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Assume that generators are given for a subgroup G of the symmetric group S, of 
degree n, and that r is a prime dividing JGI. Polynomial-time algorithms are given 
for finding an element of G of order r, and for finding a Sylow r-subgroup of G if G 
is simple. 0 1985 Academic Press. Inc. 

1. INTRODUCTION 

Assume that generators are given for a subgroup G of S,, and let r be a 
prime dividing IG]. This paper is devoted to the proofs of the following 
theorems. 

THEOREM A. An element of G of order r can be found in polynomial time. 

THEOREM B. If G is simple then a Sylow r-subgroup of G can be found in 
polynomial time. 

THEOREM C. In polynomial time it is possible (i) to decide whether or not 
G has a nontrivial abelian normal r-subgroup; and (ii) to find one if there is 
one. 

The study of polynomial-time algorithms for groups has only recently 
begun. Only a few of the basic, elementary concepts or results of group 
theory are presently known to have polynomial-time versions. For example, 
]G] can be found in polynomial time (Sims [22], Furst, Hopcroft, and Luks 
[9]), as can the centralizer of a normal subgroup of G (Luks [17]) and a 
composition series for G (Luks [16]). It was the latter result that motivated 
the present work. Its proof depended on the recently completed, monumen- 
tal classification of all finite simple groups. Namely, Luks outlined an 
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algorithm whose validity required information concerning the outer auto- 
morphism groups of all finite simple groups (specifically, that they are 
solvable). 

The proofs of Theorems A and B also require the aforementioned 
classification. Once again an algorithm is outlined whose validity requires 
information concerning all finite simple groups. However, here we will need 
much more detailed information, ranging from bounds on permutation 
representations (Kantor [Isa]) to properties of algebraic groups (Steinberg 
[24]); and this accounts in part for the length of this paper. Needless to say, 
it would be preferable to have a much more elementary approach to these 
results. 

Theorem C is comparatively elementary, and is closely related to another 
result of Luks (see (3.10 ii, iii)). Theorems B and C leave much to be desired. 
It seems to be difficult to find (in polynomial time) a Sylow r-subgroup or 
the largest normal r-subgroup of an arbitrary group. In fact, these questions 
are even open in the case of solvable groups. These difficulties are, in turn, 
intriguing from the point of view of the P vs NP problem. In general, the 
type of problem considered here lies in NP, but seems harder than many of 
the standard types of problems in P. It should be emphasized that Theo- 
rems A-C are of a theoretical nature. In “practical” problems in computa- 
tional group theory, efficient algorithms are used which are actually 
exponential. The difference in points of view can be seen in Cannon [3]: for 
him, finding elements of prime order is cheap, finding Sylow subgroups is 
moderately inexpensive, and testing simplicity is expensive. 

The algorithm for Theorem C requires time 0( n6). Those for Theorems A 
and B can be shown to run in time 0( n 9)- an indication of their impracti- 
cal nature. 

The paper is organized as follows. Sections 2 and 3 contain terminology 
and statements of known results. Theorem C is proved in Section 4. In 
Section 5 the proof of Theorem A is reduced to the case of a simple group 
of order > n8, at which point Theorem A becomes a very special case of 
Theorem B. Following this reduction, a very rough outline is presented for 
Theorem B (along with an indication of which portions to omit if one only 
wants an algorithm for Theorem A). Thus, Section 5 contains a version of a 
table of contents for the rest of the paper, along with much of the notation 
used later. The outline is broken into three parts: preliminaries and the case 
of alternating groups; PSL (d, q); and the remaining classical groups. While 
the basic method is similar for the different classes of groups, the technical 
details greatly increase from one part to the next. The reader may wish to 
follow each part separately, while using Section 5 for an overview. 

Lemma 6.1 explains how simplicity and the bound ]G] > n8 are used. 
Namely, this lemma permits us to assume that G is an alternating group, 
PSL(d, q), or one of the other classical groups, while giving very precise 
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information concerning the given permutation representation of G. An 
algorithm is then given which produces a new permutation representation of 
G which is more manageable than the original one (the Replacement 
Theorem 6.2); but the proof of this is postponed, since it involves somewhat 
different arguments for the three classes of simple groups just mentioned. 

The proof of Theorem B finally begins in Sections 7 and 8, where the 
alternating groups and PSL(d, q) are dealt with. The remainder of the 
paper concerns the remaining classical groups, and is fairly technical. 
Section 9 contains background material, including a vector space descrip- 
tion (9.4) of the sought-after Sylow subgroups. The nature of this descrip- 
tion makes it even clearer why our proof of Theorem B is so intricate and 
long (and involves so much bookkeeping). It also shows that our algebraic 
problem can be turned into the geometric problem of finding the stabilizer 
of a certain type of direct sum decomposition of a vector space. Finally, 
Sections lo-13 contain the end of the proof of Theorem B, together with 
additional information concerning the situation being studied. We note that 
all unexplained notation after Section 4 can be found in Sections 5 or 9; and 
that the arrangement of lemmas is similar to that of the algorithm in Section 
5 but is not quite the same. 

It may be that the length of our proof corresponds to the unreasonable 
size of the exponents obtained. One can only hope that they will be 
simultaneously shortened in the future. On the other hand, our approach 
has advantages for future group-theoretic algorithms since the Replacement 
Theorem provides a method for replacing an “arbitrary” permutation 
representation of a simple group by a fairly concrete one. For example, the 
following interesting result is proved in (11.4): for a Chevalley group of 
characteristic p, a set of representatives of all conjugacy classes of p’-ele- 
ments can be found in polynomial time. 

I am grateful to E. Luks for several stimulating discussions concerning 
group-theoretic algorithms, and, in particular, for posing the question which 
Theorem A answers. Moreover, I am indebted to G. M. Seitz for his 
assistance with [24]. 

2. PRELIMINARIES 

We will assume some familiarity with basic group theory, as contained for 
example in Rotman’s text [21]. Nevertheless, we will begin by listing some 
standard notation and terminology. 

Let G be a group. Subgroup containment is denoted by H d G, and 
normal containment by H 5 G. A proper subgroup is any subgroup other 
than 1 or G. If S c G then (S) is the subgroup generated by S. The size of 
a set X is denoted ] XI. The index JG : HI of a subgroup H is ]G]/] HI. If 
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g E G then lgl = l(g)1 is the order of g. If S c G, then Sg = {srls E S}, 
where s* = g-%g. 

If K,HdG then C,(K)={h~Hlhk=kh for all ~EK} is the 
centralizer of K in H. In particular, C,(K) is the center Z(K) of K. The 
commutator subgroup G’ is (a-‘b-‘ub(a, b E G). The derived series of G 
is G, G’, G” = (G’)‘,G “’ = (G”)‘, . . . . If p is a prime than O,(G) is the 
unique largest normal p-subgroup of G. A minimal normal subgroup of G 
is a nontrivial normal subgroup of G not properly containing any other 
nontrivial normal subgroup of G. 

Let X be an n-element set, and consider the symmetric group S, of 
permutations of X. If x E X and g E G we will use exponential notation 
xg for the image of x under g. The orbit of x is xc = {xglg E G}; the 
orbits partition X. It is important to note that G induces a permutation 
group G on x . ’ The kernel of the action of G on xc is K = {g E Gig fixes 
every point of xc}, and G = G/K. More generally, if Y is a second set on 
which G acts, the kernel of the action is K = {g E G(g fixes every point of 
Y }, and G* = G/K is the induced group of permutations of Y. If K = 1 
then G is said to be faithful on Y. 

The stabilizer G, is {g E Glxg = x}. Here, (G.$’ = GXh for h E G. If 
x,x’, x”, . . .) E X, write G,,,,,,,,,,= G, n G,, n G,,, n . - - . Set G(x,y) = 
{gE Gl{x,y}g= {x,y}}.Thisisjustthestabilizerof {x,y}intheaction 
of G on the set of 2-subsets of X. More generally, G also acts on the set of 
subsets of X of each size. Another useful action of G is that on X X X: 
simply let g E G send (x, y) to (xx, yg). 

If Y L X, the stabilizer of Y is (g E GIYg = Y }. This is the set stabi- 
lizer, not the pointwise stabilizer. Similarly, when we say that a group fixes 
a set we will always mean “fixes as a set,” not pointwise. 

Cosets will always be right cosets. If G is transitive on X, and x E X, 
then the action of G on X can be identified with its action on the set of 
cosets of G, in G. (This action is given by G,g -+ G,gh for g, h E G.) 

Assume that G is transitive on X (so that xc = X for each x). A 
G-invariant equivalence relation on X is an equivalence relation = such 
that xg = ys whenever x = y. A block system for G is the set ): of 
equivalence classes of a G-invariant equivalence relation. The trivial exam- 
ples have 1x1 = 1 or (Xl. If these are the only examples, then G is said to be 
primitive on X, otherwise, it is imprimitive. In any case, G acts on Z, 
inducing a transitive permutation group. If A is any block system for this 
permutation group, then A determines a G-invariant equivalence relation on 
X in an obvious manner. A minimal block system is a nontrivial block 
system Z such that the permutation group induced on I: is primitive. A 
maximal block system is a block system of size < 1x1 having no refinement. 

Note that G need not be faithful on a block system Z. For example, if N 
is a nontrivial intransitive normal subgroup of G then it is easy to see that 
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the set Z of orbits of N on X is a nontrivial block system. Clearly, N is in 
the kernel of the action of G on Z-although this kernel may be larger 
than N. 

It is straightforward to prove that G is primitive if and on& if G, is a 
maximal subgroup of G. For, if G, < H < G, then { x Hglg E G } is a 
nontrivial block system; the converse is equally easy (cf. Wielandt [26, 
p. 151). This also shows that the minimal (or maximal) block systems of a 
transitive group correspond to those subgroups H 2 G, such that H is 
maximal in G (or G, is maximal in H, respectively). 

Finally, we will need an elementary number-theoretic result (whose proof 
is left to the reader). If r is a prime and n is an integer, let n, be the largest 
power of r dividing n. 

LEMMA 2.1. Let r be a prime, and let q, t, and z be positive integers such 
that q > 1 and r)q* - 1 but r I qx - 1 for 1 < x -C t. Then the following 
hold: 

(i) r)q’ - 1 0 tlz. 

(ii) rlqZ + 1 o z and z/t are odd integers. 

(iii) If tlz then (q’ - l), = (q’ - l),(z/t), if r # 2, while (q’ - l)* 
= (q* - 1)*z2/2 ifr = 212. 

3. SOME KNOWN ALGORITHMS 

Throughout this paper, G will denote a subgroup of the symmetric group 
S,, given by a set of generating permutations of the underlying n-set X. Our 
goal will be to study properties of G, using these generators, in time a 
polynomial in n. 

For example, finding a subgroup H with certain properties will always 
mean “finding generators for H in polynomial time.” The basis for every- 
thing we do is the following fundamental result of Sims [22]; see Furs& 
Hopcroft, and Luks [9] or Hoffman [ll]. 

THEOREM 3.1. (i) Let X = { 1, . . . , n}. Then the subgroups G,...i, i = 
1 ,--*> n, can all be found in polynomial time. 

(ii) JG( can be found in polynomial time. 

In (3.1), ]G, _._ i : G, .._ i-1J is the size of the orbit of i under G, _., ;-i, and 
hence is at most n - (i - 1). Orbits are very easy to find: 

PROPOSITION 3.2. If x E X then xc can be found in polynomial time. 
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The indices just mentioned are all less than n. We will require the 
following extension of (3.1), which is essentially Theorem 5 of Furst, 
Hopcroft, and Luks [9] (do not assume that their Gi+i is normal in Gi). 

