) is bounded above by the number of
maximal totally singular subspaces of a nonsingular subspace of dimension £ — 1 or twice the number of
maximal totally singular subspaces of a nonsingular space of dimension & — 2. If ¥ — 1 can occur here then
w(g, TSy) < 2/(JF|™ + 1), and otherwise pu(g, TSy, ) is smaller than this.

This handles all possibilities except when V = V; @ V5 for maximal totally singular subspaces V7 and
V5 on each of which g induces a scalar. Then V must be a unitary space. Any g—invariant maximal totally
singular subspace X must have the form X = (X NVi) @ (X N V3) where (X N V1)t = X N Va. Thus, the
number of such X is the total number of subspaces of V1, so that u(G, TS,,) < 2|F|(m/2* /| TS,, | < 2/|F|™".

Case B. g is unipotent, or g is semisimple and has no 1-dimensional invariant subspace. We may assume
that ¢ does stabilize an element of TS,,. If every g-invariant element of TS,, lies in C, then radC # 0,
and |Fixrs, (¢)| is at most the number of maximal totally singular subspaces of z1/z for a 1-space z of
radC', and hence is at most |TSm|/(|F|m# + 1). Hence, we will assume that g acts nontrivially on our
g—invariant W € TS,,,. Let S, (i) denote the set of members of TS, intersecting W in an i—space. Since @
acts regularly on Sy, (0), |Fixg,,(0)(g)| is either 0 or [Cq(g)|. By (3.10), since g is nontrivial on W we have
|Fixs,.0)(9)] < |QI/IE[™ = |Sm (0)|/[E™".

Now consider Sp,(#), 0 < i <m. If U € S(i) is g-invariant then 7 = UNW is a g-invariant i-space. The
number of such U for a given I is the number of g-invariant totally singular complements to W/ in I*/1.
Assuming that g is nontrivial on W/I, we can again use (3.10): g fixes at most |S,, (3)]/|F|™ ~% members of
Sm (i) (note that W/I must have dimension at least 2 and so the Witt index of I1 /I is at least 2). By (3.1),
there are fewer than 2|S;(W)|/|F|* choices for a g-invariant i—space I of W. Thus, the number of g—invariant
U € TSy, such that z is nontrivial on W/(U N W) is less than S°0*(2[S:(W)|/|F|))(|Sm (3)|/|F|™ ~%) =
TS, |/ [F]""

We have not accounted for those U € T8S,, such that g is trivial on W/1I, i.e., such that [¢, W] C
possibility only occurs for g unipotent. The number of totally singular m—spaces containing [g, W
the number of maximal totally singular subspaces of [g, W]L/[g, W], which is at most |TSm|/(qm# +1) <
| TS, |/qm#~

Consequently, g fixes fewer than 2|TS,,|/|F|™" + |TSm|/qm# members of TS,,. O

U. This
]

is just

Proposition 3.12. u(G,TS;) < 2/|F|™" + 1/qm# + 1/|F|* whenever 1 < k < m and m > 3.

Proof. Let g € G act nontrivially on TSy. By the preceding lemma we may assume that & < m — 1. The

proof here, and in the remaining estimates in the section, can be viewed as elementary conditional probability
estimates. Take any totally singular m-space U # UY, and then choose one of at least [’Z‘] — [mk_l]

{1 = (JF™=* —1)/(|F|™ — 1)}[}] k-spaces in U not in U9. By (3.11),

1— p(g, TSk) > {1 — (g, TSm)H1 — (IF]™* = 1)/(|F|™ — 1)}
> (1= (2/[F™ + 1/ H(1 - 1/[F]")
>1—{2/[F™ +1/¢"*} - 1/|F]*. O

We now consider nonsingular k-spaces N. We do not restrict k£ to be at most d/2. In fact, we will
apply the following estimate either to N or to N+, depending in part on the Witt index requirement in the
proposition.

Proposition 3.13. If m > 3 and | > 1 is the Witt index of the members of NSy, then u(G,NSy) is
bounded as follows:



G /J(G,Nsk) <

Sp(2m, q), q odd 2/qm 7+ 1/q™ 4+ 1/¢H % + 1/¢%F
Sp(2m,q), g even  2/q™71 +1/q™ +1/q"* +1/¢%F
Q*(2m, q) 204"+ /g +1/g + /%"
Q@2m+1,q),godd  2/¢" " +1/¢" +1/¢' +1/q"F

Q= (2n,9q) 2/* 2+ /" +1/¢" + 1/¢*F

SU(2m, q) 2/q2m=2) 4 1/¢?m=1 4 1/¢% + 1/¢2(d~k)
SU@Zm+1,9) 2/* "D+ 1/ 4 1/ 4+ 1/¢7 )

Proof. Let g € G act nontrivially on NSj. As in the proof of (3.12),

(3.14) 1—p(g,NSg) > (1 — pu(g, TS))(1 — max Pr{N € NS;,LC N : L' C N}).
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We only need to consider those distinct L, L’ € TS; that lie in some N € NSg. Since [ is the Witt index of
N, if i = dimL N L' for such a pair L, L' then (L, L'} = (LN L') L Z for a nonsingular 2(/ — i)-space Z of
Witt index [ — i. Here, i < 1— 1 since L # L'. Moreover, G is transitive on the set S;(i) of all L' € TS,
such that dimL N L' =14 and (L, L')/(L N L') is nonsingular.

For i = dimL N L' < [ — 1, consider the probability P(i) = Pr{N € NS;,LC N : L' CN} on
the right side of (3.14). We also have, for given I C L C N € NS; such that i = diml, P(i) =
Pr{L' € TS;,LNL =T=rad(L, L'} : L' C N}. Write 6 = k — 2l. Table 1 lists |S;(0)], as well as the
size of the set S;(0) N N of members of S;(0) lying in N. (Here, p is the characteristic of F, G is the
set—stabilizer of L, and O,(Gy) is regular on Si(%).)

G 10,(GL)| = 15:(0)| 151(0) N N P(i)
Sp(2m, q) g = m=0"=(3) (%) 1/qU=0Em=k) <1 /q2m=F
Q(2m+1,q) P ) g+ 1/qUi=DEmE1=k) < 1 Jg2m+1-k
Q*(2n, q) q(nz—n)—{(n—lf—(n—z)}—(;) q(;)+5z 1/qU=Dn=k) < 1/g2n—F
SU(d, q) q(‘;)—(d—;’)—Q(;) q12+251 1/q2(1—i)(d—k) < 1/q2(d—k)
Table 1

Here P(0) = |S1(0) N N|/|S1(0)], and P(¢) is obtained by replacing d, k, m, n and [ by d — 2i, k — 24,
m—1i, n—iand [ — i, respectively. Then P(:) is given in the last column of Table 1, including a bound that
is achieved when [ =7 — 1.

