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Independe‘nt Pairs of Good Self-Dual Codes 

W ILLIAM M. KANTOR 

&&act--Let n z  0 (mod 8). Then there are two self-dual binary codes 
of length n having only the zero and all-one vectors in common, having all 
weights divisible by four, and having min imum distances asymptotically the 
same as that given by the Varshamov-Gilbert bound. 

I. INTRODUCTION 

In [l] and [2], MacWilliams, Sloane, and Thompson studied the 
class M  of binary self-dual [n, n/2] codes in which all weights are 
divisible by four. (Here, M  # 0 precisely when n s 0 (mod 8).) 
They showed that, for large block lengths n 3 0 (mod 8), there 
are codes in M  whose minimum distance is asymptotically the 
same as that given by the Varshamov-Gilbert bound. 

In this correspondence, we extend their result slightly. Call two 
self-dual codes independent  if their intersection consists only of 0  
and the all-one vector 1. We  will show that an independent pair 
of codes exists inside M  such that the minimum distance of each 
behaves asymptotically as above. However, a  triple of pairwise 
independent codes does not exist inside M. 

II. RESULTS 

We will prove the following results. 

Theorem 1: Let n  z 0 (mod 8). Then M  contains an indepen- 
dent pair C,, C, of codes whose minimum distances d, and d, 
both satisfy d/n = 0.110. 

Theorem 2: Let n E 0 (mod 8). Let r be the largest integer such 
that 

( 1  1  +.-. + ( 4(rn_ ])) <  2(“‘2)-2. 

Then there exists a code C, in M  whose minimum distance is at 
least 4r. For each such code C, in M  with this property, there is a 
second code C, in M  with this property such that C, and C2 are 
independent. 

Proposit ion I: Let n  G  0  (mod 8), and let C E M. Let wqi( C) 
be the number of codewords in C of weight 4i. If r is the largest 
integer such that Z:z,, ( ii) < 2(“/2)-2 + Z~,:W~~(C), then there 
is a code C’ E M  such that C and C’ are independent and C’ has 
minimum distance at least 4r. 

Manuscript received September 11, 198 1; revised December 30, 198 1. 
The author was with Bell Laboratories, Murray Hill, NJ 07974. He is now 

with the Department of Mathematics, University of Oregon, Eugene, OR 
97403.  

Theorem 3: Let n = 2m + 2 E 0 (mod8), and let C E M. Let 
Co be an [n, s] code such that C n C, = (0, l), all of whose 
weights are divisible by four. Then there are exactly 
2(m-sHm-s+‘)/2 codes C’ E M  such that C, c C’ and such that 
the codes C and C’ are independent. 

Proposit ion 2: There do not exist three pairwise independent 
members of M. 

Proposition 1 follows from Theorem 3 by a standard counting 
argument. In view of [l] and [2], Theorem 2 is a special case of 
Proposition 1, while Theorem 1 follows from Theorem 2. 

Consequently, we only have to prove Theorem 3 and Proposi- 
tion 2. This will be accomplished by translating them into the 
terminology of orthogonal geometry. 

III. ORTHOGONAL GEOMETRY 

Let n  z 0  (mod4). Write n  = 2m + 2. 
Let Z; denote the vector space of all ordered binary n-tuples. 

The weight wt(u) of a  vector u is its number of ones. 
Set V, = {O,l} and V,-, = {u E Z,“l wt(u) is even}. Then 

v, c v,-,. 
Set Y= I&,/V,. 
If x E Vn-,, set Q(x + V,) = iwt(x) (mod2). Since n 3 0 

(mod4), this is well-defined. 
Set (x + v,, Y + v,) = Q(x +Y + v,) - Q(x + v,> - Q(Y 

+ V,) for x, y E V,- ,. This is just the dot product (mod 2) of the 
vectors x and y, and hence defines a bilinear form on P. Thus, Q 
is a quadratic form on V(cf. [3, p. 4341). If (x + V,, y + V,) = 0 
for some y and all x, then it is easy to see that y E V,. Thus, Q is 
a nonsingular quadratic form. 

