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ABSTRACT 

When n is even, orthogonal spreads in an orthogonal vector space of type 
O-(2n - 2,2) are used to construct line-sets of size (2nm1 + 1)2”-’ in W2”~’ all of 
whose angles are 90” or cos -1(2-(“-2)/2). These line-sets are then used to obtain 
quatemionic Kerdock Codes. These constructions are based on ideas used by Calder- 
bank, Cameron, Kantor, and Seidel in real and complex spaces. 

1. INTRODUCTION 

In [l], Calderbank, Cameron, Kantor, and Seidel studied real and com- 
plex two-angle line-sets and associated Codes over Z, or Z,, obtained from 
binary vector spaces by using extraspecial 2-groups. In particular, for each 
even integer n > 4 they constructed line-sets of size (2”-’ + 1)2” in Iw’” all 
of whose angles are 90” or cos -1(2-“/2), and line-sets of size (2”- ’ + 1)2”- ’ 
in C’“-’ all of whose angles are 90” or cos - ’ (2-‘” _ ‘)12). One of the results of 
this Paper is the quatemionic analogue of these: 
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THEOREM 1.1. For each even n > 4 there are line-sets of size 
(2fl-1 + 1)2”-2 in W2”-’ all of whose angles are 90” or COS-‘(~-(“-~)/~). 

In the real, complex, and quatemionic cases, the size of the line-set is 
maximal subject to having just the stated two angles in the stated dimensions. 
This is discussed at length in [l] for real and complex spaces. For quater- 
nionic spaces the fact that (2 ‘- ’ + l>Zn- 2 is the maximal possible number of 
lines is in 131 (based on results in [7]), and also in [6]. 

This Paper is a sequel to [l]. In particular, the construction of the line-sets 
in the theorem parallels analogous ones there for real and complex spaces. As 
in [l], we will construct many inequivalent line-Sets. Continuing our emula- 
tion of that Paper, we will use the hne-sets to construct quaternionic Kerdock 
coo!es, which are certain subsets of Qinm2, and then to obtain their distance 
distribution relative to a suitable metric (Theorem 8.1). We will also describe 
the transition from these Codes to the associated binary Kerdock Codes 
(Section 7). In view of [l], none of the results are surprising, nor is the fact 
that all calculations here are more complicated than those in that reference. 

This Paper, as weh as [l], wouldn’t exist if it weren’t for Jaap Seidel. He 
posed the question of relating binary and real orthogonal geometries, which 
was discussed at length in [l]. He prodded, implored, and coaxed in his 
well-known friendly, energetic, forceful, and inquisitive manner. He felt 
strongly that quatemionic Versions of results in [l] absolutely had to be found 
and studied. This Paper is intended as experimentation in the direction he 
hoped for. 

2. ISOMETRIES OF AN O-(2k + 2.2)-SPACE 

The next two sections present elementary calculations conceming finite 
orthogonal geometries. 

Consider a 2k + 2-dimensional binary vector space with basis 
Xi,..., xk> t,, t,, yi>. . * > yk, equipped with the quadratic form Q-c& aixi 
+ C, b,t, f Ci ci yi) := Ci aici + b, + b, + b,b,. Thus, we are dealing 

with an O-(2k + 2,2)-space: its maximal totally Singular subspaces have 
dimension k (an example of such a subspace is ( xI, . . . , xk )>. 

In this section we will determine the group R of all isometries that induce 
the identity on both (X ,,..., xk) and (X ,,..., xk)L/(xl ,..., xk), using 
matrices with respect to the basis xl,. . . , xk, t,, t2, yI, . . , , yk. If P is any 
Square matrix, let d(P) d enote the row vector whose entries are those on the 
diagonal of P in their natura1 Order. 
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LEMMA 2.1. R consists of all transformutions whose matrices haue the 

f 07711. 

I 

1 d; d; C’ 

0 1 0 d, 

0 0 1 d,’ 

\o 0 0 l/ 

where d,, d, E Zi and C + drde is a symmetric matrix such that d(C + 
d:‘d,) = d, + d,. 

Proof. The matrix of any element r of R has the form 

where B = (bi,), C = (ci.>, and D = (d,) are binary k X 2, k X k, and 
2 x k mattices, respective y. In other words, we have I 

xir = xi + CbiWtp + Ccijyj 
P .i 

t,r=t,+ cdpjyj 

yir = yi. 

These equations determine an isometry if and only if the following hold (for 
all appropriate i, j, pl: 

0 = Q( xi) = cii + bi, + bi, + bi,bi, 

0 = ( xi > xj) = cij + cji + bi,bjz + bizbj, 

0 = (Xi, t,) = bi,+ + d,,. 

Then cii = d,, + dzi + dlidzi and cii + cjt = d,id,j + dzidlj for all i,j. w 
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Altematively, Start with a skew-symmetric k x k matrix S, and with 
d,, d, E zi; let A(d,) be the diagonal matrix whose entries are those of di in 
their natura1 Order. Write 

[dz> d,, S] := 

’ 1 d& d; S + A( d,) + A( d,) + d;d2 

0 1 0 d, 

0 0 1 dz 
,o 0 0 1 

By Lemma 2.1, 

LEMMA 2.2. R = (Ld,, d,, SI I S is a k X k skew-symmetric matrix and 
d,, d, E Z:l. 

Multiplication in R is given by 

[d,, d,, S][d2, d;, S’] = [d, + dz, d, + d;, S + S’ + d;d; + diTd,]. 

(2.3) 

Then Z(R) = {[O, 0, SI I S is skew-symmettic), and this is isomorphic to the 
space of k x k skew-symmetric binar-y matrices. Moreover, 1 RI = 
22k+k(k-1)/2 and R/Z(R) z Ze". 

LEMMA 2.4. If ld,, d,, SI, [dz, di, S’l E R, then (xl,. . . , xk) 
Id,, d,, SI n (x+, . . . , xk)[d2, d;, S’l = 0 if 
matrix (d; - d; d; - diT C - C’) 

and only if the k X (k + 2) 
h as rank k, where C = S + A(d,) + 

A(d,) + drd2 and C’ = S’ + A(d:) + A(zz) + diTd2. 

Proof. A vector in (xr, . . . , xk)[d,, d,, SI fl ( xl,. . . , xk)[d12, d;, S’] 
must have the form Cu, ud,T, udf’, uC> = (u, uZzT, udiT, vC’) with ~1 E Zi. H 

Later we will be interested in maximal-sized sets of subspaces behaving as 
in the preceding Lemma (cf. Section 6). 
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3. FROM n x n SKEW-SYMMETRIC MATRICES TO THE 
MATRICES IN SECTION 2 

Now consider a 2ndimensional binary vector space with basis 
Xi> * *. 1 rn>yl> f.. > yn, equipped with the quadratic form Q(Ci aixi + 
Ci c, y,) := Ci a,ci. Th us, we are dealing with an 0+(2n, 2)-space. The 
n-dimensional subspaces X := (xi,. . . , x,) and Y := ( yi, . . . , y,,) are to- 
tally Singular. Let 

t, = x,-1 + Yn-1 + Yn 

tz = X” + Yn 

Ul = xn-1 + Yn-1 

Uz = xn + Yn-1 + Yn. 