Now (3.13) follows immediately from the table, since 1 — u(G,NS;) > 1 — {2/|F|™" + 1/|F|m#} -
maxo<ict P(i) =1 — {2/[F|™" + 1/|F|m#} — P(I—1) by (3.12) and (3.14). O

We will need slightly more precise estimates than in the preceding result:

Lemma 3.15. Let 1 #g9 € G =Q(2m+1,q), and let NSQim denote either type of nonsingular hyperplanes
of V., where m > 4.
(i) If q is even and g is a transvection, then 1/q — 1/¢™ < u(g,NSzim) <1/q+1/¢™, u(g,NSE ) < 1/q,
and 1/q—1/q™ < p(g, TS1).
(ii) If q is even and g Is not a transvection then pu(g, NSQim) <1/¢>+1/q™.
(iii) If ¢ is odd and —g is a reflection, then 1/q— 1/¢™~! < u(g,X) for X € {NSzim7 TS, }.

Proof. (i) u(g,NS3,) = 3¢*"~1/3¢™(¢™ F 1) and pu(g, TS1) = (¢°™ =" = 1)/(¢*™ — 1),

(ii) We may assume that g has prime order and fixes some member of NSQim.

If |[g] # 2 then V = Cyv(g) L [V,g], and the fixed hyperplanes not containing the radical V1 are
Vo L [V, g] for the hyperplanes V; of Cy (G) not containing VL. Here, dim[V, g] is even (as eigenvalues occur
in inverse pairs). If dimCy (g) = 2k+ 1, then £ < m—1 and hence pu(g, NS;Em) = %qk(qk + 1)/%qm(qm +1) <
1/¢* +1/q™.



Suppose that |g| = 2. Since [V, ¢] is the intersection of the fixed hyperplanes of ¢ it does not contain
VL. By considering V/V 1 we see that [V, g] has a nonzero radical. Also, dim[V,g] > 2 since g is not a
transvection. Thus, [V g] contains a 2-space (z,y) with z a singular point and y a point perpendicular to
it. Clearly, u(y, NS - Y < Pr{H* ¢ NSi cH* D (z,y)}. Let (¢',y') denote any 2-space isometric to (z,y)
with z’ singular.

If y is not singular then, for H* € NSzm,

(g, NS3,) < Pr{(a’,y/) : (',9/) C H*}
={(@"F D" £ 1)/(a - DH™ (¢ £ D@ - D™ - D/(¢ - 1)}
=¢" (g £ 1) < 1/¢*+1/q"

{(@"F D" £1)/(a-DH@@™ T F D@2 £1)/(a—D(e* -
1/g* +1/q™.
q™(¢™ +¢) for 6, = 1, and u(g, TS1) = (¢™ £ )(¢™ ' F

Slmllarly, if y is singular then p(g, N zim

DH/A(@™ = D(e*™ - )/(q - 1)( - 1)

(iii) p(9,NS3,) = 5¢™ 7' (¢™ + §)
1/(¢*™ —1).0

)
}
/

NITIAIA

4. Proof of Theorems I and II for classical groups whose dimension is not small

Before starting the proof of Theorems I and II for classical groups, we indicate our general approach using
primitive prime divisors. Let GG be a classical group with natural module V of dimension d. We choose an
element s of G and determine the set M(s) maximal overgroups of s in G. The reducible maximal subgroups
containing s are obvious: they are just the stabilizers of the nonsingular or totally singular subspaces left
invariant by s. Thus, we need only classify the maximal irreducible subgroups of G containing s (or in the
case of Q(2m + 1,¢) with q even, those that act irreducibly modulo the radical V'1).

In all cases s acts irreducibly on a subspace of dimension e with e > d/2. Moreover, by Zsigmondy’s
Theorem [Zs], some prime order subgroup of (s) will act irreducibly on this space as well unless either
(g,¢) = (2,6) or e = 2 and ¢ is a Mersenne prime. If e = 2, then d < 3 and all maximal subgroups are
known. Whenever the case (g,¢e) = (2,6) comes up in our proof it is handled individually.

So we consider the case when some prime order element of (s) acts irreducibly on a subspace of dimension
e > d/2, and apply [GPPS], which classifies all subgroups H of GL(d, q¢) containing such an element of prime
order. The examples fall into several families. The most natural are other classical groups of the same
dimension over subfields (not necessarily proper) and smaller classical groups over extension fields (this
includes the important case of SU(d/2,¢) in orthogonal and sympletic groups of even dimension d). The
remaining subgroups H are usually in small dimension or have some other special properties which allow us
easily to see that they do not contain our element s. Indeed, in most cases the element of H of prime order
which acts irreducibly on the subspace of dimension e has small order (usually comparable in magnitude to
d or at worst 2d) and its centralizer in H is quite small (in particular, smaller than |s]).

With this in mind we will prove the following (where m always denotes the Witt index):

Proposition 4.1. Theorems I and II hold for the classical groups in Table 2.



G |s| divides M(s) and decomposition of V
SL(2m,q) m > 2 except SL(4,2), SL(11,2)

odd (" —1) (g™ = 1) (m+2)®(m—2)
even ("t —1) (" = 1) (m+1)&(m—-1)
SL(2m 4+ 1,q) m > 2, excluding SL(11,2)
("t —1)(¢" = 1) (m+1)&m
Sp(2m,q) m #1,2,3 and also m # 4,5,6,8,10 if g is even
odd (q2(M+D) 4 1)(g2(m=1) 4 1) (m+1) L(m—1) &O
0 mod 4 (¢2(mM*2) 4 1)(gi™ + 1)(g5(m=% 4 1) (m+2) Lim Lim—-4) &O

2 mod 4 (g2 4 1)(g5(™=2) 4 1) (7™ 4 1) (m+4) Lim—2) LI(m—6) &O
SU(2m,q) m #1,2,3

odd (™2 4+1)(" 2+ 1) (m+2) L(m—2)
even (@™t + D)™ T+ 1) (m+1) L(m—1)
SU(2m+1,q) m #1,2,3
odd  (¢"PPH1)(¢" - 1) (m+2) L[3(m—1)@® §(m—1)]
even (qm+1 + 1)(g™ —1) (m+1) J_[%m@%m]
Qt(2m,q) m #£2,3,4,6,8,10 and (m, q) # (5,2)
odd  (q3(M+D) 4 1)(g3(m=1) 4 1) (m+1)"L(m—1)"
0 mod 8 (¢2(M+2) 4 1)(¢3™ 4+ 1)(¢3™ 7 — 1) (m+2)"Lgm™ L [f(m—4) & f(m —4)]
4mod 8 (¢ 4 1)(g5™ — 1)(¢7™ ! 4 1) (m+2)7 L[gm & m] L 3(m —4)~
2mod 8 (¢34 1)(¢7m=2) 4 )T 1) (m+4)7LE(m —2)"L[}(m —6)® L(m — 6)]
6 mod 8 (g3 4 1)(¢(m=2) —1)(¢i™=D 4 1) (m+ )T L[I(m —2) @ F(m —2)] Li(m —6)~
Q" (2n,q) n=m4+12>7
tmod 4 (¢2+) 4 1) (g7 =D 4 (T 1) (4 3) LI -1 Li(n-5)"
3 mod 4 (¢3(* ) 4 1)(¢2(*=1) — 1) (n+1)7L[3(n—1) & $(n - 1))
0 mod 4 (g5"+2) 4 1) (g7 + 1)(g7* 7Y 4 1) (n+2)7L gn~ Li(n—4)"
2mod 4 (2" 4 1)(gF D 4 1) (3D 1) ()L S —2)7 L E(n—6)”

Q(2m 4+ 1,q) m > 2 and ¢ odd, excluding ©(5,3) and Q(7, q)
g" +1 2m~ L1

Table 2

Proof. The action of s on V is given in the table, including all irreducible constituents in the fourth column.
On the first constituent s induces a linear transformation whose order is the first indicated factor (divided
by a small number so as to have determinant and spinor norm 1). Similar statements hold for the remaining
constituents.

