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Abstract 
We present polynomial-time algorithms for computation 
in quotient groups G / K  of a permutation group G. In 
effect, these solve, for quotient groups, the problems 
that  are known to be in polynomial-time for permutat ion 
groups. Since it is not computationally feasible to rep- 
resent G / K  itself as a permutat ion group, the method- 
ology for the quotient-group versions of such problems 
frequently differ markedly from the procedures that  have 
been observed for the K = 1 subcases. Whereas the al- 
gorithms for permutat ion groups may have rested on el- 
ementary notions, procedures underlying the extension 
to quotient groups often utilize deep knowledge of the 
structure of the group. 

In some instances, we present algorithms for problems 
that  were not previously known to be in polynomial time, 
even for permutat ion groups themselves (K  = 1). These 
problems apparently required access to quotients. 

1. Introduction 
Since the order of a permutat ion group G on n letters 
can be exponential in n, it is customary, in both the- 
ory and practice (see, e.g., [Ca], [FHL], [Si]), to spec- 
ify G by a small set of generating permutations (less 
than n are needed and typically many fewer suffice). 
Despite the succinctness of such representations, a sub- 
stantial polynomial-time machinery has developed for 
computing with permutat ion groups. A major stimulus 
for this activity was the application to the graph iso- 
morphism problem (ISO), for early work ([Bal], [FHL], 
[Lull, [Mill, [Mi2], [BL]) used groups to put  significant 
instances of ISO into polynomial time. Ensuing studies 
resulted in algorithms for deciphering the basic build- 
ing blocks of the group ([BKL], [Lu2], [Ne], [KT], [Kal], 
[Ka2], [Ka3], [BLS1]), making available constructive ver- 
sions of standard theoretical tools. 
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One essential ingredient has, to a great extent,  been 
lacking. The facility to deal with quotient groups (equiv- 
alently, homomorphic images of groups) is a central 
methodology of group theory, but  there has not seemed 
to be an effective computational analogue. In practice, 
group theory systems do offer permutat ion representa- 
tions of quotients [Ca]. But,  from the standpoint of 
worst-case complexity, this reduction back to permuta- 
tion groups cannot work. The reason is that  quotients 
of given permutation groups need not have faithful (1-1) 
permutat ion representations on a polynomial-size set. 
For example, in illustrating the computational blowup, 
Neumann [Ne] gives an example of a 2-group acting on n 
letters, a quotient of which has no faithful representation 
on less than 2 n/4 letters. 

The above difficulties notwithstanding, we introduce 
methods for dealing with quotient group problems that 
close the apparent complexity gap. In fact, we are mo- 
tivated to conjecture a Q u o t i e n t  G r o u p  Thes i s :  

If a problem for quotient groups G / K  of per- 
mutation groups has a polynomial-time solution 
when K = 1 then it has a polynomial-time so- 
lution in general. 

Corroborating testimony for the Quotient Group The- 
sis is our extension of the polynomial-time library for 
permutat ion groups (as we see it) to quotients of per- 
mutation groups. We employ a variety of techniques in 
this extension, including two very useful tools (the Sy- 
low and Frattini methods in §5) for lifting problems on 
G/K to problems on a "reasonable" G. In the process, 
we enhance the algorithmic infrastructure even for the 
case K = 1: some issues seem to have required access to 
quotients. 

For several problems, the procedures for handling 
G / K  are easy consequences of those for the special case 
K = 1. But in other, critical instances this is far from 
the case. As confirmation, witness the difference in the 
nature of the underlying theoretical tools. For example, 
demonstrating, from first principles, that  the center of a 
permutation group is computable in polynomial-time in- 
volves only elementary properties of groups and no other 
knowledge of the group structure ([Lu2], [CFL]); it is, in 
fact, interpretable as the subgroup fixing a set of points 
(in an augmentation of the set) [Lu2] and so computable 
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by the most basic algorithm in [FILL]. Such a concrete 
interpretation is not available for quotient groups. To 
show that  the center of a quotient group can be com- 
puted efficiently, we make essential use of the Sylow 
structure made available via procedures in [Ka2], [Ka3], 
procedures that  are dependent upon the (~  15000 page) 
classification of finite simple groups. Nevertheless, we 
emphasize that  our new methods do not require a deep 
knowledge of this classification or of other algebraic the- 
ory of great depth. The procedures that  we cite (e.g., 
from [Lu2], [Ka2], [Ka3]) have elementary specifications; 
so they are quite accessible to non-specialists. 

Another aspect of the procedures seems worth high- 
lighting. From one point of view, we are effectively ma- 
nipulating induced permutat ion representations in which 
the new permutation domains are themselves too large 
to enumerate. One example occurs in the consideration 
of the transitive action of a permutation group G on its, 
possibly exponential, collection 79 of Sylow p-subgroups 
of G (where g 6 G maps P ~-* p9 = g-1 pg); given two 
"points" /'1, P~ 6 79, we need to find some (and some- 
times all) g 6 G such that  P~ = P2. Another example 
is our computation of cores of subgroups H of G, for 
the core is interpretable as the kernel of the permuta- 
tion representation of G on the set of (right) cosets of H 
in G. 

Section 2 has an extended glossary of group-theoretic 
terminology, most of which is standard; the reader 
should refer back to this as needed. In Section 3, we 
recall a few fundamental algorithmic results for permu- 
tation groups. We present, in Section 4, the backbone of 
the polynomial-time library for computing with permu- 
tation groups as well as with quotients of permutation 
groups; see that  section also for a pointer to the proofs 
in Sections 5-12. Some intriguing open questions are in- 
dicated in Section 13. 

In the Appendix, we discuss some problems that  are 
routinely solved in practical computation but  are of un- 
certain complexity. A polynomial-time solution to any 
of these would also resolve ISO. The "library" in Section 
4 also serves as an update on solutions to special cases 
of the problems that  are highlighted in the Appendix. 

We emphasize that  the issue herein is polynomial-time 
computation. With that  in mind, we freely trade ef- 
ficiency for exposition. In particular, we make no at- 
tempt either to optimize worst-case time-bounds or to 
describe efficient implementations. Of course, these are 
well-motivated, related issues, and each is the object of 
a growing literature. 

A more complete collection of algorithms and proofs 
will appear in [KL]. 

2. D e f i n i t i o n s  a n d  n o t a t i o n  

We recall some group-theoretical terminology. 

