Plane Geometries Associated with Certain 2-Transitive Groups*

WILLIAM M. KANTOR

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

Received January 4, 1974; revised March 13, 1975

1. Introduction

Let G be a permutation group 2-transitive on a finite set. Assume that the stabilizer of two points fixes exactly $k \ge 3$ points, but not all points. Let L denote this set of k points, and call the distinct sets L^g , $g \in G$, lines. Then all lines have k points, and any two different points are in a unique line. This means that we have a design \mathscr{D} (with $\lambda = 1$). The only known possibilities for \mathscr{D} are affine spaces, the projective spaces PG(d, 2), and one example with 28 points when k = 4.

A subspace of \mathscr{D} is a set Δ of points and at least two lines such that any two different points of Δ are on a line of Δ , and all points on a line of Δ are in Δ . In [11], Hall considered the case k=3. His main result was that \mathscr{D} contains as a subspace a seven point projective plane or a nine point affine plane; this means, intuitively, that these classical planes are the building blocks of \mathscr{D} . Our purpose is to generalize this result.

THEOREM 1. There is a subspace Δ and a subgroup H of G fixing Δ , such that one of the following holds for Δ and the group \overline{H} induced by H on Δ .

- (i) $|\Delta| = k^i$ for some $i \ge 2$; \overline{H} is 2-transitive on Δ , has a regular normal subgroup, and has no involution fixing more than one point. (In this case, Δ can be taken to be the set of fixed points of a Sylow 2-subgroup of the stabilizer in G of two points.)
- (ii) Δ is an affine translation plane of order k, \overline{H} contains the translation group, and each line in Δ is fixed pointwise by an involution in \overline{H} .
- (iii) Δ is projective plane of order 2, k=3, and \overline{H} is PSL(3,2) or the stabilizer of a line in PSL(3,2).
- (iv) Δ is isomorphic to a certain design $\mathcal{D}(k)$ with k a power of 2, $|\Delta| = k(2k-1)$, and $\overline{H} \approx PSL(2, 2k)$.

For each $k=2^e$, there exists a unique design $\mathcal{D}(k)$ mentioned in (iv).

^{*} This research was supported in part by NSF Grant GP-37982X.

In fact, $\mathcal{D}(k)$ is the design determined by the dual of the complement of a completed conic in PG(2, 2k) (see (6.3) for a group-theoretic description). The design $\mathcal{D}(4)$ is the one with 28 points mentioned earlier. Any affine plane of odd order coordinatized by a semifield behaves as in (ii).

Note that, when k is prime, each translation plane of order k is desarguesian; here, in situations (i) and (ii), AG(2, k) is a subplane of Δ . Also, the possible groups \overline{H} in (i) have been explicitly determined by Hering [13] and Huppert [15].

It appears to be very difficult to determine \mathscr{D} starting from the subspaces Δ guaranteed by Theorem 1. In view of the 2-transitivity of G, there will be many images of such a Δ under G. What is now needed is a method of tying all these subspaces together. Moreover, even when $\mathscr D$ is known to be AG(d, k) or PG(d, 2), only very meager results are known concerning the possible groups (see, e.g., [17, Section 4]).

From our proof it is not difficult to deduce the following consequence of Theorem 1.

COROLLARY. Let G be a group 3-transitive on a finite set, in which the stabilizer of three points fixes exactly $k+1 \ge 4$ points, but not all points. Then there is a set Δ of points such that the stabilizer H of Δ induces a group \overline{H} on Δ having the following properties.

- (i) If three points are in Δ , so are all k+1 points fixed by the stabilizer in G of the three points.
- (ii) Either (a) k=4, |A|=8, and \overline{H} is a subgroup of the holomorph of $E=Z_2\times Z_2\times Z_2$ containing the normalizer of a Klein group in E; or (b) $|A|=k^i-1$, and $\overline{H}\geqslant PSL(2,k^i)$ for some $i\geqslant 2$.
- (iii) If a Sylow 2-subgroup of the stabilizer in G of three points fixes exactly k-1 points, then either (iia) holds, or (iib) holds with $|\Delta|=k^2+1$ and $\overline{H} \geq PGL(2,k^2)\langle a \rangle$, where a is an involution induced by the involutory field automorphism of $GF(k^2)$.

In view of a beautiful result of Nagao [18], there is no point to examining the 4-transitive generalization of this situation. We remark that Nagao's argument is very elementary, except when the stabilizer of four points fixes exactly five points. Here, he uses the Feit-Thompson theorem. However, we note that this case can be easily handled by means of the reduction argument used in Hall [11], Theorem 2.2, or (3.1) together with the case k=3 of Theorem 2.

The proof of Theorem 1 involves a blend of geometric, combinatorial, and group-theoretic methods. Most of the time, only the Feit-Thompson theorem is needed, not any more recent deep group-theoretic classification

theorems. The glaring exception here is at the end of Section 5, where [1] seems to be needed. Nevertheless, we have tried to avoid recent classification theorems when possible.

In the proof, we first reduce to a suitable subspace of \mathcal{D} and section of G. The cases k odd and k even must then be dealt with separately. When k is odd, Theorem 1 is a consequence of the next result.

Theorem 2. Let G be an automorphism group of a design $\mathscr D$ with $\lambda=1$ and k odd, satisfying the following conditions: for any two different points x and y, the stabilizer of x and y fixes the line L through them pointwise and has even order; the group induced on L by the set stabilizer of L has at most one involution fixing x; and no nontrivial element fixes three noncollinear points. Then $\mathscr D$ is PG(2, 2) and G contains the stabilizer of a line, $\mathscr D$ is PG(3, 2) and $G \approx A_7$, or $\mathscr D$ is an affine translation plane and G contains the translation group.

At a very early stage of the proof of Theorem 2, it is known that G has no elementary abelian subgroup of order 8. However, the geometry is necessary (and sufficient) in order to handle the case where $Z^*(G) \neq 1$. On the other hand, when $Z^*(G) = 1$ it seems necessary to apply a classification theorem [1]. Throughout the main part of the proof, essential use is made of a result of Harada [12] (see (2.1)).

At several parts of the proof of Theorem 2, it is shown that k=3. It also turned out that the case k=3 could be handled by our methods using relatively elementary group theory. We have therefore given a new proof of Hall's result (see Section 4); however, while this proof is fairly elementary, it certainly requires much more background than Hall's original proof.

The following result implies Theorem 1 when k is even.

Theorem 3. Let G be an automorphism group of a design \mathscr{D} with $\lambda=1$ and $k=2^e$, satisfying the following conditions: for any two different point x and y, the stabilizer of x and y fixes the line L through x and y pointwise, has even order, and has no involution fixing a point off of L; and the group induced on L by the set stabilizer of L has no element of order 4. Then either $\mathscr D$ is an affine translation plane and G contains the translation group, or $\mathscr D$ is $\mathscr D(k)$ and $G \trianglerighteq PSL(2, 2k)$.

The proof of Theorem 3 is perhaps more elementary than that of Theorem 2. In the case of Theorem 3, a great-deal of attention is given to the structure of the stabilizer of a point. A crucial idea in the proof is borrowed from Bender [3, Lemma 4.2].

Theorem 3 provides a proof of Theorem 4 of Harada [12] quite different

from his proof. On the other hand, if, in Theorem 2, G is 2-transitive on points, that theorem is weaker than [12], Theorem 1. We note that Theorems 1, 2, and 3 contain all the results of [16]. However, the proofs use ideas from [16].

The remainder of the paper is divided into two chapters, dealing with the cases k odd and even, respectively. Each chapter begins with background material. Then general reductions and combinatorial arguments are presented. Finally, Theorems 2 and 3 are proved.

We have also included an appendix concerning Harada's theorem [12] on 2-transitive groups.

I. k Odd

2. Background

We will use the geometric terminology of Dembowski [7] and the group-theoretic terminology of Gorenstein [10].

As usual, $Z^*(G)$ is defined by: $Z^*(G) \geqslant O(G)$ and $Z^*(G)/O(G) = Z(G/O(G))$.

If G is a permutation group on a set Ω , and $\Delta \subseteq \Omega$, the groups $G(\Delta)$, G_{Δ} , and G_{Δ}^{Δ} are defined as follows:

 $G(\Delta)$ is the pointwise stabilizer of Δ ;

 G_{Δ} is the set stabilizer of Δ ; and

 $G_{\Delta}{}^{\Delta}=G_{\Delta}|G(\Delta)$ is the permutation group induced by G_{Δ} on Δ .

In addition, if \varDelta' is another set (or a point), $G_{\varDelta\varDelta'} = G_{\varDelta} \cap G_{\varDelta'}$.

THEOREM 2.1 (Harada [12]). Let G be a group and H a proper subgroup. Assume: $H \cap H^g \mid is$ odd whenever $g \in G - N_G(H)$; $N_G(H) \mid H$ has cyclic or generalized quaternion Sylow 2-subgroups, and $N_G(H) - H$ contains an involution conjugate in G to an involution of H. If $Z^*(G) = O(G)$, then either (i) a Sylow 2-subgroup of G must be dihedral, quasidihedral, $Z_{2^m} \times Z_{2^m}$, or $Z_{2^m} \setminus Z_2$ for some m; or (ii) G has a normal subgroup N of index 2 such that $|H \cap N|$ is odd.

LEMMA 2.2 (Wielandt [21], p. 27). Let G be a transitive permutation group having a regular normal subgroup N. If X is any subset of G fixing at least one point, then $C_G(X)$ is transitive on the fixed points of X.

LEMMA 2.3 (Brauer-Wielandt; see Wielandt [20]). Let $\langle t, u \rangle$ be a Klein

group acting on a group H of odd order. If $C_H(\langle t, u \rangle) = 1$, then $|H| = |C_H(t)| |C_H(u)| |C_H(tu)|$.

LEMMA 2.4 (Thompson's transfer lemma; see Gorenstein [10], p. 265, Ex. 3(i)). Let S be a Sylow 2-subgroup of G, $S = \langle t \rangle S_0$ with t an involution and $t \notin S_0 \lhd S$, and suppose that no element of S_0 is conjugate in G to t. Then $G = \langle t \rangle H$ with $t \notin H$.

LEMMA 2.5. Let S be a set, and $n \ge 3$ an integer. Let $\theta: S \to 2^S$ be a mapping such that

- (i) $|x^{\theta}| = n + 1$ for all x,
- (ii) $y \in x^{\theta}$ implies $x \in y^{\theta}$ and $x, y \in z^{\theta}$ for some z,
- (iii) $x \notin x^{\theta}$ for all x, and
- (iv) $|x^{\theta} \cap y^{\theta}| \leq 1$ whenever $x \neq y$.

Then $|S| > n^2 + n + 1$.

Proof. Assume $|S| \le n^2 + n + 1$. Call the subsets x^{θ} , $x \in S$, lines. As on pp. 138–139 of [7], this produces a projective plane of order n. Then θ is a polarity, and (iii) contradicts a theorem of Baer [2].

LEMMA 2.6. Let \mathscr{D} be a design with k=3 and $\lambda=1$. Let K be a Klein group of automorphisms fixing some line L pointwise and semiregular off of L. Let $x \notin L$ and semiregular off of L. Then $L \cup x^K$ is a subspace PG(2, 2) of \mathscr{D} .

Proof. Let $L = \{a, b, c\}$ and $K = \{1, t, u, tu\}$. Clearly, K is regular on x^K . Then u must move xx^t , as otherwise tu would fix x. Also, t fixes xx^t , so we may assume $\{a, x, x^t\}$ is a line. Thus, $\{a, x^u, x^{tu}\}$ is also a line. Since u fixes xx^u and $a \notin xx^u$, we may assume $\{b, x, x^u\}$ is a line. Apply t, and find that $\{b, x^t, x^{tu}\}$ is a line. Finally, tu fixes xx^{tu} , and $a, b \notin xx^{tu}$. Hence, $c \in xx^{tu}$, so $c \in x^ux^t$ also. This proves the lemma.

The preceding proof is a simple special case of the arguments used by Hall in [11].

3. Reduction and Preliminary Results

We will use the following notation throughout this paper. \mathscr{D} is a design with $\lambda = 1$. \mathscr{D} has v points, and r = (v-1)/(k-1) lines per point. G is an automorphism group of \mathscr{D} such that the stabilizer G_{xy} of two points x, y fixes the line through them pointwise.