THEOREM 3.3. Let G = G(0) 2 G(1) > . -- 2 G(m) = 1, where the 
groups G(i) have the following properties: 

(a) generators for G are given; 

(b) ]G(i): G(i + l)] Q p(n) f or a I1 i, where p(n) is a polynomial; 

(cl m G p(n); and 
(d) given g E G and i d m, there is a polynomial-time algorithm for 

deciding whether g E G(i). 
Then generators for all G(i) can be found in polynomial time. 

It is useful to note that any subgroup of S,, has at most n log,n 
generators. In fact, by Lagrange’s theorem: 

LEMMA 3.4. If G = G(0) > G(1) > . . . > G(m) = 1 then m < n log,n. 

Next, consider primitivity. Atkinson [l] proved 

THEOREM 3.5. Assume that G is transitive on X. Then the following can be 
obtained in polynomial time: 

(a) evev minimal block system; and 

(b) a maximal block system. 

In this context, we note the following consequence of (3.3). 

LEMMA 3.6. If G is transitive on X, and I: is a block system, then the 
following can be obtained in polynomial time (where B E 2): 

(a) the kernel of the action of G on 2, and 

(b) {g E GlBg = B}. 

Next, we turn to more structural types of properties of groups. Assume 
that we are given G < S,,. 

PROPOSITION 3.7 (Furst, Hopcroft, and Luks [9]). If 0 # S L G then 
(SC) = (SgJg E G) can be found in polynomial time. 

COROLLARY 3.8 (Furst, Hopcroft, and Luks [9]). The commutator sub- 
group G’ can be found in polynomial time. 

PROPOSITION 3.9 (Luks [17]). Given G, H & S,,, where G normalizes H, 
there is a polynomial-time algorithm for finding Co(H). 

A composition series for a group G is a sequence G = G, D G, D . - - D 

G, = 1 such that G,/G,+, is simple for each i. 



484 WILLIAM M. KANTOR 

THEOREM 3.10 (Luks [16]). In polynomial time, one can determine 

(i) a composition series for G; 

(ii) whether or not G has a nontrivial solvable normal subgroup; and 

(iii) a nontrivial solvable normal subgroup if one exists. 

LEMMA 3.11 (Luks [17]). If G has a normal Sylow p-subgroup, then that 
p-subgroup can be found in polynomial time. 

When we use (3.11), G will be solvable, in which case the result follows 
easily from (3.8). 

4. PROOF OF THEOREM C 

Use (3.10) to determine whether or not G has a nontrivial abelian normal 
subgroup. If there is no such subgroup, we are finished. If some such 
subgroup A exists, use (3.10) and (3.8) to find one (cf. (3.4)). We may 
assume that A is a p-group for some prime p, and also that p # r. Use 
(3.9) to find C,(A). Then O,(G) f 1 - 0,(&(A)) # 1. (For, O,(C,(A)) is 
a normal r-subgroup of G, and hence belongs to O,(G). On the other hand, 
if R = O,(G) then R Q Co(A) since g-‘a-‘ga E R n A = 1 for all g E R, 
aEA.) 

Replace G by Co(A). Then A < Z(G). Let Y be the set of all A-orbits 
on X. Find the kernel B of the action of G on Y (using (3.2) and (3.1)). 
Then B is a p-group. (For, if b E B is not a p-element and Xi is any 
member of Y, then IX,] is a power of p so that b fixes some x E Xi. Then 
b = bA fixes each member of x A = Xi. Thus, b = 1.) 

Now replace G by Co(B) (using (3.9) again). Then we have B < Z(G). It 
follows that Or(G/B) = Or(G)B/B, where Or(G)B = O,(G) X B. 

If O,(G) = 1 then O,(G/B) = 1. Conversely, applying induction to G/B 
acting on Y, we can determine whether or not Or(G/B) # 1; and, if it is 
nontrivial, we can find a nontrivial abelian normal r-subgroup M/B of 
G/B. Here, B d Z(M), so that {m E M]m is an r-element} is a nontrivial 
abelian normal r-subgroup of G. Cl 

The main obstacle to finding O,(G) (in Theorem C) seems to be the 
problem of finding a minimal normal r-subgroup of G. For, given such a 
subgroup an argument similar to the preceding one easily produces O,(G). 

5. REDUCTION AND OUTLINE OF THEOREMS A AND B 

The proof of Theorem A can be reduced to the case of simple groups. 
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LEMMA 5.1. If Theorem A hola!s for nonabelian simple groups then it 
hol& for all groups. 

Proof Let G d S,. Use (3.10) to find a nontrivial normal subgroup N of 
G. We may assume that N # G. Label X as (1,. . . , n } and define G(0) = G, 
G(i) = G,, . iN and G(i + n) = Nlz . . . i for 1 < i < n. Then each G(i) can 
be found using (3.3). If r divides IG(i): G(i + l)l, observe that G(i) acts 
transitively on the set X’ of IG(i) : G(i + 1)l < n cosets of G(i + 1) in 
G(i). For each generator of G(i), determine its action on these cosets. Then 
replace G by the permutation group on X’ generated by these permuta- 
tions, and apply induction. The resulting element of order r is induced by 
an element of the original group. Find all powers of the latter element; some 
power has order r. q 

LEMMA 5.2. Let c be a constant, and let r be a prime. Given G < S,, with 
IGJ = r”b and b d nc, there is a polynomial-time algorithm for finding all 
Sylow r-subgroups of G. 

Proof Luks [15, (3.7)] gives an algorithm for finding one Sylow r-sub- 
group. Since the number of Sylow r-subgroups is < b f nc, all can be 
found in polynomial time. •I 

In view of (5.2), Theorems A and B hold if ]G] Q n8. 
Throughout the remainder of this paper, G will denote a simple subgroup of 

S,, of order > n8. In this situation, we can ignore Theorem A and con- 
centrate on Theorem B. 

The remainder of this section consists of a description of our proof of 
Theorem B. We will outline an algorithm (in effect, in terms of a large 
number of procedures each of which runs in polynomial time), and at the 
same time introduce much of the notation required later. References are 
given to proofs relating to constructions appearing in the outline. The 
algorithm falls naturally into three parts: (I) Preliminaries and alternating 
groups, (II) G = PSL(d, q), and (III) G is one of the remaining classical 
groups. 

Part I. Preliminaries and Alternating Groups 

(Bl) Use (3.2) and (3.5) in order to reduce to the case where G is 
primitive on the n-set X. (From (6.1) we can then conclude that G is an 
alternating group or a classical group.) 

(B2) Find a new set Y on which G acts transitively ((6.2) and (6.3)). In 
particular, determine the action on Y of each of the given generators of G. 

Remark. We will have ]Y) < 2n, so that polynomial-time algorithms on 
Y are also polynomial time on X. Thus, we will always implicitly assume 
that, whenever a subset of G is computed using the generating permutations 
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on Y, the corresponding subset is also computed on X. The set Y is a very 
natural object. When G = A,, IYI = m. If G is PSL(d,q) or PSp(d,q) 
then Y can be identified with the set of all l-spaces of a d-dimensional 
vector space V on which G acts in the natural manner. In all other cases, Y 
can be identified with a certain G-orbit of l-spaces of the vector space V 
used to define G. However, we will not actually describe the vectors in V: all 
references to V are for purposes of explanation or proof, and are not 
involved in the algorithm itself. 

The remainder of the algorithm focuses on Y and ignores X. (See (7.4) for 
a discussion of this point.) 

(B3) Decide whether or not G is an alternating group (by checking 
whether or not 1GI = $(lYI!)). If it is, directly construct generators of a 
Sylow r-subgroup of G. (This is straightforward using Y (7.5)) 

From this point on, without loss of generality G will be assumed to be a 
classical group. In the remainder of this preliminary portion of the algorithm 
we will discuss all classical groups simultaneously. 

(B4) Let y E Y, and use (3.2) in order to determine whether or not G, 
is transitive on Y - { y}. (This transitivity occurs if and only if G z 
PSL(d, q) for some d, q, and thus allows us to detect this situation (10.3).) 

(B5) Use (3.1) and Theorem C in order to find a prime p such that 
O,(G,) # 1 for y E Y. (This prime exists and is unique. It is the characteris- 
tic of V by (8.2) and (10.2).) 

(B6) Find a new set Y+ containing Y on which G acts, determining the 
action on Y+ of each generator of G. (Here, IY’l < 4n2. If G is PSL(d, q) 
or G is symplectic, then Y+= Y. In all cases G acts on Y+ exactly as it acts 
on the set of aN l-spaces of V; we will therefore identify these two sets. A 
procedure producing Y+ for an orthogonal or unitary group G is outlined in 
(10.5)) Let Y-= Y+- Y. 

This essentially ends Part I. All that remains is to provide additional 
notation to be used in Parts II and III. 

DEFINITIONS 5.3. (i) If A c Yf regard (A) as a subspace of I/. 
(ii) If A 5 Y+ let G(A) = fl{(GJla E A}. (By (8.3) and (10.6), any 

desired group G(A) can be found in polynomial time.) 
(iii) If a, b E Y+, a + b, let [a, b] = {c E Y+(G, >, G({a, b})}. (Use 

(3.1) to find [a, 6). Here, [a, b] is the set of all l-spaces of the 2-space 
(a, b), by (8.3) and (10.6).) 

(iv) If A z Yf let [A] be the smallest subset of Y+ containing A such 
that a, b E [A], a + b, - [a, b] c [A]. (Then [A] is the set of all l-spaces 
of (A), and can be found in polynomial time by (8.3) and (10.6). Clearly, 
G(A) is the identity on (A) and hence on [A]. However, for some A there 
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can be further points of Y+ fixed by G(A).) 
(v)IfA={q ,..., a,}write[A]=[a, ,..., a,]. 

Part II. G z PSL(d, q) 

In (B4) it was decided whether or not G a PSL(d, q) for some (yet 
unknown) d and q. Assume that G has this form. 

(B7) Find a subset .%? = { y,, . . . , yd } of Y recursively by using any y, 
and letting yk+i E Y - [yi,. . . , y,J. (Then I/ = C;iy, and d = dimV c n 
(8.4)) 

Abbreviation. Throughout Part II we will let i = yi, except when we wish 
to indicate that yi is temporarily being regarded as a l-space of V. 

(B8) Let 1 < i < d and find ti E G sending &’ to itself and inducing 
the transposition (i, i + 1) on 8. (Use (3.1); cf. (8.5).) Let c = t,t, . . . t,. 

(B9) Obtain a conjugate of each cyclic Sylow subgroup of G as follows. 
Use (3.1) to find Q = G,, . d. (This is a group of order < n*.) Take each 
element g in the coset Qc, and take p-powers of g until an element is 
obtained whose order is not divisible by p. Then each element of G of order 
not divisible by p is conjugate to one of the elements just obtained (8.6). 

Remark. (B9) is much stronger than Theorem A. Those interested only 
in Theorem A should omit the rest of Part II (i.e., (BlO)-(B23)). 

(BlO) If r = p in Theorem B, find a Sylow r-subgroup U of G as 
follows. 

(i) Find subgroups B(l), . . . , B(d - 1) recursively, by setting B(1) 
= Gy,, and using (3.1) to find the stabilizer B(k + 1) of [l,. . . , k + l] in the 
action of B(k) on [l, . . . , k + 1]B(k). (The latter set has size -C n.) 

(ii) For each generator g of B(d - 1) find a Sylow p-subgroup of 
(g) and let U be the subgroup of B(d - 1) generated by all of these (8.8). 

