Translation Planes of Order q^6 Admitting $SL(2, q^2)$

WILLIAM M. KANTOR

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

Received July 2, 1981

DEDICATED TO PROFESSOR MARSHALL HALL, JR., ON THE OCCASION OF HIS RETIREMENT

Large numbers of translation planes are constructed which have order q^6 and admit a collineation group $SL(2, q^2)$ generated by elations.

In this paper we will give a simple construction for at least q(q+1)/6e nondesarguesian translation planes $\mathcal O$ of order q^6 whenever $q=p^e$ with p a prime. The elations of $\mathcal O$ fixing the origin 0 generate a group $S=SL(2,q^2)$ having q+2 orbits on the line L_∞ at infinity. The group (Aut $\mathcal O$)0 has just two orbits on L_∞ , of lengths q^2+1 and q^6-q^2 . The kernel of $\mathcal O$ is $GF(q^3)$, and S acts irreducibly on the underlying four-dimensional $GF(q^3)$ -space exactly as it does in the case of the desarguesian plane of order q^6 .

The construction was motivated by Example 8.2 of [2]. However, the plane of order 2⁶ constructed there is not the same as the one obtained here. Variations on the construction are undoubtedly possible.

The planes also differ from those in [1]: the kernel and action on L_{∞} are quite different for those planes.

THEOREM. Let $q=p^e>1$ be a power of a prime p. Then there are at least q(q+1)/6e different nondesarguesian translation planes \mathcal{O} of order q^6 having kernel $GF(q^3)$ such that $G=(\operatorname{Aut}\mathcal{O})_0\cap GL(4,q^3)$ behaves as follows.

- (i) G has orbits of lengths $q^2 + 1$ and $q^6 q^2$ on L_{∞} .
- (ii) $G \triangleright S \cong SL(2,q^2)$, where S has one orbit on L_{∞} of length q^2+1 and q+1 of length (q^2+1) $q^2(q-1)$.
- (iii) S fixes $q^2 + q + 1$ desarguesian subplanes of order q^2 containing 0 which are permuted transitively by the homologies of \mathcal{O} with center 0.

- (iv) Each Sylow p-subgroup of G consists of q^2 elations with the same axis.
 - (v) $G = (GF(q^3)*GL(2,q^2)) \cdot \mathbb{Z}_2$.
- (vi) $G \le \Gamma L(2, q^6)$, and G acts on the four-dimensional $GF(q^3)$ -space underlying \mathcal{O} exactly as it does for the desarguesian plane of order q^6 ; in particular, S acts irreducibly over $GF(q^3)$, while G acts irreducibly over GF(p).

Proof. Set K = GF(q) and $F = GF(q^3)$. Let V be an $\Omega^+(6, q)$ space with quadratic form Q and bilinear form (,). Set $V^F = V \otimes_K F$, and extend Q and (,) to forms Q^F and $(,)^F$ on V^F . (Thus, there is a basis $v_1, ..., v_6$ of V such that $Q^F(\sum \alpha_i v_i) = \alpha_1 \alpha_6 + \alpha_2 \alpha_5 + \alpha_3 \alpha_4$ for all $\alpha_i \in F$.)

Under the Klein correspondence, the singular points of V^F correspond to the lines of $PG(3, q^3)$. A spread of $PG(3, q^3)$ can be obtained from a set of $q^6 + 1$ singular points of V^F no two of which are perpendicular.

Fix an $\Omega^-(4,q)$ subspace W of V. Let E be any set of q^2+1 singular vectors in W such that $\{\langle e \rangle | e \in E\}$ consists of all singular points of W. No two members of E are perpendicular.

Let N be a set of q+1 vectors in W^{\perp} no two of which are linearly dependent.

If $\alpha \in F$, let $\alpha^{1/2}$ denote a square root of α , if one exists.

Fix $\gamma \in F - K$.

Let Ω_{γ} consist of the following points of V^F (where $e, f \in E$, $e \neq f, k \in K^*$ and $n \in N$):

$$\langle e \rangle$$
,
 $\langle e + kyf \pm [ky(e, f)/Q(n)]^{1/2}n \rangle$.

We will show that Ω_{γ} consists of q^6+1 pairwise nonperpendicular singular points of V^F .

Each of these points is easily checked to be singular.

If q is odd, fix e, f and n. Then $K*\gamma(e,f)/Q(n)$ contains exactly $\frac{1}{2}(q-1)$ squares. Thus, $|\Omega_{\gamma}| = (q^2+1) + (q^2+1)q^2(q+1) \cdot \frac{1}{2}(q-1) \cdot 2 = q^6+1$. Similarly, $|\Omega_{\gamma}| = q^6+1$ if q is even.