The set M(s) of overgroups of s is obtained using [GPPS]. When G = SL(d, q) the irreducible con-
stituents have relatively prime dimensions, thereby eliminating the possibility SL(de, ¢'/¢) < M € M(s) for
some e > 1. In all other cases, by [GPPS] the only possible irreducible maximal overgroups M of s are
the normalizers of naturally embedded subgroups of the following sorts: Qi(Qm, q) < Sp(2m, q) when ¢ is
even (denoted O in the table), SU(m, q) < Sp(2m, q), SU(m, q) < Q*(2m, q), Sp(2m/t, ¢*) < Sp(2m, q) and
QF(2m/t, ¢') < Q*(2m, q), where t | m. However, except for the cases O none of these can occur because
of the following simple conditions we have imposed on the nonsingular constituents: in all cases two of
their dimensions differ by 2, so Sp(2m/t,¢') < Sp(2m, ¢) and Q* (2m/t,¢") < Q*(2m, q) are ruled out; and
unitary subgroups are ruled out because for one of the dimensions k in the table the corresponding factor in
column 3 of the form ¢* + (—1)F.

Case 1: (G is not Q(2m + 1,¢) for ¢ of any parity.

The last column of Table 2 gives dimensions k to use in the estimates obtained in Section 3; there is
some choice here, so we will choose to have the Witt index of a nonsingular subspace as large as possible. By
(3.1,3.12,3.13), u(G, MF) < 4/¢(4=12)/8 for any M € M(s). Thus, by (2.2), 1 — PC(G) < Syu(G, M%) <
20/q<d_12)/8 — 0 as ¢ — oo, provided only that d > 20.
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This proves Theorem II for these classical groups. Slightly more care with these same estimates shows
that 1 — PC(G) < 9/10 in every case within Table 2. We will give an example of this verification in Case 2
below. In many of the situations excluded in Table 2 only the cases ¢ = 2 and possibly ¢ = 3 still need to
be considered, but in the next section we will not bother to make this restriction.

Case 2: G=Q(2m+ 1,q).

Here M(s) contains the stabilizer of a nonsingular hyperplane U, and pu(g, U%) < 1/¢+1/¢™ by (3.15).
Proceeding as above, we see that 1 — PC(G) < 1/q + 13/q(d_12)/8 — 0 as ¢ — o0, provided that d > 20.

On the other hand, for any choice of s € G, there is some s—invariant hyperplane (since d = 2m+1 is odd
and eigenvalues other than +1 must come in inverse pairs), and hence 1 —=PC(G) > Ps(g) > 1/q—1/¢™ when
+g is a reflection or a transvection, by (3.15i,iii). Now 1/q+13/¢(4=12/8 > 1 —PC(G) > Pi(g9) > 1/q—1/q™,
so limg_.oc PC(G) = 1 — 1/q for fixed q.

In Theorem TI(b) we only need to consider sequences (G;) for which ¢ is bounded. Passing to a subse-
quence, we see that this completes the proof of that theorem when the dimension is not bounded.

Once again, more care with these same estimates yields 1 — PC(G) < 9/10 in every case within Table
2. For example, if m = 2 (mod 4) with m > 10, then M(s) consists of the stabilizers of the three indicated
subspaces, together with a subgroup O~ (2m,q) if ¢ is even. Use (3.15), and the g-invariant nonsingular
subspaces of dimensions m +4, (3m +2)/2 and (3m +6)/2 in (3.13), in order to obtain Py(g) < 3(2/¢™! +
1/qm) 4 (q(m+4)/2 4 qm—4) 4 (q(3m+2)/4 4 q(m—Z)/Z) 4 (q(3m+6)/4 4 q(m—G)/Z) 4 (1/(]) < 9/10 O

Remark. We decomposed V as the orthogonal direct sum of nonsingular subspaces whose dimensions were
approximately (dimV')/2 or (dimV)/4. Other choices would have produced the same results. This flexibility
means that, at least asymptotically, the class <S>G is not at all uniquely determined.

On the other hand, if we ignore asymptotic results and wish for a precise optimal PC(G), presumably
an irreducible s will produce the “best” possible bound. However, there are groups where no irreducible
element s exists, such as Q% (2m, q); and in that case we could not use s of order ¢™ — 1, since a list of all
maximal overgroups of such an element 1s not presently known.

5. Classical groups: additional cases.

We exclude those groups that are already (central extensions of) alternating groups. There are a
number of cases omitted in the preceding section, all in dimension at most 20. Here we will settle most
of those, postponing until (6.3) the following groups: €(5,3), PSU(4,2), PSU(6, 2), PSU(5,2), PSU(4, 2),
Q*(8,2), PQ*(8,3), Sp(6,2), Sp(8,2), PQi(lo,Z), Sp(10,2) and PSL(11,2). In each case we will see that
1 -PC(G) < 9/10, and that 1 — PC(G) — 0 as ¢ — oo.

We will list groups, bound the order of a torus in which s lies, and list M(s).

PSL(2,9), ¢ =T or ¢ > 9; [s| = (¢ + 1)/(2,¢ + 1); M(s) = {Na((s))}; l9°| > a(a £ 1)/2 for g # 1, so
1-PC(G) <5/q by (2.1) and (2.2).

PSL(3,9), ¢ > 2. Let |s| = (¢> + ¢+ 1)/(3,q — 1); M(s) is {Ng((s))} if ¢ # 4 and SL(3,2) if ¢ = 4. If
q>5use [g9 > (¢?+q+ )(g+1)(g — 1) for g # 1, along with (2.1) and (2.2), to obtain 1 — PC(G) — 0
and 1 — PC(G) < 9/10. If ¢ = 3, an element g € M of order 13 or 3 has centralizer in G of order 13 or 9,
respectively, so Ps(g) < |¢¢ N M|/|g%| < 9/10. If ¢ = 4 then it is straightforward to check all nontrivial g in
M in order to see that |[¢& N M|/|g%| < 4/9.