Throughout the remainder of Part II, assume without loss of generality that 
r f p. 

(Bll) Find q: it is the largest power of p dividing ]Y( - 1. (In fact, 
IYI = w - l)/(q - 11.) 

(B12) If r = 2 let k = 2. If r > 2 let k be the smallest positive integer 
such that r)qk - 1. (Here, k -C d -=z n since r 1161.) Let I = [d/k]. 

If 1 = 1 then a Sylow r-subgroup of G is cyclic (8.10@)), and hence one 
was already found in (B9). Thus, we may assume without loss of generality 
that 1 2 2. 

(B13) Find H = G,, d using (3.1), and let N = (H, till & i -C d). 
(Here H a N, ]H] < n and N/H = S, (8.9).) 
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(B14) If k = 1 use (B3) or (7.6) to find a Sylow r-subgroup F/H of 
N/H, and then use (5.2) to find a Sylow r-subgroup R of F. Then R is a 
Sylow r-subgroup of G (8.10). 

Now assume without loss of generality that k >, 2. 

(B15) For 1 < i < d find G(C%? - {i}). 

(B16) For 1 < i < k find the set stabilizer i’J of [l,. . . , k] in G(B - 
{i}). (The orbit of [l, . . . , k] under the latter group has size < n, so that 
(3.1) can be used.) Let S = (qll Q i d k). (Then S I SL((y,,. . ., yk)) = 
Wk q) by Wl).) 

(B17) Find a Sylow r-subgroup R, of S. (This is possible by induction 
(8.12).) 

Remark. Actually, both here and later in (B29(v)) and (B35) induction is 
not involved. All that is used is a single minimal situation (namely, (B9) at 
present and (B27) later). 

(B18) Find the group E of all elements of Nk,+i,,,,, d that fix (as a 
whole) each row of the following array, while permuting the columns. 

1 k+l k(l- 1) + 1 
2 k+2 k(l- 1) + 2 

. . . 

Ii 2;c iI 

(Here H D E and E/H a S,, where S, is induced on each row (8.13).) 
(B19) Find a Sylow r-subgroup F/H of E/H, using (7.6). 
(B20) Find a Sylow r-subgroup R* of F (use (5.2), since IHI < n). 

(B21) Find Z = { S’le E E}, where 1x1 = I (8.15). Then find the R*- 
orbits on Z, and let Sea) be orbit representatives for i = 1,. . . , I’, where 
e(1) = 1 and I’ is the number of R*-orbits on Z. 

(B22) Let r # 2. Let R = (R*, R$‘)Ji = 1,. . . , I’). Then R is a Sylow 
r-subgroup of G (8.15). 

(B23) Let r = 2. Use (5.2) in order to find a Sylow 2-subgroup R of 
((SE), H, R*). Then R is a Sylow 2-subgroup of G (8.15). 

Part III. The Remaining Classical Groups 

If G is neither A,,, nor PSL(d, q) for some m or d, q, then G must be a 
symplectic, unitary, or orthogonal group defined on a vector space V (6.1). 
We know the characteristic p of V (B5). 

The goal in Part III is to imitate Part II as much as possible. Many of the 
sets, groups, and elements appearing in Part II have analogues in the 
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present situation. Eventually, we will wind up able to repeat portions of Part 
II using these analogues. 

DEFINITION 5.4. Define the relations - and + as follows: if y, z E Y 
and y # z then 

Y - z - O,(G,,) # 1 

y + 2 * O,(G,,) = 1. 

By Theorem C, we can decide whether y - z or y + z in polynomial time. 

Remark. By (B2), we may identify Y with a certain set of l-spaces of I’. 
By (10.2), y - z e y c z I. (Here, I is the natural perpendicularity 
relation induced by the bilinear form on V, cf. Sect. 9.) 

(B24) Define a subset 9 = { y,, . . . , y,, zi, . . . , z,,,} recursively as fol- 
lows: yi is arbitrary, and zi + y, is arbitrary; if { y,, . . . , yi, zl,. . . , z;} has 
been found, test each y E Y to see if y - yj and y - zj for all j < i; if no 
y exists, let m = i; if y exists, let y,+i = y; testing as above, find zi+i + yi+l 
such that zi+i - yj and zi+i - zj for j < i; finally, replace 
{Y1~**~~Yi?zl~*~*, zi} by its union with { yi+i, zj+i}. (By (11.1(i)), this 
procedure terminates and takes polynomial time. By (ll.l(ii)), V = 
t.G(Yi, ‘i>l @ V,, where V, contains no member of Y.) 

Abbreviation. Throughout (B25)-(B30) we will write i = yi and i’ = zi 
for 1 < i Q m. 

(B25) Let 1 < i < m, and find ti E G sending .%? to itself and inducing 
(i, i + l)(i’, (i + 1)‘) on g. (Use (3.1); cf. (11.2).) Find t, E G sending A? 
to itself and inducing (m, m’) on g’, if such an element of G exists. (Use 
(3.1) to find such an element or to decide that none exists.) If no such 
element exists, find t, E G sending .5% to itself and inducing (m - 1, 
(m - l)‘)( m, m’). (There is always a t, defined in one of these ways (11.2).) 
Let c = t,t, ..* t, and c’ = ct,c-‘t,c-‘. 

(B26) Find Q = O,(G,) as follows. Use Theorem C to find a nontrivial 
normal p-subgroup Q,, of G,. If IQ,,1 > (Y11/2 let Q = Q,. Otherwise, 
regard G, as a permutation group on the set of Q,-orbits, use Theorem C to 
find a nontrivial normal p-subgroup of that group, and let Q be the 
preimage of that p-group in G, (11.3). (Then IQ1 < 4n2 (11.3).) 

(B27) Obtain a conjugate of each cyclic Sylow subgroup of G as 
follows. Use (3.1) to find H = Gi2...2m. (Then lQH1 < 64n6 (11.3).) Take 
each element g in the union Qc U QHc’, and take p-powers of g until an 
element is obtained whose order is not divisible by p. Then, as in (B9), each 
element of G of order not divisible by p is conjugate to one of the elements just 
obtained (11.4). 
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Remark. (B27) completes the algorithm for Theorem A. Moreover, when 
describing an algorithm for Theorem B we may assume that a conjugate of 
each cyclic Sylow subgroup has already been found. 

Convention. “Repeat” will always mean “repeat using the present values 
of the various variables involved.” 

(B28) If r = p let d = m and repeat (BlO) (11.6). 
Throughout the remainder of Part III, we may assume without loss of 

generality that r # p. 

DEFINITION 5.5. Let a E Y+. Define a* as follows. (In each case a* 
will be the set of l-spaces in a * (l&7).) 

(i) If a E Y let a* = [{b E Yla - b}]. 

(ii) If a E Y+- Y let a* = [{b E Yl[a, b] n Y = {b}}]. 

DEFINITION 5.6. If A _c Y+ let A* = {b E Y+(A c b*}. (This is the 
set of all l-spaces in AL , and can be found in polynomial time (10.7).) 

Remark. The cases Yf= Y and Y+# Y are somewhat different (cf. 
(9.4)). The former case corresponds to symplectic groups (11.5), and will be 
handled in a manner very closely paralleling Part II (B29). 

(B29) If Y+= Y proceed as follows: 
(i) Repeat (Bll) (10.4). 

(ii) Let k = 1 if r = 2, otherwise repeat (B12). 
(iii) Let S = G({l, . . . , k, l’, . . . , k’}*). (This is essentially a sym- 

plectic group (12.1).) 
(iv) Find the group E of all elements of G which fix 

{l,..., m},{l’,..., m’}, kf + l,..., m, and act on the array in (B18) as 
indicated there. (As in (B18), H d E and E/H z S, (12.2).) 

(v) Repeat (B17), (B19), and (B20) (12.3). 
(vi) If k > 1 repeat (B21) and (B22) in order to obtain a Sylow 

r-subgroup of G (12.4). 
(vii) If k = 1 use (5.2) in order to find a Sylow r-subgroup R of 

((SE), H, R*). Then R is a Sylow r-subgroup of G (12.5). 
From now on we may assume without loss of generality that Y+# Y. Recall 

that Y-= Y+- Y (B6). 
(B30) If Q is abelian let q be the largest power of p dividing lY1 - 1; 

otherwise, let q2 be the largest power of p dividing IYI - 1. (Then q is the 
“q ” in the name D *(d, q) or SU(d, q) (10.4), where d will be found in 
(B32).) 
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(B31) (i) If r # 2, or if t k q + 1 and Q is nonabelian, define Z, S and 
subsets Yo, Y,, . . . , Yb recursively as follows. First, Y, = 0. Next, given yi, 
test each y E Y - Y for the condition r 1 ]G(Y U { y})(. If some such y 
exists let Y,+i = [yi, y]; otherwise let b = i. Moreover, let 2 = Yb* and 
S = G(Y,) = G(Z*). 

(ii) If 2 # r(q + 1 and Q is nonabelian let u1 E Y-, Z = { ui} and 
S = 1. If r = 2 let Z = [ui, uz] and S = G(Z*), where ui, u2 E Y-, u2 E 
u:, and 2 1 IS]. (The various definitions of Z and S are motivated by (9.4, 
Case 2); cf. (13.1)) 

(B32) Let ur,. . . , uk E Z n Y- be defined recursively by letting u1 E 
Z n Y- be arbitrary and letting ui E Z n Y- satisfy either 

(5.7) If p # 2 or Q is nonabelian then ui+i E { ui,. . ., ui}*, 
or 

(5.8) If p = 2 and Q is abelian then uzj+i, u2j+2 E { ui,. . . , Use}* 
where [~j+l, U2j+21 n [U,j+l, u2i+21* = 0. 

If there are no ui+i or u2j+l,u2j+2 in (5.7) or (5.8), let k = i or 2j, 
respectively. (Then { ui, . . . , uk} arises from a basis of Z, which is orthogo- 
nal in the case of (5.7); cf. (13.1).) 

(B33) Define d, d’, 1 = [d’/k], and uk+i,. . . , ud recursively by re- 
quiring that (i) ui E Y- and either (5.7) or (5.8) holds; (ii) ui E (u~-~)~ for 
k c i G d’, and also, in the situation in (5.8), { uzj+i, u,~+~} E 
{'2j+l-k, '2j+Z-k }G for k < 2j + 2 Q d’; (iii) d’ is maximal subject to 
(ii); and (iv) { ui, . . . , ud}* = 0, unless Y* Z 0, in which case 
{u 1, -. * 9 ud-i}* n Y* = 0 and {ur ,..., ud-r}* = Y* = {Us}. (Then d 
= dimV,and{u,,..., ud} arises from a basis for V which has been tailored 
for r (13.1).) 

(B34) Find the group E of all elements of G that fix { ui,. . . , ud} and 
act on the subscripts as in (B18). Also, let H = GUI . . . Ud. (This is a new value 
for H (13.2)) 

(B35) Repeat (B17), (B19), and (B20) (13.3). 
(B36) If k > 2 repeat (B21) and (B22) in order to obtain a Sylow 

r-subgroup of G (13.3). 
(B37) If k < 2 repeat (B29(vii)) in order to obtain a Sylow r-subgroup 

of G (13.3). 0 

6. PERMUTATION REPRESENTATIONS OF SIMPLE GROUPS 

The remainder of this paper concerns simple groups (see Sect. 5). In this 
section we will present an algorithm for passing from a sufficiently large 
primitive simple group to its “most natural” permutation representation. 
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We will need the following property of simple groups (compare Cameron [2, 
W)l). 