Throughout,  let G be a finite group. We write H < G 
to indicate that  H is a subgroup of G, and H <I G to 
indicate that H is a normal subgroup; then H < G and 
H <1 G indicate that  the inclusions are strict. A group G 
is simple if there is no H such that  1 <1 H <1 G. We say 
that H is subnormal in G if there is a chain of subgroups 
of the form H = L0<! L1 <1 . . .<1L,n = G. I t S  C G then 
(S) is the subgroup of G generated by S. For s , t  6 G, 
we write s t for the conjugate of s by t, namely, s - i t s ;  
and extend the notation to subsets S, T C G via S T = 
{ s~ I s 6 S , I  6 T}. The normalizer and centralizer of 
S in G are NG(S) = {g 6 G [ S g = S} and CG(S) = 
{g 6 G I sg = s, Vs e S}, respectively; subsets of 
NG(S) or Ca(S )  are said to normalize or centralize S, 
respectively. The center of G is Z(G)  = Ca(G).  The 
normal closure S in G is the smallest normal subgroup 
of G containing S, namely (SG). I f H  < G then the core 
of H in G, Coree(H) ,  is the largest normal subgroup of 
G contained in H,  namely N { H  a ]g 6 G}. 

We refer to [Ha] for a discussion of Sylow's Theorem: 
(i) If p is a prime then a Sylow p-subgroup of G is a 
p-subgroup whose order is the p-part of IGI; (ii) any p- 
subgroup of G is contained in a Sylow p-subgroup; (iii) 
any two Sylow p-subgroups P1, P2 are conjugate in G: 
P~ -- P~. for some g 6 G. 

For s , t  6 G, we write [s,t] for the commutator 
s-lt-Xst, and for S,T < G, we set [S,T] = ([s,t] I s e 
S, t 6 7"). The derived subgroup of G is G' = [G, G]. The 
derived series of G is the series G > G'  ___ (G') '  > --. ; 
G is solvable if this series terminates with the group 1. 
The lower central series of G is defined recursively by: 
La(G) = G and Li+I(G) = [G, Li(G)]; G is nilpotent if 
this series terminates with the group 1. The upper cen- 
tral series of G is defined recursively by: Zo(G) = G and 
Zi+I(G) /Zi (G)  = Z(G/Z i (G) ) ;  G is nilpotent iff this 
series terminates with the group G. 

We refer to [Ha, Ch. 8] for an amplification of the 
following facts about composition series and chief se- 
ries. A composition series of G is a maximal chain 
1 = Ho <1 H1 <1 . . .  <1 Hm -- G of subgroups; then 
each quotient group Hi~Hi-1 is a simple group, and is 
called a composition factor of G; the isomorphism types 
in the multiset {Hi~Hi-1 I 1 <_ i <_ m} are uniquely 
determined by G. A chief series of G is a maximal 
chain 1 = K0 <1 K1 <1 . . .  <1 Kr = G of normal (in 
G) subgroups; the isomorphism types in the multiset 
{ K i / K i _ l  I 1 < i < r} are uniquely determined by G 
(even as groups with operators G). 

If E is any collection of simple groups, let O~.(G) de- 
note the largest normal subgroup of G each of whose 
composition factors is isomorphic to a member of ~, 
and let OD(G) denote the smallest normal subgroup of 
G such that each composition factor of G / O n ( G )  is iso- 
morphic to a member of E. If E consists of all the groups 
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of prime order, then O~:(G) is the maximal solvable nor- 
mal subgroup of G, while O~:(G) is the last term in the 
derived series of G. If E consists of a single group of 
prime order p, the group Or(G ) is the largest normal 
p-subgroup of G; the subgroup (Op(G) I PilGI) is called 
the Fitting subgroup of G and is the largest normal nilpo- 
tent subgroup of G. 

The automorphism group of a group G is denoted 
Aut(G). Then H is a characteristic subgroup of G if 
it is mapped to itself by all elements of Aut(G). Exam- 
ples include the groups in the derived series, the upper 
and lower central series, Or.(G) and O~(G), for any ~. 

We denote by Sym(12) the group of all permutations of 
an n-element set ~2, or by Sym(n) if the set does require 
explication. For A C_ ~ , g  E Sym(12), we denote by A9 
the image of of A under g. The group of n × h nonsingular 
matrices over a q-element field is denoted by GL(n, q). 

For any fixed integer d, let Pd designate the class of 
groups all of whose noncyclic composition factors are 
isomorphic to a subgroup of Sym(d); in particular, Fd 
contains all solvable groups. A most significant effect of 
this restriction on a class of groups is that  the prim- 
itive permutation groups (see [Wi]) in the class have 
polynomially-bounded order [BCP]. (Primitive groups 
arise naturally as the base cases in certain divide-and- 
conquer procedures; see, e.g., [Lul]). There are fairly el- 
ementary procedures for testing membership in Fd (see 
[Lul, §4]). For our purposes, it is essential only that  
d be fixed; the specific value of d would play a role in 
more precise timing arguments [Ba2], [BL], [BKL]). The 
class Fd arose originally in the context of testing graph 
isomorphism ([Lul], [na2], [Mil], [Mi2], [eL], [FSS]). 

3.  A l g o r i t h m i c  p r e l i m i n a r i e s  

Unless indicated otherwise, subgroups of Sym(n) = 
Sym(12) are input via generators. Output  of groups is 
always via generators. All procedures identifying ele- 
ments or subgroups are constructive - i.e., computed 
via straight-line programs, in which each element is a 
product or inverse of previously constructed or input 
elements. Throughout this paper, all algorithms have 
polynomial-time worst-case complexity. Checking run- 
ning time to this extent is straightforward. Keep in 
mind, for this, that  any strictly decreasing sequence of 
subgroups of Sym(n) has polynomial length (the bound 
log n! = O(n log n) is an immediate consequence of La- 
grange's Theorem [Ha]; for the sharper bound 3n - 2, 
see [Ba4]). 

In this section, we recall a few fundamental problems 
for which polynomial-time algorithms are known. For 
these, there is no reasonable corresponding problem for 
quotient groups as the underlying set is too involved in 
the actual statement of the problem (though this point 
is arguable :for 3.1). 

Given a group G < Sym(12), each of the following 
problems is solvable in polynomial time. 

3.1. Given h E Sym(~2), test whether h E G. [FILL] 

As a consequence, one can test whether a group H is a 
subgroup of G (applying membership tests to the gener- 
ators). The basic methodology for 3.1 and 3.2 is due to 
Sims [Si]. 