Points will be denoted x, y; lines L, M; and involutions s, t, u.

G(L), G_L , and G_L^L were defined in Section 2.

By abuse of language, each subspace of \mathscr{D} will be identified with its set of points.

PROPOSITION 3.1. Theorem 1 follows from Theorems 2 and 3.

Proof. Let S be a 2-group maximal with respect to fixing three non-collinear points; possibly S=1. The set Δ of fixed points of S is a subspace of the design $\mathscr D$ defined at the start of Section 1.

Suppose first that S is Sylow in G(L) for one—and hence all— $L \subset \Delta$. Then $N_G(S)^d$ is 2-transitive and has no involution fixing more than one point. By results of Bender [3, 4], it follows that Theorem 1(i) holds or $N_G(S)^d \succeq PSL(2,q)$ with q > 3, Sz(q), or PSU(3,q) with q > 2. But in each of the latter cases, the stabilizer of two points fixes only two points.

We may thus suppose that S is not Sylow in G(L) for any $L \subset \Delta$. Then $S \subset S_1 \subseteq G(L)$ with $|S_1:S|=2$. By the maximality of S, S_1^{Δ} is an involution whose set of fixed points is L. For the same reason, $N_G(S)^{\Delta}$ has no involution fixing more than k points.

It is clear that G_L^L is a sharply 2-transitive group. Consequently, if k is even the hypotheses of Theorem 3 hold. Thus, Theorem 3 implies Theorem 1 in this case.

Suppose k is odd. Then the hypotheses of Theorem 2 hold, except for the statement concerning subspaces. Let Δ' be a minimal subspace of Δ , and set $H = G_{\Delta'}$. We will show that Theorem 2 applies to Δ' and $H^{\Delta'}$.

Let $L \subset \Delta'$, and let $t \in N_G(S)^2(L)$ be an involution. Take any point $y \in \Delta' - L$, and let L_1 be the line of Δ through y and y^t . Then t interchanges y and y^t , so it fixes L_1 . Since k is odd, t fixes some point x of L_1 . Then $x \in L$. Thus, $y^t \in \Delta'$ since $x, y \in \Delta'$. This means that $\Delta'^t = \Delta'$.

Consequently, Theorem 2 applies, so Theorem 1 holds.

We now begin the proof of Theorem 2.

Throughout the proofs of Theorems 2 and 3, L will denote any line and x any point of L.

An involution t fixing exactly k points will be called *axial*. Its line of fixed points is called its *axis*, and is denoted A_t .

Throughout the remainder of Chapter II, k will be odd. For the sake of convenience, we will assume that \mathcal{D} and G provide a counterexample to Theorem 2. In particular, v > 7.

We may assume that G is generated by its axial involutions.

The properties of G in the next lemma will be used frequently and usually without reference.

LEMMA 3.2.

- (i) G(L) is semiregular off of L.
- (ii) If G_L^L moves every point, then G_L^L has one Frobenius orbit, and is regular on each remaining orbit.
 - (iii) If t is an involution in $G_{xL} G(L)$, then $t^L \in Z(G_{xL}^L)$.
- (iv) If two different involutions fix the same two lines, one of the involutions must act trivially on one of the lines.

Proof.

- (i) and (iii) are hypotheses of Theorem 2.
- (ii) If $g \in G_L$ fixes two points of L, then $g \in G(L)$.
- (iv) Let t and u be the involutions, and L and M the lines. Then $L \cap M$ is a point x since k is odd. By (i), we cannot have $t^L = u^L$ and $t^M = u^M$, so the assertion follows from (iii).

LEMMA 3.3. Let $t \in G(L)$ be an involution.

- (i) t fixes exactly r-1 lines $\neq L$, each of which meets L.
- (ii) t centralizes exactly r-1 axial involutions not in G(L).
- (iii) $C_G(t)$ is transitive on $M(t) = \{x \in L \mid x^s = x \text{ for an involution } s \in C_G(t), s \notin G(L)\}$, and induces a semiregular group on L M(t).
 - (iv) |M(t)| = m(t) divides k.
 - (v) If $x \in M(t)$, t fixes exactly (r-1)/m(t) lines $\neq L$ on x.
 - (vi) $|C_G(t) \cap G(L)| \ge (r-1)/m(t) \ge (r-1)/k$.

Proof.

- (i) If $y^t \neq y$, then t fixes the line through y and y^t .
- (ii) By (i), there are at least r-1 such involutions. If t centralizes $u, u' \in G(L')$, then u and u' agree on L, so $uu' \in G(L) \cap G(L') = 1$.
 - (iii), (iv) These follow from (3.2(ii),(iii)).
 - (v) This follows from the transitivity of $C_G(t)$ on M(t).
- (vi) Let $x \in M(t)$. There are (r-1)/m(t) involutions in $C_G(t)_x$ not in G(L). Fix one of these involutions s, and consider the (r-1)/m(t) elements ss', where s' runs through all these involutions. Clearly, $ss' \in C_G(t) \cap G(L)$.

Lemma 3.4. $r-1 \neq k$.

Proof. Suppose r-1=k. Then our design $\mathcal D$ is an affine plane, and each axial involution is a homology. By (3.3), we can find a Klein group $\langle t,u\rangle$ with t and u axial and $A_t\neq A_u$. It is then easy to check that tu is a dilatation of the plane (compare Dembowski [7, p. 120]). Also, since t is a homology, it fixes exactly one line $\neq A_t$ per point of A_t . By (3.3(v)), m(t)=k. Since t can be any axial involution in G, it follows that G is transitive. Thus, each point is the center of an involutory dilatation. The pointwise stabilizer H of the line at infinity now acts on the affine points as a Frobenius group, and the Frobenius kernel of H consists of translations. Hence, $\mathcal D$ is a translation plane.

LEMMA 3.5. Each involution in G fixes exactly k points.

Proof. Let s be an involution fixing fewer than k points. Then s fixes just one point x. If $y \neq x$, then s fixes the line through y and y^s , and hence fixes one of its k points. Consequently, s fixes each line L through x. Since G_{xL}^L has a unique involution for each such L, we must have $s \in Z(G_x)$.

Now let $t \in G_x$ be an involution fixing k points. Since $s \in C_G(t)$, t fixes (r-1)/m(t) lines $\neq A_t$ on x (by (3.3)). However, s and t fix at most 2 common lines (by (3.2iv)). Thus, $(r-1)/m(t)+1 \le 2$, so $r-1 \le m(t) \le k$ where $k \le r$. In fact, if m(t) < k then $m(t) \le k/3$, so $r-1 \le k/3 \le r/3$. Thus, m(t) = k divides r-1, so r-1 = k. This contradicts (3.4).

Lemma 3.6. Suppose there is a point x such that G_x fixes some line L on x. Then r-1=2k and $C_G(t)$ is transitive on A_t for each involution $t \in G_x - G(L)$.

Proof. Let $t \in G_x$ be an involution with $A_t \neq L$. By (3.3) and (3.5), there are exactly (r-1)/m(t) involutions in $C_G(t)_x$ not in $G(A_t)$. If u and u' are two of these not in G(L), then $uu' \in G(A_t)$ and $uu' \in G(L)$. Thus, u = u', so $(r-1)/m(t) \leq 2$.

Now m(t) = k (as otherwise $k - 1 \le r - 1 \le 2m(t) \le 2(k/3)$ since $m(t) \mid k$, so k = 3, $r \le 3$, and \mathscr{D} is PG(2, 2), which we are assuming is not the case). That is, $C_G(t)$ is transitive on A_t for each involution $t \in G_x - G(L)$. Moreover, (r - 1)/k is an integer, so r - 1 = 2k by (3.4).

Lemma 3.7. If G_x moves each line on x for each x, then m(t) > 1 for each involution t.

Proof. If m(t)=1 for some involution t, then t must fix each line on some $x\in A_t$. Let $g\in G_x$ move A_t . Then $t^g\neq t$ fixes all lines on x. Consequently, there is at most one line $\neq A_t$, $(A_t)^g$ on x. Then $k\leqslant r\leqslant 3$, and $\mathscr D$ is the seven point projective plane.

4. Hall's Theorem

We now digress from the main part of the proof of Theorem 2 to give a proof of Hall's special case of it: k = 3.

By (3.5), all involutions are axial.

LEMMA 4.1. Assume that, for some involution t, m(t) = 1. Let x be the point of $M = A_t$ on each fixed line of t. Then the following hold.

- (i) v = 15.
- (ii) If $x \in L \neq M$, and $u \in G(L)_M$ is an involution, then u fixes exactly 3 lines on x.
 - (iii) G_x fixes M.
 - (iv) G is transitive on points.
 - (v) For each line L on x, G, L is transitive.

Proof. By (3.3), t fixes L, and u fixes (v-3)/6 or (v-3)/2 lines $\neq L$ on x. By (3.2iv), t and u fix at most one common line other than L and M. Since $(v-3)/2 \leq 2$ is excluded, $(v-3)/6 \leq 2$. This proves (i) and (ii). Moreover, by (ii), M is the only line on x fixed pointwise by a conjugate of t, so (iii) holds. By (3.6), x^G contains all points outside of M. Let $x' \in M - \{x\}$, and $x' \in L' \neq M$. Then an involution in G(L') moves the third point of M outside of M or to x. This proves (iv).

Finally, if $L \neq M$ then (v) holds by (3.3). Consider $G_M{}^M$. Let $x' \in M - \{x\}$, and let $x' = x^g$ with $g \in G$. Then t^g fixes all lines on x'. If $(t^g)^M \neq 1$, then $G_M{}^M$ is transitive by (3.3). If $t^g \in G(M)$ then $G_{x'M}^M \neq B$ by (3.3), and again $G_M{}^M$ is transitive.

Lemma 4.2. v = 15.

Proof. By (3.3) and (4.1), we may assume that m(t) = 3 for every involution t. Fix x, and count the triples (L, M, t) such $L \cap M = \{x\}$ and t is an involution fixing L and M, but fixing neither pointwise. By (3.2iv), there are at most $r(r-1) \cdot 1$ triples. Also, each $t \in G_x$ fixes (r-1)/m(t) lines $L \neq A_t$, so there are at least $r \cdot \frac{1}{3}(r-1)(\frac{1}{3}(r-1)-1)$ triples. Thus, $r \leq 13$.

By (3.3), each t centralizes exactly (r-1)/3 axial involutions $s \notin G(L)$. But st is also axial. Hence, (r-1)/3 is even. It follows that r=7 or 13.

The possibility r=13 is eliminated as follows. In this case, the two counts of the triples (L, M, t) yield the same result. Hence, each line is the axis of a unique involution, and any two lines on x are fixed by an involution having neither as axis. For each L on x, let L^{θ} denote the set of fixed lines $\neq L$ on x of the involution in G(L). Then $|L^{\theta}| = (r-1)/3 = 4$ and

 $L \notin L^{\theta}$. If $M \in L^{\theta}$ then the unique involution t in G(L) centralizes the unique involution u in G(M) and L, $M \in A^{\theta}_{tu}$. Finally, if $L \neq M$ then $|L^{\theta} \cap M^{\theta}| \leq 1$ by (3.2iv). By (2.5), necessarily $r > 3^2 + 3 + 1$. This contradiction proves (4.2). The remainder of the case k = 3 thus involves a detailed examination of the possibility v = 15.

LEMMA 4.3. G_x moves all lines on x.

Proof. Let G_x fix a line M on x, and set $\mathcal{M} = M^G$.

By (3.3) and (4.1iv,v), G is transitive on points and $G_M{}^M$ is transitive. Thus, \mathcal{M} is a complete system of imprimitivity for G. In particular, $|\mathcal{M}| = v/3 = 5$. Now $G^{\mathcal{M}}$ is a transitive subgroup of S_5 . If t is an involution with $A_t \notin \mathcal{M}$, then (by (3.3)) t fixes (r-1)/k = 3 lines in \mathcal{M} . Thus, $G^{\mathcal{M}} \approx S_5$. Let K be the kernel of the action of G on \mathcal{M} . Then K is an elementary abelian 3-group of order ≤ 9 (as a 3'-element of K must fix at least 5 points, and hence is trivial). Since A_5 acts on K, G has a normal subgroup H of index 2 with $K \leq Z(H)$ and $H/K \approx A_5$. Thus, $H = A \times K$ with $A \approx A_5$.