PSU(4,q), ¢ > 3, and PSU(6,q), ¢ > 2; s preserves a decomposition 1 L 2m — 1 as in Section 4 (we
will use abbreviations such as s:1 L 2m — 1 below); M(s) consists of the stabilizer of a 1-space, and (2.3)
applies.

PSU(3,¢),5 # ¢ > 3, PSU(5,¢),¢ > 2 and PSU(7, ¢); |s| = (¢ +1)/(¢+1)(d, ¢ +1); M(s) = {Na((s))};
and (2.3) applies.

PQ™(8,q); |s||q4 + 1; M(s) = {Ng(Q27(4,4?))}; and (2.3) applies.

PQ™ (10, q); |s||q5 + 1; M(s) = {Ng(SU(5, q))}; and (2.3) applies.

PQ™(12,q); |s||q6 +1; M(s) = {Na(Q7(4,¢%)), Na(PQ™(6,¢%))}; and (2.3) gives 1 — PC(G) < 4/3¢* +
4/3¢3.

PQT(8,9), ¢ > 4; s:2~ L 67; M(s) consists of the stabilizer of a nonsingular 2-space, together with
two subgroups obtained from it by applying triality; and (3.13) gives

1= PC(G) <3(3/q° + 1/4° + 1/4°).
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PQ+(2m, q),2m = 12,16,20; s:4= L (2m —4)~; M(s) consists of Ng(PQ+(6, ¢*)} and the stabilizer of
a nonsingular 4-space; (3.13) and (2.3) give the desired bounds.

Q7,9), ¢ > 5 odd; |s| = (¢ +1)/2 (so s:1 L 67); M(s) consists of the stabilizer of a nonsingular
2-space; and (2.3) applies. (Note that G(g) does not occur because |s| > ¢ — ¢+ 1.)

PSp(6,q), ¢ > 4; s:2 L 4; M(s) consists of the stabilizer of a nonsingular 2-space and, if ¢ is even,
also a subgroup O%(6,49); 1 — PC(G) is at most 2/q + 1/¢®> + 1/¢> + 1/¢* < 9/10 for odd ¢ > 5 and
2/ + 1/ +1/¢> +1/¢*) + (1/q + 1/¢%) < 9/10 for even ¢ > 4, by (3.13) and (3.15).

Sp(8,9), ¢ > 4 even; |s| = ¢* + 1; M(s) = {Sp(4,¢*).2,07(8,¢)}; 1 — PC(G) < 4/3¢+1/q < 9/10 by
(2.3) and (3.15).

Sp(10,q), ¢ > 2 even; s:2 L 8; M(s) consists of the stabilizer of a nonsingular 2-space and, a subgroup
0%(10,9); 1 = PC(G) < (2/¢®* + 1/¢° + 1/¢* + 1/¢*) + (1/q + 1/4°) < 9/10 for even q > 4, by (3.13) and
(3.15).

Sp(4k,q), g even, k = 3 or 5; |s| = ¢** + 1; M(s) = {Sp(2, ¢*).k, Sp(2k, ¢*).2,07 (4k, q)}; 1 — PC(G) <
4/3¢% +1/|G:Sp(2, ¢*) k| + 4/3¢% + 1/|G:Sp(2k, ¢?).2| + 1/¢ < 9/10 by (2.3) and (3.15).

Sp(16,9), ¢ even; |s| = ¢®+1; M(s) = {Sp(8,¢°).2,07(16,q)}; 1 =PC(G) < 4/3¢>+1/|G:Sp(8, ¢*).2| +
1/¢ < 9/10 by (2.3) and (3.15).

6. Exceptional groups and sporadic groups

We next consider the exceptional and the sporadic simple groups, as well as the few classical groups not
dealt with in the preceding section.

Proposition 6.1. Let G be a simple exceptional group of Lie type other than 2G5(3) = PSL(2,8), G2(2) =
PSU(3,3), G2(3), Ga(4), 2Fa(2)', Fa(q),q < 3, 2E¢(q),q < 3 and E7(q),q < 3. Let (s) be a cyclic maximal
torus of G whose order is given in Table 3. Then P;(g) < v(G) < 3/4, where v(G) is given in the table. In
particular, for such groups G, lim|g|_. PC(G) = 1.

Proof. By [FM1, FM2], we have that u(G) < (¢'/3 = 1)/(¢®> = 1) if G = 2 Ba(q), u(G) < 1/(¢* —q+ 1) if G
is either Ga(q), q # 4, or 2Ga(q), p(G=2(4)) = 4/51; and p(G) < 1/(¢* + ¢ + 1) otherwise.

Tt follows from [We] that an upper bound for | M(s)| is as given in Table 3. The result follows by using
Y(G) = |M(5)|u(G). O

G |s| |M(s)| v(G)
“Ba(q),q=2""'=q2 k>1 ¢ +V2q0+1 1 (¢ =1)/(¢* - 1)
2Gy(q),q=3""=¢d, k>1 ¢+ V3q+1 1 /(> —q+1)
Fa(q),q=2%t1 =g, k>1 @t +V2¢3+ 4¢3 +V2q+1 1 1/(q* — ¢ + 1)
Ga(q),4 >5 @ —q+1 <2, Lif3fqg 2/(¢*—q+1)
3D4(q) - +1 1 /(> —q+1)
Fu(g),q >4 -t +1 <2, 1if2fq 2/(¢*—q¢"+1)
?Es(q),q > 4 ¢ —*+1 1 1/(q* — ¢ + 1)
Es(q) P+ +1 1 /(" —q*+1)
Er(q),q >4 (=D +¢*+1) <3 3(q* —q* + 1)
FEs(q) P+ - - +q+1 1 (" —¢*+1)

Table 3

We have excluded ?G2(3)" = PSL(2,8), G2(2) = PSU(3,3), G2(3), Ga(4), 2 F4(2)’; and also, for q < 3,
Fa(q), ?Es(q) and E7(q), because these groups are excluded in [We]. We now consider these excluded groups
as well as the sporadic groups.

Proposition 6.2. Let G be a simple sporadic group or G2(3), G2(4), 2Fa(2)’, Fa(q),q < 3,%FEs(q),¢ < 3 or
F7(q),q < 3. Let s be an element whose order is given in Table 4. Then P;(g) < v(G) < 9/10, where v(G)
is given in the table.
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G T =1s|  M(T) mG) v(G)