LEMMA 6.1. L.et G be a primitive simple subgroup of S,,, where IGI > n8. 
Then one of the following holds: 

(i) G is A,,, acting on the set of k-sets of an m-set, for some k; 

(ii) G is A,,, acting on the set of partitions of an m-set into m/k sets of 
size k, for some k satisfying 1 < k < m; or 

(iii) G is a classical group defined on vector space of dimension at least 9, 
and the stabilizer of a point is reducible. 

Remarks. For properties of Chevalley groups required in the proof of 
(6.1), we refer to Carter [4]. For further discussion of classical groups, see 
Section 9. 

In order for (iii) to be accurate, we implicitly use the isomorphism 
Sp(2m, 2’) z ti(2m + 1,2’) in order to assume that the underlying vector 
space has dimension 2m + 1 in this case. 

Prooj Let X and G, be as usual. We may assume that G is an 
alternating or Chevalley group (see Gorenstein [lo] for a discussion of the 
classification1 of all finite simple groups). 

If G z A,, and it4 is the m-set upon which G naturally acts, then we may 
assume that G, is primitive on M; for otherwise, (i) or (ii) holds. By a 
classical result of Bochert (Wielandt [26, p. 41]), n = (G: G,] > $([i(m + 
l)]!). Thus, 80n3 > ICI, which is not the case. 

If G is a classical group and if (iii) does not hold, then (G] < n8 by Patton 
[20], Cooperstein [6], and Kantor [14, Theorems 1, 21. 

Suppose that G is not a classical group, and let ?T be the permutation 
character of G on X. Then n = n(l), while ?r is the sum of the principal 
character 1, of G and some nonprincipal irreducible characters x. Now 
n > x(l), while x(1) is bounded below by the results tabulated in Landazuri 
and Seitz [27, p. 4191. If G + E,(q), E,(q) then these bounds imply (using 
[4, pp. 144, 155, 262; or lo] for ]G]) that ]G] < ~(1)~ < n8. If G = E,(q) or 
E,(q) then G is not 2-transitive on X (by [7]) and hence B - 1, is the sum 
of at least two irreducible characters x, so that (n - 1)/2 is at least the 
bound in [14]; again a simple calculation yields the desired inequality 
IGI < n8. 0 

We now introduce two procedures. 

‘At the time of writing (October, 1982), this classification is not quite complete: the 
uniqueness of the Monster has not been proved. However, this does not cause any difficulties 
with our use of the classification. 
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Pairing. Given G acting transitively on an n-set X, and given x E X, 
this produces a family J? = &(G,) of maximal subgroups, as follows. 

(i) For each y E X find G{,,,). 
(ii) Find each proper subgroup H of G such that GC x, ,,) is a maximal 

subgroup of H; if no such H exists let H = G,,, ,,). 

(iii) For each such H find each proper subgroup H * of G such that H 
is a maximal subgroup of H *; if no such H exists let H * = H. 

(iv) For each H* find a maximal subgroup M of G containing H*. 

(v) ./Y consists of those maximal subgroups M for which JG: MJ < 2n. 

Double-Pairing. Given G and X as in Pairing, this produces a family 
&Z ’ of maximal subgroups of G; namely, pick x E X and let 

A’ = U{.M(M)JM E.M(G,)}. 

Remark. If M E JY(G,.) then each given generator for G acts on the set 
of cosets of M in G. Since IG : MI < 2n, the action on this set can be 
determined in polynomial time. Note that, by (3.1), (3.2) and (3.9, both 
Pairing and Double-Pairing run in polynomial time. Also, since y is allowed 
to be x in Pairing, A(G,) c A’ in Double-Pairing. 

THEOREM 6.2 (Replacement Theorem). Giuen a primitive, simple sub- 
group G of S, for which IGI > na, apply Double-Pairing. Let MI E A! have 
maximal size. Let P = M,, unless there is another subgroup M, E A?~ 
satisfying (G : MI\ < (G : M21 < 21G : MI\, in which case let P = M2. 7’hen 

(i) P is unique up to conjugacy in Aut G (in fact, in G unless G z 
PSL(d, q) for some d and q); 

(ii) P and its conjugates are the largest maximal subgroups of G (unless 
G s Sp(2m, 2) for some m, in which case they are the second largest maximal 
subgroups); and 

(iii) P can be found in polynomial time. 

The proof of Theorem 6.2 will be given later, in three separate pieces: 
alternating groups in Section 7, PSL(d, q) in Section 8, and all remaining 
cases in Section 10. Of course, (iii) is obvious since Double-Pairing runs in 
polynomial time. 

The above theorem is, perhaps, unnecessarily opaque. The use of 2n 
instead of n, and the irritating appearance of M2, are concessions to the 
groups Sp(2m, 2) z Q(2m + 1,2) defined over GI72): for technical reasons, 
M, is preferable to Mr. For all other groups G, there is no maximal 
subgroup M, satisfying the inequality in Theorem 6.2, and hence M2 can be 
ignored. 
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DEFINITION 6.3. Y is the set of cosets of P in G. Thus, (Y( < 2n. 

Once we have found Y, we will work primarily with it, leaving X in the 
background. In particular, we will assume that the action on Y has been 
found for the given generators of G (cf. (7.4)). 

7. ALTERNATING GROUPS 

Many aspects of the proof of Theorem B are much simpler when the 
simple group G is alternating. Nevertheless, many of the ideas in this case 
resemble those encountered later. 

Throughout this section, G < S, will be isomorphic to some alternating 
group, and ]G] > ns. (In fact, we only need ]G] > 80n3.) 

By (3.2) and (3.5), we may assume that G P A,,, acts primitively on an 
n-set X. Thus, (6.1) applies. 

Proof of Theorem 6.2 for G z A,. It is well known that G has just one 
conjugacy class of subgroups of index Q m (Wielandt [26, p. 421). In fact, 
the method of proof indicated there is the same as the alternating group 
part of the proof of (6.1), and shows that there is just one conjugacy class of 
proper subgroups of index < 2m. Thus, we only need to exhibit a subgroup 
of index m in G produced by Double-Pairing. In view of (6.1), there are two 
cases to consider. 

Case 1. G, is the stabilizer of a k-subset K of the m-set Z on which G 
acts in the usual manner. (Note that we no longer need to worry about 
finding Z: we are merely studying properties of G.) We may assume that 
k < fm. Pick any k-subset K’ of Z such that (K n K’( = 1, and let G,, be 
its stabilizer in G. Clearly, G, x, y l contains 3-cycles. Consequently, the only 
proper subgroups of G properly containing G(x,u) are the stabilizer of 
K n K’, the stabilizer of K U K’, and the intersection of these groups. It 
follows that the stabilizer of a point of Z belongs to .A(G,), and hence also 
to “4’. 

It is important to note that we did not need Double-Pairing in the 
preceding case: Pairing sufficed. 

Case 2. G, is the stabilizer of a partition II of Z into I- m/k sets of 
size k, where 1 < k < m. 

Let II = {Bi,..., B,}. Pick any b, E B, and 6, E B,, and let B; = (B, 
- {b,}) U { b2}, B; = (B2 - {b,}) U (b,}, and II’ = {B;, B;, Bi(3 < i Q 
1). Then II’ E IIG, SO that the stabilizer of II’ has the form G,, for some 
y E X. Clearly, G cx,uj preserves (BJ3 d i Q I}, A = {b,, 6,) and A’ = 
(B, U B2) - {b,, b2}. Let H be the stabilizer in G of the partition 
{A, A’, Bil3 < i < I}; clearly, H is one of the minimal subgroups contain- 



FINDING ELEMENTS OF PRIME ORDER 495 

ing G{,,,). Let H* be the stabilizer of the partition {A U A’, B,)3 d i < l}. 
If I# 4 then the only maximal subgroup M of G containing H * is the 
stabilizer of A u A’ = B, U B,. (N.B.-If I = 4 then the only maximal 
subgroup of G containing H* is the stabilizer of the pair {B, U B,, B, U 

B4} of 2k-sets. If we had defined a procedure “Triple-Pairing,” we could 
revert to the case I = 2 and then complete the proof. Instead, we will stick 
with Double-Pairing and proceed somewhat differently when I = 4.) 

Consequently, if I# 4 then &(G,) contains a maximal subgroup M of 
the sort already handled in Case 1. Thus, A(M) contains a subgroup 
having index m in G, as required. 

Now let I= 4. We will construct new subgroups H, H *, and M. Clearly, 
n = 4k > 8. Let b,, b; E B,, b, # b;, b, E B,, and b, E B,. This time, let 
Bi = (B, - {b,, 4)) u {b,, b3}, B; = (4 - {&I) u {b,}, B; = (Bj - 
{ b3}) U (b;}, and Bi = B4, and let G,, be the stabilizer of { Bi, B;, B;, B;} 
in G. Then Gy preserves the sets A, = {b,, b;}, A, = {b,, b3}, A; = B, - 
A,, A, = B, - {b2}, A, = B, - {b3}, and B& Also, G{,,,) preserves the 
partition {A,, A,, A;, A, U A,, B;} of X. Let H be the stabilizer of this 
partition, and let H* be the stabilizer of the partition {A,, A,, A;, A, u A, 
U Bi}. Finally, let M be a maximal subgroup of G containing H *. Then 
M is the stabilizer of one of the sets A,, A,, A;, A, U A,, A, U A;, A, U A;, 
or A, U A, U A; in G, while M E .M(G,). By Case 1, JZ( M) contains a 
subgroup having index m in G, as required. 

This completes the proof of Theorem 6.2 when G z A,. 0 

Recall that the set Y was defined in (6.3). 

LEMMA 7.3. In polynomial time one can find an element of G inducing any 
of the following on Y: 

(i) a 3-cycle; 
(ii) the product of two 2-cycles on any given 4-set of Y; and 

(iii) an r-cycle on any given r-set of Y, for any odd r 6 m. 

Remark 7.4. It is crucial, both here and in the remainder of the paper, 
to understand what is really being “found” in this type of lemma. We start 
with permutations on an n-set X which generate our group G. Once Y is 
found, we can determine how each of these generators acts as a permutation 
on Y as well. In (7.3), the desired permutation g of Y is found as a product 
of generators and their inverses, and this product is calculated as a permuta- 
tion of both X and Y. Various of these gs can then be multiplied together, 
both as permutations of X and of Y. 

Prooj: Use (3.1) in order to find the pointwise stabilizer of an arbitrary 
set of m - 3 or m - 4 points of Y. This readily yields (i) and (ii). If r is as 
in (iii) and R is any r-set of Y then it is easy to write a product of at most 
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r < m Q n 3-cycles on R that is an r-cycle on R. Using the 3-cycles we 
have found, we can thus find an r-cycle as required in (iii). 0 

LEMMA 7.5. Let r be a prime dividing (Cl. Then a Syiow r-subgroup of G 
can be found in polynomial time. 

Proof Let k = [m/r], and fix a partition of Y into a set of size m - kr 
and a family Z of k sets of size r. First assume that r # 2. If A E Z use 
(7.3) to find an r-cycle of Y acting as (a,, a,, . . . , a,) on A; fix this labeling 
a,, . . . , a, of A. These r-cycles generate a Sylow r-subgroup of G if k < 2, 
so assume that k z 3. Let A, B, C be distinct members of Z, and let 
(a l,. . . , a,), (bl,. . . ,b,), ad (cl,. . . , c,.) be the corresponding r-cycles. Use 
(7.3(i)) to find the product (a,, b,, CJ * . . (a,, b,, cr) of 3-cycles. As A, B, 
and C vary over Z we obtain (t) elements of order 3 generating a group A, 
that normalizes the group generated by our r-cycles. The group of order 
r kJAkJ generated by our r-cycles and 3-cycles contains a Sylow r-subgroup 
of G. Now apply induction. 