Note that 

x n-1 = t, + Ul + Uz 

X” = t, + t, + Ul 

yn-1 = t, + ZL2 

yn = t, + Ul. 

Both ( t 1, t, ) and (u 1, u 2 ) are anisotropic: they have no nonzero Singular 
vectors. Using the basis xr, . . . . ~,_~,tr,t~, yi ,..., ynPz of (u,,u~)~ , we 
see that space is an O-(2n - 2,2)-space. Hence, we are back in the Situation 
of Section 2, with 2k + 2 = 2n - 2. 

Any totally Singular n-space U such that U n Y = 0 has the form 

for an n x n skew-symmetric matrix M. On the other hand, U n (ul, u,)’ 
is a totally singular subspace of (ui, ue >’ having dimension at least n - 2, 
so that it must have dimension n - 2 and have the same appearance as in 
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Lemma 2.1. Let C, d,, and d, be as in that lemma. In Order 
them from M, write 

M. KANTOR 

to determine 

(3.1) 

for an (n - 2) x (n - 2) matrix M”, where M,,_ ,, M, E Z;-” and Z E Zz. 

PROPOSITION 3.2. C = M” + M,?_ , M, I + MTM,, + (1 + Z>M,‘_ ,M, 

+ ~M:M,_,, 

d, = (1 + Z)M,_, + M,, 

d, = M,_, + lM,, 

and S := C + df’d, + A(d, + d,) is a skew-symmetric matrix. 

~roof. The subspace U consists of all vectors of the following form 
(where (a,) ranges through Zi): 

Ca,%, + C cO,m,~ Yp 
1 1 1 

n-2 

= C a,x, + unp,x,,-, + anxn + i: ni2üamapyp 
1 a=l p=1 

+ Ea,m an-lY,i-1 + C%%LY,, 
1 1 

r, - 2 

=c aaxE, + a”-l bz + Ul + %l + dt, + t2 + 4 

i 

n 

i i 

n 

+ a, + LvLn 5 + an-, + an + Lw,.-, t2 
1 1 1 

i 
n 

1 i 
n 

+ an-1 +a, + Ca,m,, u1 + u,,-I + Csm,.-, u2. 
1 1 1 



QUATERNIONIC LINE-SETS AND CODES 755 

Then U fl (u,, u,)’ consists of those vectors such that the coordinates of u1 
and u2 vanish: 

n 

a n-l + an = Ca,m,, 
1 

a,-1 = Ca,m,._,. 
1 

Since mn_ln_l = mnn = 0 and m, n_ 1 = m,_ In = 1 by skew-symmetry, 
this yields 

(1 + Z)a,_, + a, = C a,m,, 

n-2 

an_, + Zu, = C a,m,._, 

and hence 

n-2 

hl = C a,[m,.-, + lmarLl 

n-2 

an = C a,[(l + Oma,,-, + s,ls 
1 

Now our t,- and t,-coordinates tan be rewritten as follows: 

n 1, - 2 

a,, + Ca,m,,, = a, + k-, + C anman 
I 1 

1, - 2 

= C a,([(l + l)m,._, + man] + l[m,,,-, + h,,l + m,,,} 
1 
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and 

n 

a,-1 + an + Caama.-1 
1 

n-2 

= an_, + (1 + Z)a, + C a,m,._, 
1 

n-2 

= c a,{[m,.-, + hm1 + (1 + w + Q%.-1 

+manl + ma.-J 

n-2 

= 1 a,{(l + l)m,.-, + man}. 

Finally, if 1 < ß Q n - 2, then our yp-coordinate is 

n n-2 

c aamaß = C ammaß + a,-lm,-lß + anmnß 
Cf=1 ff=1 

n-2 n-2 

= C a,m,ß + C a,[m,.-1 + h,lm,-l ß 
LT=1 a=l 

n-2 

+ C a,[(l + Oma.-, + mnnlmnß 
a=l 

n-2 

= aIClaa{%3 + mn-l,mn-lß + h,m,-lp 

+(l + Um,- 1 amnß + m,,m,ß}. 
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Consequently, a typical vector in U n ( ul, u2 > ’ tan be written 

n-2 n-2 
= c a,x, + c &%.-, + huJ5 

1 1 

n-2 

+ c %{(l + 9%.-1 + 7sn)t2 
1 

n-2 

i 

n-2 

+ C C a&bp +mn-dhp +hzhp 
p=1 a=l 

+(1 + ~)m”-lcALp + mn.mnp} Yp. I 
In other words, if C and d,, d, are the matrix and vectors stated in the 
proposition, then the coordinate vectors of the members of U n (ul, u,)’ 
with respect to the basis xl,. . , , x,_~, t,, t,, yl,. . . , yn_2 of (ul, u2>’ all 
have the form (u,XZ d,T dr C), where (u,) ranges through Zi-“. Now 
Lemma 2.1 completes the proof of the proposition. W 

Of course, it is easy to check the last part of Proposition 3.2 directly: 

c + d:‘d, + A(d, + d,) = M” + (1 + Z)[M;-$4, + M,TM,,_,] 

f(1 +qwPL + AW")1 
+ Z[~Z,T,M,_~ + A(M,_l)]. 

REMARK 1. The mapping M e (C, d,, d,) is 2 to 1: 1 tan be Chosen to 
be 0 or 1. Namely, assume that the triple (C, d,, d,) behaves as in Section 2. 
Pick either possible value of 1. Then d, and d, determine Mn_ 1 and M,, 
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and hence together with C also determine the matrix M”, which is skew- 
symmetric (reverse the reasoning at the end of the above proof). 

This Observation will come back to haunt us in Section 7. 

REMARK 2. The proposition should be compared with the Version in an 
O(2n - 1,2)-space (or an Sp(2n - 2,2)-space) appearing in [l, Section 71. 
There we also started with M, and obtained a symmetric matrix P such that 

’ + d(P)Td(P) d(P)T 
i 0 * 

Thus, with reasonably self-evident notation, P = M’ + MTM,. 

REMARK 3. The proposition has an analogue over any field. 