My 11 PSL(2,11) 3/11 3/11
Mo 11 PSL(2,11), My, My, 1/3 5/9
Mas 11 PSL(2,11) 3/11 3/11
Mas 23 Ng(T) 7/23 7/23
Mo, 23 Mas, PSL(2, 23) 1/3 2/3
J1 19 Ng(T) 5/133 5/133
s 7 PSU(3,3), PSU(3,3), PGL(2,7) 17 3/7
J3 19 PSL(2, 19), PSL(2, 19) 1/31 2/31
T4 37 Na(T) 1/90 1/90
HS 11 Myy, M1y, Mas 1/4 3/4
Me 11 Mll,Mgz,MQQ 7/55 21/55
He 17 Sp(4,4).2 11/147 11/147
Ru 29 Ne(T) 1/43 1/43
Suz 13 G'2(4), PSL(2, 25), PSL(2, 25), PSL(2, 25) 1/11 4/11
ON 31 PSL(2,31), PSL(2, 31) 1/143 2/143
003 23 M23 3/23 3/23
Cos 23 Mo 71/575  T1/575
001 23 002,003,211.M24 1/13 3/13
Fiyy 13 Q(7,3),Q(7,3), 2Fa(2) 374/1755  374/585
Fiss 23 211 Mys, PSL(2, 23) 1/9 2/9
Fib, 29 Ne(T) 1/9 1/9
HN 19 PSU(3,8).3 1/39 1/39
Ly 67 Ng(T) 7/55 7/55
Th 31 N¢(T), 25.PSL(5, 2), 25.PSL(5, 2), 25.PSL(5,2)  1/100 1/25
B 47 Ng(T) 1/53 1/53
M 59 Ne(T) 1/45 1/45
Ga(3) 13 PSL(3,3): 2, PSL(3, 3): 2, PSL(3, 13) 17 3/7
Ga(4) 13 PSL(2,13):2, PSU(3, 4): 2 4/51 8/51
2F,(2) 13 PSL(3,3): 2, PSL(2, 25), PSL(2, 25), PSL(2,25)  1/13 5/13
Fu(2) 17 Sp(8,2),Sp(8,2) 1/13 2/13
Fu(3) T3 3D4( ).3 1/73 1/73
2Fe(2) 19 SU(3,8).3 1/13 1/13
2E6(3)  19-37 SU(3 27).3 1/73 1/73
E:(2) 43-3 (8 2) 1/13 1/13
Ex(3)  4-19.37 Eg(3).2 1/91 1/91
Table 4

Proof. The values for u(G) are given in [Ma] for the sporadic groups and in [FM1, FM2] for the exceptional
groups. So our entire proof amounts to defining s and 7' = (s) so that M(s) is small.

First consider the sporadic simple groups other than B and M. Then the conjugacy classes of all maximal
subgroups H are all known (c¢f. [CCNPW, JLPW]).If T' < H then, since T'is a Sylow subgroup of G, by (2.4)
the number of members of H containing T is [Ng(T): Ny(T)]. This leads us to our computation of M(s).
We can almost always take v(G) := p(G)|M(s)|. If G = HS, then we note that [(x(z)+1)/(x(1)|+1)] < 1/4
for every nontrivial character x of HS and for every nontrivial z € G. In particular, u(G) < 1/4 (this is
slightly better than the estimate in [Ma]: the element appearing there and requiring a larger estimate is an
outer involution and hence does not concern us). The remaining case is G = M15. One computes (using the
permutation characters of the three maximal subgroups as given in [CCNPW]) that we may take v(G) = 5/9.

If G = B or M, then enough is known about the maximal subgroups to show that the only possible
maximal overgroups of T are either Ng(7") or almost simple groups (cf. [CCNPW, JLPW]). The only possible
almost simple groups containing an element of order 47 and whose order divides |B| have socle PSL(2,47);
however, PSLL(2,47) is not a subgroup of B since B contains no dihedral group of order 46. This shows that
Ng(T) is the unique maximal overgroup of 7" when G = B, as we have claimed in the table.

If G = M, the only possible simple subgroup of order dividing that of M and containing an element s
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of order 59 is H = PSL(2,59). Let E be a subgroup of order 29 in Ng(T'), so Ng(E) = (29: 14 x 2) 2. Then
H contains all involutions in Ng(E). Let U be the dihedral subgroup of order 29 - 2 of Ng(E) generated by
these involutions. Then H = (T, U) is uniquely determined and contains Ng(7'). In particular, there is a
unique maximal subgroup containing 7', as we have claimed in the table.

We now consider the exceptional groups in the proposition, for which we need only prove the statements
about the about maximal overgroups of 7.

All maximal subgroups of G3(3), G2(4) and Fy(2) are known (cf. [Kl, Bu, NW]) and the description of
M(s) follows immediately.

Next consider Fy(3). There is a maximal subgroup M = 3Dy4(3).3 containing T'. Proceed precisely as in
[We] to conclude that if H is any other maximal overgroup of T', then H is an almost simple group of type
PSU(3,9). We will show by way of contradiction that such an H does not exist.

Let V be the 25-dimensional module for F4(3), where Fy4(3) < SO(V). Then T fixes a unique 1-space
W of V which is also fixed by M (because as an M-module, V splits as a direct sum of a 24-dimensional
module and a 1-dimensional module; the latter is obviously the fixed space of T'). Let U be an irreducible
H-submodule of V. Here H has no irreducible representation over GF(3) of dimension 25 (cf. [JLPW]).
Moreover, any nontrivial simple T-module has dimension 12 over GF(3) (because 3 has order 12 modulo 73).
Thus, any simple H-submodule U of V' has dimension 1,12 or 24. Moreover, if it has dimension 12, then it
is isomorphic to the natural 3-dimensional module over GF(81) (cf. [JLPW])). If U has dimension 1 or 24,
then U or Ut is H-invariant. Thus, H is contained in the stabilizer of W and so H is contained in M. This
is a contradiction (either to maximality or by order). The remaining possibility is that U is 12-dimensional.
If W is not H-invariant, then ¥V must be a uniserial H-module (with composition factors of dimension 12,
1 and 12). However, H'(H,U) = 0 (cf. [JP]) and so V cannot be uniserial with composition factors of those
dimensions. This completes the proof.

Next consider ?Eg(gq),q < 3. By [CLSS] and [LSS], the only local maximal subgroup containing 7' is
its normalizer. Tt follows by [LiSe] that the only maximal subgroups containing 7" are almost simple (see
also [M, 6.1]). The proof of [M, 6.1] shows that the only possible maximal overgroups are isomorphic to
PSU(3,¢).3, or to PSL(2,19) for ¢ = 2 (also see the main theorem in [As]). In fact, there is no subgroup
isomorphic to PSL(2,19) (see [JLPW]; one can also use GAP [Sc] and character restriction arguments to
show this, as was pointed out to us by Malle). In the case PSU(3, ¢%).3 the overgroup is shown to be unique
exactly as in [We].