3.2. Given A C f~, find the pointwise stabilizer of A in 
G, i.e., {g E G IS g = 6,¥5 6 A}). [FHL] 

3.3. Suppose that  G 6 Fd (see §2). Given A C f~, find 
the set stabilizer of A in G, i.e., {g E G I Ag = A}. 
[Lul] 

4.  A p o l y n o m i a l - t i m e  l i b r a r y  

Let K _<1 G < Sym(n). In this section we list a number 
of problems for computing in G = G/K.  For the case 
K = 1, we believe that  these present an overview of the 
polynomial-time toolkit. Of course, it is not feasible to 
list every polynomial-time result, but, to our knowledge, 
problems known to be in polynomial-time are fairly di- 
rect consequences of this list. 

We always assume that  generators are given for G and 
K. Each element of G is specified by a single coset repre- 
sentative: elements of G are cosets of the form Kg with 
g E G. All subgroups of G are written using boldface 
type; they are specified by generators. 

The following problems are listed P1-P16;  in referring 
to an algorithm, it is convenient to use the label, Pro,  
of the corresponding problem. The various problems 
have been divided into three broad categories: T O O L S ,  
B U I L D I N G  B L O C K S ,  and C H A R A C T E R I S T I C  
S U B G R O U P S .  The ordering of the list is not intended 
to reflect the order in which solutions have been obtained 
in the literature or are obtained in this paper. 

Given G = G / K  for K <1 G < Sym(12), each of the 
following problems is solvable in polynomial-time. 

T O O L S  

P1.  Find IGI, the order of G. 

P2.  (i) Find a generator-relator presentation for G. 
(ii) Given G = (U) ,  and a map 7r: M --* H, where 

H is any group in which we are able to deter- 
mine, in polynomial time, products and inverses 
of designated elements; decide whether or not 7r 
is extendible to a homomorphism G --* H. 

P3.  (i) Given S C__ G, find the normal closure ( sG) .  

(ii) Given H < G, test whether H is subnormal in 
G; and, if so, find a sequence H = L0 <1 L1 <1 
• --_<1Lm = G. 
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P4.  Given A, B < G, find A n B  in each of the following 
situations: 

(i) A normalizes B, or 

(ii) more generally, B is subnormal in (A, B), or 

(iii) A E Fd (cf. §2). 

P5.  (i) Given H < G, find CoreG(H ). 
(ii) More generally, for arbitrary G = G/K,  H = 

H / K ,  find CoreG(G N H). 

P6.  Given A, B < G such that  A normalizes B. 

(i) Find CA(B ). 

(ii) Given g E G normalizing A and B, determine 
whether there is some a E A such that  b a - b 9 
for all b E B; and if so, find such an a E A. 

P7.  Given A < G with A E Fa. 

(i) Given B _< G, find CA(B ). 

(ii) Given bl,b2 E G, determine whether there is 
some a E A such that  b~ = b2; and if so, find 
such an a E A. 

PS. Suppose G is nilpotent. 

(i) Given B < G, find NG(B ). 

(ii) Given B1,B2 < G, determine whether or not 
B1 and B2 are conjugate in G; and if so, find 
g E G such that  B~ = B2. 

P9.  Compute the kernel of the homomorphism r in each 
of the following situations: 
(i) 7r: G --* H/L,  where L <1 g < Sym(A). 

(ii) 7r is an action of G on a permutation group 
H < Sym(A), i.e., ~r: G --* Aut(H) (G need not 
act on A). More generally, let H be a quotient 
of subgroups of Sym(A). 

(iii) r is a linear representation of G over a finite 
field, i.e., r :  G ~ GL(m, q). 

B U I L D I N G  B L O C K S  

P10.  (i) Test whether G is simple; 

(ii) if it is not, find a proper normal subgroup N, 
i.e., 1 < N <! G. 

(iii) Find a composition series 1 = H0 <l H1 <1 -..  <1 
Hm = G for G, and find a faithful permuta- 
tion representation for each of the composition 
factors H i / H i _ l ;  specifically, a homomorphism 
~ri:H i - - - *  Sym(Ai) with kernel(a'i)=Hi_l and 
IAil _< I l- 

P l l .  (i) If H <1 G, test whether H is a minimal normal 
subgroup; 

(ii) if it is not, find N <1 G such that  1 < N < H.  

(iii) Find a chief series for G. 

P12.  If G is simple, identify the isomorphism type of 
G; that  is, find the name of this simple group. 

P13.  (i) If p is a prime, find a Sylow p-subgroup of 
G containing a given p-subgroup P of G (P 
could be 1). 

(ii) Given Sylow p-subgroups P1, P2 of G, find g E 
G such that P [  = P~. 

(iii) Given a Sylow/>-subgroup P of L where L _<I G, 
find N G ( P  ). 

C H A R A C T E R I S T I C  S U B G R O U P S  

P14.  Find the following subgroups of G: 

(i) the derived series (and hence, test whether or 
not G is solvable); 

(ii) the lower central series (and hence, test whether 
or not G is nilpotent); and 

(iii) the upper central series (in particular, find 
Z(G)). 

P15.  (i) Find the subgroup generated by all minimal 
normal subgroups of G (the socle of G). 

(ii) Find the intersection of all maximal normal sub- 
groups of G. 

P16.  For any collection ~ of simple groups, 

(i) find O~.(G), and 

(ii) find O~(G). 

We discuss sources for the above and also indicate the 
situations where the extension from the case K = 1 is 
immediate. 

P I :  Finding IGI is inherent in Sims's basic proce- 
dure ([Si]; see [FHL]) and the extension to G is trivial: 
IG/K[ = IGI/IKI. 

For K = 1, algorithms for P2(i) are standard (e.g., 
[LED; an asymptotically fast implementation is given 
in [BLS2]. Extensions to general K and procedures 
for P2(ii) follow easily from the nature of these pre- 
sentations; see §12 for comments. Typical situations 
that  we have in mind for H in P2(ii): H is input via 
a Cayley table; H = Sym(A) for some listed set A; 
H = GL(m, q) (in which case timings must be polyno- 
mial in m and log q); H = Aut(A) for some A ~ Sym(A), 
for some listed set A ( r (M)  being specified on genera- 
tors of A, in which case we might also need to verify that 
~r(M) C Aut(A)). More generally, we may suppose H is 
a black box group in the sense of [BS]. 