Clearly, A has 3 orbits of length 5 permuted transitively by G. Let x and y be distinct points in one of these orbits. Then A has 3 involutions interchanging x and y. Thus, each of these involutions must fix the third point x on the line L through x and y. But $L \notin \mathcal{M}$, so each of these involutions fixes a different line in \mathcal{M} . This is a contradiction.

COROLLARY 4.4. For each involution t, $C_G(t)$ is transitive on A_t and t fixes exactly 3 lines through each point of A_t .

Proof. (4.3) and (4.1(iii)) imply the first assertion. The second follows from (3.3) and (4.2).

LEMMA 4.5. For some line L, G(L) contains a normal Klein group.

Proof. Suppose first that, for each line L on x, G(L) contains a unique involution t. Let t^{θ} consist of the 3 lines on x fixed by t (see (4.4)). If $s \in C_G(t) - G(A_t)$ then $t^{\theta} = \{A_t, A_s, A_{st}\} = s^{\theta}$. It follows that the sets t^{θ} partition the 7 lines on x into sets of 3, which is absurd.

Thus, some G(L) has at least 2 involutions. Suppose G(L) has no normal Klein group. Note that |G(L)| divides v-3=12. Thus, G(L) must have a normal Sylow 3-subgroup P of order 3. Then $P \lhd G_L$. Let $t \in G(L)$ and $u \in C_G(t) - G(L)$ be involutions. Then $\langle t, u \rangle$ normalizes P. Here, u cannot centralize P (as otherwise P would fix $L \cup A_u$ pointwise). Similarly, tu cannot centralize P. Thus, t centralizes P. However, this is true for each involution $t \in G(L)$, and hence G(L) has a normal Klein group.

Completion of the Proof When k = 3.

By (2.6), it suffices to show that every line behaves as in (4.5).

Let L be as in (4.5). Then |G(L)| divides v-3=12. The proof of (3.3vi) shows that $|G(L)| \ge r-1=6$. Thus, |G(L)|=12 and G(L) is regular on the points not in L. In particular, if $x \in L$ then G(L) is transitive on the lines $\ne L$ through x. Since G_x moves L, it follows that G_x is transitive on the lines through x. This completes the proof.

5. The General Case of Theorem 2

LEMMA 5.1. If $Z^*(G) = O(G)$, then one of the following holds.

- (i) A Sylow 2-subgroup of G is dihedral, quasidihedral, wreathed $Z_{2^m} \setminus Z_2$, or $Z_{2^m} \times Z_{2^m}$ for some m.
- (ii) G has a proper normal subgroup K having a strongly embedded subgroup K_L for some line L.

Proof. Let K be the subgroup $O^2(G)$ generated by all elements of odd order. Let $z \in K$ be an involution, and set $H = G(A_z)$.

Suppose z has a K-conjugate z' such that $zz' = z'z \neq 1$ and $A_z \neq A_{z'}$. Apply (2.1) to G and H (see (3.2)). If (2.1(i)) holds, we are finished. If (2.1(ii)) holds, then G has a normal subgroup N of index 2 with $z \notin N$; however, by definition $K \leq N$, so this cannot occur.

Thus, we may assume that, for each involution $z \in K$ and each $z' \in (z^K - \{z\}) \cap C_K(z)$, we have $A_z = A_{z'}$. Let S be a Sylow 2-subgroup of K, choose $z \in Z(S)$, and set $L = A_z$. Then z fixes only $L \in L^K$; for if z fixed $L' \neq L$ in L^K , then z would centralize an element of $z^K \cap K(L')$, contrary to our assumption. If all involutions in K are conjugate, this completes the proof of (ii).

Suppose there is a second class t^K of involutions in K. Assume that t commutes with some $t' \in t^K - \{t\}$. We may assume $\langle t, t' \rangle \leqslant S$. Since $A_t = A_{t'}$ by the second paragraph of this proof, necessarily $A_t = A_{tt'}$, and since $\langle t, t' \rangle$ acts on L, necessarily $\langle t, t' \rangle \leqslant K(L)$. Now let $z' \in z^K \cap K(L')$ for $L' \in L^K - \{L\}$. Then z' and t are not conjugate in $\langle z', t \rangle$, so $\langle z', t \rangle$ has central involution u. Clearly u fixes $A_t = L$. Then $\langle t, u \rangle$ centralizes some $z'' \in z^K \cap K(L)$, and $\langle t, z'' \rangle$ acts on A_u , so $A_u = L$. But $z' \in z^K$ now fixes $L = A_z$, which is not possible.

Consequently, t commutes with none of its K-conjugates. Then $t \in Z^*(K) \cap S \leq Z(S)$ (Glauberman [9]). Interchanging t and z, we see that all involutions in K are in $Z^*(K)$. However, $G = KS_1$ with $S_1 > S$ Sylow in G. Then S_1 centralizes some involution $u \in Z(S)$, and hence $u \in Z^*(G)$ by [9].

LEMMA 5.2. For each line L, G_L is transitive on L.

Proof. Deny! Call a line L "good" if G_L is transitive on L, and "bad" otherwise. Call a point x "bad" if, for some line L on x, $G_{xL} - G(L)$ has no involution. Let \mathcal{B} denote the set of bad points; bad points will be indicated by the letter b, and bad lines by B.

Note that $\mathscr{B} \neq \varnothing$. For, let B be any bad line. Then by (3.2), G_B^B has a semiregular orbit on B, and each point b of this orbit is bad. Moreover, $G_{bB} = G(B)$.

 G_b is transitive on the lines on b. For, there is a bad line B on b such that $G_{bB} = G(B)$. Let $s \in G(B)$ be an involution. Here, s fixes just the one line B on b. Then G_B contains a Sylow 2-subgroup of G_x , which may be assumed to have s in its center. Take any involution $t \in G_x$. By using a suitable conjugate of t, we may assume that t centralizes s. The choice of B now implies that $A_t = B$. This means that each line on x can be moved to B using an element of G_x .

It follows that G is transitive on the set \mathscr{L} of bad lines. Thus, $|B \cap \mathscr{B}|$ is independent of the bad line B, so the bad points and lines form a design with $v^* = |\mathscr{B}|$, $k^* = |B \cap \mathscr{B}|$, $r^* = r$, and $\lambda^* = 1$. Then transitivity on bad lines implies transitivity on \mathscr{B} [7, p. 78].

 G_b acts faithfully as a Frobenius group on the r lines B on b. For, a non-trivial element of $G_{bB} = G(B)$ cannot fix a second line on b. It follows that $G_{bB} = G(B)$ has a unique involution.

Since G_b is transitive on the lines on b, G is transitive on the pairs (b, B) with $b \in B \cap \mathcal{B}$, so G_B is transitive on $B \cap \mathcal{B}$. Thus, $G^{\mathcal{B}}$ is primitive [14; 7, p. 79]. Then $O(G^{\mathcal{B}}) = 1$ (as otherwise, $O(G^{\mathcal{B}})$ would be transitive on the $v^* = 1 + r(k^* - 1) \equiv 1 + 1 \pmod{2}$ bad points). Since the pointwise stabilizer of \mathcal{B} fixes each line meeting \mathcal{B} , it is trivial. Hence, O(G) = 1, so also $Z^*(G) = 1$.

The number of bad lines is $v^*r/k^* = r\{1 + r(k^* - 1)\}/k^*$, so good lines exist. Hence, G has at least two classes of involutions. Since $Z^*(G) = 1$, (5.1) applies. If (5.1(i)) holds, then by (2.4) G must have dihedral Sylow 2-subgroups, so there is an involution u such that $\langle u \rangle$ is Sylow in $G(A_u)$. If (5.1(ii)) holds, then there is again such a u (cf. (2.1)).

Let u be as above. By (3.2ii) and (3.3(ii)), a Sylow 2-subgroup of $C_G(u)$ has just 3 involutions. Hence, $C_G(u)$ has a single class of Klein groups, and thus just two classes of involutions $\neq u$, both of the same size. By (3.3), u fixes $(v^*-k^*)/k^*$ or v^*/k^* bad lines $\neq A_u$, and hence exactly that number of involutions having bad axes. Thus, $C_G(u) - \{u\}$ contains exactly $(v^*-k^*)/k^*$ or v^*/k^* involutions having good axes. By (3.3), $r-1=2v^*/k^*$ or $2(v^*-k^*)/k^*$. An easy calculation shows that neither equation can hold.

LEMMA 5.3. For each point x, G_x moves all lines on x.

Proof. Deny! By (3.6), r-1=2k. Let G_x fix M, and set $\mathcal{M}=M^G$. G is transitive on points For, x^G contains the complement of M by (3.6). If L_1 is any line meeting $M-\{x\}$, then either $G(L_1)$ moves M—and the transitivity of G is clear—or $G(L_1)$ always fixes M, in which case $G_M{}^M$ is transitive.

 \mathcal{M} is a complete system of imprimitivity for G. To see this, it suffices to prove that $G_M{}^M$ is transitive. Let $x' \in M - \{x\}$. Then $x' = x^g$ for some $g \in G$. If g can always be chosen in G_M , our assertion follows. So suppose $M^g \neq M$. Then $G_{x'}$ fixes M^g . In particular, G(M) fixes M^g . Then an involution in G(M) centralizes an involution in $G(M^g)$, so that $|G_{x'M}^M|$ is even. By (3.2(ii)), x' and x are in the same G_M -orbit, so g can indeed be chosen inside G_M , as desired.

In particular, $|\mathcal{M}| = v/k = 2k - 1$.

If $x \in L \neq M$, G(L) acts on M, so G(L) has a unique involution t. Clearly, G_M contains a Sylow 2-subgroup S of G, so G(M) contains an involution $s \in Z(S)$. We may assume $t \in S$.

Suppose first that $Z^*(G)=O(G)$, so that (5.1) applies. We know G has at least two classes of involutions. Hence, if (5.1(i)) holds then G has a normal subgroup not containing t. Since t was arbitrary, (5.1(ii)) holds here. Thus, in any case, we can apply Bender's theorem [4] to the group K of (5.1(ii)). Since $Z^*(G)=O(G)$, it follows that $Z(S\cap K)$ is elementary abelian of order $\geqslant 4$. Moreover, it is easy to see that, if $t\in S$, then $|C_{Z(S\cap K)}(t)|^2\geqslant |Z(S\cap K)|$. The only possibility is $K^{\mathcal{M}}\approx A_5$, so 2k-1=5. Now (4.3) yields a contradiction.

Thus, $Z^*(G) > O(G)$. If $t \in Z^*(G)$, then S has no elementary abelian subgroup of order 8 (since t is the unique involution in $G(A_t)$). Thus, $\langle s, t \rangle = \Omega_1(S)$, and hence $s \in Z^*(G)$.

We may now assume $s \in Z^*(G)$. Then O(G) is transitive on \mathcal{M} . Let $K \leq O(G)$ be the kernel of the action of G on \mathcal{M} . Since O(G) is solvable (by [8]), G has a normal subgroup H > K with H/K a q-group for some $q \mid |\mathcal{M}| = 2k - 1$. Since |K| clearly divides k^{2k-1} , $G = KN_G(Q)$ for a Sylow q-subgroup Q of H. We may assume $S \leq N_G(Q)$.

Let $u \in S$ be an involution. Then $C_Q(u)$ acts on A_u . Since $(|C_Q(u)|, k(k-1)(v-k)) = 1$, necessarily $C_Q(u) = 1$. Thus, $\langle s, t \rangle$ is fixed-point-free on Q, which is absurd.

Let π be the set of prime divisors of k.

Lemma 5.4. Suppose G has a nontrivial normal π -subgroup N. Then

(i) N is semiregular;

- (ii) N is intransitive; and
- (iii) For each line L, G(L) has a unique involution.

Proof. By the Feit-Thompson theorem [8], N is solvable. We first consider the case where N is semiregular. Let L be any line, and $x \in L$. By (5.3), G_x must move L, and hence so must N. By (2.2), $N_L = C_N(G(L))$ Thus, G(L) acts on the nontrivial π -group $N/C_N(G(L))$. A nontrivial π -element of G(L) cannot centralize any element of $N-C_N(G(L))$ since $G(L) \cap G(L)^g = 1$ for $g \notin G_L$. In particular, if $t \in G(L)$ is an involution then t inverts $N/C_N(G(L))$. Since the kernel of the action of G(L) on $N/C_N(G(L))$ is a π -group, $G(L) = C_{G(L)}(t) O_{\pi}(G(L))$.