Finally, consider F7(q),q < 3. If ¢ = 3, then, by [LM, §6], T is contained in a unique maximal subgroup
as listed. If ¢ = 2 then |T'| = 129. Let z be the element of order 3 in T. Then C' = Cg(z) = 3 x SU(3,7).
Tt follows as in [LM, §7] that the only maximal overgroups of 7" are Ng(7'), C' and the normalizer of a
simple subgroup isomorphic to PSU(8,2). Since in the algebraic group Fr there is a subgroup SLg.2, in
F7(2) there is a subgroup M isomorphic to PSU(8,2). We may assume that T is contained in M (since M
contains an element of order 129 and a Sylow 43-subgroup of G is cyclic). Tt follows that C' < M as well.
We claim that there is a unique subgroup of E7(2) isomorphic to PSU(8,2) and containing T. We may view
z = diag(w?,w,...,w) € M = PSU(8,2), where w is a primitive cube root of 1. Let y = (w,w? w,...,w).
Then y is conjugate to z (in M). Moreover, y is central in H := 3 x PSU(6,2) < C. Also, D := Cg(y) is
conjugate to C' in G and hence is contained in M. Now consider any subgroup P = PSU(8,2) containing
T. Note that since z commutes with 7', Cp(z) = Cg(z). Thus, C < P. In particular, y € H < P.
Moreover, Cp(y) properly contains H. Since C' is maximal in P, it follows that P = (C,Cp(y)) < M, so
P is uniquely determined. Thus, the unique maximal overgroup of 7' is Ng(M). Since Ng(M) = MCg(2)
(because Ng(M)/M has order dividing 3), it follows that M = Ng(M) is maximal. O

We now consider some small dimensional classical groups over very small fields left open in Section 5
Proposition 6.3. If G is PSU(3,3), PSU(3,5), PSU(4,2) = Q(5,3), PSU(4,3), PSU(5,2), PSU(6,2),
Sp(6,2), PSp(6,3), Q(7,3), Sp(8,2), Q+(8,2), PQ*(8,3), PQ*(10,2), Sp(10,2) or PSL(11,2), then 1 —
PC(G) < 9/10.

Proof. The following observation will be useful. By [GM], if G is a simple group other than an alternating

group acting primitively on n points, then every nonidentity element fixes less than half of the points unless z
is a transvection in Sp(2m, 2) with a point stabilizer being O~ (2m, 2). In particular, if s € G is contained in
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a unique maximal subgroup and G is not an alternating group, then either P;(s) < 1/2 or z is a transvection,
G = Sp(2m,2) and P,(s) < 9/10.

Most of our estimates below are made using the character and maximal subgroup information in [CC-
NPW]. Often, the permutation character of the members of M(s) is given explicitly in [CCNPW] and so
one can compute |9 N M|/|z%| exactly. If not, we can use the bounds in [Ma] or use the simple observation
that [z% N M|/|z%] < max,(|x(z)| 4+ 1)/(x(1) + 1) for any nontrivial character x which is a constitutent of
the permutation character 11?4. We then obtain an upper bound for the ratio of the conjugates of z in the
overgroups of s by summing the estimates for the various overgroups (and not improving the estimates by
keeping track of intersections of maximal subgroups).

If G = PSU(3,3) and |s| = 7, then M(s) = {PSL(2,7)}, so (2.3) applies.

If G = PSU(3,5), let s be of order 7. Then s is in exactly 3 maximal subgroups, each isomorphic to Az
(see [CCNPW]). One computes that pu(g, M%) < 1/5 for any 1 # g € G. Thus, P;(g) < 3/5.

If G = PSU(4,2) = Q(5,3), take s in the conjugacy class 94 in [CCNPW]. Then the permutation
characters of the maximal subgroups are all given and one sees that s is in exactly 2 maximal groups each
of index 50 (isomorphic to 3%.54 or 3'1+2:24,). It follows by character estimates that Py(z) < 9/10 for any
nontrivial z € G.

If G = PSU(4,3) and |s| = 7, then there are precisely 7 members of M(s) and all of their permutation
characters are given in [CCNPW]. One computes directly that Ps(z) < 9/10 for all nontrivial .

If G = PSU(5,2) and |s| = 11, then M(s) = {PSL(2,11)}, so (2.3) applies.

If G = PSU(6,2), let s be of order 11. Then s is contained in precisely 7 maximal subgroups (cf.
[CCNPW]): 3 isomorphic to Mss, 3 isomorphic to PSU(4, 3).2, and the stabilizer of a nonsingular 1-space.
If  is not an element in the class 24, then using the character table we find that z fixes at most 29n/253
points in any transitive permutation representation of G of degree n (this follows by bounding x(z)/x(1)
for any nontrivial character x). Then Ps(z) < 203/253. If z is in the class 24, then we compute from the
character table that z fixes 256 of the 1408 points on the cosets of PSU(4, 3).2, and 160 of the 672 nonsingular
1-spaces. Moreover, z is not contained in any subgroup isomorphic to M2y (since Ma3 has a unique class of
involutions, and this has size greater than |z%|). This shows that P,(s) < 9/10.

If G = Sp(6,2), let s be of order 9. By [CCNPW], s is contained in exactly four subgroups of G: one
isomorphic to PSU(4, 2): 2 and three isomorphic to PSL(2,8): 3. If z is a transvection, then z is not contained
in any of the latter subgroups, whence Ps(z) = 4/7. Otherwise, the fixed point ratio in the first case is at
worst 1/2 and in the second action at worst 51/960. Thus, Ps(z) < 9/10.

If G = PSp(6,3), let s be of order 14. The two maximal subgroups containing s are isomorphic to
PSL(2,27):3 and (2 x PSU(3,3)))-2. Tt follows by character estimates that P;(s) < 9/10 for any nontrivial
z.

If G = Q(7,3), let s be of order 13. The maximal subgroups containing s are 2 copies of G2(3), 2
stabilizers of 3—dimensional totally singular subspaces and the stabilizer of a nonsingular 6—space of + type.
Using the character table, we see that the worst case is for z of type 3A, and we find that P;(s) < 17/28.

If G = Sp(8,2), let s be of order 17. The three maximal subgroups containing s are isomorphic to
07(8,2), Sp(4,2):2 and PSL(2, 17). Since each of these subgroups contains the full normalizer of the Sylow
17—subgroup and there is a unique conjugacy class of each type of subgroup, it follows that s is contained
in precisely one of each type. If z is a transvection, then z is contained in only the first subgroup, and we
find that Py(s) = 8/15. If z is not a transvection, we compute (via the character table) that z fixes at most
3/10,1/2 and 1/10 of the cosets of the three subgroups, respectively. Thus, P;(s) < 9/10.

If G = Q%(8,2), take s of order 15 (specifically, of type 154). By [CCNPW] there are precisely 6 maximal
subgroups containing z, isomorphic to Sp(6,2),2°A4s,26A4s, Ag, Ag and (As x As5).2%2. The permutation
characters for the first 5 are given in [CCNPW], and one computes v;(z) := |z% N M;|/|z€| for each z € G
of prime order for these 5 maximal subgroups M;. In the last case, we estimate |29 N M| by the number of
elements in M of the same order as z. This leads to Ps(z) < >, vi(z) < 9/10, as desired.

IfG = PQ+(8, 3), let s be of order 13. Then s is contained in 12 maximal subgroups: 6 isomorphic to
Q(7,3) (in distinct conjugacy classes) and 6 isomorphic to 3°: PSL(4,3) (2 in each of 3 distinct conjugacy
classes). Using the character table, we see that Ps;(z) < 9/10 for z not a long root element (type 34 in
[CCNPW]). If z is a long root element, then using GAP one computes directly that Ps(z) < 6/7 (this
computation, obtained by considering all conjugates of z, was performed by T. Breuer).
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IfG = PQ+(10, 2), let s be of order 51 acting irreducibly on both a nonsingular space of dimension 8
and its orthogonal complement. The only maximal overgroup of s in GG is the stabilizer of of the nonsingular
8-space, whence PC > 1/2.