4. QUATERNIONIC SPACES AND EXTRASPECIAL B-GROUPS 

We briefly introduce some of the notation in [IJ. Let n be even. Start with 
[Wz’, equipped with the usual scalar product. The Standard basis {e, 1 u E V] 
is indexed by V := Zl. The extraspecial group E is the subgroup 
(X(b), Y(b) 1 b E V) of the usual real orthogonal group 0(rW2”>, where 
X(b): e, c, eo+b and Y(b) = diag[(--lIb’“],,v. Here IE1 = 21+2”; the cen- 
ter 2 = Z(E) = { f Z} has Order 2, and will be identified with iz,. Let tilde 
denote the natural map E -+ E/Z. (N.B. An overbar was used in [l]. Here 
we wish to avoid an awkwardness this cairsed in that Paper: the inability to 
apply this map to the complex number i without suggesting complex conjuga- 
tion.) The associated quadratic form on E/Z is defined (for all e E E) by 
Q(s) = e2 E Z = Z,. The normalizer of E in O(iw2”) induces the full 
orthogonal group 0+(2n, 2) on E. 

Fixabasis or,..., o, of V. Then X(v,), . . ., x’<u,> and Y(v,>, . ..,f<v,> 
are dual bases of i?(V) and Y(V). Write 

i = X(v,)Y(u,_, + On), j = X(%l)Y(%l)> 
(4.1) 

t, = X(U”_,)Y(u,-, + On), 12 = X(U”)Y(UJ. 
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Then Qs := (i, j) and (ti, ts) are commuting quatemion groups Ef Order 8. 
We match this notation with that of Section 3 by writing x, = X(u,) and 
ga = Y(u,) for 1 < (Y < n; the present t 1 and t, project modulo 2 onto 
those in Section 3, while i and j project onto up and ui, respectively. 

Let V” denote the subspace of V spanned by vi, . . . , u*_~, and write 

E-z= (t,,t,, X(V”),Y(v”)>. 

(N.B. The notation “V”” is intended to parallel notation used in [ll; cf. (6.6) 
below. It has nothing to do with commutator subgroups.) E is the central 
product of the extraspecial group E- of Order 2”(“- ‘)+ ’ with Qs, and E - is 
the central product of the extraspecial group (X(V”), Y(V”)) of Order 
22(“-2)+1 with (tr, t2). 

Let W denote the quatemion algebra RQs = lR(i, j). This acts on lR2n: 
real scalars originally acted on the left, but we tan also view them as acting on 
the right; elements of (i, j) act on the right. (Gare is needed here, since we 
are dealing with a noncommutative division algebra.) Then {e, 1 t? E V”} is an 
E-U-basis of R2”. We will view R2n as W2”-* by writing ca,), E [‘Sf := C, E v,, e,a, 
for fzG E W. 

Since t, and t, commute with i and j, they are W-linear. Their action is 
as follows (for all 0 E V”, so that 2) . u,_ I = 0 = D . u,): 

e"tl =e,X(u,-,)Y(v,-,)Y(v,) = e,Y(u,)j = e,j, t42J 

’ e”t2 = enX(On)Y(un_l + u,)Y(D,_~) = e,Y(v,_,)i = e,i. 

Thus, kJ, E v”t, = (C, E v Is e,a,)t, = C, E V4etitl)uo = (ja,), E v,C for any 
a, E Hl, whereas the scalar j acts via (u,>, E v.j = (u,jjU E LT!,. The actions of 
t, and t, are those of diagonal matrices. In general, if 6, E W for each 
u E V”, then the diagonal matrix D = diag[ 6,], t v” acts via (u,), E v” D = 
(~oati)“E”“. 

We equip W2”-* with the usual hermitian inner product, so that our 
Hl-basis becomes an orthonormal basis. Then E lies in the resulting unitary 
group U(W2”~‘>: ‘f 1 0 E V” and b E V, then e,Y(b) = fe, and e,X(b> E 
ewQB for some w E V” (e.g., e,X(u,) = e,Y(u,_i + v,)X(u,,> = -n”f>. 
Similarly, each element A of GL(V”) tan be viewed as lying in U(W” _ ), 
inducing a Permutation e, c, eGA of our basis of E-U”“-’ and normalizing both 
E - and Y(V”) (cf. [l, Section 21). Yet another unitary transformation is 
induced by the matrix H E O(lR2’-* ) < U(W2”~“> whose rows are the vec- 
tors eg := 2-’ n-2)‘2&vF9(- l)b’oeti for b E V”. This normalizes E and 
interchanges X(V”) and Y(V”) (cf. [l, Section 21). In the next section we will 
obtain unitary transformations normalizing E- and inducing on E’- the 
group R appearing in Lemmas 2.1 and 2.2. Assuming this, we see that we 
huve procluced enough unituy trunsformutions normulizing E to generute a 
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group inducing Ck-(2n - 2,2) on E- (the group 0-(2n - 2,2) is the 
derived subgroup of O-(2n - 2,2) if n 2 6). 

PROPOSITION 4.3. Let U, and U, be any subgroups of E- such that fil 
and Üg are totally Singular (n - 2)-spaces and U, CI U, = 0. Then 

(i> the set SV,) of U,-irreducible subspaces of Wzn-’ is an orthonormal 
frame; and 

(ii> the angle between any member of fl(v,) and any member of flU,l is 
cos -1(2-(n-2)‘2 >. 

Proof. We may assume that Z < U,, U,. Using the normalizer of E -, we 
tan move our pair U,, U, to the pair Y(V”)Z, X(V”)Z. Thus, it suffices to 
check (i) and (ii) in this concrete case. 

Since e,Y(b) = (-- l)b’“eo for all b, v E V”, the I-space spanned by e, is 
invariant under Y(V”), and we obtain IV”1 pairwise inequivalent Y(V”)-mod- 
ules. This proves (i), and (ii) follows from the fact that <e*b, e,) = 2-(n-2)‘2 
for b, v E V”. W 

5. QIJ’ATERNIONIC DIAGONAL MATRICES 

In this section we will show that there are enough +agonal transforma- 
tions of W2n-2 normalizing E in Order to induce on E-= E-/( - Z) all 
the elements of R, the group of isometries discussed in Lemmas 2.1 and 2.2. 
Let x,, ya, t,, and t, be as in Section 4. As in Section 2, we will use the basis _ _ 
XJ,...> xn-2>t,,t,, y1>***> yn-2 in Order to write linear transformations of 
E-. 

Fix an (n - 2) X (n - 2) sym metric binary matrix P, and view its entries 
as elements of Z,. For each 0 E V” let U denote a member of z7qn-’ 
projecting onto v mod 2 (cf. [l, Section 41). Dehne f(v) := BP;* for v E V”, 
and D := diag[if(“)],,v., so that (a,),.,.D = (if(v)ao)oEY,, for any 
(an)vEV. E Wm2. 

LEMMA 5.1. 

(i) D normalizes E -. 
(ii) The matrix induced by D on E- is 

/ 
Z 0 d(P)“ P 

01 0 d(P) . 
00 1 0 

\oo 0 z / 
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F’roof First note that, for each v E V”, f(v) := Sc* is a weh-defined 
element of H,, independent of the choice of B (cf. [l, Section 41). Next, 
calculate that, for all u, w E V”, 

f(v + w) =f(v) +f(w) + 2UPWT, 

(5.2) 
f(w) = Wd(Z’)* (mod2). 