Take any involution $u \in G_L - G(L)$ centralizing t. Then $\langle t, u \rangle$ acts on $X = O_{\pi}(G(L))$. Also, $A_t \cap A_u$ is a point x. Since $C_X(u)$ acts on $A_u - \{x\}$ and (|X|, k-1) = 1, we must have $C_X(u) = 1$. Similarly, $C_X(tu) = 1$. Thus, t centralizes X. Since G(L)/X has a unique involution, so does G(L).

Thus, if N is semiregular, then (iii) holds. To see that (ii) also holds in the case, assume N is transitive. Let $\langle t,u\rangle\leqslant G_x$ be a Klein group. By (2.2), $|C_N(t)|=|C_N(u)|=|C_N(tu)|=k$. Hence, by (2.3), $|N|=k^3$. Now $v=k^3$ and $r=(v-1)/(k-1)=k^2+k+1$. Let S be the set of lines on x, and define $\theta\colon S\to 2^S$ by: A_t^θ is the set of fixed lines $\neq A_t$ of t on x. Since (iii) is known to hold, θ is well-defined. By (3.3i), $|A_t^\theta|=(r-1)/k=k+1$. Also, for any distinct involutions $s,t\in G_x$, $|A_s^\theta\cap A_t^\theta|\leqslant 1$ (cf. (3.2iv)); and if s fixes A^t then st=ts, so t fixes A_s and A_s , $A_t\in A_{st}^\theta$. Thus, (2.5) applies, and yields a contradiction.

Consequently, if (i) holds, then so do (ii) and (iii). Suppose now that N is not semiregular, and choose such an N with |N| minimal. Let $M \triangleleft N$ be a normal subgroup of G maximal with respect to being semiregular. Then N/M is a p-group for some $p \in \pi$.

We are assuming that $N_x \neq 1$ for some point x. Here, N_x is a p-group. If N_x fixes a point $\neq x$, its set of fixed points is a line L on x, and then G_x fixes L. Consequently, by (5.3), N_x fixes only x, so $p \mid v - 1$. On the other hand, M is semiregular, so $|M| \mid v$. Consequently, N_x is Sylow in N, so $G = N_G(N_x)N = G_xM$. By (5.2), M is transitive. Since M is a semiregular normal π -subgroup of G, this contradicts the first part of the proof of (5.4). Hence, (i) must hold.

Lemma 5.5. $Z^*(G) = O(G)$.

Proof. Suppose $Z^*(G) > O(G)$. By the Feit-Thompson theorem [8], $Z^*(G)$ is solvable. By (5.4), $O_{\pi}(G)$ is semiregular. Let H be a normal subgroup of G such that $H > O_{\pi}(G)$ and $H/O_{\pi}(G)$ is an elementary abelian q-group

for some prime $q \notin \pi$. If Q is a Sylow q-subgroup of H, then $G = HN_G(Q) = O_{\pi}(G) N_G(Q)$.

Q is not semiregular. For, there is a Klein group $\langle t, u \rangle$ acting on Q, so we may assume $C_Q(t) \neq 1$. Suppose Q is semiregular. Then $C_Q(t)$ is semiregular on A_t , and this contradicts $q \notin \pi$.

Q must fix a point. For, if not, certainly $q \mid v$. There is a point x such that $Q_x \neq 1$. Then $q \nmid v - 1$ implies that Q_x fixes exactly k points, and hence is semiregular on v - k points. Consequently, $q \mid v - k$, and hence $q \mid k$, whereas $q \notin \pi$.

Suppose Q fixes just one point x. Then $N_G(Q) \leq G_x$, so $G = O_{\pi}(G) N_G(Q) = O_{\pi}(G) G_x$. Thus, $O_{\pi}(G)$ is transitive, and this contradicts (5.4).

We may thus assume Q fixes a line L pointwise, so $G = O_{\pi}(G)G_L$. By (5.4iii), $G = O_{\pi}(G) C_G(s)$ for some involution $s \in Z^*(G)$.

Since G is transitive, the number conjugates of s fixing a given point x is $k \mid G: C_G(s)|/v = k \mid O_{\pi}(G): C_{O_{\pi}(G)}(s)|/v$. By (5.4), $O_{\pi}(G)$ is intransitive. It follows that s has fewer than k conjugates fixing x.

Take any involution t not conjugate to s. Then, for each $x \in A_t$, G_x has a Klein subgroup $\langle s', t \rangle$ with $s' \in s^G$. By (5.4)(iii), $A_{s'} \neq A_t$. Now (5.2) implies that $\langle s^G \cap C_G(t) \rangle \leqslant \langle s' \rangle O_{\pi}(G)$ is transitive on A_t .

Take any point $y \in A_t$, and any point $x \neq y$. We will show that $O_{\pi}(G)$ has an element moving x to y. Since there are fewer than k conjugates of s fixing x, some involution t' not conjugate to s fixes x and a point of A_t . Now $O_{\pi}(G) \cap C_G(t')$ and $O_{\pi}(G) \cap C_G(t)$ allow us to move x to y.

Consequently, $O_{\pi}(G)$ is transitive. This contradicts (5.4).

Lemma 5.6. $Z^*(G) = 1$.

Proof. Suppose $O(G) \neq 1$, and let H be a nontrivial normal subgroup of G of prime power order. (H exists by the Feit-Thompson theorem [8].) Since G is transitive, |H| divides v. Then H_x fixes a line pointwise, so $H_x = 1$ (as otherwise G_x fixes a line, contradicting (5.3)). G contains a Klein group, so $C_H(t) \neq 1$ for some involution t. Then $C_H(t)$ is semiregular on A_t , and hence H is a π -group.

By (5.4(iii)), each G(L) has a unique involution. Hence, G has 2-rank 2 by (3.2(ii)). By (5.1), (2.4), and [9], G has a Klein group $\langle t, u \rangle$ with t, u, and tu conjugate, such that $C_G(t)$ contains a Sylow 2-group of G. Write $|C_H(t)| = |C_H(u)| = |C_H(tu)| = \mu$, so $\mu \neq 1$.

If s is any involution, then s commutes with some conjugate s' of itself. We may assume that $\langle s, s' \rangle \leqslant C_G(t)$, and then that ss' = t. Also, $C_H(\langle t, u \rangle) = 1 = C_H(\langle s, t \rangle)$ by (5.4(iii)). Thus, by (2.3), $|H| = \mu^3 = \mu |C_H(s)|^2$.

It follows that each line meets each orbit of H in 0 or μ points. We can

now use a counting argument of Higman and McLaughlin [14, Theorem 7] (see also [7, p. 79]), to show that H is transitive. This contradicts (5.4).

Conclusion of the Proof of Theorem 2.

By (5.6), we may apply (5.1). Suppose (5.1(ii)) holds, and that $t \notin K$. Then $|K(A_t)|$ is odd (cf. (2.1)). Now t centralizes at most two elements in the center of a Sylow 2-subgroup of K. By Bender [4], $K \approx A_5$, so $G \approx S_5$. This is easy to eliminate.

Thus, a Sylow 2-subgroup S of G is as in (5.1(i)). Also, G has no normal Klein group since G is transitive. Hence, by Brauer [5] and Alperin-Brauer-Gorenstein [1], since G is generated by its involutions, $G \approx PSL(2, q)$, PGL(2, q), PSL(3, q), PSU(3, q), PSU(3

Let s be an involution in Z(S), and $L = A_s$. Then $C_G(s) \leq G_L$. In almost every case, $C_G(s) \leq H < G$ implies that $s \in Z^*(H)$. The only exceptions are: A_7 , PSL(2, 5), PSL(2, 9). Each of these is easily eliminated. (Recall that $\mathscr D$ is assumed not to be PG(2, 2) or PG(3, 2).)

Thus, $s \in Z^*(G_L)$, so $G_L = G(L) C_G(s)$ by the Frattini argument. Then $C_G(s)$ has G_L^L as a homomorphic image, where (by (5.2)) G_L^L is a Frobenius group of even order whose kernel has order k. Hence, if $G \not\approx PSL(2, q)$, PGL(2, q), we must have k = 3, so Section 4 applies.

We may thus assume that $G \approx PSL(2, q)$ or PGL(2, q), so $C_G(s) = G_L$. Let $q \equiv \epsilon \pmod{4}$, where $\epsilon = \pm 1$. Then $k \mid q - \epsilon$, so q > 9. Now $G(A_s) \triangleleft C_G(s)$ implies that s is the only involution in $G(A_s)$. If t is an involution not conjugate to s, $C_G(t)$ is again a maximal subgroup, and as above $k \mid q + \epsilon$, which is absurd. Thus, $G \approx PSL(2, q)$.

Moreover, there are exactly $vr/k = \frac{1}{2}q(q+\epsilon)$ lines. By (3.3(ii)), $r-1 = \frac{1}{2}(q-\epsilon)$. Since v=1+r(k-1) and $k \mid r-1$ (by (3.3v) and (5.2)), we obtain $\frac{1}{2}q(q+\epsilon) = vr/k = (1+\frac{1}{2}(q-\epsilon+2)(k-1))\frac{1}{2}(q-\epsilon+2)/k$, so $q-\epsilon+2\mid \frac{1}{2}q(q+\epsilon)$. Then $\epsilon=1$, so $qk=1+\frac{1}{2}(q+1)(k-1)$. Hence, (q-1)(k+1)=0, which is ridiculous.

II. k Even

6. Background

The following key lemma is a slight extension of Lemma 2.7 of Bender [4].

LEMMA 6.1. Let Y be a group having an elementary abelian Sylow 2-subgroup S, and write X = O(Y). Let p be an odd prime, and $A \leq Y$ an abelian p-group normalized by X but not contained in X. Then $S \leq C_Y(X)$ if either

- (i) $N_{Y}(S)$ is irreducible on S and $S \leqslant \langle A^{Y} \rangle$, or
- (ii) $SX \triangleleft Y$ and $C_{SX/X}(A) = 1$.

Proof. Let Y be a minimal counterexample. We first show that (i) holds if (ii) does. Thus, let $1 < S_1 < S$ be such that A normalizes S_1X . Write $Y_1 = AS_1X$. Then $O(Y_1) \geqslant X$, but $A \leqslant O(Y_1)$ (as otherwise $[S_1,A] \leqslant S_1X \cap O(Y_1) = X$). Also, $O(Y_1) = (A \cap O(Y_1))X$ normalizes A. If SX/X is not A-irreducible, it is completely reducible under A, while the minimality of Y yields $S_1 \leqslant C_G(X)$; thus, $S \leqslant C_G(X)$ in this case. Consequently, SX/X is A-irreducible. Since $Y = N_Y(X)$, this proves that (i) holds.

Now assume (i). We must show that $C_s(X) \neq 1$.

By the Feit-Thompson theorem [8], X is solvable. Suppose $M = O_{p'}(X)$ is nontrivial. Then $[A, M] \leq A \cap M = 1$. Also, Y/M satisfies the conditions of the lemma, so S centralizes X/M by the minimality of Y. By hypothesis, $C_Y(M) \geqslant \langle A^Y \rangle \geqslant S$. Thus, S centralizes X/M, M, and hence also X.

Consequently, $O_{p'}(X) = 1$. Then $O_{p'}(Y) \leqslant X$ would imply that $O_{p'}(Y) = O_{q}(Y)$ centralizes X. Thus, $O_{p'}(Y) = 1$.

Let $F = O_p(X)$. Then $\overline{Y} = Y/F$ and $\overline{A} = AF/F$ act on $\overline{F} = F/\Phi(F)$. Here $O_p(\overline{Y}) = 1$ (as $O_p(Y) \leq X$). By hypothesis, $[\overline{F}, \overline{A}, \overline{A}] = 1$.

However, \overline{Y} is p-stable [10, p. 234], so $\overline{A} = 1$. Then $A \leqslant F \leqslant X$, which is not the case.

THEOREM 6.2 (Buekenhout [6]). Let \mathcal{D} be a design with $\lambda = 1$ and $k \ge 4$. Assume that each triangle is contained in a subspace which is an affine plane of order k. Then \mathcal{D} is an affine space.

LEMMA 6.3. For each $e \geqslant 2$, there is a unique design $\mathcal{D}(2^e)$ satisfying the following conditions.