If G = Sp(10,2), let s be of order 51 acting irreducibly on both a nonsingular space of dimension 8 and
its orthogonal complement. The only maximal subgroups containing s are M; = O%(10,2) and the stabilizer
My of the nonsingular 8-space. First suppose that g is not a transvection. By (3.15), u(g, M) < 9/32. By
[GM], p(g, M§) < 1/2. Thus, Py(g) < 25/32. If g is a transvection, then u(g, M) < 15/32, while g fixes
28 4 22(28 — 1)27/3 - 2 of the 28 +2%(2!° — 1)2°/3 - 2 nonsingular 2-spaces. Thus, u(g, MS') < 1/4 + 1/256,
whence the result.

If G = PSL(11,2) and |s| = 2!! — 1, then M(s) = {Ng((s))}, so (2.3) applies.

7. Alternating groups.

In this section we will conclude the proof of the theorems by studying the alternating group A,,. Let Sg
denote the set of all k—sets of the n—set. Throughout this section, g will denote an element of prime order
p. We begin with Theorem I, which only requires 19th century group theory:

Proposition 7.1. PC(A,) > 1/10 for all n > 5.

Proof. The cases n < 7 are left to the reader (use |s| = 5,5,7 for n = 5,6, 7, respectively).
Case 1: n even.

Write n = 2m + d with d = 2 or 4 and m odd. Let Cg = s%, where s be the product of disjoint cycles
of length m and m + d. Note that these lengths are relatively prime, so that one power of s is an m—cycle
and another is an m + d—cycle.

The only maximal subgroup M containing s is the stabilizer of the s—invariant m-set. For, this is clear
if M is intransitive. If M is transitive then it is primitive since the cycle lengths of s are different and are
not factors of n. Since (s) contains an m—cycle with m < n/2, we obtain the contradiction M = G by an
unpublished 1892 theorem of Marggraf [Wie, 13.5].

If ¢’ denotes a p—cycle, then

(¢',Sm) =Pr{h € ¢'% : (h,s) is intransitive}

() AE) (3 <o

Thus, 1 — PC(G) < 3/4 by (2.2).

Case 2: n odd.
Let Cg = s%, where s is the product of three disjoint cycles of lengths k1, ks, k3, as follows for some
odd m:

1(g,8m) < p
<{

m+1,mm-—1ifn=3m

m,m,m+21i1fn=3m+4 2

m,m,m—21fn=3m-—2
where m is odd. Then a power of s is a cycle of length m or m + 2 since that length is relatively prime to
the other cycle lengths.

Any transitive subgroup J of G containing s is primitive. (For, a block would have to have length at
least one of the three cycle-lengths and also be a factor of n; and three blocks of length m would not be
permuted by s.) Then .J = G by Marggraf’s theorem [Wie, 13.5]. Thus, by (2.2), 1 — PC(G) is bounded
above by the sum of three quantities u(g, Sg) with m — 2 < k < m + 2. Clearly, u(g,Si) < p(g’, S), where
g’ is either a p—cycle for p > 3 or the product of two disjoint 2—cycles.

If p > 5 then, as in Case 1,

oo {()+ (TG + () <o

as is checked using the specific pairs n, m.
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If ¢’ is a 3—cycle, we will proceed more directly in order to determine 1 — Pyi(s) = Pr{h € ge
(h, s) is transitive} precisely. Since each point moved by A must be in a different cycle of s, there are exactly
2k1koks choices for h, so 1 — Pyi(s) = 2k1k2k3/2(g). In view of the values of ki, ks, k3, it follows that
Pr{s € C¢ : (g, s) is transitive} > 1/10 for each n.

Finally, when ¢’ is the product of two disjoint transpositions we will again determine 1 — Py(s) =
Pr{h € ¢'¢ : (h,s) is transitive}. Clearly, (h,s) is transitive if and only if h = (a,b)(c,d) where a and ¢
lie in one cycle of s while a lies in a second cycle and b lies in the remaining cycle. Then 1 — Pyi(s) =
D kalka— 1)]6@]{77}/3(2), summed over the three ordered triples («, 8,7) = (1,2, 3), (2,3,1) or (3,1,2). This
is at least 1/10 in view of the specific lengths k,. O

Proposition 7.2. (i) If s € G has at least two cycles, then Ps(c3) > 1/4 + O(1/n).
(ii) imPC(Ay) = 3/4.

Proof. (i) Let k be a cycle length of s. Since z(z — 1)(z — 2) is concave up for z > 1,

Py(cs) = (ﬁ) + (“ 5 k)/(g) > 2<[”§2])/<§) =1/4+0(1/n).

(ii) In view of (i), it suffices to show that, for the smae s as in Case 1 of the proof of (7.1), we have
Pi(g) <1/440(1/n) for all g € G of prime order p. This time P,(g) < Ps(¢') = Py (s), where ¢’ is either a
p-cycle for p > 3 or the product of two disjoint 2-cycles. Now Pyi(s) = Pr{h € ¢’ : (h,s) is intransitive}

)OI () (S G) = o
{3@) +3<”_4m) + (7;) (“;m>}/3<’;) =1/4+ 0(1/n),

By (7.2i) we need to examine n—cycles. As might be expected, these produce an optimal conjugacy
class.

and

respectively. O

Proposition 7.3. liminf(PC(Ag41) | { > 2) = 8/9. The set of limit points of the sequence (PC(Az41) |
[ > 2) consists of 1 together with 1 — 1/m? for all odd integers m > 1. Moreover, any subsequence of this
sequence that converges to 1 — 1/m? has a subsequence of the form (PC(Ap,m) | pi is a prime*m).

Proof. We may assume that n > 23. Let Cg = s with s = ¢,,. Then M(e,) consists of some of the
following groups M in very familiar permutation representations:

(i) The set-stabilizer of the set of all cycles of cﬁ/k whenever k|n, 1< k< n;

(i) |Ng({(cn)): Nas({cn))| subgroups M = PT'L(d, q) N A, if n has the form (¢¢ — 1)/(¢ — 1) for some

prime power ¢ and some integer d > 2;

(iii)) Ng({cn)) and n is prime.
For, first of all in each of the indicated cases there is a unique conjugacy class in G of subgroups of the
indicated sort, and each has a unique conjugacy class of transitive cyclic subgroups {¢,). Hence, Ng({c,)) is
transitive on the set of all maximal overgroups of each type. In order to see that this list is complete, note
that (i) handles the imprimitive case. By classical results of Burnside and Schur [Wie, p. 65], any maximial
overgroup M that is primitive is either a regular or Frobenius group of prime degree or is 2-transitive. In
the latter case the classification of finite simple groups produces the desired list [Fe, 4.1].