Next let r = 2. Let A = {a,, a*} and B = {b,, b2} belong to Z. Use 
(7.3(ii)) to find (a,, a,)(b,, b2) and (a,, b,)(a,, b,). As A and B vary over 
Z, these generate a group of order 2k-1]Sk( that is a semidirect product of 
Z5-l and Sk and that contains a Sylow 2-subgroup of G. It is now 
straightforward to find such a Sylow subgroup inductively. 0 

Remark 7.6. A similar result holds when G d S,, is given and G z S,,,. 
The proof is the same as that of (7.5). 

8. PSL( d, q) 

We next turn to the situation in which G z PSL(d, q), where d 2 9 by 
(6.1). Let V be the d-dimensional vector space for G. 

LEMMA 8.1. If H < G and IG: HI < 2(qd - l)/(q - 1) then (G: HI = 
( qd - l)/( q - 1) and H is the stabilizer of a l-space or a hyperplane of V. 

Proof Kantor [14, Theorem 11. In fact, this is an easy consequence of 
(6.1). 0 

Proof of Theorem 6.2 for G = PSL(d, q). By (8.1), we only need to 
exhibit a subgroup of G of index ( qd - l)/( q - 1) produced by Pairing. 

There is a proper subspace W of V fixed by G,. By passing to the dual 
space of V if necessary, we may assume that dim W 6 id. There is an 
element’gEGsuchthatWsf= WanddimWn Wg=l.Set y=xg. 

Let H be the stabilizer (in G) of both W n We and (W, Wg), and let H * 
be the stabilizer of the l-space W n Wg. Then G{,,,) is a maximal 
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subgroup of H while H is a maximaI subgroup of H * (e.g., by McLaughlin 
[18, 191). Thus, H* E M(G,) (since (G: H*J g n by (8.1)). q 

Recall that Y was defined in (6.3) as the set of cosets in G of the 
subgroup produced by Double-Pairing. In view of (8.1), we can replace V by 
its dual space, if necessary, in order to identify Y with the set of all I-spaces 
of v. 

LEMMA 8.2. There is a unique prime p such that OJG,,) # 1 for y E Y. 
This prime divides q, and can be found in polynomial time. 

Proof Using a basis of V whose first member is “in” y, we find that G,, 
arises from the matrices 

with a, fii E GF( q) and adet A = 1. A simple calculation now proves the 
first part of the lemma. (Note that OJG,,) arises from those matrices having 
a = 1 and A = I.) Now apply Theorem C in order to find p. 

Set Y+= Y in (B6) and (5.3) in order to define (A), G(A), and [A]. 

LEMMA 8.3. Let A c Y. Then 

(i) G(A) can be found in polynomial time, and induces the identity on 
(A); 

(ii) [A] is the set of all l-spaces in (A); and 

(iii) [A] can be found in polynomial time. 

Proof (i) Fix y E Y. Use (3.1) and (3.8) to find (G,,)‘. Note that 
]G, : (G,,)‘] Q q - 1 < n (since (G,,)’ is just the stabilizer of a vector v E y 
- (0)). Thus, IG : (G,,)‘I < n2. For each a E A find g(a) E G with yg(@ = 
a (use (3.2)). Then G(A) is the pointwise stabilizer of {(G,)‘g(a)]a E A], 
and hence can be found by applying (3.1) to the permutation representation 
of G on the set of cosets of (G,,)‘. 

(ii) If a # b thenG({a,b}) moves every vector in V - (a, b). 

(iii) Let B c A and a E [A] - [B]. Then [B U {a}] = U{[a, b]lb E 
[Bll. 0 

NowdefineB= (yi, yz,...} recursively by starting with an arbitrary y,, 
and letting yk+i E Y - [yi,..., yk} whenever the latter set is nonempty. 

COROLLARY 8.4. (i) (91 = d, and V = Efyi. 
(ii) 9? can be found in polynomial time. 
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Proof (i) By (8.3), dim(y,, . . . , yk) = k for each k. 
(ii) See (8.3(m)). 0 

Remark. Throughout this section, matrices will be written with respect to a 
basis ul,. . . , u, of Vfor which ui E yi. 

LEMMA 8.5. Let ti and c be defined as in (B8). 

(i) As permutations on both X and Y, these elements can be found in 
polynomial time. 

(ii) c=(d ,..., 2,1)on.%?. 

Proof (i) By elementary linear algebra, ti exists. Use (3.1) to find the 
stabilizer of each member of .5@ - {i, i + l} and of {i, i + l}, and test its 
generators to find an element moving i. This produces t, in polynomial 
time. Once the permutations ti have been found on X and Y, c can also be 
found. 

(ii) Calculate. Cl 

PROPOSITION 8.6. Let PSL(d, q) z G 4 S,, where IGl > n8. Letp be the 
prime dividing q. Then there is a polynomial-time algorithm for finding a 
subset of G (of size < n2) such that evety element of G of order not divisible 
by p is conjugate to a power of an element of that set. 

Proof By (8.3(i)), G(L@ - (1)) arises from the group of alI matrices 

1 81 -** P&l 
1 

1 .-- 

0 

0 1 1 

with Pi E GF(q). Thus, IG(a - {l})[ = qd-’ < n2. By Steinberg [24, (9.4); 
or 23, (111.2.11)], the coset G(9 - (1))~ behaves as indicated. q 

Remark 8.7. The group Q appearing in (B9) clearly contains G(.%’ - 
PI)* 

The above proof is intended to provide a pattern for (11.4). An elemen- 
tary proof is obtained by observing that G(A? - (1))~ contains each 
element of G arising from the companion matrix 

‘Pl 82 *-* 1 I 
1 

1 0 
,o -. 

\ 1 o/ 

of each monk polynomial f(t) of degree d and constant term ( -l)d. If 
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A E SL(d, q) and p does not divide the order of A, let g(t) be its minimal 
polynomial and set f(t) = g(t)( f - l)d-dqg. Then the above matrix has a 
power conjugate to A in SL(d, q). 

LEMMA 8.8. A Sylow p-subgroup of G can be found in polynomial time. 

Proof Define B(k) and U as in (B5). By induction on k, R(k) fixes 
(yi), . . . , (yi, . . . , yk): by (8.3) [ yi,. . . , yi] is the set of l-spaces in the 
k + l-space (y, ,..., yi). Thus, ][yi ,..., ~~+i]~(~)] = (qd - qk)/(qk+’ - 
q’) < n, and B(k + 1) can be found in polynomial time using (3.2). 

Note that B(d - 1) corresponds to alI lower triangular matrices in 
SL(d,q). Also, B(d - 1)’ arises from lower triangular matrices with ones 
on the diagonal, and hence is a p-group. It follows that U is the unique 
Sylow p-subgroup of B(d - 1). Since B(d - 1) can be found in polynomial 
time, so can U by (3.11). 0 

Remark. B(d - 1) is a Bore1 subgroup of G (Carter [4, p. 1041). 
From now on, r will be a prime # p. Since r 1161, we have rlIIi’-‘(4’ - 1). 

Thus, if k is defined as in (B12), then k < d and k can be found in 
polynomial time. 

LEMMA 8.9. If H and G are as in (B13) then H a N, IH( < n and 
N/H a S,. 

Proof Note that H arises from ah diagonal matrices of determinant 1. 
Thus, IHI d (q - l)d-’ < (qd - l)/(q - 1) Q n. Since the “transposi- 
tions” ti generate the symmetric group on 9, the remaining assertions are 
obvious. •I 

Remark. N is the “N” of BN-pair fame (Carter [4, pp. 101-1131). 

LEMMA 8.10. (i) If k = 1 then (B14) produces a Sylow r-subgroup R of G 
in polynomial time. 

(ii) If 1 = 1 then a Sylow r-subgroup of G is cyclic, and hence is produced 
in (B9). 

Proof (i) Since d < n we can find F/H in polynomial time. Since 
(HI < n by (8.9), we can find R using (5.2). Note that JG] = 
{ q(1/2)d(d-1TIf(qi - l)}/(d, q - 1). Thus, since r # 2, (2.1) implies that 
IRI is the largest power of r dividing ]G] (compare Weir [25]). 

(ii) A Sylow r-subgroup R of G has as order the largest power of r 
dividing qk - 1. On the other hand, GF(qk)* acts on GF(qk) via x + ax, 
and contains a cyclic subgroup of order JR(. Thus, R is cyclic. 0 

LEMMA 8.11. The group S in (B16) can be found in polynomial time. 
Moreover, S z SL(k, q), and S induces SL(k, q) on V’ = (y,, . . . , yk) and 
the identity on (the set of ail l-spaces of) V” = (yk+l,. . . , yd)- 
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Proofi q. fixes each vector in the hyperplane (g - { y,}), and acts on 
the set of k-spaces containing ({ yi, . . . , yk} - { y,}). Since the number of 
such subspaces if < (qd - l)/( q - 1) d n, S can be found in polynomial 
time. Moreover, S is the identity on Y”; it acts on V’ by construction, 
inducing a group containing the restriction of T. to this space. Those 
restrictions generate SL( k, 4). 0 

LEMMA 8.12. A Sylow r-subgroup of S can be found in polynomial time. 

Proofi By (8.11), S/Z(S) = PSL(k, q), where Z(S) induces the iden- 
tity on [yi, . . . , y,J by (8.3). Replace G by S/Z(S) and X by [ yi, . . . , yk], 
and find a Sylow r-subgroup D/Z(S) of S/Z(S). (This is possible by 
induction, unless S/Z(S) is not simple. But then IS] Q 24.) Then the set of 
all r-elements in D is a Sylow r-subgroup of S, and (3.11) can be applied. •I 

LEMMA 8.13. The group E in (B18) can be found in polynomial time, and 
behaves as indicated in (B18). 

Proofi We argue as in (8.5). Namely, if 1 < i < I - 1 use (3.1) in order 
to find an element of N sending g to itself and inducing nik,,(k(i - 1) + 
j, ki + j) on 9. These permutations generate a group S, of permutations of 
a. Thus, E can be found and E/H z S,. 0 

LEMMA 8.14. The groups F and R* in (B19) and (B20) can be found in 
polynomial time. 

Proof: Since E/H acts as S, on the set { ki + l( 0 < i i I - 1 }, a Sylow 
r-subgroup can be found in polynomial time (by (7.6)). This takes care of F, 
and R* is obtained using (5.2). q 

LEMMA 8.15. A Sylow r-subgroup R of G can be found in polynomial time 
using (B21)-(B23). 

Proof: If e E E and S’ # S then S’ acts on V’e, where V’= c Y” by 
the construction. Thus, (V’e]e E E) is the direct sum of the different 
members of { V’e]e E E}, and ]Z] = 1. Since I < n we can find suitable 
elements e(i) in (B21). 

Moreover, if we let D = (S’]e E E) then D is the product of the 
different groups S’, e E E, with each pair of these groups commuting 
elementwise. (More precisely, module its center D is the direct product of 
the projections of the different groups Se.) 

