ON THE MAXIMALITY OF PSL(d + 1, q), $d \ge 2$

W. M. KANTOR AND T. P. McDONOUGH

It is well known that the Mathieu groups M_{12} and M_{24} contain PSL(2, 11) and PSL(2, 23) in their natural permutation representations of degrees 12 and 24, respectively (see, e.g., [2]). It is therefore natural to consider the permutation representation of H = PSL(d+1,q) of degree $v = (q^{d+1}-1)/(q-1)$ on the set Ω of points of projective d-space PG(d,q), and to ask what subgroups of Sym (Ω) contain H. While nothing seems to be known for d=1, we shall answer this question when $d \ge 2$.

THEOREM. Suppose $d \ge 2$, and let G be a subgroup of Sym (Ω) containing H. Then either (i) G is contained in the normalizer $P\Gamma L(d+1,q)$ of H, or (ii) Alt $(\Omega) \le G$.

Proof. G is clearly 2-transitive on Ω . A hyperplane Φ of PG(d,q) has $k=(q^d-1)/(q-1)$ points. Suppose first that G is not k-transitive. Note that the pointwise stabilizer of Φ is transitive on $\Omega-\Phi$, the set stabilizer of Φ is 2-transitive on $\Omega-\Phi$, and $|\Omega-\Phi|=q^d$ is a prime power. By [4; Theorem 8.4], or by [5] and [3; Theorem 9], one of the following must hold: (a) G is a group of collineations of PG(d',q'), for some d' and q', and Φ is a hyperplane of PG(d',q'); (b) v is a power of 2 and k=v/2; or (c) v=22, 23 or 24. Both (b) and (c) are excluded for arithmetical reasons. (a) implies that d'=d, q'=q and $G\leqslant P\Gamma L(d+1,q)$ (see, e.g., [1; Theorem 4, p. 88]). Thus (i) must hold in this case.

Now suppose that G is k-transitive on Ω . If Alt $(\Omega) \not\leq G$ then $k < 3 \log (v - k)$ by [7; Satz C] (compare [8; p. 21]). There are only nine possible pairs v, k which satisfy this inequality. Suitable applications of [8; Theorems (13.9) and (13.11)] show that in these cases, as for the values of v and k not satisfying the inequality, we must have Alt $(\Omega) \leq G$.

Remark. In view of a result of Tits (see [6; Lemma (1.6)]), one obtains the same result for any transitive representation of PSL(d+1,q) of degree $(q^{d+1}-1)/(q-1)$.

References

- 1. R. J. Bumcrot, Modern projective geometry (Holt, Rinehart and Winston, 1969).
- 2. J. H. Conway, "Three lectures on exceptional groups", *Finite simple groups* (ed. G. Higman and M. B. Powell, Academic Press, London and New York, 1971).
- 3. D. R. Hughes, "Extensions of designs and groups: Pro jective, symplectic and certain affine groups", *Math. Z.*, 89 (1965), 199-205.
- 4. W. M. Kantor, "Jordan groups", J. Algebra, 12 (1969), 471-493.
- 5. T. P. McDonough, "On Jordan groups-Addendum", J. London Math. Soc., 8 (1974), 451-452.
- 6. G. M. Seitz, "Flag-transitive subgroups of Chevalley groups", Ann. of Math., 97 (1973), 25-56.
- 7. H. Wielandt, "Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitatsgrad", Schr. Math. Sem. Inst. angew. Math. Univ. Berlin, 2 (1934), 151-174.
- 8. H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).

Department of Mathematics, University of Oregon, Eugene, Oregon. Department of Pure Mathematics, The University College of Wales, Aberystwyth.