We need an upper bound for u(g, M%) for each M appearing in (i-iii).

(i) Fix k. Since n is odd, k& > 3 and hence

g, ) < ea, %) = 2 (1) /() = (k= 106 -2 f 0 = )= 2.

However, we do not need to consider all divisors k£ of n here: if a conjugate of cg fixes an orbit of some power
cl, of ¢, then it fixes an orbit of any power of c/,. Thus, when calculating Pr{g € c§ : (g, c,) is imprimitive},
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we may assume that the blocks have prime size k. Since there is no overlap arising from from different
primes, th.e contribution of (i) to Pcn(c?,) is o, .::.ZP (r—D(p- 2)/(n — 1)(n — 2), where the sum ranges
over all prime factors p of n (not counting multiplicities).

(i) If g has k fixed points and ¢ cycles of length p, then n = k + pt and |Cg(g)| = k!p't!/2. Since
g € M <PTL(d,q) and n is odd, £ < (n — 1)/2. In view of (2.1), it follows that the contribution in (ii) is

< [(n = 1)/d][M|/{|G/|Calg)]}

< nqd2k!p"/pt!/n!

< nH1oB2 k(33 [(n — k) /2] /n!

< o823V (n — k) /2] /n- - ([(n — k) /2 + k) -+ (k + 1)
< n4log2n(31/3)n (n—k)/2] + k)n—([(n—k)/2]+k)+1

< n4log2n(31/3)n n/2)(n+1)/4.

/(
/(
(iii) By (2.1), u(g, MF) < {n(n—1)}/|G: Ca(g)|. For g € M, |Ca(g)| < 2*=D/2{(n—1)/2}!/2, so that

(9. M) < {n(n — 1)}20=D/2((n — 1)/2}1/n!
< 2D/ {(n 4 1)/2) 9,

Completion of the proof of (7.3). By (7.2i), the only way we can have a limit point larger than 1/4
is to have n odd and use Cg = ¢§. The upper bounds in (ii) and (iii) are O(1/n), so we only need to
deal with the quantity o, in (7.4). For type (i) we saw that the “worst” choice of g for Cg is c3, so
1 =PC(A,) = on + O(1/n).

Now consider a sequence (A,,) such that limPC(A,,) exists and is not 1. Then for each n; there
is a prime factor p; such that p;/n; is bounded way from 0, and hence we may assume that n, = p;m
for some constant m. All but one of the summands in o,, tends to 0, and hence o,, — 1/m?. Thus,
1 — PC(4,,) — 1/m?%. Moreover, pi*m for all large i since p; — oo. This yields all assertions of the

proposition. O

This completes the proof of Theorems I and II. Of course, there are obvious types of analogues for
symmetric groups of the results in this section.

8. Further results and remarks

1. Our results can be extended to the almost simple case without too much effort except in some small
cases. In particular, let G = (S, z) < AutS with S a simple nonabelian normal subgroup of G. If (z)NS # 1,
our theorems apply. So we may assume that ¢ ¢ S and z has prime order. One needs only replace the
collection M(T) by M(T'), the maximal elements in the set of overgroups of T' whose S-class is z—stable.
Often, these sets coincide, and then one uses the fixed point ratio estimates for almost simple groups (which
are generally of the same order of magnitude as for the simple groups).

2. Shalev asked the following question: can every finite nonabelian simple group be generated by 2
subgroups of odd order? A minor variation of our results proves that every finite nonabelian simple group
can be generated by 2 elements of odd order. However, this requires some extra effort in a finite number
of cases. We note that our proof does show this (and more) for G sporadic, alternating or a group of Lie
type in characteristic 2 (because our 7" may be taken of odd order). If G is a group of Lie type in odd
characteristic p, then G can be generated by any nontrivial element and some Sylow p-subgroup (see [G]),
whence Shalev’s question has a positive answer. In particular, we have proved:

Propostion 8.1. Every finite nonabelian simple group can be generated by an element of odd order and a
subgroup of odd order.

3. Here are some conjectures related to Theorem II. Let G be a finite simple group.
(a) Let 1 # s € G. Let Ps(G) denote the probability that, if z is chosen randomly in G, then G # (s, z).
Our results show that P;(G) < 1 for all s, G. Prove that P;(G) < ¢ for some fixed constant less than
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1 and determine the best possible ¢ (for |G| sufficiently large). Note that ¢ > 1/2 (by considering
G = Sp(2m,2)). This question is closely related to a question left open in in [GKS]: determine the
limit points of { minyzgeq Pr{h € G : (9, h) = G} | G is a finite simple group }

(b) Let p and q be primes dividing |G| such that pg > 6. Show that the probability that two random
elements of orders p and ¢ generate G tends to 1 as |G| tends to infinity (or at least prove that this
probability is bounded away from 0). See [LiSh1] and [LM] when pg = 6.

(c¢) Prove that there exists an element s = sg such that, for any nontrivial z € G (or AutG), the
probability that s and s” generate G is bounded away from 0. Presumably, one can choose precisely
the same s as in our proof.

4. Tt is clear from our approach that there is a need for more uniform and precise estimates concerning
#(G,X) when G has Lie type and X is a naturally occurring conjugacy class of subgroups. Uniform estimates
would make the proof of Theorem II easier. On the other hand, it is less clear that suitably precise general
estimates can be obtained that imply Theorem T (even with a smaller constant than our 1/10). Examples of X
are: any classical group acting on a conjugacy class of maximal tori (in particular, on cyclic groups generated
by irreducible Singer cycles, when they exist); orthogonal or symplectic groups acting on the naturally
embedded irreducible unitary subgroups, all classical groups acting on a conjugacy class of subgroups of the
same type over extension fields. In general, it would be desirable to have bounds for all of the standard
Aschbacher classes [KIL]. Most desirable would be bounds that made all of our special considerations in
Sections 4, 5 and 6 unnecessary.

5. One minor obstacle in our proof was that there is presently no classification of all overgroups of
Singer cycles of a subgroup SL(m, q) inside Q¥ (2m, q) or of a subgroup SL(m, ¢?) inside SU(2m, q). Such a
classification would be desirable both for group-theoretic and geometric purposes.

6. What is the “best” type of class Cg in our theorems? The flexibility of our choice of s shows that
there are many classes producing our bounds.

Better estimates should be possible: it would be interesting to have precise error terms for all of our
bounds, along the lines of those in [Ba], [Ka2] and [LiSh2]. Presumably exact error terms arise using
irreducible elements when these exist in G.

7. The classification of simple groups was used here rather heavily. We do not know how to avoid this.
Nevertheless, Theorem I for classical groups was orginially proved (with a poorer constant) using much more
elementary group theory: s € C¢ was the commuting product of a (long) root element and an irreducible
or almost irreducible element, so [Kal] could be used. The case of exceptional groups should be possible in
a similar manner, using [Co].

8. We are grateful to T. Breuer and G. Malle for providing us with GAP computations.
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