Let $e', f' \in E$, $e' \neq f'$, $k' \in K^*$ and $n' \in N$. Note that

$$(e', e + k\gamma f \pm [k\gamma(e, f)/Q(n)]^{1/2}n)^F = (e', e) + k(e', f)\gamma \neq 0$$

since $(e', e) \neq 0$ or $(e', f) \neq 0$ (as $e \neq f$), while $\gamma \notin K$. Suppose that

$$0 = (e + k\gamma f \pm [k\gamma(e, f)/Q(n)]^{1/2}n,$$

$$e' + k'\gamma f' \pm [k'\gamma(e', f')/Q(n')]^{1/2}n')^{F}$$

$$= (e, e') + l\gamma + kk'(f, f')\gamma^{2},$$

where

$$l = k'(e, f') + k(e', f)$$

$$\pm \gamma^{-1} [k\gamma(e, f)/Q(n)]^{1/2} [k'\gamma(e', f')/Q(n')]^{1/2} (n, n') \in K$$

(as $a\gamma$ is a square for some $a \in K$). Since γ is cubic over K, it follows that e = e', f = f' and l = 0. In view of the definition of l,

$$Q^{F}([k\gamma(e,f)/Q(n)]^{1/2}n \pm [k'\gamma(e,f)/Q(n')]^{1/2}n') = \gamma l = 0.$$

Since $(W^F)^{\perp}$ is anisotropic,

$$[k\gamma(e,f)/Q(n)]^{1/2}n \pm [k'\gamma(e,f)/Q(n')]^{1/2}n' = 0.$$

In view of the definition of N, it follows that n = n' and $k\gamma(e, f)/Q(n) = k'\gamma(e, f)/Q(n)$. Thus, our original two vectors are one.

This shows that Ω_{γ} determines a translation plane \mathcal{O}_{γ} of order q^6 . Since Ω_{γ} spans V^F , \mathcal{O}_{γ} is nondesarguesian. Its kernel is then $GF(q^3)$.

If some members of N are replaced by nonzero scalar multiples of themselves, the definition of Ω_{γ} produces the same set Ω_{γ} . Similarly, since

$$le + k\gamma f \pm [k\gamma(le, f)/Q(n)]^{1/2}n$$

= $l\{e + k'\gamma f \pm [k'(e, f)/Q(n)]^{1/2}n\}$

whenever k = lk' and $l \in K^*$, different choices for E produce the same set Ω_{γ} . Consequently, Ω_{γ} is invariant under the group J of all $g \in GL(6,q)$ such that $W^g = W$ and $Q(v^g) = c_g Q(v)$ for all $v \in V$ and some $c_g \in K$. Here, J induces a group of collineations and correlations of $PG(3,q^3)$. Let H be the subgroup of index 2 of J inducing collineations of $PG(3,q^3)$.

Note that $H > \Omega^-(4,q) \times \Omega^-(2,q)$, where $\Omega^-(4,q) \cong PSL(2,q^2)$. A Sylow p-subgroup of $\Omega^-(4,q)$ fixes some $e \in E$ and induces the identity on the F-space $e^{\perp}/\langle e \rangle$. This proves (iv), and implies that G has an orbit of length $q^2 + 1$ on L_{∞} . It is now straightforward to check that (i)-(vi) hold (since G and H agree on Ω_{γ} while H fixes W^F and hence induces a collineation group of $AG(2,q^6)$).

Let γ , $\delta \in F - K$. An isomorphism from \mathcal{O}_{γ} to \mathcal{O}_{δ} induces a transformation $g \in \Gamma L(6,q^3)$ such that $(\Omega_{\gamma})^g = \Omega_{\delta}$ and $Q(v^g) = c_g Q(v)^{\sigma}$ for all $v \in V^F$ and some $c_g \in F$, $\sigma \in \operatorname{Aut} F$. Then $(W^F)^g = W^F$ by (i). Projecting Ω_{γ} and Ω_{δ} onto W^F shows that $W^g = W$. Using H, we can modify g in order to have g induce a field automorphism σ on W and hence on V. Now $(\Omega_{\gamma})^g = \Omega_{\gamma^{\sigma}}$ by definition. Thus, $\Omega_{\delta} = \Omega_{\gamma^{\sigma}}$. It follows that $\delta = k(\gamma^{\pm 1})^{\sigma}$ for some $k \in K^*$. The isomorphism classes of planes \mathcal{O}_{γ} therefore correspond to orbits on F - K of the group of permutations $\gamma \to k(\gamma^{\pm 1})^{\sigma}$ with $k \in K^*$ and $\sigma \in \operatorname{Aut} F$. Each orbit has length $\leqslant (q-1) \cdot 2 \cdot 3e$. Thus, there are at least $(q^3-q)/(q-1)6e$ different planes. This completes the proof of the theorem.

- Remarks. (1) The \mathbb{Z}_2 in (v) induces a Baer involution of \mathcal{O}_{γ} .
- (2) $\Omega^-(2,q) = \mathbb{Z}_{q+1}$ fixes the point 0 and q+1 points of L_{∞} , but is not planar since $GF(q^3)^*$ centralizes it.
- (3) Since a cyclic subgroup of S order q+1 fixes exactly $2+(q+1)\cdot 2(q-1)$ points of L_{∞} , it is not planar. However, there are desarguesian subplanes of order q^2 on which this cyclic group induces q+1 homologies.
- (4) The \mathcal{O}_{γ} are the only translation planes of order q^6 with kernel $GF(q^3)$ admitting a group $GL(2,q^2)$ whose representation on the underlying vector space is as in the theorem. In order to see this, observe that such a plane is again represented by a set Ω of q^6+1 points in our orthogonal geometry V^F . Moreover, $GL(2,q^2)$ corresponds to our group H, and leaves invariant GF(q)-spaces W and W^{\perp} as before. A search for orbits of at most q^6+1 singular points yields $\Omega=\Omega_{\gamma}$ for some γ .

REFERENCES

- W. M. KANTOR, Spreads, translation planes and Kerdock sets, I, SIAM J. Alg. Disc. Methods, in press.
- 2. W. M. KANTOR, Ovoids and translation planes, to appear.