Let v, w E V”. Then D centralizes Y(w), and by (4.2) 

e,D-‘X(w)D = e,i-f(“)X(w)D = e,X(w)Di-f(“’ 

= ea+w Di-f(u) = eG+=‘2 
.f(n+w)i-f(o) 

.f(w)+ 20PliT = eo+w2 = e qw)p’( - Pep)’ 
‘ 

= e,Y(wP)X(w)t,f(“). 

Thus, D-‘X(w)D = Y(wP)X(w)t~(“) = kY(wP>X(w)tfdcP>“ by (5.2). 
Also by (4.2) (together with the remark following it), we have 

e,tl ‘D-lt,@ = e,if(“)j-f(~)_-’ = e 

0 
i”f(“) = e 

t 
( - l)üd(P)l = e y( Q’( p)). 

L’ 

Similarly, e,t,‘D-‘t, D = e,. Thus, 

X(w)D = *Y(wP)X(w)t;"'p)i‘> 

t1 D = v+qP)), 

Y(w)” = Y(w), 

which proves both (i) and (ii). ??

In the notation of Lemma 2.2, the matrix in (ii) is [0, d(P), P + A(d( P))]. 
Now interchange the roles of i and j, as well as those of t, and t,: starting 
with another (n - 2) X (n - 2) symmetric matrix P’ in place of P, obtain 
another diagonal matrix D’ := diag[j”P’or], E v,, normalizing E- such that 
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the transformation induced by D’ on k has the matrix [d(P), 0, P’ + 
A(d( P’))]. Then the transformation induced by DD’ has the matrix 

[O,d(P),P+A(d(P))][d(P’),O,P’+A(d(P’))] 

= [d(P’),d(P),P+ P’+A(d(P)) +A(d(P’))] 

by (2.3). We tan now prove 

PROPOSITION 5.3. 
tity on <tTj’), Y(V”), 

Esch isomety [d,, d,, S] of E’ inducing the io!en- 
and ?(V”)‘/Y(V”) is induced by conjugation 

by an isometry of Wzn-’ normalizing E and E-, namely 
diag[iO~(S+ A(<il))o"3""A(d2)o'~T]y,,EV,,. 

Proof. JA P = S + A(d,) and P’ = A(d,) in the above discussion in 
Order to see that the indicated diagonal matrix behaves as desired. ??

For a more explicit and symmetrical Version of the above diagonal matrix, 
see Lemma 7.2 (or Theorem 7.4). 

COROLLARY 5.4. If U” is any subgroup of E- such that U” is a totally 
singular- n - 2-space and C?” n Y(V”) = 0, then each member of NU”) is 
spanned by a vector 2(n-2)/2et D all of whose coordinates are in Qs, where D 
is a diagonal matrix as in the preceding proposition. 

Proof. NX(V”)) consists of the I-spaces spanned by the vectors e$. 
Any other choice of Ür’ is the image of X(V”) under one of the transforma- 
tions in Proposition 5.3, in view of Lemma 2.2. ??

6. QUATERNIONIC LINE-SETS AND KERDOCK CODES 

An orthogonal spread of 6 = E/( - Z) is a family of 2”-’ + 1 totally 
Singular n-spaces such that every nonzero Singular vector is in exactly one of 
its members. There are large numbers of orthogonal spreads not equivalent 
u_nder the group 0+(2n, 2) of isometries of 2 [4, 51. An orthogonal spread of 
E- is a family of 2”-’ + 1 totally Singular n - 2-spaces such that every 



QUATERNIONIC LINE-SETS AND CODES 763 

nonzero Singular vector is in exactly one of its members. Every orthogonal 
spread C of E determines an orthogonal spread Z- of E-: 

X-:= {u n i-l u E L). 

Namely, dim U n 6 > n - 2 and U n 6 is totally Singular, so that dim 
UnEp=n-2; moreover, every nonzero vector in E is in exactly one 
such U and hence in U n i!-. Of course, _C- heavily depends on the 
anisotropic 2-space (i, j>/( - Z) Chosen in E. 

We tan now prove a more precise version of Theorem 1.1. 

THEOREM 6.1. 9’(Xp) := U{s(U”) I 6” E Z-1 is n set of (2”-’ + 
1)2”-” lines in W2”-’ all of whose angles arc 90” or cos- ’ (2-(“-2)/2). 

Proof. This is an immediate consequence of Proposition 4.3. ??

Note that (2”- ’ + 1)2np 2 is the maximal number of lines in W2’m2 having 
the stated angles ([3], [7], and [6]). Also note that the preceding proof did not 
require any of the calculations in Sections 2 and 3. Those are needed to see 
that the lines all may be assumed to be spanned by vectors whose coordinates 
are all in Q8 U {O}. 

From now on we will assume that X(V”), $(V”> E CP. Then C- consists 
of Y(V”) and certain subspaces X(V”)[d,, d,, SI, in the notation of Lemma 
2.2, and SC-) is the Union of frames HU”), I? E C-; each line in fix-) 
is spanned either by a Standard basis vector or by a vector all of whose 
coordinates are in Qs (by Corollary 5.4). This leads us to the quaternionic 
ZZero!ock Code 

&(C-) := {(9&+\,. E Q;“-Y I ((9,>,,)l,,Ev1,) E.F(Z-)]. (6.2) 

As in [l], thi- code depends heavily on choices other than Z-: the members 
X(V”) and Y(V”) of C-, and the basis oi,. . .,v,_~ of V”. 

In Order to be more explicit, recall that each U E 2 \ (Y(V)] has the 
form 

for a unique n X n skew-symmetric matrix M; let M(z) be the Z&-dock set 
of all such matrices M. (N.B. Once again this notation is misleading: this set 
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of matrices depends on 2 together with the choice of members z<V ), f(V > 
of ‘c, as weh as on the basis Chosen for V.> Esch M E M(x) determines an 
element [da, , dlM, S, ] E 0 -(2n - 2,2) as in Proposition 3.2, and hence 
a1so an isometry g[d. ,d,,, S,] E U(W2”~‘> by Proposition 5.3, where 

*ld,, , d,,v, s,l sends X(V’) to U n E- by conjugation. Since 

2(” - 2)/2e* D 
IJ [hw~d,,w.S~I 

= (( _ l)b’r;“)ti,,Ev,, &ag[ i”“(s+A(d,,))~“‘j;a(d,,)i”‘]““tY,, , 

it follows from Corollary 5.4 that 

b E V”, M E M(C), 4 •G QR). (6.3) 

We will need to compare this quatemionic Code with the related binary 
and Z,-Codes. For this purpose we recall additional notation from [l]. 