- (i) $\lambda = 1, k = 2^e, r = 2^{e-1} + 1$.
- (ii) There is an automorphism group G of $\mathcal{D}(2^e)$ isomorphic to $PSL(2, 2^{e+1})$.
 - (iii) G is transitive on incident point-line pairs.
 - (iv) G_t is a Sylow 2-subgroup of G.
 - (v) |G(L)| = 2.

Proof. Write $q=2^{e+1}$. Assume $\mathcal{D}(2^e)$ exists. Lines correspond to involutions, so there are $(q^2-1)k/r=\frac{1}{2}q(q-1)$ points. Thus, G_x is dihedral of order 2(q+1). Clearly, the line fixed pointwise by an involution t is on x if and only if $t \in G_x$.

It remains to prove existence. Start with G = PSL(2, q). Let points be subgroups of order 2(q + 1), let lines be involutions, and let incidence correspond to containment. There are then $q^2 - 1$ lines, $v = \frac{1}{2}q(q - 1)$ points, q + 1 lines per point, and hence $\frac{1}{2}q$ points per line. G_x is transitive on the lines on the point x.

Suppose x and y are distinct points. Since $O(G_x)$ is a T.I. group, $|G_x \cap G_y| \leq 2$. That is, x and y are on at most one line.

Fix a point x. There are q+1 lines on x, each having $\frac{1}{2}q-1$ points $\neq x$. No two of these lines meet except at x. Thus, these lines cover $1+(q+1)(\frac{1}{2}q-1)=v$ points.

This proves (i)-(iii). Since $G_L \leqslant C_G(t)$ if the line L corresponds to t, (iv) holds, and then (v) is clear.

LEMMA 6.4.

- (i) $\mathcal{D}(2^e)$ has no proper subspace.
- (ii) $H = P\Gamma L(2, 2^{e+1})$ is an automorphism group of $\mathcal{D}(2^e)$.
- (iii) For each point x, H_x is not 2-transitive on the lines through x.
- (iv) |H(L)| = 2 for each line L.

Proof.

- (i) Let Δ be such a subspace. Let $y \notin \Delta$. Each of the lines xy, $x \in \Delta$, meets Δ just once. Thus, $2k+1 \ge |\Delta|$. On the other hand, since Δ has at least k lines per point, $|\Delta| \ge 1 + k(k-1)$. This is impossible.
 - (ii) This follows immediately from the proof of existence in (6.3).
- (iii) Suppose H_x is 2-transitive. Then $2^{e+1}=r-1\mid |H_x|$. Also, v=k(2k-1), so $2^e\mid |H:H_x|$. Hence, $2^{2e+1}\mid |H|$. Since $2^{2e+1}\nmid 2^{e+1}(e+1)$, this is impossible.
 - (iv) This also follows from the construction.
- LEMMA 6.5. Let \mathcal{D} and G be as in Theorem 3, where \mathcal{D} is a translation plane, G contains the translation group, and G(L) has no Klein group. Then
 - (i) G has a normal subgroup H of index 2 such that |H(L)| is odd; and
- (ii) O(G(L)) fixes a line $L' \neq L$ and acts faithfully on L', so |O(G(L))| divides k-1.

Proof.

(i) By Dembowski [7, p. 188], a Sylow 2-subgroup Q of G(L) has order 2 and is normal in G(L). Now (i) follows from (2.4).

(ii) By Dembowski [7, p. 172], O(G(L)) consists of homologies, so (ii) holds.

7. Preliminary Results

By (3.1), when k is even Theorem 1 follows from Theorem 3.

Let \mathcal{D} and G provide a counterexample to Theorem 3 with minimal |G|. Then G is generated by its axial involutions. Recall that $k=2^e$.

As in Chapter I, L is any line and $x \in L$. We will use the following additional notation:

t is an involution in G(L),

S is a Sylow 2-subgroup of $C_G(t)$,

 $Q = S \cap G(L)$, and

F is the Fitting subgroup of G_x .

We note that one of the hypotheses of Theorem 3 implies that if u is an involution in $C_G(t)$ with axis $L' \neq L$, then t is not a square in $C_G(u)$.

LEMMA 7.1. Each involution $t \in G(L)$ fixes exactly (v - k)/k lines $\neq L$.

Proof. If $z \notin L$, then t fixes the line through z and z^t . Also, no two fixed lines of t can meet.

LEMMA 7.2.

- (i) G_x is transitive on the lines on x.
- (ii) If G_x contains a Klein group, then $\langle t^{G_x} \rangle$ acts on the lines on x as $PSL(2, 2^f)$, $Sz(2^f)$, or $PSU(3, 2^f)$, in its usual 2-transitive representation.
 - (iii) G is transitive on the ordered pairs (x, L) with $x \in L$.
 - (iv) All involutions fixing k points are conjugate.

Proof. For each line L on x and involution $t \in G(L)$, t cannot fix another line on x. Sylow's theorem implies (i), and Bender's theorem [4] implies (ii). Moreover, G is transitive on lines, and hence on points [7, p. 78]. Thus, (iii) holds, and hence so does (iv).

LEMMA 7.3. $k \mid r - 1 \text{ and } k < r - 1$.

Proof. Since v = 1 + r(k-1), (7.1) implies that $k \mid r-1$. Suppose

r-1=k. By (7.2(iii)) and Ostrom and Wagner [19], Theorem 7, or Dembowski [7, pp. 214–215], \mathcal{D} is an affine translation plane and G contains the translation group. This contradicts the assumption made at the start of this section.

LEMMA 7.4. There exist two intersecting lines generating a subspace which is not an affine plane.

Proof. Deny! By (6.2), \mathscr{D} is an affine space over GF(k). t acts on the translation group V, where V is an elementary abelian 2-group. By (2.2), $k \ge (|V|)^{1/2}$, so $k^2 \ge v = 1 + r(k-1)$. This contradicts (7.3).

LEMMA 7.5. G(L) has no Klein group.

Proof. Deny! Then G_x has a normal subgroup $H = \langle t^{G_x} \rangle$ acting on the lines on x as stated in (7.2ii). In particular, $r - 1 = 2^f$, 2^{2f} , or 2^{3f} , where f > 1. Let K be the kernel of the action of G_x on the lines on x. Q is a Sylow 2-subgroup of H(L).

We claim that X = O(G(L)) is trivial. For, $XK/K \le O(G_{xL}/K) = 1$, so $X \le K$. It follows that X fixes each line meeting L. Thus, X = 1.

In particular, $K \approx K^L$ is a Frobenius complement of odd order. Since $\overline{H} = H/K \cap H$ is simple, it follows that $K \cap H \leqslant Z(H)$. Thus, $Q \lhd G_{xL}$.

We claim that G(L) is semiregular off of L. For, suppose that $1 \neq g \in G(L)$ and that the set Δ of fixed points of g is a subspace properly containing L. By (2.2), $C_Q(g)$ is transitive on the lines $\neq L$ of Δ through x. In particular, it follows that $C_G(g)^{\Delta}$ and Δ satisfy the hypotheses of Theorem 3. If $|\Delta| = k^2$, the 2-transitivity of G_x implies that any two intersecting lines of \mathcal{D} are contained in an affine plane, and this contradicts (7.4). Thus, Δ is $\mathcal{D}(k)$, and this contradicts (6.4iii).

Let $h \in H_L$ be such that its image $\bar{h} \in H$ has order $2^f - 1$. Then h^i fixes exactly one other line $L' \neq L$ on x, whenever $h^i \notin K$. We know that h^i cannot fix pointwise a subspace of more than k points. Choose h^i with $|\bar{h}^i|$ a prime power, and find that $\langle h^i \rangle$ is semiregular on $L - \{x\}$ or $L' - \{x\}$. Thus, $2^f - 1 \mid k - 1 = 2^s - 1$, so $f \mid e$.

By (7.3), $2^e \mid r-1$ and $2^e < r-1$. Thus, $\overline{H} \approx Sz(2^f)$ and e=f, or $\overline{H} \approx PSU(3, 2^f)$ and e=f or e=2f. Moreover, if e=f then $\mid G_{xL}^L \mid$ is divisible by each prime power divisor of k-1, so that G_L^L is 2-transitive. By (7.4) and [16], Theorem 3.4, this is impossible.

Thus, $\overline{H} \approx PSU(3, 2^f)$ and e = 2f. Replace h above by an element of order dividing $(2^f + 1)/(2^f + 1, 3)$. Then h^i fixes exactly $2^f + 1$ lines on x whenever $h^i \notin K$. We know that h^i fixes at most k points. Hence, as above, we find that $(2^f + 1)/(2^f + 1, 3)$ divides $|G_{LL'}^L|$.

It follows that $(2^{2f}-1)/3=(k-1)/3$ divides the length of each orbit

of $G_{LL'}$ on $L' - \{x\}$. The 2-transitivity of G_x implies that each orbit of G_{xL} of points off L has length divisible by (r-1)(k-1)/3 = (v-k)/3. For any point $x \notin L$,

$$egin{aligned} \mid G_{zL} \colon G_{xzL} \mid = \mid G_L \colon G_{xL} \mid \mid G_{xL} \colon G_{xzL} \mid \mid \mid G_L \colon G_{zL} \mid \\ &= k \cdot (v-k) lpha / (v-k) eta = k lpha / eta, \end{aligned}$$

where $\alpha \leqslant \beta$ and $\alpha, \beta \in \{1/3, 2/3, 1\}$. Hence, each orbit of G_{zL}^L has length divisible by k/2.

Let R be a Sylow 2-subgroup of G_{zL} . Then R induces an elementary abelian 2-subgroup of G_{L}^{L} , and hence is elementary abelian. Thus, $|R| \geqslant k/2 = 2^{2f-1}$ where f > 1. On the other hand, R is isomorphic to a subgroup of $P\Gamma U(3, 2^f)$. Since an involution in $P\Gamma U(3, 2^f) - PSU(3, 2^f)$ fixes more than one line in the usual permutation representation, $|R| \leqslant 2^f$. This contradiction proves the lemma.

LEMMA 7.6. If S is elementary abelian, then $N_G(S)$ is transitive on $S \cap t^G$.

Proof. If $t^g \in S$, then $S^{g^{-1}}$ is Sylow in $C_G(t)$, so $S^{g^{-1}} = S^g$ with $c \in C_G(t)$. Thus, $cg \in N_G(S)$ and $t^g = t^{eg}$.

LEMMA 7.7. Assume that $t \in Z(G_L)$, and $C_{G(L)}(u) = \langle t \rangle$ whenever $t \neq u \in t^G \cap C_G(t)$. Assume further that |G(L)| divides r-1. Label the involutions in G_L^L in any way, and let α_i denote the number of elements of $t^G \cap C_G(t)$ inducing the i-th involution. Let δ be the number of nonzero α_i 's. Then the following hold.

- (i) $\alpha_i = \beta_i |G(L)|/2 \text{ with } \beta_i \in \{0, 1, 2\}.$
- (ii) $2(k-1) \geqslant 2\delta \geqslant \sum \beta_i = (k-1) \cdot 2(r-1)/k |G(L)|$, where 2(r-1)/k |G(L)| is an integer.
- (iii) If some $\beta_i = 2$, then G(L) is abelian. Moreover, if $u_i \in t^G \cap C_G(t)$ induces the *i*-th involution, then *u* inverts G(L).

Proof.

- (i) Clearly, u has $\frac{1}{2}|G(L)|$ conjugates under $\langle u\rangle G(L)$. This proves that uG(L) contains $\frac{1}{2}|G(L)|$ or |G(L)| conjugates of t.
 - (ii) By (7.1) and (7.5), $\sum \alpha_i = (v k)/k$. Hence,

$$\sum \beta_i = (k-1) \cdot 2(r-1)/k |G(L)|.$$

Since k-1 is odd and |G(L)| |r-1|, 2(r-1)/k |G(L)| is an integer. This proves (ii).

(iii) Here, $u_iG(L)$ consists entirely of involutions.

Lemma 7.8. Suppose $F_L = 1$. Then

- (i) t inverts F;
- (ii) $G_x = FC_G(t)_x$;
- (iii) F is abelian, and is regular on the lines on x; and
- (iv) t is the unique involution in G(L).