Let W  be a subspace of K Write W  = X/V, for a  subspace X 
of V,-,. By definition, Q(w) = 0 if and only if the weight of 
each vector in X is a multiple of four. Such a subspace W  is 
called totally singular. Note that W  c W ’- , so that dim W  5 m. 
Thus, there is a totally singular m-space if and only if M  # 0, 
and this is the case precisely when n  E 0 (mod 8) [ 1, lemma 4.61. 
This uniquely determines the quadratic form Q, up to a change of 
variabies ([4, pp. 197-1991; [S, p. 341; [3, p. 4381). In particular, if 
n  zO(mod8)thenthereisabasise,,...,e,, f,,...,f,of I/such 
that 

Q 
( 

5  aiei + 2 bif, = g aibi 
i=l i=l i i=l 

whenever ai, bi E Z,. Note that E = (e,;..,e,) and 
(fly. * .A> are totally singular m-spaces. Their preimages in 
V,- , are an independent pair of elements of M. 

The orthogonal group O+ (2m, 2) consists of all nonsingular 
linear transformations T of V such that Q( T( u)) =  Q(u) for all 
u  E I/. Note that T has nothing whatsoever to do with the coding 
theoretic structure of Zz. Note also that (T(u), T(u)) =‘(u, u) 
for all U, u E V. The following standard result [5, p. 361 will be 
used in our proofs. 

W itt’s Theorem: Let W , and W, be subspaces of I/. Let T,: 
W , -+ W, be a nonsingular linear transformation such that 
Q( T,( w)) = Q(w) for all w E W,. Then there is an element of 
O+ (2 m, 2) which, when restricted to W,, is just T,. 

IV. PROOFS 

Letn~O(mod8).Thenn=2m+2withm~-l(mod4). 
Define e,, . . . , e,, f,, . . . ,I, as in the preceding section. 

By W itt’s theorem, O+ (2m, 2) is transitive on the set of all 
totally singular k spaces for each k 5 m. Consequently, both 
Theorem 3 and Proposition 4 are simply concerned with the set 
of all totally singular subspaces having only 0 in common with 
E = (e,,. . .,e,). 
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Let G denote the subgroup of O+ (2m, 2) consisting of all [5] J. Dieudonnt, L.u Gbnetri~ des Groupes Clawiques. Berlin-Heidelberg- 
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Lemma I: If 0  5 k 5 m, then G is transitive on the set of all [6] V. Pless and J. N. Pierce, “Self-dual codes over GF(q) satisfy a modified 

totally singular k-spaces W  such that E n  W  = 0. 
Varshamov-Gilbert bound,” Inform. Conrr., vol. 23, pp. 35-40, 1973. 

Proof: Let W  be such a subspace. Then E2 = E n  WI has 
dimension m  - k. Let E, be any subspace of E such that E is the 
directsumE,@E,ofE,andE,.Letu,,...,u,beabasisofE,. 
Note that U: n W  is a  hyperplane of W. If 1  sj I k, there is a 
nonzero vector WJ  common to all the hyperplanes IJ~ n W, i #j. 
Then The Acceptance of Information, Its Subjective Cost 

i aiui +  i biw, +  e  I 
k and the Measurement of Distortion 

Q = 2  aibi, 
\i=l i=l I i=l ROLAND G. W ILSON 

whenever e E E, and a,, b, E Z,. Abstract-A suitable operational definition of the subjective acceptabil- 
If uk+l,‘. ., u, is a basis of E,, then the linear transformation ity of an information source to a human user is shown to be the “probabil- 

T,: E@ W-E@ (f,;..,.fk) sending P, to ei and wi to fi ity of acceptance in a multiple-choice test.” It is shown that acceptance 
satisfies the hypotheses of W itt’s theorem. Consequently, G con- probability relates directly to the user’s statistical dependence on a given 
tains an element sending W  to ( f,; . . ,fk). (If k = m, W itt’s source. The notion of subjective cost of information is introduced as a 
theorem is irrelevant here.) This proves the lemma. concise way of defining such acceptance probabilities and a general statisti- 