Let V = Zl and V’ = Z- ‘. Associated with each M E M(x) there are 

?? skew-symmetric matrices 
M, E V", such that 

M’ and M", and vectors d E V' and M,_,, 

(6.4) 

?? a quadratic form QM : V + Z, whose corresponding bilinear form is vMvT 
(one form suffces here for each M ); 

?? a symmetric (n - 1) X (n - 1) matrix P,,, = M' + dTd; and 
?? a set Z’ consisting of the following subspaces of V’ $ V’: x’ = 0, and 

y’ = x’P,,, for M E M(s) (where (x’, y’) E V’ @ V’). 

Then the binar-y and Z,-Kerdock Codes are as follows: 

Z(Z) = (+(( -l)b’“( -l)Vu(u))DEV 1 b E V, M E M(B)) 

c ( - 1)“” E z;” (6.5) 

q(z) = (i’(( -l)b”v’i”P~i’T)a,Ev, 1 b’ E V’, M E M(x), E E h4) 

C (i> 2-1 _ 
= q-‘. 

(6.6) 
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(These are not quite the definitions in [l]: here we have opted to use 
codewords whose entries are in mutiplicative Versions of Z, or Z,.) The 
corresponding real or complex line-sets consist of the Standard orthonormal 
frame of Iw2’ or C’“-’ together with the I-spaces spanned by the members of 
Z(X) or X$Z), respectively. 

7. IN SEARCH OF A GRAY MAP 

In this section we will follow the methodology in [l] a bit further, taking 
into account the remarks at the end of [l]: the transition between Z,- and 
binary Kerdock Codes “could” have led to the Gray map studied in [2]. That 
is, we will describe transitions from our quatemionic Kerdock code Xs(X-1 
to the binary and Z,-Kerdock Codes exhibited in (6.5) and (6.6). A summary 
of the results of this section might be: simplifications occur and the transition 
is pretty, but the transition does not appear to arise from an actual map. This 
negative result is presented both for completeness and on the offchance that 
some reader will see a Pattern overlooked here. 

7.1. Another View of 35$-) 
Fix M E M(C), and let M”, M,, M,_,, 1 be as in (3.1). Also, let q{i 

denote any (n - 2) X (n - 2) matrix such that 

(7.1) 

(the simplest example beirigg the “upper triangular Portion” of the skew-sym- 
metric matrix M”), so that Lemma 2.2 associates with M an isometry of E- 
with matrix [d,, d,, S] := [d,,, d,,, S,]. Here, S is gjven in Proposition 
3.2, while M,_, = Id, + d, and M, = d, + (1 + Z)d,. 

Write Ar = A(dJ for p = 1,2. We need to simplify the matrix 
diagfiDncS+ A1)O”TjO”Az~T],,, E v,, appearing in Proposition 5.3. 

LEMMA 7.2, ~~“(S+A,)o”~D”AJ” = ixjy<_ 1)~ with 

x = d, . v”, y = d2 . 12’ 

and 

” = v”U;v UT + (1 + 2)~ + ly + (M,p,* M,) .v”, 

where in euch case the indicated dot product is the binay one, and 
M n-1 * M,, denotes the pointwise product of the indicated vectors. 
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Proof. As in [l, Section 71, if 0” = (a,) E V", then the 2-adic expansion 
of V”(S + A,)iYT is 

dl.u” + 2 c [Sa0 + A,aAlp]a,ap = d, et?” + 2 c [Sap + dladlp]a,ap 
a<ß a<ß 

(7.3) 

(where d,, is viewed as an element of Z4). Similarly, U”A20”T = d, . D” + 
2z a<ß 4&?%aß. ThW 

Here, S,, + d,,d,, + d,,d,, is the a, P entry of 

S + dTd + dl’d. I 1 2 2 

= M” + M,T‘,M,,_, + M,TM,, + (1 + Z)Mn‘,M,, + ZM,TM,,_, 

+ d;d2 + A, + A, + d;d, + d,Td, 

= M"+ A,+A + MT_ M +MTM 2 nlnl nn 

+(l + Z)MnT_IM, + lM,TM,,-, 

+[(l + Z>M,-, + M,~[&-I + (1 + W4] 

+[M,_, + ZMJT[M,_, + IM,] 

= M"+zMT_,M n -t-ZM'M + A n n 1 1 +A 2’ 

Let N denote the upper triangular Portion of the skew-symmetric matrix 
M,1‘,M, + MzM,_,,so that lMz_,M, +lMJM,_, =l(N+N'). Then 

i &“(S + A,)D”‘.ü”A,~“’ = 
3 
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Here, Nap is 0 if CY 2 ß and is d,,d,, + d,,d,, = Mnpl, M,, + 
M,,M,-lfi otherwise. Thus, 

IJ” Nu ‘?‘ = $&L, aM,, + KJLp]ap 

= ,Q$LI K,]% 

= (M,_p")(M;v") t (M,,_l* M,).d' 

= ([ld, + dJ .v”)([d, + (1 + I)d,] -v”) + (M,,_, * M,,) so" 

= Id, .d + (1 + Z)d2 .v’ + (d, ~vn)(d2~vn) + (M,,_,* M,) .v", 

so that v”(U,$ + 1N)v”r + (d, + d,) . v” is the quantity z stated in the 
lemma. ??

THEOREM 7.4. 

QX-) = ((idi>,.a;d,,q _ l)Cn~~~L>Iì+h.l,ny)i,,t,',,I 

b EV", M E M(G), q E Qe}, 

where the indicated dot products are the binary ones. 

Proof. For any given b E V" and M E M(X), 

( _ $‘““( _ l)“~~L~,~““~+(l+I)x+Iy+(M”_I* M,,h” = ( _ I)r;“L$c”+m” 

where c = b + (1 + l)d, + Zl, + M, 1 * M,,. The theorem now follows 
from (6.3) and the preceding lemma. ??

REMARK 7.5. 1 disappeared in the above calculation, and hence in the 
simplified view of Zs(Z) given in Theorem 7.4 
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7.2. From Quaternions to Zi 
In Order to relate Theorem 7.4 to the codewerd ((- 1)’ 

(- l)b.“( - l)o~(“))~ E v appearing in (6.5), where 6 E Z,, again fm M, let 
2) = Co”, Yn-i, v,) E V with u” E V”, and write a = d’U$YT. Then 

= fyu;v ‘l’ + v~_~M,_, *IJ” + v,,M;v” + v,_,v,$ 

= a + v,_~[Z~~ w” + c&.D’] 

+ v,[dp~ + (1 + Z)d,w”] + v,,_,v,z 

= a + v~_, [IX + y] + VJX + (1 + Z) y] + v,_lvnz. 

&o, if b = (b", ß,_ 1, ß,> with ß_i, ß, E z2, thcn b ’ u = b” . O" + 

ßn-1%-1 + kV,> SO that the exponent of - 1 of the 0th entry in our 
codewerd is 

QM(v) + b.v + S 

= a + v”_i[lx + y] + vn[X + (1 + Z)y] + v,I_1v,81 

+ b”.v” + ß,L_lvn_, + ß,v,, + 6. 