When K = 1, P3(i) is contained in [FHL]; 
the analogue for quotient groups is immediate since 
( (H/K)  a/K) = (Ha) /K .  P3(ii) is an easy consequence 
of the observation that H is subnormal in G iff H is 
subnormal in (HG).  
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When K = 1, P4(i)  is an easy application of results in 
[FHL] (see [Ho], or [CFL] where it is directly reduced to 
3.2); the general case is an immediate consequence. In 
view ofP3(i i ) ,  P4(ii) follows at once. For g = 1, P4(iii) 
is in [Lul, §4.2]. The general case is solved herein, see 
§7. All parts of P 4  should be compared with the general 
problem INTERSECTION (see the Appendix), which 
is at least as hard as GRAPH-ISOMORPHISM (ISO) 
[Lua]. 

Problem P 5  was previously open even for K = 1 (see 
[Ba3]). It is solved in §6. 

For K = 1, problem P6(i)  is solved in [Lu2], while 
PT(i) is a consequence of P4(iii) and the computabil- 
ity of Csym(n)(B) (see, e.g., [CFL]). The general cases 
of P6(i) ,  PT(i) are amongst the principal applications 
of the methods of this paper, see §§6,7. These prob- 
lems should be compared with the general problem CEN- 
TRALIZER (see the Appendix), which again is at least 
as difficult as ISO. Methods for obtaining P6(ii),  P7(ii)  
from P6(i) ,  PT(i), respectively, are analogues of the fa- 
miliar reduction of ISO to finding automorphism groups 
of graphs, see §11. 

P8(i)  and P8(ii)  are dealt with in §§10,11; these are 
new results even for K = 1. General NORMALIZER 
(see the Appendix) clearly is at least as difficult as CEN- 
TRALIZER (cf. P6(i)) .  

In problem P9 ,  we would typically expect the homo- 
morphisms to be specified by images of generators (see 
P2(ii)).  In this set of problems, it seems as if only the 
case L = 1 in (i) is immediate, for this case reduces to an 
application of 3.2. P9(ii) and P9(iii) use the building 
blocks of the groups. These results will appear in [KL]. 
Note that P9(ii) is a generalization of P6(i) .  

P10  is treated in [Lu2]. Although only the case K = 1 
is dealt with explicitly, the general case is implicit in 
[Lu2, §4]. 

It is easy to reduce P l l ( i )  to the case that H is a direct 
product of isomorphic simple groups, all conjugate in G 
(for, taking the smallest group L # 1 in a composition 
series of H,  we may assume that H = (LG)) .  If then H 
is nonabelian, it is minimal normal in G. The interesting 
case then is when H is abelian. This has been resolved 
by R6nyai JR6, §5.3] as an application of an elegant study 
of the "Building Blocks" in associative algebras. P l l ( i i )  
and P l l ( i i i )  follow easily. 

P 1 2  appears in [Kal]. The "name" refers to a stan- 
dard naming of the finite simple groups (examples: 
"Zg7", "AxT", "PSL(4, 19)"). 

For K = 1, P13(i),(ii),(iii) are resolved in [Ka2], 
[Ka2], [Ka3], respectively. The general case is in §8. 

For K = 1, P14( i )  and P14(i i )  are standard observa- 
tions, both problems reducing to finding normal closures 
of sets of commutators (e.g., see [FHL] for P14(i)) ;  the 
general case is an immediate consequence. On the other 

hand, e l4 ( i i i )  is new even when K = 1 (cf. §6). 
An algorithm for P15(i )  is discussed in §9. Compu- 

tation of the "abelian part" of the socle requires an ap- 
plication of R6nyai's work [R6]. P lh ( i i )  is implicit in 
[BLS1]. 

We assume in P 1 6  that ~ is specified by a, possibly 
parametrized, list of names of groups. We outline meth- 
ods for these problems in §9. P16(i i)  is actually implicit 
in [BLS1], given the additional capability in P12 .  For 
K = 1, the special case Op(G) has been computed in 
[Ka2] and INcl. 

5.  T w o  p a r a d i g m s  

We isolate two useful computational ideas. In each case 
we will not present an actual algorithm, but  rather the 
outline of one. It is important to note that,  while the 
methods themselves are based on elementary group the- 
oretic facts, their implementation requires the Sylow 
machinery in the instances K = 1 of P13 ,  which, at 
present, depend heavily on the classification of finite sim- 
ple groups. Fortunately, properties of simple groups are 
not visibly involved in the specifications of this machin- 
ery, nor in its uses. For easy but  striking examples of 
the use of these methods, see §§6,7. 

S y l o w  M e t h o d .  

Problem 

Input: G <_ Sym(n), given via generators; H <1 G with 
H specified only by a membership test. 

Find: Generators for H. 

Method: Reduce to the case in which G is a p-group 
as follows. For each prime p, p [ [GI, find a Sylow 
p-subgroup  P of G (using P13(i)) ,  and then find gen- 
erators for P t3 H.  

Output  H as ( P N H  I one P per prime Pl la l ) -  
Correctness: Since H<I G, PNH is a Sylow p-subgroup 

o f H .  0 

Before turning to the next, equally elementary 
method, we recall the following standard fact concerning 
finite groups [Go, p.12]: 

F r a t t i n i  a r g u m e n t .  Let P < K <1 G with P a Sylow 
subgroup of K.  Then G = K N o ( P ) .  

This inspires the 

F r a t t i n l  M e t h o d .  

Problem 

Input: K <J G < Sym(n), given via generators, such 
that G / K  has some given isomorphism-invariant 
group-theoretic property; a subgroup H of G con- 
taining K, specified only by a membership test. 

Find: Generators for H. 
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Method: Reduce to the case in which K is nilpotent, 
as follows. If K is not nilpotent, there is, for some prime 
p, a Sylow p-subgroup P of K (computed by P13(i)) 
that is not in normal g .  Use P13(iii) to find Na(P)  
and NK(P).  Recursively solve the problem for the triple 
NG(P), NK(P),  H N NG(P), producing generators A for 
H fq Na(P) .  Output A along with generators for K.  

Correctness: By the Frattini argument, G = K N a ( P ) ,  
so that No(P)/NIi(P) ~- G /K  has the given group- 
theoretic property. Moreover, H = KNH(P) = 
K(H N NG(P)) = K(A). For the timing, we observe 
that Na(P)  < G. [] 

The group-theoretic properties of G/K we have in 
mind here include solvability or membership in Fd (cf. 
§2). In view of the above reduction, the full group G 
may be assumed to have the respective property. 

