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ank 3 Characterizations of Classica 

WILLIAM WI. KANTOR 

Ever since Higman’s ground-breaking work $1, there have been many 
rank 3 characterizations of the classical symplectic, unitary and orthogonal 
groups and geometries. The purpose of this paper is to add another such 
characterization to that pile. Take a finite symplectic, unitary or orthogonal 
geometry having a totally singular (projective) plane. Let R be the number 
of singular points # x orthogonal to a given singular point X; let I be the 
number of singular points not orthogonal to x. Finally, let G be a rank 3 
permutation gr-oup such that the stabilizer al’ a point has orbits of lengths 1, 
k, and 1. We will show that G can be regarded as an automorpbism group of 
the given geometry acting on the singular points. 

This result will be deduced from general theorems which even give some 
information when singular lines but no singular planes exist. The main idea 
of the proof is very elementary, essentially the same as that of Rantor [6]* 
The actual identification of the geometries is made using the theorem of 
Buekenhout-Shult [I]. 

We refer to Higman [2] for the relevant background concerning rank 3 
groups, and to Higman-McLaughlin [5], Perin [7], and Stark [B] for what is 
known about rank 3 subgroups of symplectic, unitary, and orthogonal groups. 

The precise statements are as follows. 

THEOF~~M 1. Let G be a primitive rank 3 p~~ut~ti5~ group 092 a jiinite 
set 5’. For x TV S, let G, have three orbits of lengths 1~ qy, mad qzyS, where 
q, y, I, am? S are positive integers satisfvng: q and Y aye powers of a p&m? 

p’;ys, q > 1) and either 

(1) (P i- qqr > qy and (x 6) = 1 

DT 

(2) q = p = 2, 6 = 1. 

* This research was supported in put by NSF grant GP-37982X. 
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Then S can be identified as one of the following geometric objects, in such a way 
that G acts as an automorphism group of the geometry; the set of singular points 
of a symplectic, unitary or orthogonalgeometry, or the set of points of ageneralized 
quadrangle (with parameters q, y - 1). 

See Buekenhout-Shult [l] or Higman [4] for brief discussions of generalized 
quadrangles. Recall that the parameters of a generalized quadrangle are s, t 
if there are s + 1 points per line and t + 1 lines per point. 

We remark that the proof in case (1) is easier than in case (2). “Most” 
symplectic, unitary, and orthogonal groups are characterized by Theorem 1 
(for the case of PG0+(6, q), see Corollary 2): 

COROLLARY 1. Let q > 1 be a prime power. Let G be a rank 3 group with 
subdegrees 

(i) 1, 4(4”-2 - l)/(q - I), P-l; 

(ii) 1, q2(q+l - (- 1)*-1)(qfi-2 - (-l)‘2”)/(q2 - I), q2”-l; or 

(iii) 1, q(qmM2 - E)(qm-l + e)/(q - l), q2112-a, 

where n > 6, m > 4, and E = Al in (iii). Then G can be regarded as an 
automorphism group of a symplectic, unitary, or orthogonal geometry, acting 
on the set of singular points. 

Case (i) of Corollary 1 with n = 4 and arbitrary q, or n >, 4 and prime- 
power q, has been considered by Higman [2] and Tsuzuku [9]. They obtained 
a similar result by assuming the existence of at least q elations (alias trans- 
vections) with a given center. 

COROLLARY 2. A rank 3 group G with subdegrees 1, q(q + l)“, $, for a 
prime power q > 1, is a subgroup of Aut PSL(4, q), and can be regarded as 
acting on the set of lines of PG(3, q). Moreover, if q > 2 then G contains 
PSL(4, q); ifq = 2 then G can also be A, or S, . 

Recall that Aut PSL(4, q) g Aut PGOf(6, q). Higher dimensional 
analogues of Corollary 2 have been obtained by Higman [3] using entirely 
different methods. 

We will use the following notation. G is a rank 3 permutation group on S. 
For x E S, the orbits of G, are {x}, I’(X), d(x), with IP( = qy and 
Id(x)] = q2rS, where q > 1 and Y are powers of a prime p -Y ~8. Let 
& = {x} u P(x). If y E P(x), the singular line xy is defined by 

xy = n{w+,yEWL} = n{wywEX+yL}. (3) 
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A singular line is uniquely determined by any two of its points; all singular 
lines have the same size h + 1 (Higman [2]). Since x is in qy/h lines, of which 
A + 1 = ] T(x) n yL j are in y’ (where h = 1 I”(X) r\ P(y)\ and y f F(x)), 
it follows that 

h I (CD> x + 1). (4) 

Clearly [ A(x) f~ r(y)\ = qy - h - 1 if y E r(x). ite p = / T(x) n F(w 
if w E d(x). Then qy(p - X - 1) = (p2rS)p. Since G is primitive, p f 
(Higman [27). 

Now assume (1) or (2). Then (y, 4~6) = 1, so gy - X - 1 = @k an 
p = ye for some integer 7. If (1) holds, then qr& < my < 2@, so +r = 1 and 

qy - h - 1 = qr8 and c” = Y. (2 

If (2) holds then ye = p < q’y = 2y, so (5) again is satisfied unless ,U = 4~~ 
But p = q’y implies that G is imprimitive (H&man [2]). This proves (5) 
We can now substitute (5) for parts of (1) and (2): 

THEOREM 2. The conclusions of Theorem I hold if (1) and (2) are replaced by 

(P + !e z 4Y and (5) holds, (I’) 
and 

q=p,S=l and (5) holds. (2’) 

In the remainder of the proof, we will assume (1’) or (2’). 
Each orbit on A(x) of a Sylow p-subgroup Q of 6, has length >, @++~ 

Since p Y y, we may assume that I Q: Q, j = q and P = 
group of G,, . Then each orbit of P on d(x) has length >, @r/q = qr. In 
particular, if (2’) holds then P is transitive on L!(Z) n r(y) by (5)~ 

LEMMA. h >q. 