On the other hand, by Theorem 7.4 a typical codewerd of Xs(C-) has the 
form 

id,A4~n~d&Y( _ 1) u”““‘“‘+h’~a”y)~,,EV,, = (i”j!/( _ l)‘+b”‘u”q)ti,,ev,, , .w 

There are various choices we could make in Order to proceed. We choose 
not to introduce additional terms in the exponents here, which would appear 
if we collected together all powers of i (and j). Instead, we will consider the 
entire codewerd instead of just one coordinate at a time. Thus, we write each 
word in Zs(Z-) first as (q:)“,, t vC,, and then as 
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with x(u”), y( u”), a(ü) E Z,, thereby making the vector 0 in V” somehow 
“specid.” This leads to the following transition, where q0 = i pnjpn- l( - Os, 
~(0”) := a(u”) + b” . u” + 6, and (as above) we abbreviate x = x(u”), y = 
y(u”), a = a(C): 

( 9tY 1 o,,Ev,, = (i”jY( -l)“.ißnjßn-I)ti,,tv,, 

~(a,a+z~+y+p,_,,a+x+(l+Z)y+p,, (7.6) 

a + (1 + Z)” + Zy + z + p,,_ 1 + /3JtitIE\,>! 

(using (IJ,_ r, v,> = (0, O), (1, 0), (0, l), (1,l) for the four coordinates on the 
right side). However, (7.6) is not an actual map, since 1 is not visible on the 
left side. Note that this was already foreshadowed in Remark 7.5 (and at the 
end of Section 3). 

When this non-map is restricted to x = 0, ß,_ r = ß, = 0, we obtain 

(jY( -l)ü)“nsyn -f (a,a + y,a + (1 + Z)y,ä + Zy + z)&v”, 

which is just the Gray map on the first two coordinates. Restricting (7.6) to 
y = 0, ß,_ r = ß, = 0, we obtain 

(i”( - l)“)V.E\‘. -f (a,ä + zx,a + y,ä + (1 + 2)” + z)a”EY,,’ 

which is just the Gray map on the first and third coordinates. 

7.3. From Quaternions to 77: 
The 12,-Version of (7.6) also is unsatisfactory, but again is included for 

completeness. As in (7.3), in view of (6.4) we have the following 2-adic 
expansion: 

i?“PMU A’T = d( PM) * 0’ + 2u’ (0 M;-+J 

= (M,, Z) * (u”, v) + 2(u”, v) 

= [M;u” +z Zv] + 2[uYJ;unT + vM,,_~ d] 

= [x +,(l + Z)y +s ZY] + 2[a + v(Zx + y)], 
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where +z denotes binar-y addition and 0’ = (u”, V) and b’ = CU’, ß> with 
V, ß E Z,. Let E = ß, + 26 in (6.6) (th’ 1s involves a possibly arbitary 
decision on matthing up the quatemionic and Z, situations.) Then 

= ([r +a(1 + Z)y +2 IV] + 2[a + V{ZX + y} 

Hence, letting v = 0, 1, we obtain 

(qo”)““EV” = (i”jY( -1y +jß~~-~)Li.E”,, 

-+([x+z(l+l)y] +2ä,[x+,(l+z)y+~z] (7.7) 

+2[ä + IX + y])C”tv” + ( ßn)o”Ev,‘> 

where the right side of (7.7) is viewed as the codewerd 

iß.(( - 1)$+2(1+oY > ( _l)“+~~+Yjr+~l+/)Y+~I)C,,t”,, 

in X$c’). However, (7.7) seems even more opaque than (7.6). 

8. ADbITIONAL REMARKS 

8.1. Distance Distribution 
By analogy with the binary and Z,-cases, a “natural” metric on Qi”-’ is 

the Hamiltonian metric induced from that of W2”~* as follows: 

d,(w,, Wz) := IIWi - 4/2. 

When restricted to (i>2’imo E Zq’-‘, this is just the Lee metric. 
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THEOREM 8.1. Given wa EA?&Z-), the Hamiltonian distances and the 
number of codewords at euch distance from w,, are as follows: 

Distance Number of codewords at that distance from wo 

0 
2”-2 _ 2(n-2)/2 &i _ 1)2”-2 

2n-2 2n-2 + 2n-1 _ 2 

p,“-2 + 2(n-2)/2 (32;‘2, _ 1)2”_2 

2n-1 
1 

The total number of codewords is 22”. 

Proof. We are considering 2”-’ frames, each having 2”-’ lines, where 
each line (w > has eight members w9 of A$(Z-) for 9 E Qs. Note that 
\lwOll = 2(n-W* 

If (w) = (w,), then w = w,,9, so that Ilqw, - w,,(12/2 = 2”-“19 - 
112/2 is 0 if 9 = 1, 2”-’ if 9 = -1, and 2”-2 for the remaining six scalars 

9. 
If (w) is perpendicular to (w,), then 119~~ - wOl12/2 = 2 * 2”-2/2. 

There are 2”- 2 - 1 such lines (w >, and each has eight codewords. 
In the remaining cases the angle between (w) and (wo) is 

cos-l 2-(“-2)/2. There are (2”- ’ - 1)2”-2 such lines, and for each of them 
we may assume that w is Chosen with (w, wo) = (2(“-2)/2)22-(n-2)‘2 = 
2(“-2)/2. Then 119~ - w0112/2 = [2. 2”-2 - 2(n-2)/2(9 + $]/2 is 

211P2 _ 2(n-2)/2 if 9 = 1, 

2n-2 + 2(n-2>/2 if 9= - 1, and 
2”-2 if 9#+1. 

In particular, the number of codewords at distance 2”- ’ from wo is 

(2n-1 _ I)2”-2.6 + (Zn-1 _ 1). fj + 6 = 3.22”-2 + 2”-’ _ 2. H 

Thus, Z&X-> is distance-invariant. The corresponding table of distances 
for a binary Kerdock code of length 2” is as follows: 

Distance Number of codewords at that distance from w, 

0 
2°F 1 _ 2(n-2)/2 (2?l-l _ 1)2” 

2r,- 1 2 n+1 
2”- 1 + 2(n-2)/2 (2”l-_21)2n 

2” 1 
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The total number of codewords is 22”. Of course, this implies that there is no 
isometry from the binar-y to the quatemionic Code (not even up to a constant 
multiple of distances), thereby “explaining” the failures occurring in the 
preceding section. However, only at this Stage have we discussed a metric on 
Q8”Y because it is conceivable that there is a “natural” metric, other than 
d H’ with respect to which the binary and quatemionic Kerdock Codes are 
isometric. 

Theorem 7.4 contains a somewhat explicit Version of the codewords in 
Zs(Z-). It is not straightforward to use those formulas in Order to prove the 
above theorem. Namely, there are too many cases to consider; for example, 
we might have d, = d, = 0 and M z 0, or, altematively, U might be 
Singular but nonzero. On the other hand, it would be interesting to see if the 
theorem gave additional information conceming the various vectors d,, d,, 
and matrices U corresponding to the various members M of the Kerdock Set. 