6.  C o r e s  a n d  c e n t e r s  

This section contains a simple but noteworthy use of the 
Sylow Method. We resolve P5  and then apply the result 
to P6(i) and P14(iii). 

Note that  a polynomial-time computation of 
Corea(H) would be an immediate consequence of a 
polynomial-time procedure for intersecting permutation 
groups. However, the latter seems out of reach (see the 
Appendix). Hence, a less direct approach will be re- 
quired. 

Recall first that  intersections with p-groups are feasi- 
ble (case K = 1 of P4(iii) [Lul]). We also need to recall 
that it is easy to implement a normal-closure routine for 
N = (S °)  so as to return: (1) a s e t  T generating N 
consisting entirely of conjugates (in G) of elements of S; 
and (2) for each t • T, some g • G for which t • Sg. 
For example, given G = (M), form T as follows: after 
initializing T: = S, repeatedly check (using 3.1) whether 
there is some t • T, a • M with t a ~ (T), and, if so, add 
t a to T. 

Algorithm for P5(ii). We may assume that  K = 1. 
Note, for membership-testing, that,  if g • G, then g • 
CoreG(G N H) iff (ga) < H. Use of the Sylow Method 
(§5) shows that it suffices, for each prime p, to take a 
Sylow p-subgroup P of G and find P f'l Corec(G f'l H). 
For this: 

whi le  ( (pO) 1~ H) do 
b e g i n  

find g • G such that  Pg ~ H 
(* via the above normal-closure routine *); 

P:  = P gl H 9-~ 
end;  

o u t p u t  P. 

Correctness: One needs only to observe that the value 
of P n Corea(G n H)  is a loop invariant and that,  upon 
exit from the loop, P < Coree(G f3 H). [] 

Algorithm for P6(i).  Let A = A/K ,  B = B / K .  View 
G x G as a permutation group on a 2n-element set, the 
disjoint union of 2 copies of ~2, in the natural manner (the 
first coordinate permuting only the first copy, the second 
coordinate permuting only the second). Note that 1 × K 
<1 G x G and 1 × B is normalized by A x A. 

Let D be the diagonal group {(a, a) I a E A}, and set 
R : =  D(1 x B) and S : =  D(1 x K).  

Use PS(i) to find CoreR(S). Let C be the group ob- 
tained by restricting CoreR(S) to the first n points. 

Output C / K  (i.e., output the set of Kc, c ranging over 
the generators of C). 

Correctness: We must show that  CA(B ) = C/K. 
Note that C contains K since K x K is a normal sub- 
group of R contained in S. Observe, too, that  ( a, z) E S 
iff a E A and a - i x  E K.  Now, if ( a, z) E S, then 

e CoreR(S) 
iff ( a, x) R C S 

iff (a, x) (l'b) • S, Vb • B (since S ° = S) 

iff a-Zz b = a-Za~(a-Zz) b • K, Vb • B 

iff a b ~ a (modK) ,  Vb • B. 1:3 

Algorithm for P 14(iii). Successively use P6(i) and the 
definition of the upper central series. 

The preceding method for finding Z(G)  is in stark con- 
trast to the known algorithms for finding Z(G). For ex- 
ample, in [CFL] this is found first by finding Csym(n)(G); 
but no analogue of this is available for G. Another 
method [Lu2] finds Z(G) by first constructing a faith- 
ful permutation representation of G/Z(G) on a set of 
size O(n~); evidently, such an approach cannot be iter- 
ated. Instead, we have made full use of (the case K = 1 
of) the Sylow machinery which, in turn, depends on the 
classification of finite simple groups. 

7. C o m p u t a t i o n s  w i t h  s o l v a b l e  g r o u p s  

Despite the title, the algorithms in this section deal with 
a more general, though less standard, class of groups: we 
assume throughout that G • ra,  for some fixed d (§2). 

We present algorithms for P4(iii) and PT(i). The 
Frattini Method (§5) plays a critical role. 

Algorithm for P4(iii). Let A = A/K,  B = B / K .  We 
seek H = A n B .  I l K  • Fa then A • Fa so that this 
intersection can be found via the case K = 1 of P4(iii) 
[Lul, §4.2]. Otherwise, K is certainly not nilpotent, so 
that we can find, for some prime p, a Sylow p-subgroup 
P of K that is not normal in K (using the case K = 1 
of P13(i) [ga2]). Use the case K = 1 of P13(iii) [Ka3] 
to find NA(P), NB(P), NK(P).  Recursively, compute 
NA(P) n NB(P). Output g := [NA(P) N NB(P)]K. 

Correctness: Since A normalizes B, NA(P)/NK(P) 
normalizes NB(P)/NK(P); also, A = KNA(P) by the 

529 



Frattini argument (§5), so that  NA(P)/NK(P) ~ A /K  e 
I'd. Hence, the recursive cMl is valid. By the Frattini 
argument, H = NH(P)K = ( N A ( P ) n  NB(P))K.  For 
the timing, observe that  NA(P) < A. [] 

In the following, we denote, for any r E Sym(t2), Ar 
= {(w, wr) I w e ~} C f~ x t2 (the "graph" of r), so 
that  Ar = A, iff r = s. Considering the natural action 
of Sym(f~) x Sym(f~) on f~ x f~ (i.e., via (a,  B)(a,h) = 
(aa,/~h)), we note that  A(~ a'h) = Ag-l~h. 

Algorithm for PT(i). We may assume that  B = (Kb) 
is cyclic. The Frattini Method reduces the problem to 
the case K nilpotent. In particular, we may assume A E 
Fd. 

Let A = A/K.  Letting D be the diagonal subgroup 
{(a,a) I a e A} (so D e, A), set n : =  D(1 × K)  < 
Sym(t2) x Sym(t2). Then L e Fd. 

Use 3.3 to find the set stabilizer S of Ab in L. 
Let H be the first-coordinate projection of S (gener- 

ated by the first-coordinate projections of the generators 
of S). Output H. 

A(a,ak) Correctness: For a E A and k E K,  ~b = Aa-,b,k. 
Thus (a,ak) stabilizes Ab iff b a = bk -1. Hence, for a E 
A, there is some (a, ak) E L stabilizing A b iff Ka E 
CA(B ) . 