Let r # 2. We claim that R, = (Re$‘)f]l g i < I’, f E R*) is a Sylow 
r-subgroup of D. Since r t q - 1 (as k > 1) we have r t ]Z( D)l, so that this 
claim amounts to the assertion that no two of the groups R$‘)f lie in the 
same group S’. In fact, assume that R, ‘ci)f Q S’ with e = e(il)fi for some 
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it and some ft E R*. By the definition of e(i), ii = i. Set g = ff;’ E R*. 
Then 1 # R$ci)g < Seci) r~ (Seci))s, so that Seci) = (Seci))g. But R* fixes 
each row in (B18), and acts the same on each row. Since g E R* fixes a 
column in (B18) (corresponding to Seti)), it follows that g induces the 
identity on 9. However, r t (HI. Thus, g = 1 and e(i)f = e. Then S’ 
contains a unique one of the groups R$“f, as claimed. 

.Thus, if r # 2 then, by definition, R = R, R*. Using (2.1) in order to 
compare ] RI with ]GJ,, it is easy to check that R is a Sylow r-subgroup of G 
(compare Weir [25]). 

Finally, let r = 2. Note that H normalizes D, while R* normalizes both 
H and D. By (2.1), DHR* contains a Sylow 2-subgroup R of G (compare 
Carter and Fong [5]). By (8.9), IH1 
Ml2 - W” 

< n, and by (8.1), ID] B { q(q2 - 1))’ d 
c n2. Thus, (5.2) can be used to find R. 0 

This completes the discussion of Part II of the algorithm in Section 5. 

9. CLASSICAL GROUPS: PRELIMINARIES 

This section is a digression from the proof of Theorem B. It contains 
notation and elementary properties of symplectic, orthogonal and unitary 
groups (Dieudonnt [8] or Kantor [12]). 

Let V be a d-dimensional vector space over GF(q). Let ( , ) be a bilinear 
or hermitian form on V. If S G V then Sl= (v E VKu,S) = 0} is a 
subspace of V. An isometry of V is an element g E GL(V) such that 
(ug, up) = (24,~) for all u, u E V. 

If (D, u) = 0 for all u E V, while V 1 = 0, the group of isometries is 
Sp(d, q). Here, d = 2m for some m. Also, PSp(2m,q) = Sp(2m,q)/ 
( - 1). 

Assume that ( , ) is hermitian, so that ((Yu, j3u) = (Y&U, u) and (u, u) = 
(u, u) for all (Y, /3 E GF(q) and u, u E V. (Here, q is a square, and Cu = ad’*.) 
Then SU( V) = SU(d, q112) is the group of those isometries lying in SL( V), 
and PSU(V) = SU(V)/Z(SU(V)). 

A quadratic form on V is a function Q : V + GF( q) such that Q( u + u) 
- Q(u) - Q(u) = (u, u) is bilinear. Assume that 0 e Q(V L - (0)). Then 
VI = 0, except if q is even, d is odd and dimV A = 1. The orthogonal 
group a(V) is the derived group of {g E SL(V)jQ(ug) = Q(u) for all 
u E V} (unless d = 4 and q = 2, a situation which will not concern us 
here). 

If W is a subspace, and V’nW= 0, then dimW+ dimWl= d. Call 
W nonsingular if W n W’ = 0, that is, if V = W 8 W’ . Call W totally 
isotropic (or totally singular) if (W, W) = 0 and V is symplectic or unitary 
(or Q(W) = 0 and V is orthogonal); then dim W Q fd. 
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Let m be the maximal dimension of a totally isotropic or totally singular 
subspace. Then d - 2m Q 2, and vectors ei and f. exist for which 

V= (e,,...,e,,f,,...,f,) @ V,, (9.1) 

where ( ei, ej) = 0 = (fi, h), (ei, ej) = Sij, ei, fi E VO* , and V, - (0) con- 
tains no isotropic (or singular) vector. We will need the following lemma, 
which is easy to check. 

LEMMA 9.2. Let V and G = Sp(d, q), SU(V), or 0(V) be as aboue. 

(i) There is an element of G sending (eJ - (e,), (fJ w (f2), and 
fixing every other e, and fi for i > 2. 

(ii) There is an element of G sending (eJ * ( fi) and fixing every e, 
and fi for i > 1, unless G is orthogonal and d = 2m. 

(iii) In the case excluded in (ii) there is an element of G sending 
(el) - (fi), (e2) +B (fi), andfixing every ei andf. for i > 2. 

The exceptional situation in (iii) is discussed in [8, pp. 50, 65, 86, 87; and 
12, p. 181. 

Another type of exceptional situation arises when G is orthogonal, 
d = 2m + 1, q is even, and dimV’ = 1. Here, the natural map V --, V/V’ 
induces an isomorphism fl(2m + 1, q) P Sp(2m, q). In (6.1) we restricted 
ourselves to Q(2m + 1, q) instead of Sp(2m, q), and we will continue to do 
so. 

The following simple result holds in all cases. 

LEMMA9.3. If dimV> 3 and 0 # u E Vthen (u)’ isspannedbyitsset 
of totally isotropic or totally singular l-spaces. 

Finally, we turn to a description of Sylow r-subgroups of G = Sp(Zm, q), 
SU(V), and a(V), where r is not the prime p dividing q and r 1161. More 
precisely, we will describe certain r-subgroups R of G. That these are Sylow 
subgroups follows from a comparison of IRI with ]GJ, using (2.1) and [4, 
pp. 144, 155, 259; or 10, p. 1351. For more details, see Weir [25] and Carter 
and Fong [5]. 

Construction 9.4 (Description of a Sylow r-subgroup of G) 

Case 1. G = Sp(2m, q). Let k be the smallest positive integer such that 
rlqk f 1. Let e, and fi be as in (9.1). Let W;. = (e(i-ljk+j, f~i-ljk+j]l <cj Q 
k) for 1 < i Q I = [m/k], and let E be the-group of all elements of G 
fixing {IV,, . . . , W,}, {(eik+j)]O d i < l}, and { (fik+,]O Q i < I} for 1 <j 
d k, and (e,) and ( fi) for kl < i Q m. 
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Imitating (5.3@)), let G(Wi’) be the group of all elements of G in- 
ducing the identity on W;:’ . Then a Sylow r-subgroup R of (G( IV,‘) 
X . . . x G(W,I))E is also a Sylow r-subgroup of G. 

If r # 2 then a Sylow r-subgroup of G(Wi*) is cyclic. Assume that k > 1. 
Let R* be a Sylow r-subgroup of E. Let IV& 1 Q i < I’, be representa- 
tives of the orbits of R* on { W,, . . . , W,}, and let Rfcij be a Sylow 
r-subgroup of G(W,$. Then R = (R*, Rfcijll < i Q 1’). 

Case 2. G = Q *(d, q) or SU(d, q). This time the definitions of k and 
WI* are somewhat more complicated. If r # 2, and if t + q + 1 in case G is 
unitary, let k be the smallest positive integer such that r IlG(W,l)l for some 
nonsingular subspace W, of dimension k. If 2 # r(q + 1 and G is unitary, 
let k = 1 and let WI be any nonsingular l-space. Finally, if r = 2 let k = 2 
and let WI be a nonsingular 2-space such that 2 ]]G( Wl*)l. 

Let {WI,..., W,} be a subset of WIG maximal with respect to consisting 
of pairwise orthogonal subspaces of V. Take any basis wl,. . . , w, of V 
which, when intersected with each Wf, produces a basis, and such that 
wi E (w~-~)~ and { wi, wj} E { wimk, w~-~}~ for k < i, j d kl. Let E be the 
group of all elements of G fixing {WI,. . ., W,}, {(w~~+~)IO < i < Z} for 
1 < j Q k, and ( wi) for kl < i Q d. Then a Sylow r-subgroup R of (G( W,‘) 
X . . . x G( W,I))E is also a Sylow r-subgroup of G. 

If r + 2 then a Sylow r-subgroup of G( W,‘) is cyclic. Assume that k > 2. 
Then R can be obtained exactly as in the last paragraph of Case 1. •I 

Remarks. When k < 2 but r Z 2, R can be constructed explicitly in a 
similar manner; when r = 2 an explicit description is slightly more com- 
plicated (cf. Carter and Fong [S]). However, when k Q 2 we will not need 
such a precise description of R: since IG(W,I) X * - - XG(W,‘)I < (q8)‘, 
(5.2) will allow us to find a Sylow r-subgroup of (G( W,‘) 
X - - - X G( WZ,I))R*. 

The fact that G(WIL) has cyclic Sylow r-subgroups when r # 2 will be 
crucial later. Note that we have not actually constructed these cyclic groups; 
constructions are given in Weir [25], but we will use Steinberg [24] in order 
to avoid contending with extension fields. 

A comparison of Cases 1 and 2, and especially of the definitions of WI 
and E contained in them, will explain some of the awkwardness inherent in 
(B29)-(B37). 

10. MAKING POINTS 

In this section we will prove Theorem 6.2 and find all the l-spaces of V. 
Let rz* be the number of totally isotropic or totally singular l-spaces of V. 
Then n* is as follows (e.g., Curtis, Kantor, and Seitz [7, p. 131). 
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G ?I* 

pSp(% 4) 
PS2(2m + 1, q) 

fJQ *t(2s, 9) 
PSU(2m + 1, q) 

PSWm, 4) 

(q2” - l)/(q - 1) 
2m - l)/(q - 1) 

(qS &qs-l f. l)/(q - 1) 
(42” - 1)(9*“-’ + l)/($ - 1) 

(9 *m+l + l)($” - l)/($ - 1) 

LEMMA 10.1. If H < G and (G: HI < q3n* then H is the stabilizer of a 
l-space of V. Moreover, if IG: HJ < 2n* then IG: HJ = n* and that l-space 
is total& isotropic or totally singuiar, except perhaps if G is S2(2m + 1,2) for 
some m and JG: HI = 2”-‘(2” f 1). 

Proof Kantor [14, Theorem 21. In fact, this is immediate from (6.1). 
(Note that we are excluding Sp(Zm, 2’) as in (6.1(m)).) 0 

Proof of Theorem 6.2. By Sections 7 and 8 we may assume that G is 
symplectic, unitary, or orthogonal. Since (G] > n8, by (6.l(iii)) we have 
dim V > 9. By (10.1) we only need to exhibit a subgroup of G of index n* 
belonging to the set A’ produced by Double-Pairing. 

First, let W be a minimal proper G,-invariant subspace of V (cf. (6.1)). 
Then dim W < $d, where d = dim V. Since G, fixes W n W* , we have 
Wn WI=0 or WC WI. Similarly, if V is orthogonal and W c W’ 
then either W is totally singular or V has characteristic p = 2 and dim W = 
1. There are three cases to consider: (a) W is totally isotropic or totally 
singular; (P)dimW= 1; and(y) V= W@ WI. 

(a) Choose Wg E WC such that WI nWs= Wn Ws= Wi-7 
(W9 L and dim W n Ws = 1 or 2. Set y = x5 Then the only proper 
subspaces fixed by Gt,, ,,) are Wn Ws, (W,Ws), (Wn Ws)l, and 
(w, Wg)‘. If G{,,,) < H < G then H is reducible by Kantor [13], and 
hence H must fix one of the above subspaces. Since (W, Ws) n ( W, Ws) L 
= W n Ws, it follows that H fixes W n Ws. Thus, there is a unique 
maximal subgroup M of G containing H, namely, the stabilizer of W fI Ws; 
and that maximal subgroup is in &(G,.). 

If possible, choose g so that dim W n Ws = 1. Then M is the stabilizer 
of the l-space W n Ws, and (G : M ( = n*. 

If g cannot be chosen as above then dim W = m > 2 and G = PP+(2m, a) 
[8, pp. 50, 65, 86, 87; or 12, p. 181. Thus, as above A(M) contains a 
subgroup of index n* in G. 