Proof. By (7.2i) and (7.5), $G_x \geq \langle t \rangle O(G_x) = X$. Here, X is solvable (by [8]), and F is its Fitting subgroup. $C_F(t) \leqslant F \cap G_L = 1$, so t inverts F. If $t' \in X$ is another involution, then $tt' \in C_X(F)$, where $C_X(F) = F$ (by [10], p. 218). Thus, $\langle t^X \rangle = \langle t^F \rangle = \langle t \rangle F$ is transitive and $G_x = FC_G(t)_x$. Also, if $t' \in G(L)$ then $tt' \in F \cap G(L) = 1$.

8. Elementary Abelian S

In this section, we will prove:

Proposition 8.0. S is not elementary abelian.

Thus, assume that S is elementary abelian. Clearly, $S \cap G(L) = \langle t \rangle$. By the Feit-Thompson theorem [8], G_x is solvable.

LEMMA 8.1. G_L has a normal subgroup of index 2 not containing t.

Proof. $G_L/O(G(L)) \supseteq S \cdot O(G(L))/O(G(L))$, and $tO(G(L)) \in Z(G_L/O(G(L)))$. Now apply Maschke's theorem (or transfer).

LEMMA 8.2. If $S \leq G_L$, then not all involutions in S are conjugate.

Proof. Deny! Then S is Sylow in G, and distinct conjugates of S intersect trivially. Thus, since G is generated by its involutions, $G \approx PSL(2, 2k)$.

Hence, \mathcal{D} is $\mathcal{D}(k)$ by (6.3). However, we have assumed this is not the case.

LEMMA 8.3. If $N \triangleleft G_x$ and $N \cap G(L) = 1$ then $N \cap G_L = 1$.

Proof. Assume that $N \cap G_L \neq 1$. Since [N, G(L)] = 1, $C_G(G(L))$ is transitive on L. Also, $S \cap G(L) = \langle t \rangle$. Consequently, there is a normal subgroup $R \times G(L)$ of G_L , with R elementary abelian of order k.

Let ϵ be the number of involutions in G(L). Each coset $rG(L) \neq G(L)$, $r \in R$, contains exactly $\epsilon + 1$ involutions. Count in two ways the ordered triples (u, x, y) with $u \in t^G$ and $x^u = y \neq x$. Since there are vr/k lines, there are $(vr/k)\epsilon \cdot (v-k)$ triples. On the other hand, if $x, y \in L$ are given, then u must be in RG(L), so u = rg with $1 \neq r \in R$ and $g \in G(L)$ an involution or 1; thus, there are at most $v(v-1)(\epsilon+1)$ triples.

Hence, $(vr/k) \epsilon(v-k) \leqslant v(v-1)(\epsilon+1)$. Here, v-k=(r-1)(k-1), so $r-1 \leqslant (1+1/\epsilon)k \leqslant 2k$. By (7.3), $k \mid r-1$ and k < r-1. Thus, r-1=2k, $\epsilon=1$, and all involutions in RG(L) are conjugate to t. Since $\epsilon=1$, $G_L \succeq S$. This contradicts (8.2).

LEMMA 8.4. Let p be a prime and A a nontrivial normal abelian p-subgroup of G_x . Assume that a Sylow p-subgroup P of G(L) is nontrivial, and let Δ be its set of fixed points. Then the following hold.

- (i) $|\Delta| = k, k^2, \text{ or } k(2k-1).$
- (ii) If $|\Delta| = k(2k-1)$, then $G_{\Delta}^{\Delta} \geq PSL(2, 2k)$.
- (iii) If $|\Delta| = k^2$, then Δ is a translation plane.
- (iv) $C_G(P)_L$ is transitive on L.

Proof. If $P \leq G(L')$, then G(L') has an involution normalizing P since $4 \nmid |G(L)|$. Thus, if $|\Delta| > k$ then $N_G(P)^{\Delta}$ satisfies the conditions of Theorem 3. This proves (i)–(iii).

Since $A \leqslant P$ and P is Sylow in G(L), necessarily $N_A(P) \leqslant G(\Delta)$ and $N_A(P)^{\Delta}$ is semiregular on $\Delta - \{x\}$. Clearly, $N_G(P) \cap G(\Delta)$ normalizes $N_A(P)$, and $N_A(P)$ is abelian.

Suppose (ii) holds, and let S be a Sylow 2-subgroup of $N_G(P)$. Then $S \cap G(\Delta) = 1$, and $(N_G(P) \cap N_G(S))^{\Delta}$ is irreducible on S^{Δ} . Thus, $N_G(P) \cap N_G(S)$ is irreducible on S. By (6.1i) with $Y = N_G(P)$ and $X = N_G(P) \cap G(\Delta)$, $C_G(P) \geqslant S$. Since $C_G(P)^{\Delta} \subseteq N_G(P)^{\Delta}$, it follows that $C_G(P)^{\Delta} \geqslant PSL(2, 2k)$. In particular, (iv) holds in this case.

If $|\Delta| = k^2$, then (by (6.5)) $N_G(P)$ has a subgroup Y of index 2 such that $Y \cap G(L)$ has odd order. Similarly, if $|\Delta| = k$ then (by (8.1)) $N_G(P)$ also has such a subgroup Y.

Set $X = Y \cap G(\Delta)$. Then X has odd order. Clearly, $N_{A}(P)$ is an abelian p-group contained in Y, not contained in X, and normalized by X.

Let R be a Sylow 2-subgroup of Y. Then R^{Δ} is a regular normal subgroup of $N_G(P)^{\Delta}$. Since $N_A(P)^{\Delta}$ is semiregular on $\Delta - \{x\}$, it is fixed-point-free on R^{Δ} . $O(N_G(P)^{\Delta}) = 1$, so X = O(Y).

Hence, (6.1(ii)) applies, so $R \leqslant C_Y(X) \leqslant C_G(P)$. Since $(R^d)_L$ is transitive on L, this proves (iv).

LEMMA 8.5. If A is a normal abelian p-subgroup of G_x , then $A \cap G(L) = 1$.

Proof. Suppose $B = A(L) \neq 1$. If $B \leqslant G(L')$ with $x \in L'$, then $L' = L^g$ with $g \in G_x$ (see (7.2(iii))). Thus, $B \leqslant G(L)^g \cap A^g = B^g$. Consequently, $N_G(B)_x$ is transitive on the lines on x fixed pointwise by B.

By (8.4iv), $C_G(B)_L$ is transitive on L. Consequently, $N_G(B)$ is transitive on the set Γ of fixed points of B. Moreover, B is weakly closed in G(L) with respect to G.

Any two points x_1 , y_1 of \mathcal{D} are in exactly one set Γ^g , $g \in G$. (For, by (7.2(iii)), we may assume that $x_1 = x$ and $y_1 \in L$.) Thus, these sets form a new design with $\lambda = 1$. Since A is abelian, it fixes Γ and hence each Γ -line on x; hence so does B. But $B = (A^h)_x$, where $x \neq x^h \in L$ and $h \in G$, so B also fixes each Γ -line on x^h . Since each point not in Γ is the intersection of Γ -lines on x and x^h , it follows that B = 1.

Lemma 8.6. $F_L = 1$.

Proof. Deny! By (8.3), $F(L) \neq 1$. Let p be a prime such that $U_{\nu} \neq 1$, where $U = O_{\nu}(F)$. Let A = Z(U). By (8.3) and (8.5), A moves L. Thus, if Γ is the set of fixed points of U_{ν} , then $|\Gamma| > k$.

By (8.4(iv)), $C_G(U_y)_L$ is transitive on L. If $x \in L' \subseteq \Gamma$, then $U_y = U(L')$ is normalized by each involution in G(L'). The minimality of G thus implies that $|\Gamma| = k^2$ or k(2k-1); moreover, $N_G(U_y)$ has an elementary abelian subgroup R such that R^{Γ} is regular if $|\Gamma| = k^2$, while |R| = 2k if $|\Gamma| = k(2k-1)$.

Let L' be one of the $(v/k)-(|\Gamma|/k)$ lines fixed by t not in Γ , and let $t' \in G(L')$ centralize t. Since $|\Gamma|$ is even, $\Gamma \cap L' = \emptyset$, so $|\Gamma| = k^2$. We may assume that t' normalizes R, and $t'^T \in R^T$. Then $t' \in R$, so $R \leq C_G(t')$ and $|R| = k^2$, whereas a Sylow 2-subgroup of $C_G(t')$ is assumed in this section to have order 2k.

LEMMA 8.7.

- (i) F is regular on the lines on x.
- (ii) t is the unique involution in G(L).
- (iii) $G_{xL}^L = 1$.

Proof. (8.6) and (7.8) imply (i) and (ii).

Suppose $G_{xL}^L \neq 1$. Write $X = (G_{xL})' G(L)F$, so $X \triangleleft G_x$.

Let $w \in G_{xL}$. We claim that $w^g \equiv w \pmod X$ whenever $w^g \in G_x$ and $g \in G$. This is clear if $g \in G_x$ (since $(G_x)' \leq X$) so we may assume that $g \notin G_x$. Then w fixes $x^{g^{-1}} \neq x$. Let L' be the line through x and $x^{g^{-1}}$. Then $w \in G(L')$. Since G_x is transitive on the lines through x, it follows that $w \in X$. Similarly, $w^g \in G(L'^g)$ and $x = (x^{g^{-1}})^g \in L'^g$, so $w^g \in X$. This proves our claim.

Since $|G_x|X| |k-1|$ and k-1|v-1, $(|G:G_x|, |G_x|X|) = 1$. Transferring into G_x/X , we find that G has a proper normal subgroup H of odd index such that $H \cap G_x = X$. Since G is generated by its involutions, this is impossible.

LEMMA 8.8. G(L) is semiregular off of L.

Proof. Deny! Let $W \leq G(L)$ be a nontrivial q-group (for some prime q) fixing a point off L. Let Δ denote the subspace of fixed points of W.

By (8.7(iii)), each fixed line L' of W is pointwise fixed. By (8.7(ii)), the involution in G(L') centralizes W. Hence, $C_G(W)^{\Delta}$ satisfies the hypotheses of Theorem 3, so either $|\Delta| = k^2$ or $|\Delta| = k(2k-1)$. If $|\Delta| = k^2$, then (6.5) and (8.7iii) show that $|N_G(W)^{\Delta}(L)| = 2$. By (6.4iv) and (8.7iii), the same equality holds when $|\Delta| = k(2k-1)$. Consequently, a Sylow q-subgroup of G(L) fixes Δ pointwise, so we may assume that W is Sylow in G(L).

Let $t_1 \in (C_G(t) - \{t\}) \cap t^G$. Since $G(L) = \langle t \rangle \times O(G(L))$, t_1 normalizes some Sylow q-subgroup W_1 of $C_G(t) = G_L$. Consider first the case $W_1 = W$. Here, t_1 acts on Δ . If $|\Delta| = k^2$ and t_1^{Δ} is in the translation group of $N(W)^{\Delta}$, then t_1 centralizes an elementary abelian 2-group of order k^2 , whereas a Sylow 2-subgroup of $C_G(t_1)$ has order 2k; thus, $A_{t_1} \subset \Delta$. If $|\Delta| = k(2k-1)$, t_1 must fix points of Δ , and again $A_{t_1} \subset \Delta$. Thus, $W \leqslant G(A_{t_1})$ in either case.

In the case of general W_1 , Sylow's theorem shows that $W_1 \leq G(A_{t_1})$. Since each point $x \notin L$ is fixed by some conjugate of t (cf. (7.1(i))), z and L lie in a subspace having k^2 or k(2k-1) points. The intersection of subspaces of \mathcal{D} is a subspace, so (by (6.4i)) z and L are in a unique subspace having k^2 or k(2k-1) points.

Moreover, Sylow's theorem implies that all these subspaces have k^2 points—which is impossible by (7.4)—or k(2k-1) points. Hence, all involutions in S are conjugate.

Let U be any Sylow subgroup of O(G(L)). We may assume S normalizes U, and then $|S| \ge 8$ implies that some involution t' in $S - \langle t \rangle$ centralizes a nontrivial subgroup U_0 of U. Then U_0 fixes a point of the axis of t'. Hence, the first part of this proof shows that U fixes exactly k(2k-1) points. By (6.4i), Δ^g is the set of fixed points of U, for some $g \in G_L$.