8. Sylow subgroups 
We indicate algorithms for P13 that  are easy extensions 
of the case g = 1 [Ka2], [Ka3]. 

Algorithm for P13(i).  Let P = P/K.  Use the case 
K = 1 of P13(i) to find a Sylow p-subgroup Q of P and 
to find a Sylow p-subgroup R of G containing Q. Then 
R K / K  is a Sylow p-subgroup of G/K containing P/K.  

Algorithm for P13(ii).  Let the given Sylow p- 
subgroups be Pi = I~/K, i = 1,2. Use the cases K = 1 
of P13(i) and P13(ii) to find Sylow p-subgroups R1 and 
R2 of G lying in /91 and P2, respectively, and to find 
g E G such that  Ra a = R2. Then Pa a = P2- 

Algorithm for P13(iii). Let L = L/K  and P = PIg .  
Use the case K = 1 of P13(i) to find a Sylow p- 

subgroup R of P.  (Then R is also Sylow in L, and 
P = RK.) 

Use the case g = 1 of P13(iii) to find NG(R). 
Then N G ( P  ) = NG(R)K/K. (For, by the Frattini 

argument (cf. §5) applied to the triple R < P <l NG(P), 
we have NG(P) = PNNa(p)(R) = RKNNG(p)(R) < 
KNG(R) _< KNG(P). But N G ( P  ) = N~(P)/K.) 

One consequence of P13(i)  is an 

Algorithm for finding Op(G). This uses the fact that 
Op(G) = CoreG(P ) for any Sylow p-subgroup P of G. 

Note that  this special case of Ph(i)  can also be com- 
puted by successively intersecting conjugates of P using 
P4(iii). 

R e m a r k s .  (i) There are more elementary (and more 
practical) methods for computing Op(G)(case K = 1); 
in particular, these do not depend upon the classification 
of finite simple groups ([Ne], also [KL]). 

(ii) As in [Ka2], all of these results can be extended to 
Hall subgroups either of G or of its normal subgroups. 

9. Soc les  and other  normal subgroups 
Next we turn to P15  and P16.  

Soc(H), the socle of H,  is the direct product of simple 
subgroups, and hence can be written 

Soc(H) = Soc(g) '  × 1-IphH I So%(g)  
I 

where Soc(H) ~ is generated by the nonabelian minimal 
normal subgroups of H,  while Socp(H) is generated by 
the minimal normal p-subgroups of H and is elementary 
abelian. 

A technique for computing the "nonabelian part" of 
the socle, Sot(H) ' ,  is indicated in [BKL, §5]; it is stated 
only for K = 1, but given P6(i), the technique extends 
to the general case. We now indicate an 

Algorithm for finding So%(G), where p is any prime 
divisor of IGI. 

Find Op(G) (see the end of §8). 
Use P14(iii) to find Z(Op(G)).  
We may assume that  Z(Op(G)) # 1. 
Find the elementary abelian p-group V generated by 

all elements of order p in Z(Op(G)). (Namely, for each 
generator d of Z(Op(G)), take an element d' in (d) of or- 
der p; then V is generated by these elements d~.) Clearly, 
Socp(G) < V. Since V is a vector space over GF(p), we 
can use [R6] as follows. 

Each generator of G induces (by conjugation) a linear 
transformation of V, whose matrix with respect to a ba- 
sis of V can be found using 3.1 and linear algebra. Let A 
be the algebra generated by these linear transformations 
of V. Then the minimal normal subgroups of G lying 
in V are precisely the A-irreducible subspaces, so that 
So%(G) is the span of these. This space is found using 
[R61. 

Algorithm for P16(i). Use P15(i) to find Sot(G). 
Use P12 to test whether any member of E is isomor- 

phic to a minimal subnormal subgroup of G (i.e., a sim- 
ple factor of Sot(G)).  If not, output  1. 

We may assume that  some member of E is isomorphic 
to a minimal subnormal subgroup J of G. Use P3(i) to 
find L = ( j G ) .  

Recursively find S / L  = O~(G/L) .  
Output  S. Correctness is immediate. 
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Algorithm for P16(ii). Find G / G '  and IG/G ' I  using 
P14(i) and P1.  

If ~ contains a cyclic group whose order, p, divides 
that of the abelian group G / G ' ,  find a maximal normal 
subgroup M of G such that  [G/M[ = p. 

If ~ contains no such cyclic group, use the algorithm 
for P15(ii) [BLS1], which lists all maximal normal sub- 
groups M of G such that  G / M  is simple and nonabelian, 
and then use P12  to test whether or not any such G / M  
is isomorphic to a member of 22. 

If a maximal normal subgroup M of G has been found 
such that  G / M  is isomorphic to a member of 22, then 
output O~(G) = O~(M).  Else output Or'(G) = G. 

Correctness: If Or '(G) < G then, by definition, G has 
a homomorphic image G / M  isomorphic to a member of 
E. Then all composition factors of G / O ~ ( M )  are iso- 
morphic to members of 22, so that  O~(M) > O~(G).  
Then M _> O~(G),  and all composition factors of 
M / O Z ( G )  are isomorphic to members of ~, so that  we 
also have O~'(M) _< O~(G).  ra 

10.  N o r m a l i z e r s  in n i l p o t e n t  g roups  
We turn to a special case of the problem NORMALIZER 
(see the Appendix). 

Algorithm for P8(i).  Case 1. [B[ is prime. Let 
L <1 G with [L] prime (i.e., L is a subgroup of order p in 
Z(G),  found using P14(iii)). Let - -  denote the natural 
homomorphism G ~ G / L .  

Recursively find a group H such that  L < H < G 
a n d H =  N ~ ( B ) .  (Then NH(B ) = NG(B):  i fb E G 

normalizes B then b normalizes B,  so that  b = Lb E H / L  
and hence b E H. Note that  H acts on the abelian group 
BL, which equals L or B x L and has order a prime or 
the product of two primes, so that  IBLI < n2.) 

Output  NH(B ) (as the stabilizer of B in the action of 
H on a small set: the set of subgroups of BL  of order 
IBI, where this set has size 1 or 1 + IB[). 

Case 2. Arbitrary IBI. Let G = Go > G1 > . . .  be 
.~ normal series of G each of whose quotients is cyclic of 
prime order (this is just a chief series of our nilpotent 
group). 

Find i with B ~ G i+ I ,B  < Gi. Find J : =  B N GI+I. 
Recursively find H = N G ( J  ). (Then H _> NG(B),  

so that NH(B ) = NG(B);  and Gi = BGI+~, so that  
IB/JI = IGi/Gi+ll is prime.) 