Proof. Suppose h < q. Certainly, P acts on r(x) n r(y) - (xy - (x, y>)? 
a set of h - (h - 1) = (47 - qr8 - 1) - (h - 1) points (by (5)). It thus 
has an orbit zp there of length < Q. Then / ,zJ’ j < q/p. 

Note that S(y) n I’(z) n A( x cannot be empty. For suppose it is. Then ) 
yL n 9 C XI, soyi n z L = &- n yL (since z E r(y) implies that j y’ n zL ! = 

y (3), z EYZ = xy, which is not the case. 
Thus, P, acts on the nonempty set r(y) n I’(z) C-I A(x). But each orbit 

of P, on A(x) has length > qr/qp-l = pr > qy - $5 - 1 = h = 
! F(y) n X’(x)\ if (1’) holds. Consequently, we may assume (2’). Then q/p = 1) 
so P=P,. Now P fixes J-‘(y) n F(x) n A(n), and (as already noted) is 
transitive on P’(y) n A(x). It follows that F(y) n d(x) = IQ) n T(x) r, d(x). 
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Hence, I E 2 = (z E J’(x) j T(z) n d(x) = P(y) n d(x)}. Here, ,X is a set of 
imprimitivity of G, on F(X). Write u = J C j. Then there are qy/a different 

sets 44 * -W), Y E P), each having size qr by (5). The number of 
such sets containing a given w E d(x) is (qy/a)(qr)/j O(X)/ = y/o. Consequently, 
p { (qy - Q) = / r(x) - C j. Thus, P fixes some x’ E F(X) - C. 

BY (4)> h I (4% 4Y - PI = 9, so h = 1 and x’ # xy. The preceding 
argument and x’ $C imply that J’(y) n F(x’) n d(x) = 4 and a’ E d(y). 
Recall that P is a Sylow subgroup of GZV . Hence, interchanging the roles 
of x and y we find that P is transitive on d(y) n r(x) as well as on A(x) n I’(y). 
Since Z’ E d(y) n F(X), this is ridiculous. This contradiction proves the 
lemma. 

Let w $ xy. If xy n r(w) contains at least two points y, y’, then x E xy = 
YY’ _C WI by (3), so w E &-. In particular, if w E A(X) then r(w) meets each 
of the qy/h < y singular lines on x at most once, and hence exactly once since 
y = IF(W) n TV. Th us, h = q and we have shown: if a point is not on a 
singular line L, then it is jointed by singular lines to one or all points of L. 
Theorems 1 and 2 thus follow from the theorem of Buekenhout-Shult [l]. 

Corollary 1 is now a consequence of arithmetic. 

Remark 1. Our proof shows that, if (2’) is replaced by 

6=1 and (5) holds, (2”) 

then singular lines have h + 1 points with 1 < h 1 q. 
In this case, the number of singular lines is (1 + qy + q2r)(qy/h)/(h + l), 

and this provides an additional restriction on the parameters q, Y, 6, and h. 
This idea is used in the following proof. 

Proof of Corollary 2. Th eorem 1 applies except when p = 2 < q. In 
this case, we will imitate the proof of Theorem 1. Namely, (5) follows as 
before, and we need to prove Jz > q. Assume h < q. By (4), h / q. If h < q/4, 
we can proceed as in the lemma, with j 9 j < q/4 this time. Since 
(4 + q)q3 > q(q + 1)2, this produces a contradiction. Thus, h = q/2. But 
now the number (1 + q(q + 1)2 + q4) . q(q + 1)2k1/(h + 1) of singular lines 
is not an integer. 

In view of Wagner [lo] and Perin [7], this proves the corollary. 

Remark 2. Primitivity in (1) could have been replaced by the condition 
(1 + qy) f 6, ad in (2) by (1 + q2r) -r y. 

Remark 3. Theorem 1 applies to the case of subdegrees 1, q(t + l), 
q2tewith(E,t+1)=1,q>1,andt>1powersofaprimep,andt3q~p. 
Here, a generalized quadrangle arises (with parameters q, t), so E = 1; also 
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t < q” by igman [4, p. 2781. (The case q = t = te should be compared 
with Higman [2].) 

Consequently, Theorem 1 applies to the case of the subdegrees of PSp(4, ~7)~ 
GU(4, s>, or PGW, q), in their actions on the set of singular points OT 

singular lines, except that in the case of singular points for PGU(4, q) or 
singular lines for PGU(5, q) it must be assumed that q is prime. 

Remark 4. Theorems 1 and 2 can be regarded as nonexistence theorems 
for rank 3 groups having certain parameters. Note that each theorem implies 
that 6 = I or (y - 1)/r, and greatly restricts the possibilities for y# 

For example, each of the following pairs qy, p%S of possible subdegrees 
is ruled out by these theorems: 42, 32; 48, 81; 68, 500; 84, 320; and 88, 128. 
Each case is, however, consistent with all the numerical restrictions found in 
Higman [2]. (In the case 60, 500 these restrictions imply that (5) holds, so 
Theorem 2 applies with q = 5. Similarly, the possibility 50, 625 is eliminated 
by obtaining h = 5 and contradiction as in Remark 1; the possibility 88, 128 
leads to the same contradiction. 
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