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� Introduction
This paper concerns partial spreads that are maximal among the symplectic ones. Since very few papers
concernmaximal symplectic partial spreads in dimension > � [13], we will emphasize those dimensions. The
largest andmost obvious type ofmaximal partial spread of a�n-dimensional symplectic�q-space is a spread,
of size qn + �, which we will not consider here. (However, there are relatively few known types of symplectic
spreads; see [17] for a survey as of 2012.)

On the other hand, when n is even Grassl [13] initially conjectured that the smallest possible size of a
maximal symplectic partial spread is qn/� + �, and he provided examples of this size for all even q and n.
However, when �n = � this conjecture is not correct: Grassl later produced computer-generated counterex-
amples of size ��, ��, �� and �� when �n = q = �. Families of counterexamples using Suzuki–Tits ovoids
are in Section 7.4. It still seems plausible that Grassl’s conjecture may be correct if �n > � or if q is odd. Thus
far all counterexamples to this conjecture have size greater than qn/�/�.

Most of our examples are based on standard properties of orthogonal or symplectic spaces, involving ei-
ther orthogonal spreads or the standard method for obtaining them (Sections 4, 5 and 6), or partial O+(�, q)-
ovoids and triality (Section 7). Almost half of this paper is concerned with spaces of dimension � or �, where
we can use points as crutches: the Klein correspondence in dimension � [26, p. 196] and triality in dimension
� [29] turn sets of points into sets of subspaces (of dimension � or �). In dimension > � our results are sum-
marized in Table 1; the pairs of dimensions of the form �n, �n − � arise from orthogonal partial spreads and
are explained in Section 6.

Maximal symplectic partial spreads have a straightforward use in Quantum Physics for finding sets of
mutually unbiased bases (MUBs) in complex vector spaces [20; 13]. Appendix A provides a brief description
of this connection to Quantum Physics, the sense in which these are maximal sets of MUBs, and the fact
that sets of real MUBs arise if the underlying field has order � and the symplectic partial spread is also an
orthogonal partial spread.

Tables of computer-generated sizes of maximal symplectic partial spreads in ��nq are given in [5; 13] for
very small n and q. A few of these are special cases of constructions given here. However, since those tables
contain integer intervals that consist of sizes of these partial spreads, it is clear that new types of construction
techniques are needed in all dimensions.
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454 � Kantor, On maximal symplectic partial spreads

� Background
The letter q will always denote a prime power, while n,m, k, s and i will be integers.

Dimensions Parity of q Size Restrictions Theorems

�m arbitrary q�m − qm + (�, q − �) �.�

�mk, �mk − � even q�mk−k + � m > (k + �)/� �.�, �.�

�k, �k − � even qk + � a �.�, �.�

�k even �qk + � �.�

� and � even q� − q� + � q ≥ � �.�, �.��

� and � even ns b � ≤ s ≤ q/� �.�, �.��

� and � even n� − � q > �� �.�, �.��

� and � even q� + � �.�, �.��

� and � even �q� + � �.��, �.��

� and � even q� + q + � q = ��e+� > � �.��, �.��

� and � even q� − q + � q = ��e+� > � �.��, �.��

� and � even q� − sq + �s − � q = ��e+� > � �.��, �.��
� < s ≤ �e − �

� arbitrary q� − q� + � �.�

Table 1:Maximal symplectic partial spreads: dimension ≥ � over �q
a This corresponds to the excluded possibility m = � in dimensions �mk, �mk − �
b ns = q� − sq� + (s − �)(q + �) + �s��(q − �) + �

See [26] for the standard properties of the symplectic and orthogonal vector spaces used here. We name
geometries using their isometry groups. We will be concerned with singular vectors and totally singular (t.s.)
subspaces of orthogonal spaces, and totally isotropic (t.i.) subspaces of symplectic spaces. A subspace of an
orthogonal space is anisotropic if it contains no nonzero singular vector — and hence has dimension ≤ �. In
characteristic �, an orthogonal vector space is also a symplectic space, t.s. subspaces are also t.i. subspaces,
and the set of singular vectors in a t.i. subspace is a t.s. subspace of codimension �.

Types of maximal t.s. subspaces

The n-dimensional t.s. subspaces of anO+(�n, q)-space are of two types,with two such subspaces of the same
type if and only if their intersection has dimension ≡ n (mod �). Each t.s. n − �-space is contained in one
member of each type. We will be concerned with subspaces intersecting in �, so that n will be even.

A triality map for an O+(�, q)-space [29] permutes the t.s. subspaces, sending singular points to a type of
t.s. �-spaces and non-perpendicular pairs of points to pairs of �-spaces having zero intersection.

Partial ovoids and partial spreads

A partial ovoid of an orthogonal space is a set� of t.s. points such that eachmaximal t.s. subspace contains at
most one point in the set; � is an ovoid if it meets every such subspace. A partial spread in a �n-dimensional
vector space V is a set Σ of n-spaces any two of which have only � in common; Σ is a spread if every vector is
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Kantor, On maximal symplectic partial spreads � 455

in a member of Σ. If V is a �n-dimensional symplectic or orthogonal vector space, a symplectic or orthogonal
partial spread Σ is a partial spread consisting of t.i. or t.s. n-spaces; Σ is a symplectic or orthogonal spread if
every vector or every singular vector is in a member of Σ. This paper concernsmaximal symplectic or orthog-
onal partial spreads: maximal with respect to inclusion. In some situations we will even obtain symplectic
maximal partial spreads: maximal partial spreads that happen to be symplectic.