Now use Case 1 to find N H / j ( B / J  ) = N H ( B ) / J .  

11 .  C o n j u g a c y  

Centralizer problems, such as P6(i) or P7(i), and nor- 
realizer problems, such as PS(i), can be thought of as 
finding stabilizers of "points" in some other action of 
G. There is a corresponding question of determining 

all the elements of a group that  carry a "point" to an- 
other '~oint".  The relation between the problems is 
much like that between the problems of finding auto- 
morphism groups of objects (such as graphs) and test- 
ing isomorphism. Indeed, the reduction of testing graph 
isomorphism to finding automorphism groups (see, e.g., 
[Lul]) has analogues here. We will indicate reductions 
of P6(ii), PT(ii), P8(ii), to P6(i),  PT(i), P8(i), respec- 
tively. We remark, however, that  an alternative to these 
reductions is a reformulation, and generalization, of the 
actual algorithms for P6(i), PT(i), P8(i), to produce al- 
gorithms to find the full collection of a E G performing 
the conjugations in P6(ii), PT(ii), P8(ii), respectively; 
this collection is either 0 or a coset of a subgroup of G. 
This approach is similar to that  for 3.3 given in [Lul L 
where, by replacing the input G by a coset Gh, one, in 
effect, finds the elements of G that  map A to A h-~ . 

Algorithm for P6(i).  Using P6(ii), find L := 
C(9)A(B ) ((g)A is a group since g normalizes A). Test 
whether g E LA.  If, it is, find a factorization g = in, 
l e L, a E A (this is straightforward [BLS1, §7]), and 
output a. 

Correctness: I f a  E A then bg = ba, Vb E B, iff ga -1 E 
L. O 

Recall that Sym(f~) x Sym(f2) acts naturally on the 
disjoint union [210122 of two copies f~l, f22 of fL Define 
t G Sym(~10f~2) by w~ = w2 and w~ = Wl, for all w E f L  

Algorithm for PT(ii). Suppose bt = Ks t  and b2 = 
Ks2. Form the following subgroups of Sym(f~) x Sym(f2): 
/~: = ((Sl, s2)), K:  = K x K,  A: = (t)(A x A) (so A is the 
wreath product A I Z2 acting naturally on f~10f~2 [Ha, p. 
81]). 

Use PrO) to find B/R: = CZ/~(B/R). If some gen- 

erator h of H switches f~l and f~,  then th fixes f~l and 
hence induces a permutation r on f~, where r E A; in this 
case, output a: = Kr .  Else output "no such a exists". 

Correctness: Note that .4 and B normalize K,  and 
A / K  e, A I Z2 E Fd; hence the use of PT(i) is valid. An 
element t(rl, r2) E t(A x A) centralizes (sl,  s2)(mod]~) 
iff b Kr~ = b2 and b~ r2 = bl, so an output  of the form 
K r  satisfies the requirement for a. On the other hand, 
if K r  E A satisfies bgr = b2 then t (r ,r  - t )  is in H and 
it switches f~l and f22; and hence some generator of ~r 
must switch f~l and f~2. O 

A reduction of P8(ii) to P8(i) can be constructed 
along the lines of that  from PT(ii) to PT(i). The only 
tricky part is to maintain nilpotence in the wreath prod- 
uct construction: in general, nilpotence of N does not 
imply that of N I Z2. To avoid this problem, first re- 
duce to the p-group case (G, B1, B2 are direct products 
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of p-groups); then, to maintain p-groups, utilize wreath 
products with Zp in the construction. 

12 .  P r e s e n t a t i o n s  

We comment briefly on P2.  This material is essentially 
folklore. 

Given an algorithm for the K = 1 case of P2(i), there 
is an obvious approach to the general case. For, suppose 
G ~- (X ] R). To obtain a presentation for G: express 

generators of K in terms of the image X of X in G and 
pull these expressions back to words in X; augment R 
by the words so obtained. But, in order to make use of 
this approach, it is necessary that  elements of G be ex- 
pressible as short words in )~. In fact, known algorithms 
for finding presentations of G admit this facility ([BLS1], 
[Le]), )~ appearing as a "strong generating set" of G. 

An algorithm for P2(ii) is a consequence of the 
straight-line (§3) construction of a presentation for 
P2(i). Duplicate the straight-line construction of )~ 
from the generators M of G in a straight-line program 
program starting with ~r(M). This produces a map 
r ' : )~  --* H. Next, one verifies that  the relations, which 
are words in X,  are satisfied in the corresponding set 
7r~(3~). This guarantees that  the map )~ ~ 7d()~) ex- 
tends to a homomorphism ~d: G ---* H. Finally, it is 
necessary to verify that  ~r' agrees with the original input 
on M; namely, express each a E M as a word in .~ and 
check that  the corresponding word in 7r~()~) evaluates to 

13 .  S o m e  o p e n  q u e s t i o n s  

We indicate some favorites from the questions inspired 
by these investigations. 

1. SIZE OF REPRESENTATION DOMAIN 

Input: N <1 G <_ Sym(n), integer m. 

Question: Is G / N  isomorphic to a subgroup of 
Sym(m)? 

The problem is in NP. This is easy to see if m is entered 
in unary. A more general verification uses Ph(i). We 
suspect that  an efficient deterministic algorithm would 
require new mathematical tools. But what about special 
classes of groups? The problem is easily in P if G / K  is 
abelian. What  about nilpotent groups? 

2. EXTENDIBILITY OF HOMOMORPHISM 

Input: M C__ G < Sym(n); a map ~r:M ~ H for 
some group H (cf. P2(ii)). 

Question: Is r extendible to a homomorphism 
7r: G --* H? 

The problem is clearly in NP (using P2(ii)). Again, one 
should probably start  with special cases. What  about 

G abelian, where H is, say, a permutation group? Even 
the special case when G is cyclic leads to the interesting 
question: given h E H and an integer m (in unary); is 
h = k m for some k E H? 

3. INNER AUTOMORPHISM 

Input: G <_ Sym(n); r E Ant(G). 
Question: Is there a g E G such that  7r(a) = ag, for 

all a E G. 

By P2(ii), 7r may be specified on generators. Here, too, 
the problem is in NP. Note that  this is a generalization 
of PT(ii). 

Other problems that  arise naturally have to do 
with extension of the techniques herein when they are 
presently restricted to special classes of groups. Extend 
the Fd hypothesis in 3.3, P4(iii), P7; find normalizers 
in, say, solvable groups (cf. P8) .  These questions are 
strongly motivated by GRAPH-ISOMORPHISM (see 
the Appendix). 

