Translation Planes of Order q^6 Admitting $SL(2, q^2)$ ## WILLIAM M. KANTOR Department of Mathematics, University of Oregon, Eugene, Oregon 97403 Received July 2, 1981 ## DEDICATED TO PROFESSOR MARSHALL HALL, JR., ON THE OCCASION OF HIS RETIREMENT Large numbers of translation planes are constructed which have order q^6 and admit a collineation group $SL(2, q^2)$ generated by elations. In this paper we will give a simple construction for at least q(q+1)/6e nondesarguesian translation planes $\mathcal O$ of order q^6 whenever $q=p^e$ with p a prime. The elations of $\mathcal O$ fixing the origin 0 generate a group $S=SL(2,q^2)$ having q+2 orbits on the line L_∞ at infinity. The group (Aut $\mathcal O$)0 has just two orbits on L_∞ , of lengths q^2+1 and q^6-q^2 . The kernel of $\mathcal O$ is $GF(q^3)$, and S acts irreducibly on the underlying four-dimensional $GF(q^3)$ -space exactly as it does in the case of the desarguesian plane of order q^6 . The construction was motivated by Example 8.2 of [2]. However, the plane of order 2⁶ constructed there is not the same as the one obtained here. Variations on the construction are undoubtedly possible. The planes also differ from those in [1]: the kernel and action on L_{∞} are quite different for those planes. THEOREM. Let $q=p^e>1$ be a power of a prime p. Then there are at least q(q+1)/6e different nondesarguesian translation planes \mathcal{O} of order q^6 having kernel $GF(q^3)$ such that $G=(\operatorname{Aut}\mathcal{O})_0\cap GL(4,q^3)$ behaves as follows. - (i) G has orbits of lengths $q^2 + 1$ and $q^6 q^2$ on L_{∞} . - (ii) $G \triangleright S \cong SL(2,q^2)$, where S has one orbit on L_{∞} of length q^2+1 and q+1 of length (q^2+1) $q^2(q-1)$. - (iii) S fixes $q^2 + q + 1$ desarguesian subplanes of order q^2 containing 0 which are permuted transitively by the homologies of \mathcal{O} with center 0. - (iv) Each Sylow p-subgroup of G consists of q^2 elations with the same axis. - (v) $G = (GF(q^3)*GL(2,q^2)) \cdot \mathbb{Z}_2$. - (vi) $G \le \Gamma L(2, q^6)$, and G acts on the four-dimensional $GF(q^3)$ -space underlying \mathcal{O} exactly as it does for the desarguesian plane of order q^6 ; in particular, S acts irreducibly over $GF(q^3)$, while G acts irreducibly over GF(p). *Proof.* Set K = GF(q) and $F = GF(q^3)$. Let V be an $\Omega^+(6, q)$ space with quadratic form Q and bilinear form (,). Set $V^F = V \otimes_K F$, and extend Q and (,) to forms Q^F and $(,)^F$ on V^F . (Thus, there is a basis $v_1, ..., v_6$ of V such that $Q^F(\sum \alpha_i v_i) = \alpha_1 \alpha_6 + \alpha_2 \alpha_5 + \alpha_3 \alpha_4$ for all $\alpha_i \in F$.) Under the Klein correspondence, the singular points of V^F correspond to the lines of $PG(3, q^3)$. A spread of $PG(3, q^3)$ can be obtained from a set of $q^6 + 1$ singular points of V^F no two of which are perpendicular. Fix an $\Omega^-(4,q)$ subspace W of V. Let E be any set of q^2+1 singular vectors in W such that $\{\langle e \rangle | e \in E\}$ consists of all singular points of W. No two members of E are perpendicular. Let N be a set of q+1 vectors in W^{\perp} no two of which are linearly dependent. If $\alpha \in F$, let $\alpha^{1/2}$ denote a square root of α , if one exists. Fix $\gamma \in F - K$. Let Ω_{γ} consist of the following points of V^F (where $e, f \in E$, $e \neq f, k \in K^*$ and $n \in N$): $$\langle e \rangle$$, $\langle e + kyf \pm [ky(e, f)/Q(n)]^{1/2}n \rangle$. We will show that Ω_{γ} consists of q^6+1 pairwise nonperpendicular singular points of V^F . Each of these points is easily checked to be singular. If q is odd, fix e, f and n. Then $K*\gamma(e,f)/Q(n)$ contains exactly $\frac{1}{2}(q-1)$ squares. Thus, $|\Omega_{\gamma}| = (q^2+1) + (q^2+1)q^2(q+1) \cdot \frac{1}{2}(q-1) \cdot 2 = q^6+1$. Similarly, $|\Omega_{\gamma}| = q^6+1$ if q is even. Let $e', f' \in E$, $e' \neq f'$, $k' \in K^*$ and $n' \in N$. Note that $$(e', e + k\gamma f \pm [k\gamma(e, f)/Q(n)]^{1/2}n)^F = (e', e) + k(e', f)\gamma \neq 0$$ since $(e', e) \neq 0$ or $(e', f) \neq 0$ (as $e \neq f$), while $\gamma \notin K$. Suppose that $$0 = (e + k\gamma f \pm [k\gamma(e, f)/Q(n)]^{1/2}n,$$ $$e' + k'\gamma f' \pm [k'\gamma(e', f')/Q(n')]^{1/2}n')^{F}$$ $$= (e, e') + l\gamma + kk'(f, f')\gamma^{2},$$ where $$l = k'(e, f') + k(e', f)$$ $$\pm \gamma^{-1} [k\gamma(e, f)/Q(n)]^{1/2} [k'\gamma(e', f')/Q(n')]^{1/2} (n, n') \in K$$ (as $a\gamma$ is a square for some $a \in K$). Since γ is cubic over K, it follows that e = e', f = f' and l = 0. In view of the definition of l, $$Q^{F}([k\gamma(e,f)/Q(n)]^{1/2}n \pm [k'\gamma(e,f)/Q(n')]^{1/2}n') = \gamma l = 0.