We now see that $G(\Delta)$ contains a Sylow q-subgroup for each prime $q \mid |O(G(L))|$. Consequently, $O(G(L))^{\Delta} = 1$, so $\Delta^g = \Delta$ for all $g \in G(L)$. Since we already know that each point of $\mathcal D$ is in Δ^g for some $g \in G(L)$, this is absurd.

LEMMA 8.9.

(i) G(L) is fixed-point-free on F, so |G(L)| divides |F|-1=v-1.

- (ii) Each element of $t^G \cap (C_G(t) \{t\})$ inverts G(L).
- (iii) G(L) is cyclic.

Proof.

- (i) By (8.7i) and (8.8), if $1 \neq g \in G(L)$ then $C_F(g) \leqslant F_L = 1$.
- (ii) Let $u \in G(L')$ be such an element. Then $C_{G(L)}(u)$ acts on L'. By (8.7(iii)), $C_{O(G(L))}(u) \leq G(L')$, where $G(L) \cap G(L') = 1$ by (8.8).
 - (iii) By (ii), G(L) is abelian, and hence is cyclic by (i).

LEMMA 8.10. $C_G(t)$ contains an involution not conjugate to t.

Proof. Otherwise, S is an elementary abelian group of order $2k \ge 8$, all of whose involutions are conjugate to t. By (8.9(ii)), O(G(L)) = 1. This contradicts (8.2).

Conclusion of the Proof of Proposition 8.0.

We will use the notation of (7.7). By (8.10), $2(k-1) > \sum \beta_i = (k-1) \cdot 2(r-1)/k \mid G(L)\mid$. Hence, $k-1 = \sum \beta_i \leq 2\delta$, so $\delta \geq k/2$. If u_1 , $u_2 \in (C_G(t) - \{t\}) \cap t^G$, then u_1u_2 centralizes G(L) by (8.9ii). Hence, $\mid C_G(G(L))^L \mid \geq k/2$. By (8.7iii) and (8.9(iii)), $C_G(G(L)) = R \times G(L)$ with $\mid R \mid \geq k/2$ and $\mid G_L : RG(L) \mid \leq 2$. Since $k < r-1 = k \mid O(G(L)) \mid$ by (7.3), while u_1 inverts O(G(L)), we must have $\mid R \mid = k/2$ and $(R\langle t \rangle) \cap t^G = \{t\}$. In particular, $\delta = k/2$.

Now $\sum \beta_i = k - 1 = 2\delta - 1$, so $\beta_i = 0$ or 2 with the exception of a single i for which $\beta_i = 1$. Certainly $|S:R\langle t\rangle| = 2$, and hence $S - R\langle t\rangle$ consists of conjugates of t, except for just one element. By (7.6), $N_G(S)$ has an element g such that $(R\langle t\rangle)^g \neq R\langle t\rangle$. Then $(R\langle t\rangle)^g$ has k/2 elements not in $R\langle t\rangle$. If k/2 > 2, then $(R\langle t\rangle)^g$ contains more than one conjugate of t, whereas $R\langle t\rangle$ does not.

Hence, k=4 and |S|=8. By (7.6) and (8.7(iii)), $N_G(S)/C_G(S)$ is a 2-group regular on $S\cap t^G$. There are three involutions r_1 , r_2 , $r_3\in S$ not conjugate to t, two in $R\langle t\rangle$ and one in $S-R\langle t\rangle$. Then $r_1r_2\neq r_3$. $N_G(S)$ fixes some pair $\{r_\alpha, r_\beta\}$, $\alpha\neq\beta$, and hence centralizes $r_\alpha r_\beta\in t^G$, which is ridiculous.

9. The Case v/k Odd

Proposition 8.0 has the following easy corollaries.

LEMMA 9.1.

- (i) v/k is odd.
- (ii) S is a Sylow 2-subgroup of G.

Proof.

- (i) Suppose v/k is even. S acts on the (v/k) 1 lines $\neq L$ fixed by t (see (7.1)), and hence fixes one of them, say L'. Then S centralizes an involution $u \in G(L')$, so $u \in Z(S)$. Since t is not a square in $C_G(u)$, |Q| = 2. Also, S/Q is elementary abelian. If S is abelian, it follows that it is elementary abelian, and then (8.0) applies. If S is nonabelian, then by [10], p. 196, it has an extraspecial subgroup having center $Q = \langle t \rangle$. Then t is a square in $S \leq C_G(u)$, which is not the case.
 - (ii) There are vr/k lines.

Lemma 9.2. $G_{xL}^{L} = 1$.

Proof. Deny! By (7.5), $Q = S \cap G(L)$ is cyclic or quaternion. Also, $G_L = G(L) N_G(Q)$, so $N_G(Q)^L$ is a Frobenius group whose kernel is an elementary abelian 2-group. In particular, no nontrivial homomorphic image of $N_G(Q)^L$ can be S_3 or a 2-group.

On the other hand, $N_G(Q)/QC_G(Q)$ is isomorphic to a group of outer automorphisms of Q, and hence is A_3 , S_3 , or a 2-group. Consequently, $QC_G(Q)$ contains a Sylow 2-subgroup of $N_G(Q)$.

By (7.1), we can find $u \in t^G \cap (C_G(t) - \{t\})$, and we may assume that $u \in QC_S(Q)$. Then u = qc with $q \in Q$ and $c \in C_S(Q)$. Clearly, u centralizes q and c. But t is not a square in $C_G(u)$, so q = 1 or t. Then $u \in C_G(Q)$, so necessarily |Q| = 2.

Similarly, if $u \in Z(S)$, then t cannot be a square in S. Then S is elementary abelian, and this contradicts (8.0).

Thus, S is nonabelian, so $S' = \langle t \rangle$. Then S = EZ(S) with E an extraspecial group ([10], p. 196). If |E| > 8 then $C_E(u)$ has an element of order 4, which is again a contradiction. Thus, |E| = 8.

Since $G_L \geq SG(L)$, $G_L^L = N_G(S)^L$ by the Frattini argument. Thus, $N_G(S)_x$ has a subgroup H of odd order inducing a nontrivial fixed-point-free group on $S/\langle t \rangle$. By Maschke's theorem, $S/\langle t \rangle = B/\langle t \rangle \times Z(S)/\langle t \rangle$ with $B > \langle t \rangle$ invariant under H. Here, |B| = 8, and H acts nontrivially on B, so B is quaternion. Now $u \in S = BZ(S)$ implies that t is a square in $C_S(u)$, which is not the case.

LEMMA 9.3. There is no subspace $\Delta \approx \mathcal{D}(k)$ such that $G_{\Delta}^{\Delta} \geqslant PSL(2, 2k)$.

Proof. Assume Δ exists. Then S has an elementary abelian subgroup X of order $2k \ge 8$ all of whose involutions are conjugate to t. If $Q > \langle t \rangle$, it has a subgroup $\langle g \rangle$ of order 4 normal in S. If $Q = \langle t \rangle$, then once again S = EZ(S) with E extraspecial, so S has a normal subgroup $\langle g \rangle$ of order 4.

In either case, $g^2 = t$. For each $u \in X - \langle t \rangle$, we know that $g \notin C_G(u)$, so $g^u = g^{-1}$. Since $|X| \ge 8$, this is absurd.

LEMMA 9.4. $F_L = 1$.

Proof. Deny! By (9.2), $F(L) = F_L \neq 1$. Let p be a prime dividing |F(L)|, P a Sylow p-subgroup of G(L), and Δ the set of fixed points of P. Clearly, $N_{PF}(P) > P$, so $N_F(P)$ moves L by (9.2). Thus, $|\Delta| > k$.

Since $t \in Z^*(G(L))$ by (7.5) and [9], $N_{G(L)}(P)$ contains an involution. Clearly, this is also true for any line $L' \subset \Delta$. Thus, the minimality of G forces $|\Delta| = k^2$ or k(2k-1). By (9.3), $|\Delta| = k^2$.

By (9.2) and (6.5), $|N_G(P)^{\Delta}| = k^2(k+1)2$. Then $N_G(P)$ has a subgroup Y of index 2 such that $t \notin Y$ and Y/X is a Frobenius group of order $k^2(k+1)$ whose kernel is an elementary abelian 2-group; here, $X = Y \cap G(\Delta)$.

Let $A = O_y(Z(F))$. Then $N_{PA}(P) > P$ and $N_A(P)$ moves L (by (9.2)). Thus, $N_A(P) \leqslant Y$, $N_A(P) \leqslant X$, and X normalizes $N_A(P)$. By (6.1ii), $C_G(X)$ has an elementary abelian 2-subgroup R of order k^2 regular on Δ . Let $U = O_y(G_x)$. Then $U_y \leqslant P$, so $R \leqslant C_G(U_y)$. Let Γ be the set of fixed points of U_y . Then $\Gamma \supseteq \Delta$. Since $U \lhd G_x$, (7.2i) implies that $N_G(U_y)_x$ is transitive on the fixed lines of U_y through x. Also, $R_L^L \leqslant C_G(U_y)_L^L$ is transitive, while t normalizes U_y . It follows that $N_G(U_y)^\Gamma$ satisfies the

Let L' be one of the $(v/k)-(|\Gamma|/k)$ lines not in Γ fixed by t. Then t centralizes an involution $u \in G(L')$. Since $C_G(U_v)_L$ is transitive on L, $U_v = O_v(G_v)_x$. Thus, $U_v \lhd G_L$, so u normalizes U_v and hence acts on Γ . However, $L' \cap \Gamma = \emptyset$, so we can choose R so that u normalizes R and $u^\Gamma \in R^\Gamma$. Thus, $u \in R$, so $C_G(u)^{L'}$ has an elementary abelian subgroup $R^{L'}$ of order $\geqslant k^2/2 > k$, which is absurd.

COROLLARY 9.5.

- (i) F is abelian and is regular on the lines on x.
- (ii) t is the unique involution in G(L).

hypotheses of Theorem 3, so $\Gamma = \Delta$ by (9.3).

Proof. (9.4) and (7.8).

LEMMA 9.6.

- (i) G(L) is semiregular off of L.
- (ii) G(L) is fixed-point-free on F so |G(L)| divides |F|-1=r-1.
- (iii) If $u \in t^G \cap (C_G(t) \{t\})$ then $C_{G(L)}(u) = \langle t \rangle$.

Proof. In view of the proof of (8.9), we need only prove (i).

We will imitate the proof of (8.8). Let $1 \neq W \leqslant G(L)$, and suppose that the set Δ of fixed points of W has more than k points. By the minimality of G, (9.5(ii)), and (9.3), $|\Delta| = k^2$. Also, $|N_G(W)^2(L)| = 2$ by (9.2) and (6.5), while $|C_F(W)| = k + 1$ by (2.2). Consequently, the following condition holds:

(*) If $1 \neq W \leqslant G(L)$ and $C_F(W) \neq 1$, then $N_{G(L)}(W) = \langle t \rangle O(N_{G(L)}(W))$, and $C_F(W) = C_F(U)$ whenever $1 \neq U \leqslant O(N_{G(L)}(W))$.

Write $F_0 = C_F(W)$ and $H_0 = C_{G(L)}(F_0) \neq 1$. By (*), $H_0 \geqslant O(N_{G(L)}(U))$ whenever $H_0 \geqslant U \neq 1$; choose $1 \neq H \leqslant H_0$ minimal with respect to this property. Then H is Hall in G(L), and $H \cap H^g = 1$ whenever $g \in G(L) - N_{G(L)}(H)$. Note that, by (*), $N_{G(L)}(H) = \langle t \rangle \times H$.

We may now assume that W is Sylow in H. In view of the proof of (8.8), some $u \in t^G \cap (C_G(t) - \{t\})$ does not normalize any conjugate of W in G(L).

In particular, |Q| > 2, so that $G(L) > \langle t \rangle H$. Since $\langle t \rangle H \cap \langle t \rangle H^g = \langle t \rangle$ whenever $g \in G(L) - \langle t \rangle H$, it follows that $G(L)/\langle t \rangle$ is a Frobenius group with complement $\langle t \rangle H/\langle t \rangle$; let $K/\langle t \rangle$ be its kernel. By Thompson's theorem [10, p. 337], K is nilpotent. Here, $O_2(K) = Q$ has order $\geqslant 4$. Since H is fixed-point-free on $Q/\langle t \rangle$, it follows that Q is quaternion of order 8 and |H| = |W| = 3.