8.2. Relationships among Line-Sets 
There is a simple analogue of [l, Proposition 7.21, relating SZ-) to a 

suitable set of real lines. Recall from [l, Section 3] that, whenever A is a 
subgroup of E such that A E C, there is a set RA) of exactly 2” pairwise 
perpendicular lines of Iw2” left invariant by A; Y(2) is defined to be the _ 
Union of all of these sets 9’(A) as A runs through 2. Note that E normalizes 
AZ and hence leaves 9(A) invariant. 

PROPOSITION 8.2. S+C-) = (UH I UR E fiX>). 

Proof. Let A E 2. Let A- denote the preimage in E- of the member 
A II U- of the orthogonal spread C- of E-. If uR E 9’(A), then A- leaves 
invariant u[lB and hence also uIt-0. Since Qs permutes the lines in 9(A) in 
Orbits of size 4, this produces 2”-’ lines of IFFe left invariant by A-. 
However, by Proposition 4.3, that is exactly the number of quatemionic lines 
left invariant by A-. ??

8.3. Equivalences amonng Line-Sets 
Exactly as in [l, Corollaries 3.7 and 5.61, two line-sets of the form flzc-) 

(obtained using the Same group E-) are equivalent under U(W2”-‘) if and 
only if the corresponding orthogonal spreads X- are equivalent under the 
orthogonal group O-(2n - 2,2) of E’-. Th ere are undoubtedly large num- 
bers of inequivalent orthogonal spreads in E-, in fact many more than there 
are in E, but this has yet to be proved. The methods used in 141 and 151 do 
not appear to apply in this Situation. 
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8.4. Equivalences among Quaternionic Codes 
Our results on the equivalence of Qs-Kerdock Codes are incomplete. We 

will Sketch the straightforward computations used thus far. 
One “natural” definition of equivalence between Codes in Qi”-” is as 

follows: a map induced by a Permutation of Qi”-’ of the form 

(8.3) 

where 8 is a Permutation of coordinate positions and a(v”> is an automor- 
phism or antiautomorphism of Qs, one for each coordinate Position. If, for 
example, all coordinates are powers of i, then this produces the monomial 
definition used in [l]. However, this definition also allows for the fact that 
one should be able to freely interchange i and j. 

Suppose that C and Zu are orthogonal spreads of E, producing orthogo- 
nal spreads X- and ZN- of E- as in Section 6. We assume that the latter 
spreads contain i(V”> and Y”(V”). Let M(C) and M($C#) be the correspond- 
ing Kerdock sets of matrices (again as in Section 6), and let Xs(Z-> and 

ZsC$-> be the corresponding Qs-Kerdock Codes (cf. Theorem 7.4). For each 
M E M(C) let U” = UM, d, = d,,, and d, = d,, be as before (cf. (7.1) 
and Lemma 7.2). Since M(X) is a Kerdock set, d,, d,, and d, + d, = ZM, _ 1 
+ M, tan be any vectors in V” (for example, just choose 1 = 0 in the latter 
case). For notational convenience we will now let v (rather than v”) denote 
an arbitrary vector in V”; similarly, we will write U instead of U”. 

EXAMPLE 8.4 Some automorphisms of Xfl(X-), 

(i) 1f w E V”, then v +-+ v + w induces an automorphism (9,) ++ 
(q 1. ” + w 

(ii) (qi) ++ (4:) is an automorphism if CT is any automorphism or 
antiautomorphism of Q8. 

Assume that the equivalence (8.3) sends Xs(C-) to Z&$-). Then it 
sends words all of whose coordinates are & 1 to words of the same sort (these 
are just first-Order Reed-Muller Codes corresponding to the zero matrix of 
both M(Z) and M($)). Using Th eorem 7.4, it follows that g induces a 
coordinate Permutation 0 that is an affine transformation of V”, namely, 
v r+ vR + w for some R E GL(V”) and some (constant) vector w. By 
Example 8.4, we may assume that w = 0 and rr(O) = 1. 
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Our equivalence now has the form 

(8.5) 

for automorphisms or antiautomorphisms a(u) of Qs. For each 2) E V” 
there are (Y(U), P(C), h(u), y(u), 6(u), ~(0) E z, such that 

ivCv) = i* wjß<ti>( _ 1) *CG) 

(8.6) 

a(v)O(v) - ß(v)y(v) = 1. 

Since a(0) = 1, we have (Y(O) = y(O) = 1 and p(O) = S(0) = A(0) = ~(0) 
= 0. 

Esch M E M(C) p ro d uces U = U,; and d,, d, as before, and together 
with 4 E Qs and b E V” yields a codewerd in Xs(Z-). Under (8.5) this 
corresponds to a codewerd in Xs($ -> arising from some 9# E Qs, b’ E V”, 
and MN E M($> with associated UH = U~X, di, dt: 

for all G E V”. Here, 9# = quCo) = 9, so that 

for all v E V”. Write 9 = 2 .&(i)+(j)( - l)+ l) for some c(i), s(j), 6( - 1) E J 
z,. 

Our first consequence of (8.7) is that o + (Y(O), ß + ß(O), Y + y(O), and 
S + S(0) m-e linearfunctional.~ on V”. For, choose b = 0, M = 0, and 9 = i 
in Order to see that there exist df, di, b’ such that i”‘“‘jß(“) s i”‘“’ E 
i<ll.tijrl&O i (mod( - 1)) for all v E V”, which makes the stated linearity 
obvious. 
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Consequently, a(u) + 1 = U, - u, P(v) = uB * u, Y(U) + 1 = u,, . v, and 
6(u) = ug * 0 for some u,, ua, uy, ug E V” and all o E V”. Then 

if u,#O and u,#O then u,=uy; 

(8.8) 
if up+Oand u,#O then up=us. 

For example, by (8.6), f i U, # 0 and uy # 0 then a-‘(O) C_ rP1(l>, where 
both of these sets have to be affine hyperplanes of V”. 

Now we tan show that u, = up = u = u = 0. For, choose q = 1 and 
y# 0 b = 0 in (8.7): for each M there exist M , b such that (8.7) holds, so (by 

comparing exponents of i) a(u)d, * t2R + r(v)d, - uR = df - ü for all 0 E 
V”. Then [ o(e)d,Rr + y(u)d,Rr + df] * o = 0 for all o. More precisely, in 
view of (8.81, one of the following holds: 

ZL, = 0, [dlRT + y(u)d,RT + di] ‘C = 0 v1; E V”, 

uy = 0, [ a(v)dlRT + df] *lj = 0 Vu E V", or 

UL? = Uy, [ cu(v)(d, + d,)P + djf] ‘C = 0 vr; E V”. 

