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Large numbers of translation planes are constructed which have order q6 and 
admit a collineation group SL(2, q2) generated by elations. 

In this paper we will give a simple construction for at least q(q + 1)/6e 
nondesarguesian translation planes GZ of order q6 whenever q =pe with p a 
prime. The elations of CY fixing the origin 0 generate a group S = SL(2, q*) 

having q + 2 orbits on the line L, at infinity. The group (Aut a),, has just 
two orbits on L,, of lengths q* + 1 and q6 - q*. The kernel of LPI is GF(q3), 
and S acts irreducibly on the underlying four-dimensional GF(q3)-space 
exactly as it does in the case of the desarguesian plane of order q6. 

The construction was motivated by Example 8.2 of [2]. However, the 
plane of order 26 constructed there is not the same as the one obtained here. 
Variations on the construction are undoubtedly possible. 

The planes also differ from those in [ 11: the kernel and action on L, are 
quite different for those planes. 

THEOREM. Let q =pe > 1 be a power of a prime p. Then there are at 
least q(q + 1)/6e dlrerent nondesarguesian translation planes GZ of order q6 
having kernel GF(q3) such that G = (Aut C&n GL(4, q3) behaves as 
follows . 

(i) G has orbits of lengths q* + 1 and q6 -q* on L,. 

(ii) G D S z SL(2, q*), where S has one orbit on L, of length 
q* + 1 and q -t 1 of length (q2 + 1) q*(q - 1). 

(iii) Sfixes q* + q + 1 desarguesian subplanes of order q* containing 
0 which are permuted transitively by the homologies of @ with center 0. 
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(iv) Each Sylow p-subgroup of G consists of q* elations with the same 
axis. 

(v) G = (GF(q3)*GL(2, 4’)) * Z,. 

(vi) G < W2, q6), and G acts on the four-dimensional GF(q3)-space 
underlying Gp( exactly as it does for the desarguesian plane of order q6; in 
particular, S acts irreducibly ouer GF(q3), while G acts irreducibly over 

GF(p). 

Proof. Set K = GF(q) and F = GF(q3). Let V be an a ’ (6, q) space with 
quadratic form Q and bilinear form ( , ). Set VF = VOK F, and extend Q 
and ( , ) to forms QF and ( , )’ on VF. (Thus, there is a basis u, ,..., u6 of V 
such that Q’E aiuj) = ala6 + a2a5 + a3a4 for all aI E F.) 

Under the Klein correspondence, the singular points of VF correspond to 
the lines of PG(3, q3). A spread of PG(3, q3) can be obtained from a set of 
q6 + 1 singular points of VF no two of which are perpendicular. 

Fix an R -(4, q) subspace W of V. Let E be any set of q* + 1 singular 
vectors in W such that { (e)le E E) consists of all singular points of W. No 
two members of E are perpendicular. 

Let N be a set of q + 1 vectors in W’ no two of which are linearly 
dependent. 

If a E F, let al” denote a square root of a, if one exists. 
Fix yE F-K. 
Let 0, consist of the following points of VP (where e, f E E, e #f, k E K* 

and n E N): 

W9 

(e + kyf* h(e9f>/Q<41”‘n>. 

We will show that aY consists of q6 + 1 pairwise nonperpendicular singular 
points of VF. 

Each of these points is easily checked to be singular. 
If q is odd, fix e, f and n. Then K*y(e, f )/Q(n) contains exactly j(q - 1) 

squares. Thus, ~J2,~=(q2+1)+(q2+1)q2(q+1)~~(q-l).2=q6+1. 
Similarly, lRyl = q6 + 1 if q is even. 