Thus, G(L) is solvable. There are an odd number of Hall $\{2, 3\}$ -subgroups of G(L), so u normalizes one of them. Thus, we may assume u normalizes HQ. Then u permutes the 4 Sylow 3-subgroups of HQ, and $C_Q(u) = \langle t \rangle$. Thus, either u centralizes H, or $\langle u \rangle HQ/\langle t \rangle \approx S_3$. In either case, u normalizes some conjugate of H. However, we have already noted that this leads to a contradiction.

LEMMA 9.7. In the notation of (7.7), the following statements hold after suitably relabeling the β_i 's.

- (i) $r-1 = \frac{1}{2}k |G(L)|$.
- (ii) $\delta = k/2$.
- (iii) $\beta_1 = 1$, $\beta_i = 2$ for $2 \leqslant i \leqslant \delta$.
- (iv) G(L) is cyclic.
- (v) u_i inverts G(L) if $2 \leqslant i \leqslant \delta$; u_1 inverts O(G(L)).
- (vi) |Q| > 2.

Proof. By (9.5) and (9.6), we can apply (7.7). By (7.7ii), r-1 = k |G(L)| or $\frac{1}{2}k |G(L)|$.

Suppose first that $r-1=k\mid G(L)\mid$, so $\delta=k-1$ and each $\beta_i=2$. By (7.7(iii)), each $u\in t^G\cap (C_G(t)-\{t\})$ inverts G(L). Hence, $C_G(G(L))^L$ must be transitive. Thus, either $C_G(G(L))$ has the unique involution t, or $G(L)=\langle t\rangle$.

If $C_G(G(L))$ has just one involution, then so does $T = C_S(G(L))$. But T^L is transitive, so necessarily T is a generalized quaternion group and k = 4. Now S = QT and [Q, T] = 1. This leads to a contradiction precisely as in the proof of (9.2).

If $G(L) = \langle t \rangle$ then G_L has order 2k, and (by (7.1)) has 1 + (v - k)/k = 2k - 1 involutions. This contradicts (8.0).

Thus, we must have $r-1=\frac{1}{2}k\mid G(L)\mid$ in (7.7), so $2(k-1)\geqslant 2\delta\geqslant \sum \beta_i=k-1$. Hence, $\delta\geqslant k/2$. Moreover, since (v-k)/k=(k-1)(r-1)/k is even (by (9.1)), so is $\frac{1}{2}\mid G(L)\mid$, and hence (vi) holds.

Suppose $\delta = k/2$, so (ii) holds. Then $\sum \beta_i = k - 1$ and $0 \le \beta_i \le 2$ imply that we may assume (iii) holds. By (7.7(iii)), u_i inverts G(L) if $2 \le i \le \delta$. Hence, (iv) holds by (9.6(ii)). Finally, (v) holds by (9.6(iii)).

Thus, we must show $\delta > k/2$ is impossible. In this case, $\sum \beta_i = k-1$ implies that some $\beta_i = 2$. By (7.7(iii)) and (9.6(iii)), G(L) is cyclic. In particular, $Q \triangleleft G_L$.

Since |Q| > 2, Q has an element g of order 4, and then $\langle g \rangle \lhd G_L$. Each u_i inverts g. Thus, $\delta > k/2$ implies that $|C_G(g)^L| > k/2$. Then $C_G(g)$ is transitive on L, so there is a 2-element $h \in C_G(g)$ with $h^L = u_j^L$. However, $u_jG(L)$ consists entirely of involutions conjugate to t (as $\beta_j = 2$), so $h \in t^G$. Since h centralizes g, this is impossible.

COROLLARY 9.8. With the notion of (9.7), fix $u_1 \in t^G$ such that u_1^L induces the first involution of G_L^L . For $2 \le i \le \delta = k/2$, let u_i denote any involution inducing the *i*-th involution of G_L^L . Then the following hold.

- (i) $T = \langle Q, u_1u_i | 2 \leqslant i \leqslant \delta \rangle$ has index 2 in S.
- (ii) If $g \in T Q$ then u_i can be found so that $g = u_1u_i$.
- (iii) If $g \in S \langle t \rangle$ is an involution such that $g \notin t^G$ and $gt \in t^G$, then $g \in u_1Q$.

Proof.

- (i) In the notation of the last paragraph of the proof of (9.7), $|C_G(g)^L| \leq k/2$. This proves (i).
- (ii) Since $(u_1g)^L \notin T^L$, we have $(u_1g)^L = u_i^L$ for some u_i , $i \neq 1$. Since $u_i Q \subset t^G$, we can choose u_i as in (ii).
 - (iii) $u_i Q \subset t^G$ for i > 1.

Conclusion of the Proof of Theorem 3

We first show that $C_S(Q)$ is cyclic or generalized quaternion. For, suppose $g \in C_S(Q) - \langle t \rangle$ is an involution. By (9.7(vi)) and (9.8), $g \notin t^G$ and $g \in T$. As in (9.8(ii)) we can write $g = u_1 u_i$ for some u_i . Then $g \in C_G(u_i)$. By

(9.8(iii)), applied to u_1 instead of t, we know that g is in a uniquely determined coset of $G(L_1)$ in G_{L_1} (where $u_1 \in G(L_1)$). But the same argument shows that tg is also in this coset, whereas $t \notin G(L_1)$. This proves our assertion.

By (9.6(iii)), $\langle u_1 \rangle Q$ is dihedral or quasidihedral. Suppose it is dihedral. Then, by (9.7(v)), $T = C_s(Q)$ has index 2 in S. Also, u_1Q contains an involution not in t^G (since $\beta_1 = 1$). By (2.4), $G = \langle t^G \rangle$ has a normal subgroup of index 2, and this is impossible since t is a square.

In particular, $|Q| \ge 8$.

Next, k = 4. For suppose k > 4. By (9.8(ii)), $u_2u_3 = u_1u_i$ for some i. However, u_2u_3 centralizes Q, while u_1u_i does not.

By (9.7(ii)) and (2.4) (with $S_0 = \langle u_2 \rangle Q$), t is the only involution in $\langle u_1 u_2 \rangle Q$. If $\langle u_1 u_2 \rangle Q$ is cyclic, then $S = \langle u_1, u_2 \rangle$ is dihedral, whereas $\langle u_1 \rangle Q$ is not.

Thus, $a^{u_1u_2}=a^{-1}$, where $Q=\langle a\rangle$. But we already know $a^{u_1u_2}=at$. Thus, |Q|=4.

This contradiction completes the proof of Theorem 3.

10. APPENDIX

Harada's results [12] on 2-transitive groups can be formulated more precisely as follows.

THEOREM. Let G be a finite group 2-transitive on a set S of v points. Suppose that the stabilizer of two points fixes exactly k points, where 2 < k < v. If all involutions in G fix at most k points, then one of the following holds for the associated design \mathcal{D} .

- (i) $v = k^2$, \mathcal{D} is AG(2, k), and G contains the translation group.
- (ii) v = 28, k = 4, \mathcal{D} is $\mathcal{D}(4)$, and $G \approx P\Gamma L(2, 8)$.
- (iii) k = 3, \mathcal{D} is PG(2, 2), and $G \approx PSL(3, 2)$.
- (iv) k=3, \mathcal{D} is PG(3,2), and $G\approx A_7$.
- (v) k is odd, $v = k^3$, \mathcal{D} is AG(3, k), G has a regular normal subgroup R, and the stabilizer of a point has a normal subgroup SL(3, k) acting on R as usual.
- (vi) k is odd, $v = k^2$, \mathcal{D} is an affine translation plane, and G contains the translation group.

Remarks. If k is even in (i), then $G_x \triangleright SL(2, k)$. But if k is odd in (i), this need not hold. Only one nondesarguesian example of (vi) is known, of order k = 9: the so-called exceptional nearfield plane (see [7, p. 229]).

Proof. When k is even, this is just Theorem 4 of Harada [12]. Suppose k is odd. If O(G)=1, the theorem is a straightforward consequence of Harada's theorem and [1]. Thus, assume $O(G)\neq 1$, so G has a regular normal subgroup R. By (2.2), an involution t fixes $|C_R(t)|$ points. As in (3.3ii), there is a Klein group $\langle t,u\rangle$ with t and u axial. By (2.3), $v=k^2|C_R(tu)|$. If tu fixes only one point, then (vi) holds (see the proof of (3.4)). We may thus assume that all involutions are axial and $v=k^3$. Thus, $r=k^2+k+1$.

Suppose $1 \neq g \in G$, Δ is the set of fixed points of g, and $|\Delta| > k$. By (2.2), $|\Delta| = |C_R(g)|$. The argument at the end of (3.0), together with (3.3ii), provides us with a Klein group $\langle t_1, u_1 \rangle \leqslant C_R(g)$ with t_1^{Δ} and u_1^{Δ} axial. The argument of the preceding paragraph shows that $|\Delta| = k^2$ and Δ is an affine plane.

Fix x. If $t \in G_x$ let t^θ be the set of lines on x fixed by t other than its axis. Then $|t^\theta| = (r-1)/k = k+1$ as in (3.3v), since $C_R(t)$ is transitive on A_t . Suppose t and u are distinct involutions in G_x . We claim that either $|t^\theta \cap u^\theta| \leqslant 1$ or $t^\theta = u^\theta$. For, suppose $|t^\theta \cap u^\theta| \geqslant 2$. As in (3.2iv), tu fixes more than t points. Let t be the set of fixed points of tu, so $|t| = k^2$. Assume first that t is fixed points of tu, so $|t| = k^2$. Assume fixed that t in this case. Now consider the possibility t in this case. Now consider the possibility t in the t in the t in this case. Now consider the possibility t in t

There are $r = k^2 + k + 1$ lines on x, and k + 1 lines in each t^{θ} . As in (2.5), we obtain a projective plane \mathscr{P} . Moreover, G_x is transitive on the lines of \mathscr{P} , and t fixes the "line" t^{θ} pointwise. Hence, \mathscr{P} is desarguesian and G_x induces at least PSL(3, k) on \mathscr{P} (see Dembowski [7], p. 196). In particular, G_x is 2-transitive on the lines of \mathscr{D} through x.

Moreover, it is now easy to see that some nontrivial element g of G fixes more than k points. This provides us with an affine subplane of \mathcal{D} . Now the 2-transitivity of G_x and Buekenhout's theorem (6.2) imply that \mathcal{D} is AG(3, k) except when k = 3, in which case \mathcal{D} is AG(3, 3) by Hall [11].

REFERENCES

- J. L. Alperin, D. Gorenstein, and R. Brauer, Finite simple groups of 2-rank two, Scripta Math. 29 (1974), 191-214.
- R. BAER, Polarities in finite projective planes, Bull. Amer. Math. Soc. 52 (1946), 77-93.

- H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Z. 104 (1968), 175-204.
- H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlasst, J. Algebra 17 (1971), 527-554.
- 5. R. Brauer, Some applications of the theory of blocks of characters of finite groups II, J. Algebra 1 (1964), 307-334.
- F. Buekenhout, Une caractérisation des espaces affins basée sur la notion de droite, Math. Z. 111 (1969), 367-371.
- P. Dembowski, "Finite geometries," Springer, Berlin-Heidelberg-New York, 1968.
- W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 771-1029.
- G. GLAUBERMAN, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
- 10. D. Gorenstein, "Finite groups," Harper, New York 1968.
- M. Hall, JR., Automorphisms of Steiner triple systems. IBM J. Res. Dev. 4 (1960), 460-472.
- 12. K. HARADA, On some doubly transitive groups. J. Algebra 17 (1971), 437-450.
- 13. C. HERING (to appear).
- D. G. HIGMAN AND J. E. McLAUGHLIN, Geometric ABA-groups, Illinois J. Math. 5 (1961), 382-397.
- B. HUPPERT, Zweifach transitive, auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
- W. M. KANTOR, On 2-transitive groups in which the stabilizer of two points fixes additional points, J. Lond. Math. Soc. 5 (1972), 114-122.
- W. M. KANTOR, On 2-transitive collineation groups of finite projective spaces, Pacific J. Math. 48 (1973), 119-131.
- 18. H. NAGAO, On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
- T. G. OSTROM AND A. WAGNER, On projective and affine planes with transitive collineation groups, *Math. Z.* 71 (1959), 186-199.
- H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146–158.
- 21. H. WIELANDT, "Finite Permutation Groups," Academic Press, New York, 1964.