Let perpendicularity refer to the dot product on V”. If u, = 0 # uy we see 
that y-‘(O) c [d,Rr + di]’ and r-‘(l) L [d,Rr + rE,Rr + Cl!]‘, where 
~~‘(0) and y-‘(l) are the affine hyperplanes of V” determined by u ’ . We 
may assume that #dz R f 0. It follows that one of the vectors d, R’ + dl, 
d,R’l‘ + d,RT + d, is 0 while the other is u,,, so that uy = d, R?‘. Since rl, 
tan be any nonzero vector in V”, this is ridiculous. Similarly, u, = 0 # u,, is 
impossible, as is u, = uy # 0. Thus, u, = uy = 0; similarly, up = ug = 0. 

Consequently, a(v) = O(U) = 1 and ß(v) = y(v) = 0 for all u E V”. 
We note that this may seem slightly surprising: all of our automorphisms or 
antiautomorphisms cr(~) have turned out to act in the Same (trivial) manner 

on WZ(Qs). 
Now (8.7) simplifies to 
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for all v E V”. Comparing the exponents of i, j, and - 1, we find that 

df = d,RT, dt = d,R7 (8.9) 

and 

d,bT + b# -u = vRURTvT + b .vR + h(v)(d, .vR) + p(v)(d2 -UR) 

+ &(i)A(v) + e(j)p(v) + E(i)(de*uR) (8.10) 

for all IJ E V”. (The term E(iXdZ. vR) arose when rearranging the product 

“l ‘rE2.‘Aic(i).) Now we are ready to prove the following 

PROPOSITION 8.11. Xs(ZP) und X&5-) arc equivalent if, und only if, 
there erist R E GL(V”) und sl, se E V” so thut, for euch M E M(C) Cwith 
ussociuted U = UL, d,, d, 
M# E M(I?!) (with 

us in Proposition 3.2 und (7.1)), there is some 
ussociuted U# = U$, df, di) such thut (8.9) holds und 

such thut 

UH + RU RT + syd, RT + s2’d2 RT (8.12) 

is u symmettic mutrix. In purticulur, if this condition holds, then 

Mg” = RM”RT + s;dcll RT + (s;d, RT)T + s;d, RT + (s;d, RT)? (8.13) 

Proof. At this Point we have h, p: V” + Z, such that, for any M E 
M(C), b E V”, E(i), e(j) E TZ,, there are M# E M(& and b# E V” for 
which (8.10) holds for all o E V”. Here, A(v) und p(v) ure lineurfunctions. 
For, we saw earlier that the codewords in Xs(X-) arising from the matrix 
M = 0 are sent to the codewords of Xs(&> arising from Mn = 0. By 
(8.10) with M = 0, we have bH * u = b * o + e(i)A(v) + e(j)/_~(v) for all 
2) E V”. Linearity follows if we choose {e(i), c(j)} = (0, l}. 

Write A(u) = s, * v and p(u) = sp . o for some s,, sp E V”. Then (8.10) 
simplifies to 

U# + RUR + sTd RT + s“d RT vT 1 1 2 2 1 
d + bRT + e(i) s1 + e(j)s, + e(i)d2RT] -v 
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for all u E V”. This is equivalent to the assertion that (8.12) is a symmetric 
matrix whose diagonal is 

A(bl + bRr + .s(i)s, + &(j)s, + ~(i)@r). (8.14) 

By (7.1), adding (8.12) to its transpose produces (8.13). 
Conversely, given any e(i), e(j) E Z,, the requirement that (8.14) be the 

diagonal of (8.12) allows bI to be determined from the other data. Conse- 
quently, we tan reverse our entire argument in Order to deduce the proposi- 
tion. ??

Of course, we have also dealt with the automorphism group of Xs(F): it 
is generated by the automorphisms in Example 8.4 together with those arising 
as in the preceding proposition. 

By analogy with 11, Th eorem 10.41, it is natura1 to hope that any code 
equivalence will correspond to an equivalence between the orthogonal spreads 
X and XI. The obstacle appears to be the same as in Section 7: Z does not 
appear at all in the proposition. In Order to clarify this, we will indicate a 
“geometric” Version of equivalence between some Codes of the form Xs(Z-). 

Consider any matrix 

‘R ST s; 

0 1 0 0 
0 0 1 

RT 0 0 

0 Si10 

\ 
s2 0 1 

with R E GL(n - 2,2) and s- s2 E V”. This represents an orthogonal trans- 
formation of &? fixing f(V), Y(V), _?<n,_,>, and X<U,>. If M E M(C) is as 
in (6.4), then the above matrix conjugates 

(c, Y) t” (: 1(“); 
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where 
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/ 
M#” RM;_, + 1s; RM; + 1s; 

\ 

= M,_,RT + is, 0 1 

\ M,RT+ls, 1 0 t 

with 

MN” = RM”RT + s:M, _ 1 RT + RM;_ lsl + s;M,, RT + RM,& + ls;s, + is;sl 

Moreover, df = d, RT + ls,, d#2 = I& RT + ls, by Proposition 3.2, and we tan 
let U# = RURT + sTM,_,RT + slM,RT + lsys,. Now 

pf’“pc( _ l)nL~n"T+b~."q# 

(8.15) 

This suggests that there should be a map Hlzflm2 -+ W”‘i~z sending each 
vector listed in Theorem 7.4 to the right side of (8.15). This nms up against 
the same type of Problem encountered in Section 7. In particular, we do not 
have the Situation occurring in Proposition 8.11. Nevertheless, (8.15) is 
tantalizingly close to the conditions in Proposition 8.11, especially when 
1 = 0. 

REMAHK. We have defined code-equivalence using a family of automor- 
phisms and antiautomorphisms. Another definition would involve only a 
Single one of these: one could define two quatemionic Codes to be equivalent 
if there is an isometry of the underlying complex space sending one to the 
other. This definition fits well with the metric used in Section 8.1. Of course, 
we have seen that, for the Codes we are considering, these two definitions of 
equivalence are equivalent. 
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8.5. Open Questions 
There should be interesting quatemionic codes other than those studied 

here. 1s there any way to use (7.6) to get new coding-theoretic results in 
situations other than that of Kerdock Codes? 1s there any way to use (7.6) to 
convert nonlinear to linear Codes, as was done in [z]? Here, “linearity” means 
“a subgroup of QF.” Since Zs<C-> appears to be nonlinear, this seems 
dubious. 

Questions of equivalence that were raised in Section 8.4 need to be 
examined more carefully. Does there exist a broad generalization of all of 
this, replacing Z,, Z,, and QH by extraspecial groups or central products of 
extraspecial groups with Z,? Admittedly, this is far-fetched. Note that the 
exponent of the group is kept at 4 (or 2 in the “degenerste” binary case), as 
suggested at the end of [l]. 

As in [ 11, there are natura1 but diffcult questions conceming the existente 
of other types of extremal line-sets behaving as in Theorem 1.1. Of course, 
such questions are even harder in the present context. 
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