Let e’, f’ E E, e’ #f ‘, k’ E K* and n’ E N. Note that 

(e’,e + kyff [ky(e,f)/Q(n)]“‘n)‘= (e’, e) + W’,f)y z 0 

since (e’, e) # 0 or (e’, f) # 0 (as e #f ), while y & K. Suppose that 

0 = (e + kyff [ky(e,f>/Q<n)ll”ny 

e’ + k’yf’ f [k’y(e’, f ‘)/Q(n’>]“‘n’)’ 

= (e, e’) + ly + kk’(f, f ‘)y*, 
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where 

I= k’(e, f’) + k(e’, f) 

f y~‘[~~(e,f)/Q(~)]~‘*[k’~(e’,f’>/Q(~’>]”*(n, n’) E K 

(as ay is a square for some II E K). Since y is cubic over K, it follows that 
e = e’, f =f’ and I= 0. In view of the definition of I, 

QFW(e9 f>/QW “‘n f [k’y(e,f)/Q(n’)] %‘) = yl = 0. 

Since ( W”)’ is anisotropic, 

[ky(e, f)/Q(n)] ‘j2n f [k’y(e, f>/Q(n’>] “2n’ = 0. 

In view of the definition of ZV, it follows that n = n’ and ky(e,f)/Q(n) = 

We, f)/QW. Th us, our original two vectors are one. 
This shows that R, determines a translation plane GPI, of order q6. Since J?, 

spans VF, csl, is nondesarguesian. Its kernel is then GF(q3). 
If some members of N are replaced by nonzero scalar multiples of them- 

selves, the definition of R, produces the same set 0,. Similarly, since 

le + kyf f [We, f>/Q(n>l ‘12n 

= I{e + k’yf f [k’(e, f)/Q<n>]“‘n} 

whenever k = lk’ and 1 E K*, different choices for E produce the same set 
fiY. Consequently, 8, is invariant under the group J of all g E GL(6, q) such 
that Wg = W and Q(ug) = c,Q(v) for all u E V and some cg E K. Here, J 
induces a group of collineations and correlations of PG(3, q3). Let H be the 
subgroup of index 2 of J inducing collineations of PG(3, q3). 

Note that H > n-(4, q) x n-(2, q), where n-(4, q) z PSL(2, q2). A 
Sylow p-subgroup of o-(4, q) fixes some e E E and induces the identity on 
the F-space e’/(e). This proves (iv), and implies that G has an orbit of 
length q2 + 1 on L,. It is now straightforward to check that (i)-(vi) hold 
(since G and H agree on R, while H fixes WF and hence induces a 
collineation group of AG(2, q6)). 

Let y, 6 E F-K. An isomorphism from &‘, to @, induces a transfor- 
mation gE I’L(6, q3) such that (fl,)” = B, and Q(vg) = c~Q(~)~ for all 
o E VF and some c, E F, u E Aut F. Then (W’)” = WF by (i). Projecting R, 
and $2, onto WF shows that Wg = W. Using H, we can modify g in order to 
have g induce a field automorphism u on W and hence on V. Now 
(nJg = fir0 by definition. Thus, B, = fly. It follows that 6 = k(y*‘)” for 
some k E K*. The isomorphism classes of planes a, therefore correspond to 
orbits on F - K of the group of permutations y -+ k(y * ‘)O with k E K* and 
u E Aut F. Each orbit has length < (q - 1) . 2 . 3e. Thus, there are at least 
(q3 - q)/(q - 1)6e different planes. This completes the proof of the theorem. 



302 WILLIAM M. KANTOR 

Remarks. (1) The Z, in (v) induces a Baer involution of @,. 

(2) ~-ch4)=c7+, fixes the point 0 and q + 1 points of L m, but is 
not planar since GF(q3)* centralizes it. 

(3) Since a cyclic subgroup of S order q + 1 fixes exactly 
2+(q+ 1).2(q-1) points of L,, it is not planar. However, there are 
desarguesian subplanes of order q* on which this cyclic group induces q + 1 
homologies. 

(4) The G’Z, are the only translation planes of order q6 with kernel 
GF(q3) admitting a group GL(2, q2) whose representation on the underlying 
vector space is as in the theorem. In order to see this, observe that such a 
plane is again represented by a set Q of q6 + 1 points in our orthogonal 
geometry VF. Moreover, GL(2, q*) corresponds to our group H, and leaves 
invariant GF(q)-spaces W and W’ as before. A search for orbits of at most 
q6 + 1 singular points yields R = R, for some y. 
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