$$ Since $(W^F)^{\perp}$ is anisotropic, $$[k\gamma(e,f)/Q(n)]^{1/2}n \pm [k'\gamma(e,f)/Q(n')]^{1/2}n' = 0.$$ In view of the definition of N, it follows that n = n' and $k\gamma(e, f)/Q(n) = k'\gamma(e, f)/Q(n)$. Thus, our original two vectors are one. This shows that Ω_{γ} determines a translation plane \mathcal{O}_{γ} of order q^6 . Since Ω_{γ} spans V^F , \mathcal{O}_{γ} is nondesarguesian. Its kernel is then $GF(q^3)$. If some members of N are replaced by nonzero scalar multiples of themselves, the definition of Ω_{γ} produces the same set Ω_{γ} . Similarly, since $$le + k\gamma f \pm [k\gamma(le, f)/Q(n)]^{1/2}n$$ = $l\{e + k'\gamma f \pm [k'(e, f)/Q(n)]^{1/2}n\}$ whenever k = lk' and $l \in K^*$, different choices for E produce the same set Ω_{γ} . Consequently, Ω_{γ} is invariant under the group J of all $g \in GL(6,q)$ such that $W^g = W$ and $Q(v^g) = c_g Q(v)$ for all $v \in V$ and some $c_g \in K$. Here, J induces a group of collineations and correlations of $PG(3,q^3)$. Let H be the subgroup of index 2 of J inducing collineations of $PG(3,q^3)$. Note that $H > \Omega^-(4,q) \times \Omega^-(2,q)$, where $\Omega^-(4,q) \cong PSL(2,q^2)$. A Sylow p-subgroup of $\Omega^-(4,q)$ fixes some $e \in E$ and induces the identity on the F-space $e^{\perp}/\langle e \rangle$. This proves (iv), and implies that G has an orbit of length $q^2 + 1$ on L_{∞} . It is now straightforward to check that (i)-(vi) hold (since G and H agree on Ω_{γ} while H fixes W^F and hence induces a collineation group of $AG(2,q^6)$). Let γ , $\delta \in F - K$. An isomorphism from \mathcal{O}_{γ} to \mathcal{O}_{δ} induces a transformation $g \in \Gamma L(6,q^3)$ such that $(\Omega_{\gamma})^g = \Omega_{\delta}$ and $Q(v^g) = c_g Q(v)^{\sigma}$ for all $v \in V^F$ and some $c_g \in F$, $\sigma \in \operatorname{Aut} F$. Then $(W^F)^g = W^F$ by (i). Projecting Ω_{γ} and Ω_{δ} onto W^F shows that $W^g = W$. Using H, we can modify g in order to have g induce a field automorphism σ on W and hence on V. Now $(\Omega_{\gamma})^g = \Omega_{\gamma^{\sigma}}$ by definition. Thus, $\Omega_{\delta} = \Omega_{\gamma^{\sigma}}$. It follows that $\delta = k(\gamma^{\pm 1})^{\sigma}$ for some $k \in K^*$. The isomorphism classes of planes \mathcal{O}_{γ} therefore correspond to orbits on F - K of the group of permutations $\gamma \to k(\gamma^{\pm 1})^{\sigma}$ with $k \in K^*$ and $\sigma \in \operatorname{Aut} F$. Each orbit has length $\leqslant (q-1) \cdot 2 \cdot 3e$. Thus, there are at least $(q^3-q)/(q-1)6e$ different planes. This completes the proof of the theorem. - Remarks. (1) The \mathbb{Z}_2 in (v) induces a Baer involution of \mathcal{O}_{γ} . - (2) $\Omega^-(2,q) = \mathbb{Z}_{q+1}$ fixes the point 0 and q+1 points of L_{∞} , but is not planar since $GF(q^3)^*$ centralizes it. - (3) Since a cyclic subgroup of S order q+1 fixes exactly $2+(q+1)\cdot 2(q-1)$ points of L_{∞} , it is not planar. However, there are desarguesian subplanes of order q^2 on which this cyclic group induces q+1 homologies. - (4) The \mathcal{O}_{γ} are the only translation planes of order q^6 with kernel $GF(q^3)$ admitting a group $GL(2,q^2)$ whose representation on the underlying vector space is as in the theorem. In order to see this, observe that such a plane is again represented by a set Ω of q^6+1 points in our orthogonal geometry V^F . Moreover, $GL(2,q^2)$ corresponds to our group H, and leaves invariant GF(q)-spaces W and W^{\perp} as before. A search for orbits of at most q^6+1 singular points yields $\Omega=\Omega_{\gamma}$ for some γ . ## REFERENCES - W. M. KANTOR, Spreads, translation planes and Kerdock sets, I, SIAM J. Alg. Disc. Methods, in press. - 2. W. M. KANTOR, Ovoids and translation planes, to appear.