( j?) Let U be a totally isotropic or totally singular l-space in W 1 , and 
choose Ws E WC - { W} inside (W, U). Set y = xg. It is easy to check 
that some element of G interchanges W and Ws. If M is a maximal 
subgroup of G containing G(,, vj, then (by [13]) M is the stabilizer of U. 
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Clearly, M E d(G,). 
(v) Here, dim IV’ 3 4. By the argument in (/3) we may assume that 

dimW> 2. 
Let U be a totally isotropic or totally singular l-space in IV’ , and let 

W, # W be any hyperplane in (U, W) not containing U. Then IV, E WC, 
and some g E G interchanges W and W,. Set y = xg. 

Let Vi = W n (W n WI) ’ . Since W n W, is a hyperplane of W, dim U, 
=l. Moreover, W’nW,=O, Wn WILc U,, and W,n(Wn W,)’ is 
either 0 or a l-space U,l. 

Let M be any maximal subgroup containing G( x, yJ. Since dim V > 8, M 
is reducible by [13]. Then M fixes U, U,, or U,l. Thus, we can argue exactly 
as in (/3) in order to show that J(M) contains a subgroup of G of index 
n*. 0 

As indicated in Section 5, we will identify Y with the set of totally isotropic 
or totally singular l-spaces of V. 

LEMMA 10.2. ,!,ety,z E Y, y f z. 

(i) There is a unique prime p such that Op(Gy) # 1. This prime divides 
q, and can be found in polynomial time. 

(ii) y and z are perpendicular l-spaces of V if and only if OJG,,,) + 1. 

Proof. (i) See Curtis, Kantor, and Seitz [7, Sect. 31 for the first two 
assertions. The last part follows from Theorem C. 

(ii) If z c y J. then GyZ D OJG,,), # 1. Assume that z c yl . Then 
v= (Y,Z) fB (Y,Z>‘9 and hence O,(G,,) = 1 (compare (9.2)). q 

COROLLARY 10.3. The parenthetical remark in (B4) holds. 

Proof. Clearly, (6.1(i)) handles the PSL(d, q) case, while (10.2(ii)) deals 
with the remaining cases. q 

LEMMA 10.4. The integer q defined in (B29(i)) or (B31) is the “q” 
appearing in the name PSp(2m, q), Pa *(d, q), or PSU(d, q). 

Proof Use the formula for n* = JY ] in the table at the beginning of this 
section. 0 

THEOREM 10.5. There is a polynomial-time algorithm for finding a set Y+ 
on which G acts exactZy as it acts on the set of all l-spaces of V. Moreover, 
IY’I -e 4n*. 

Proof If G is PSp(2m, q) there is nothing to prove: let Y+= Y. Assume 
that G is orthogonal or unitary, and proceed as follows: 

(1) Let y E Y, and let z E Y with z + y. 
(2) Find L = (GJ’ n (GJ’. 
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(3) For each conjugate L* + L of L, find (L, L*), and retain only 
those L* for which (L, L*) # G. 

(4) Find a maximal subgroup M of G containing (L, L*). 

(5) Let Y+ be the set of all conjugates of all such maximal subgroups 
M for which (G: M] < q3n*. 

We must show that Yf can be found in polynomial time, and that Y+ 
behaves as desired. Of course, we regard G as acting on Y+ by conjugation. 

As in (8.3(i)) we can find L. Clearly, ILG( < n*2 -C 4n2, so we can find 
each L* (using (3.1)). Use (3.6) to find M. Certain of these subgroups M 
will satisfy (G: M( < q n 3 *. Any such M is the stabilizer of a l-space of V, 
by (10.1). Thus, it remains to show that every l-space of V is fixed by a 
conjugate of some such M. 

Note that L is the group of all elements of G inducing the identity on the 
nonsingular 2-space (y, z). Every l-space of V can be sent into (y, t) by 
an element of G. Consider a l-space a of (y, z), and let (y, z>s, g E G, be 
such that (y, Z) n (y, z)s = a and (y, z)* n (y, z)” = 0 = ((y, z)g)’ 
n(y, z). Set L *=Ls.Thenaandal are the only proper subspaces fixed 
by (L, L*). Let M be as in (4). Then M is reducible by [13]. Thus, 
M= G,. 

Consequently, Y+ (defined in (5)) consists of all stabilizers of l-spaces of 
V. Finally, the number of such l-spaces is -ZZ IV] < n*2. q 

LEMMA 10.6. AN assertions in (8.3) hold. 

Proof Repeat the proof of (8.3). q 

LEMMA 10.7. In the notation of (5.6), A* is the set of all l-spaces in A’ , 
and can be found in polynomial time (gi0en.A). 

Proof. In (5.5(i)), a* is the set of all l-spaces in a 1 by (10.2). The same 
is true in (5.5(ii)). For, it suffices to check that, if a E Y+- Y and b E Y, 
then [a, b] n Y = { 6) if and only if a and b are perpendicular. Let 
a = (u) and b = (v). If (u, u) = 0 then (u + au, u + au) # 0 (or Q(u + 
nu) # 0 in the orthogonal case) for all scalars a. Conversely, if (u, u) # 0 
then (t(, u) is nonsingular and hence contains at least two members of Y. 

Thus, A* is the set of all l-spaces in A ’ . 
Next, note that a* can certainly be found in polynomial time in (5.5(i)). 

In (5.5(ii)), simply test [a, b] n Y for each b E Y. Next, given A form each 
b* and test whether A c b*. Thus, A* can be found in polynomial time. q 

11. THEOREM A, AND A SYLOW P-SUBGROUP 

This section concerns (B24)-(B28). In particular, it contains the end of 
the proof of Theorem A. 
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LEMMA 11.1. (i) The set A? in (B24) can be found in polynomial time. 

(ii) There exist vectors e, E yi andfi E zi behaving as in (9.1). 

Proof First, zi can be found using (10.2(ii)). Let 0 # e, E y,; there is a 
vector fi E zi such that (e,, fi) = 1. Assume that yj = (ej) and zj = (f,) 
have been found for 1 <j < i such that (ej, ek) = (6, f,J = 0 and (e,, fk) 
= ajk for 1 < j, k < i. Consider W = (e,, . . . , ei, fi, . . . , fi) * . If W contains 
no member of Y, (B24) has us set i = m (compare (9.1)). If W contains a 
member y,, i of Y then yk’; I n W cannot contain all members of Y in W, 
so that zk+i exists. Now let yk+i = (ek+d, and note that fk+l E zk+l 
exists satisfying (ek+i, fk+J = 1. 

This proves (i), since each test for yi - zj takes polynomial time. More- 
over, (8)” has no member of Y, so that (9.1) holds. •I 

LEMMA 11.2. The elements ti in (B25) can all be found in polynomial time. 
Moreover, t, f (m, m’) if and only if G = PV(2m, q). 

Proof The ti exist by (9.2), and can be found exactly as in (8.5). 0 

LEMMA 11.3. 
over, IQ1 < 4n’. 

(i) Q = O,(G,,) can be found in polynomial time. More- 

(ii) H = Gyl YmZ, . . L, can be found in polynomial time. Moreover, 
IHI < 16n4. 

(iii) 1QHl < 64n6. 

Proof (i) By Curtis, Kantor, and Seitz [7, Sect. 31, 1Ql < IV1 c n** < 
(2n)2 and G,,, has at most two nontrivial normal p-subgroups. One of these 
has order q, while the other has order > IV(/q > n*l12. 

Now consider (B26). We may assume that IQ01 = q. By [7, Sect. 31, 
G,,/Q, acts faithfully on the set of all Q,,-orbits. In view of Theorem C, this 
proves (i). 

(ii) The first assertion is immediate by (3.1). Also, the restriction of H 
to (g) arises from diagonal matrices, while dim{ .?#) ’ < 2 by (9.1). Thus, 
IHI < q3q2” < n*4 < 16n4. 

(iii) By (i) and (ii), lQHl < 4n2 * 16n4. 0 

THEOREM 11.4. Let G be a given subgroup of S,, that is isomorphic to a 
simple Chevalley group of characteristic p. Then there is a polynomial-time 
algorithm for finding a set of elements such that every element of G of order not 
divisible by p is conjugate to a member of the set. 

Proof Use (3.2), (3.5), (6.1), and (8.6), to reduce to the situation in the 
present section. We found c, c’, and QH in (B25) and (B26). By Steinberg 
[24, (9.4), (9.5)], each of the desired elements of G is conjugate to a power of 
an element of Qc U QHc’. 0 
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Remark. Actually, Steinberg constructs a much smaller set than Qc U 

QHc’ which behaves as above. For a discussion of his results, see the 
Appendix. 

The following is another application of (11.3). 

PROPOSITION 11.5. The structure of G can be determined as follows. 

(i) G is symplectic if and only if Y+= Y. 

(ii) G is orthogonal if and only if Q is abelian. 

(iii) G is unitary if and only if it is not symplectic and Q is nonabelian. 

Proof See Curtis, Kantor, and Seitz [7, Sect. 31. (N.B.-Here, (ii) must 
be interpreted by using the fact that Pa(2m + 1,2’) = PSp(2m,2’) in 
order to ignore PSp(2m, 2’), precisely as in (6.1).) 0 

LEMMA 11.6. A Sylow p-subgroup of G can be found in polynomial time. 

Proof This is proved almost exactly as in (8.8). Here ][ y,, . . . , yk+ i ] B(k)] 
= {n* - (4“ - l)/(q - l)}/{(qk” - q“)/(q - 1)) < in* < n, where 
R(k) is defined in (B28) (i.e., (B9)). A simple matrix calculation shows that 
B(m) has a unique Sylow p-subgroup U (and that R(m) is solvable: B(m)” 
is a p-group). Thus, U can be found using (3.11). 0 

12. SYMPLECTIC GROUPS 

This section is concerned with the case Y+= Y considered in (B29). By 
(11.5), G is symplectic. In (ll.l(ii)) and (10.4) we found m and q such that 
G z PSp(2m, q). 

LEMMA 12.1. (i) In (B29(ii)), k can be found in polynomial time. 

(ii) In (B29(iii)), S can be found in polynomial time, and induces 
Sp(%q) on (ul,. . . , ykr q,. . . , zk). 

Proof (i) Obvious. 
(ii) For the first part, see (53(ii)) and (5.6). For the second, note that S 

is the group of all elements of G inducing the identity on (the set of all 
l-spaces of) (yi,. . . , yk, zi, . . . , zk)’ . 0 

LEMMA 12.2. The group E in (B29(iv)) can be found in polynomial time, 
and E/H z S,. 

Proof: The group induced on &&? by E is E/H and is isomorphic to a 
subgroup of S,. By (B25) and (B27) we can find N = (H, t,, . . . , t,). As in 
the proof of (8.13), elements of N can be found which belong to E and 
generate S, modulo H. 0 
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LEMMA 12.3. Sylow r-subgroups R, and R* of S (resp. E) can be found 
in polynomial time. 

Proof. Repeat the proofs of (8.12) and (8.14) (essentially verbatim). 0 

LEMMA 12.4. If k > 1 then (B29(vi)) produces a Sylow r-subgroup of G in 
polynomial time. 

Proof. The proof of (8.15) can be repeated, essentially verbatim (except 
delete the last paragraph). That R is a Sylow subgroup of G follows from 
(9.4). Cl 

LEMMA 12.5. If k = 1 then (B29(vii)) produces a SyZow r-subgroup of G 
in polynomial time. 