Finally, it still seems worth seeking elementary solu- 
tions to some of the elementary-sounding problems. Ex- 
amples: (1) Should it really be necessary to invoke the 
classification of finite simple groups just to find elements 
of prime order p in a permutation group G where P l IG[ ? 
(2) Problems Ph ,  P6  may have a more direct approach. 
Note that  there is an elementary algorithm for finding 
the cores of set-stabilizers [Lu2, §3]. 

A p p e n d i x .  H a r d  p r o b l e m s ?  

We highlight a set of problems, which are related to some 
of those discussed herein, but which seem unlikely to 
have polynomial-time solutions. This is suggested by 
the fact that  these are at least as hard as GRAPH- 
ISOMORPHISM (ISO), the problem of testing whether 
two graphs are isomorphic. In practice, ISO is not a 
hard problem (e.g., see [McK]). Indeed, on average over 
all graphs, and even over regular graphs, isomorphism 
is known to be testable in linear time [BK], [Ku]. Fur- 
thermore, there is strong evidence that  ISO is not NP- 
complete, else the polynomial-time hierarchy would col- 
lapse to E~ = H E = AM ([GMW]). Nevertheless, ISO has 
stubbornly resisted attempts to place it in polynomial- 
time. (At present the best algorithm for general graphs 
has worst-case complexity e x p ( c ~ )  [BELl.) 

Consider now the following problems for permutation 
groups. 

I. SET-STABILIZER (STAB) 
Input: G < Sym(f2); A C_ f~. 
Find: Stabe(A) = {g E G I Aa = A}. 

I I .  INTERSECTION (INTER) 
Input: G, H <_ Sym(f2). 
Find: G N H. 
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HI.  CENTRALIZER (CENT) 
Input: G, H < Sym(f~). 
Find: Ca(H) .  

IV. LARGEST NORMALIZED SUBGROUP (LNS) 

Input: G, H < Sym(f~). 
Find: LNS(H;G) = N{H g I g E G}, the largest 

subgroup of H that  is normalized by G. 

V. RELATIVE-CENTRALIZER (REL.CENT) 

Input: g <I G <_ Sym(12), B C Sym(12). 

Find: C ~ ( B , K )  = {g E G I (gb)  g = gb,  Vb E B}. 

R e m a r k s ,  
(i) Note in REL_CENT that we do not assume that B 

normalizes K.  
(ii) IV should be compared with P5(ii), finding the 

largest subgroup of H that  is in G and is normalized by 
G. 

It is well known that  ISO oc STAB (we use "od' 
to denote polynomial-time-Turing-reduction); see, e.g., 
iLul]. But, in fact, STAB is equivalent, with respect to 
polynomial-time reduction, to each of problems II-V.  

Suppose we are given an instance G, ~ , /1  of STAB. Let 
G act in the diagonal on the disjoint union ~ = ~10~2 
~f two copies of ~ (i.e., (wi) g = w~, Vw E f~, i : 1,2, 
Vg E G). Let a be the involution in Sym(~) specified 
by: w a = i f  w E A t h e n  w 3 - i  e l s e  wi for i = 1,2; 
and set H: = (a), B: = {a} and K: = G. Observe that 
Stabe(A) = G N G  a = Ca(H)  = Ca(a) = LNS(H;G) = 
Ca(B,  K),  thus reducing I respectively to II ,  I I I ,  IV,  V. 

Reductions in the other direction: 
INTERS oc STAB: Let G × H act on f~ × f~ in the 

natural way, and set A : =  {(w,w) [ w E f~}. Then 
StabGx"(A) = {(g,g)lg E G n H}. 

CENT oc STAB: g E G commutes with h iff g, acting 
diagonally on i2 x 12, stabilizes {(w,w h) I w E ~}. 

LNS oc INTERS: L := H; while L is not normalized 
I:,y G, intersect L with its conjugates by the generators 
c fG .  

REL_CENT ~ STAB: This reduction is implicit in the 
algorithm for Pb(i) (§7). 

Var ia t ions .  
(i) Problems I L V  also can be stated for quotient 

groups. In keeping with the Quotient Group Thesis, it is 
worth noting that each quotient-group problem remains 
polynomial-time equivalent to STAB. This is obvious for 
II, IV,  V, where the quotient-group statement is inter- 
pretable as an instance of the same problem. I I I  gets 
absorbed into V. 

(it) The indicated reduction shows that V remains 
h~rd even for G / K  E Fd, in fact, for G = K.. It would 
seem this hypothesis puts the problem tantalizingly close 

to PT(i). But note Remark (i). In the algorithm for 
PT(i), the hypothesis that  b normalizes K is only needed 
in the Frattini reduction to the case A E Fa. In fact, the 
algorithm shows that  REL_CENT is in P if G E Fd. 

(iii) I I I  remains "hard" even if H is subnormal in 
(G, H) (compare with P4(ii)). For, in the earlier reduc- 
tion, for each w E f t ,  let bo~ be the involution of ~ that 
switches wl E f~l with its counterpart w2 E f22, leaving 
everything else fixed; let B = (bo~ ] w E f2). Then G nor- 
malizes B and H <1 B "3 GB. Find C: = CGB(H); it is 
an easy matter to construct the projection r:  GB ---* G. 
Then r (C)  = StabG(A). 

We mention also one other "hard" problem. 

V L  NORMALIZER (NORM) 

Input: G, H < Sym(f2). 

Find: NG(H). 

STAB c¢ NORM; in fact, in the above reductions from 
STAB, StabG(A) = NG(H). We conjecture that there is 
a reverse reduction. 

Another analogy with ISO puts some perspective on 
the "hardness" of these problems. In 1980, the second 
author had observed that  I I  is polynornial-time-Turing- 
equivalent to the decision problem of testing nonempti- 
hess of coset intersection (COS..INTERS): Is Ga fq Hb 
nonemply? In fact, this equivalence is analogous to that 
between finding graph automorphism-groups and ISO. 
The analogy has been reinforced by Babai and Moran, 
who show that  the NP-completeness of COSANTERS 
would imply the same collapse ~ = IIp -- AM ([BM]). 

We remark, finally, that  problems such as I -VI  are 
not considered difficult in practical computation, and 
systems such as CAYLEY [Ca] allow quite efficient im- 
plementations. This should be no surprise, considering 
the ease with which ISO is handled in practice. 
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