Lemma 2: Let W  be a totally singular m-space such that cal model of decision behavior used to establish the relation between 

En W=O.ThenW=(f,+Zf&,ai,ejll~i~m),where(aij) expected cost and probability of acceptance. Distortion is then defined as 

is a  skew-symmetric m X m matrix with zero diagonal. Con- the marginal cost of accepting a replication over that of the original source. 

versely, if ( a,j) is any such skew-symmetric matrix then the It is shown that this leads to a way of determining distortion functions from 

subspace W  defined using (a,,) as before is a totally singular observation of acceptance decisions. The method is illustrated with an 

m-space such that E n  W  = 0. example of image noise evaluation. 

Proof: Let W  be a totally singular m-space such that E n  W  I. THE PROBLEM OF ACCEPTABILITY 

= 0. Since V = E @  W, for each i there is a vector w E W  such 
that f, E E + wi. Set wj = f, + Zy! ,aijej. Then w,; . ., w,,, is a  

Rate-distortion theory is widely accepted as a basis for the 

basis for W, while 0 = Q(w,) = ai, and 0 = (wi, y) = a,j +  aj, 
study of source-coding methods [ l]-[ lo]. Its application requires 

for all i, i. Reversing this argument, we deduce the lemma. 
knowledge of two measures: the source probability distribution 
and the distortion measure. The former may be inferred, under 

Proof of Theorem 3: By Lemma 2, there are 2m(m+‘)/2 suitable assumptions (e.g., ergodicity), from observations of the 
totally singular m-spaces W  such that E tl W  = 0. By Lemma 1, source. There remains the problem of determining the distortion 
in order to complete the proof of Theorem 3 it suffices to function: what are the observable events from which it may be 
consider those subspaces W  containing ( f,, . . . J,). By Lemma 2, inferred? 
these arise from those skew-symmetric matrices (aij) whose first It is clear that the distortion function depends on the use to 
s rows are zero. There are thus 2(m-s)(m-s+‘)/2 such subspaces which the received information is put. In one of the most difficult 
W, as required. cases, and one of the most common, the user is a human being. In 

this case, the distortion function is required to reflect the subjec- 
Proof of Proposit ion 4: Assume that there are three totally tive acceptability of some set of replications of the source. Thus if 

singular m-spaces W, X, Y such that W  fl X = W  cl Y = X Cl Y a precise operational definition could be given for “subjective 
= 0. By Lemma 1, we may assume that X = E and Y = F. acceptability” it might provide a path to the distortion function. 
Define (a,,) as in Lemma 2. Then (b,; . . , b,)( aij) =  0  for some The approach taken in this correspondence is that of opera- 
m-tuple (b,; . . , b,) #  0, since m is odd and (a, ,) 

F’ 
is skew-sym- tionally defining acceptability as “probability of acceptance in a 

metric. By Lemma 2, Zy!, b, f, E F fl W. Since nw=o,tbis multiple-choice test.” This is a natural way of linking subjective 
is impossible. opinions to experimental observations. It leads in general to a 

definition of the subjective cost of an information source, and in 
V. CONCLUDING REMARKS the specific case where the sources are all replications of a  given 

We  used W itt’s theorem in our proofs. However, it is not 
source, to the average distortion associated with a replication. It 

difficult to obtain short, direct proofs of those special cases we 
will be shown that knowledge of the average distortions associ- 

required. 
ated with a suitably chosen set of replications is sufficient to 

Pless and Pierce [6] extended the results of MacWilliams, 
completely determine the distortion function. Finally the method 

Sloane, and Thompson [ 11, [2] to codes over arbitrary finite fields. 
is illustrated by an example of image noise evaluation. 

Our results can be extended in the same manner, using proofs II. ACCEPTANCE AND SUBJECTIVE COST 
similar to those of the preceding section. The problem of determining the acceptabilities to human users 

of some set of replications of a  given source is a special case of 
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