Proof: Let D = (SE). Then, as in (8X), IDI < (q3)” < n*, while IHI 
< 16n4 by (11.3). Since H normalizes D and R* normalizes both H and D, 
we can apply (5.2) in order to find a Sylow r-subgroup R of (D, H, R*) = 
DHR*. By (9.4), R is a Sylow r-subgroup of G. 0 

13. ORTHOGONAL AND UNITARY GROUPS 

Finally, we will deal with (B30)-(B37), thereby completing the proof of 
Theorem B. 

Recall that G is an orthogonal or unitary group, and that Y- = Y+ - Y 
“is” the set of all nonsingular l-spaces of V (by (10.5)). Also, q was found 
in (10.4). 

LEMMA 13.1. 7’he subset { ul, . . . , ud} in (B33) can be found in poly- 
nomial time. Moreover, d = dimV and V is the direct sum of the l-spaces ui. 

Proof: By (10.6), (10.7), and (3.1), each test r 1 IG(Y U { yi})( or 
2 1 ]G([u,, u,]*)] in (B31) can be performed in polynomial time. Thus, Z 
and S can be found in polynomial time. 

By (10*7), { U1, * *. 9 Ui} * n Z n Y- can be found in polynomial time, and 
the ui are pairwise orthogonal l-spaces in (5.7). Similarly, if u, v E Y then 
[u, v] n [u, v] * can be found in polynomial time. Thus, (B32) runs in 
polynomial time. 

BY W.Q, [u,, . . . , uk] is the set of all l-spaces of a subspace IV, of V. In 
view of (10.7), our construction of IV, shows that IV, is nonsingular 
(compare (9.4)). 

Similarly, in (B33) each test in (i), (ii), or (iv) requires polynomial time (by 
(10.7) and (3.2)), while (iii) is merely a definition. (N.B.-The last portion 
of (iv) refers to the possibility that p = 2 and dimV is odd, in which case 
dimVl= 1.) Cl 



510 WILLIAM M. KANTOR 

LEMMA 13.2. The groups E and H in (B34) can be found in polynomial 
time. Moreover, E/H P S, or A,, and JH( < 16n4. 

Proof Let G* = GO(d,q) or GU(d,q), let H* = (G*),l Ud, and let 
E * be the group of all elements of G * that fix { ul,. , . , ud} and act on the 
subscripts as in (B18). Then E */H * = S,. It follows that E/H z S, or A,. 
Moreover, (HI < (q2)d -C n*4 -C 16n4. 

We can find H using (3.1). An element of E inducing any desired 3-cycle 
within E/H can be found in polynomial time exactly as in the proof of 
(8.13), as can an element inducing a transposition if one exists. Thus, E can 
be found in polynomial time. •I 

LEMMA 13.3. A Sylow r-subgroup R of G can be found in polynomial time 
using (B36) and (B37). 

ProojY Sylow r-subgroups R, and R* of S (resp. E) can be found in 
polynomial time by repeating the proofs of (8.12) and (8.14). 

If k > 2, repeat (B21), (B22), and the first three paragraphs of the proof 
of (8.15) (replacing V’ by W, = (ul,. . . , uk), V” by W,’ , and .@’ by 
{U i,. . . , ud}). The result is a Sylow r-subgroup R = R,R* of ((SE), R*). 
We claim that R is a Sylow r-subgroup of G. For, let K = (~~~-i)~+~ll <j 
< k) for 1 d i d 1. By construction (B33), y E Vi’, while the w are 
pairwise orthogonal by (10.7). Also, by (B33(iii)), (W, I * . . I W,) 1 has 
no subspace belonging to WIG. This matches the present notation with that 
of (9.4). Thus, (9.4) proves our claim. 

Finally, if k < 2 let D = (SE) and imitate the last paragraph of the 
proof of (12.5): IDHI Q (q3)d/216n4 < n6, and (5.2) can be applied in order 
to find a Sylow r-subgroup R of DHR*. As above, R is a Sylow r-subgroup 
of G by (9.4). q 

14. CONCLUDING REMARKS 

This completes the proof of Theorems A and B. The crucial step involved 
the construction of a (possibly) new set Y on which G acted in a concrete 
manner (6.2). It was then possible to pick out special subsets of Y and find 
their stabilizers, using no more than elementary linear algebra. 

On the other hand, (6.2) required that (Gl be large: lG1 > n’. If lG1 4 n8 
then the time required to find an element of order r is O(n9): pick each 
element of G, and test its order in time O(n). Similarly, if lG1 d n* then the 
algorithm referred to in (5.2) produces a Sylow r-subgroup of G in time 
O(n9). Note that the known algorithm for (3.10) runs in time O(n8). 
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APPENDIX 

In (B9) and (B27) we quoted results of Steinberg [24]. This Appendix 
summarizes these results and relates them to (B9) and, especially, (B27). 

We will assume familiarity with root systems, root groups, and the 
twisting process (Carter [4, Chaps. 2, 5, 8, 131). 

Let G denote one of the classical groups SL(f + 1, q), Sp(21, q), Q(21+ 
1, q). Q+(21, q), Q-(2m + 2,q), SU(2m,q), or SU(2m + 1,q). (Note the 
slight change of notation from that of Sects. 8-13: 1 is used instead of 
d - 1 or m, for reasons that will be seen in (II) and (III) below.) In order to 
simplify our discussion, we will divide it into three parts: (I) untwisted 
groups, (II) Q2-(2m + 2, q), (III) unitary groups (the hardest case). 

Each group G has a Weyl group W = N/H and a root system. If a is a 
root there is a corresponding reflection We E W. Let s, be any preimage of 
w, in IV. We will abuse language by identifying w, and s,. 

(I) G = SL(1 + l,q), Sp(21,q), Q(21 + l,q), or P+(21,q), 1 > 3. 
With each root a is associated a root group X, = { X,(t)lt E GF(q)} [4, p. 
681. Let ai,. .., a1 be a fundamental system of roots, with corresponding 
reflections s i, . . . , s, [4, p. 131. We assume that these are ordered from left to 
right in the Dynkin diagram, so that deletion of ai produces a diagram of 
the same “ type” but with one less node. Example: 

- *** /-y= i-1. 
1 2 

Then the corresponding parabolic subgroup Pi is the stabilizer of a l-space, 
which is totally isotropic or totally singular if G is symplectic or orthogonal; 
moreover, O,( Pi) = (X,] a > 0, a involves ai) [7, Sect. 31. Set 

c = X&X& * - * xa,s,. (A-1) 
Steinberg showed that every p’-element of G is conjugate to a power of an 
element of C. (Actually, he proved a somewhat stronger result; see [24, (9.4), 
(9.5)] and [23, (III 2.11)].) Moreover, since X,W = Xav for all w E IV, we 
have (cf. [4, (7.3)]) 

c = XS,X& * * * X&S& . * * s, 

where ai = a?-1 ““1 = ai + ai-i + * * . + ai. Thus, 

(-4.2) 

(A.3) 

We note that the elements si can be identified with the elements ti found in 
(B8) and (B25) (compare [7, (6.2)], where the action of the si is discussed). 
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Also, P, is the stabilizer of yi [7, pp. 8-91. Thus, the cosets Qc in (B9) and 
(B28) behave as desired. 

(II) G = 52-(2m + 2, q), m > 3. Set 1 = m + 1 and consider 
L?+(21, q2) as in (I): let (Y~ and si be as in (I). A fundamental system 
Pl, . . ., &, for G can be obtained by letting pi = (Y~ for i d m - 1 and 
Pm = (a, + %?I+1 )/2; the corresponding reflections are rj = si for i d m - 
1 and rm = s,s,+i [4, (13.1.2) (13.3.2)]. The corresponding root groups for 
G are UP, = { Xa,(‘)]t E GF(q)} for i d m - 1 and UPm = 
{Xa,(~)X,m,l(~4>If E @‘Cq2)) [4, (13.W. Set 

C = @‘c#a~~2 . . . Xa,-,s,-l&s,) n G 

= Ua,rlU,2r2 . . * Us,rm 

where ai = /?,“-I “‘r*. Then C G O,( PI)rI . * . r,,, and every p’-element of G 
is conjugate to a power of an element of C, as before. 

(III) G = SU(2m, q) or SU(2m + 1, q), m a 3. The case of SU(2m, q) 
is contained in that of SU(2m + 1, q) (see below), so let G = SU(2m + 
l,q). Set I = 2m, and let SL(l+ 1,q2), aI,. . .,(Y,, sl,. . .,s,, and X, be as 
in (I): 

- . . . . . . 
a1 a2 am am+1 aI-1 aI 

Set (Y = (Y, + (~,+i. 
By [4, (13.3.1) and (13.1.2)], a fundamental system pi,. . . ,& for G can 

be obtained as pi = (Y~ + (Y,+ i _ i if i < m and &,, = (Y, with corresponding 
reflections ri = sis,+ 1 _ i if i < m and r, = s,. By [4, (13.6.3)], the corre- 
sponding root groups are 

Q = { 4(t)4+l-i(tq)lt E Gf’(q2)} ifi<m-1, 

U,,, = { X,(t)X,+,(t4)X,(~)lt,u E GF(q2), c + t4 = uu”}. 

The resulting Dynkin diagram is 
- . . . 

81 82 Bnl7m 

[4, (13.3.8)]. 
Set T, = (X,, X-,) n T, where T is the subgroup of SL(I + 1, q2) 

called “H” in [4, p. 971. Set H = G n T (so that H is as in (B28)). Note 
that T normalizes each X,, and is normalized by each si. 

Set 
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In [24, (9.4), (9.5)] (compare [23, proof of (11X.2.11)]), Steinberg proved that 
euev p’-element of G is conjugate to an element of C’ U C “. Moreover, every 
p/-element of the group G* = (X+a,, X,J # m, m + 1) n G z 
SU(2m, q) is conjugate in G * to a power of an element of C’ [24, (9.12)]. 

Set u = rm-i ... ri. We will show that (C’)” and (C’ U C”)” are con- 
tained in the coset QHc’ constructed in (B28) for SU(2m, q) and SU(2m + 
1, q), respectively. 

BY 64.5), 

C’ = (X,rmXa,,-lx,m+2c,-l -. . X,,k,rl) n G 

C Ufl,r,uB m _ ,rm- I . . . U&r1 

by [4, (13.6.1)]. Then 

C’ C Uu,Uym-, e-v Uy,rmrm-, ... rl, 

where y,,, = Is, and, if i < m, yi = &‘~+* ..“m = /1, + &,, + - - * +&. (Note 
that this implies that C’ c O,(P,)r,r,-, * . . rl, whereas we are after 
o,J Pd.) Then yk = &,, + 2Cr-‘fij and yy = y: - Cifij for i < m - 1. 
Thus, each yp involves pi, so that C’ s O,( Pl)(r, * . . rl)“. Similarly, 
C” c O,( PI) H(r, * . . rl)“. 

Finally, P, is the stabilizer of yi in G [7, Sect. 31. Thus, C’ U C” c 
Op(G,JWm . . - ri)“. But the present elements ri are the elements ti found 
in (B25), while c-l = r, * * * rl and u = r&l. Thus, c’ = (rm . . . rl)” and 
C’ u C” c O,( P,)Hc’. Intersecting with G*, we find that C’ behaves 
correctly for G*. 

Thus, we have now seen that Steinberg’s results contain the information 
required in (B9) and (B27). 

Remark. In fact, C, C’, and C’ U C” are much smaller than the sets 
used in (B9) and (B27): the latter sets have size approximately equal to the 
square of that of the appropriate set C, C’, or C’ U C”. However, this does 
not seem to help improve any of the timing estimates indicated in Section 
14. 
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