Two symplectic partial spreads are equivalent if there is a semilinear automorphism of the symplectic ge-
ometry sending onepartial spread to the other. If Σ is a set of subspaces of an Sp(�n, q)-space, then Sp(�n, q)Σ
is its set-stabilizer in the symplectic group Sp(�n, q). There are similar definitions for orthogonal spaces and
for the automorphism group of a symplectic or orthogonal partial spread.

� Maximal partial Sp(�m, q)-spreads
Our most general result is the following

Theorem 3.1. For any q and m ≥ �, an Sp(�m, q)-space has a maximal symplectic partial spread of size
q�m − qm + (�, q − �).

We begin with notation. Let F = �q�m ⊃ E = �qm ⊃ K = �q, with trace map T : F → K, so that T(xy) is a
nondegenerate symmetric K-bilinear form on F. By dimension arguments, the E-subspace {x ∈ F | T(xE) = �}
is θE for some θ ∈ F.

Equip the K-space V = F� with the nondegenerate alternating K-bilinear form f �(x, y), (x�, y�)� :=
T(xy�) − T(x�y). Then V is an Sp(�m, q)-space.

Let Σ be the desarguesian symplectic spread of V consisting of the t.i. �-spaces [x = �] and [y = ax] for
a ∈ F. Let Z� < V be the t.i. �m-space (E, θE) = E ⊕ θE (which is t.i. since T(EθE) = �).

Let Σ� ⊂ Σ consist of the members of Σ met nontrivially by Z� (namely, the �m-spaces [x = �] and[y = aθx] for a ∈ E). We need information concerning some transversals of Σ�:
Lemma 3.2. There are exactly (�, q−�) t.i. �m-spaces of V that meet eachmember of Σ� in anm-space. If there
are two such subspaces then they intersect in �.

Proof. If Z is such a subspace let Z ∩ [y = �] = (U, �) and Z ∩ [x = �] = (�,W) form-dimensional K-subspaces
U andW of F. Since Z = (U, �) + (�,W) is t.i. we have T(UW) = �.

Since Z ∩ [y = aθx] (for a ∈ E) consists of the vectors (u, aθu) with u ∈ U, we see that W = θU (using
a = �) and W is closed under multiplication by elements of E. Then W is an E-subspace of F. Let U = αE,
α ∈ F∗, so thatW = θαE. Then � = T(UW) = T(αθαE), so that α�θ ∈ θE. Thus, there are (�, q − �) choices for
the coset αF∗ ∈ F∗/E∗, and hence also (�, q − �) choices for Z = (U,W) = (αE, θαE).

This argument reverses: if the coset αE∗ has order at most �, then Z := (αE, θαE) is a t.i. �m-space that
meets each member of Σ� in an m-space. Moreover, each member of Σ − Σ� has � intersection with Z.

Finally, if there are two such subspaces Z� = (E, θE) and (αE, θαE), then α ∉ E and these have intersec-
tion �. 2

Proof of Theorem 3.1. Let Σ and Σ� be as above. By the lemma, there are t.i. �m-spaces Z (if q is even) or Z, Z�
(if q is odd) such that Σ� is the set of elements of Σ met nontrivially by either of these �m-spaces. Then

Σ� := ���(Σ − Σ�) ∪ {Z} if q is even(Σ − Σ�) ∪ {Z, Z�} if q is odd

is a symplectic partial spread of size q�m − qm + (�, q − �).
Maximality: Suppose that X is a t.i. �m-space meeting eachmember of Σ� in zero. Since Σ is a spread, the

set ΣX of members of Σ meeting X nontrivially must be contained in Σ�. If (�) ΣX = Σ� and dim X ∩ Y = � or
m for each Y ∈ Σ, then X = Z or Z� by Lemma 3.2, which contradicts the fact that X ∉ Σ�.
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456 � Kantor, On maximal symplectic partial spreads

We count in order to prove (�). Let ai be the number of Y ∈ Σ such that dim X∩Y = i, where � ≤ i ≤ �m−�.
Since the intersections X ∩ Y produce a partition of X − {�},

�m−��
�

ai(qi − �) = q�m − � and
�m−��
�

ai = |ΣX | ≤ |Σ�| = qm + �.
There cannot be two subspaces of X of dimension > m and ≥ m having zero intersection. Thus, if ak �= �
for some k > m then ak = � and ai = � whenever m ≤ i ≤ �m − �, i �= k. This produces the contradiction
q�m − � = (qk − �) +∑m−�� ai(qi − �) ≤ (qk − �) +∑m−�� ai(qm−� − �) ≤ (qk − �) + (qm + � − �)(qm−� − �).

Thus, ak = � for k > m, and q�m − � = ∑m� ai(qi − �) ≤ ∑m� ai(qm − �) ≤ (qm + �)(qm − �). Then ai = � for
i < m and am = qm + �, as required. 2

Remarks 3.3. When �m = � the theorem is a special case of [5; 28] and Theorem 9.1, which suggests the
question: Can more than one subset like Σ� be removed in Theorem 3.1?

The last part of the proof showed that a partition of the nonzero vectors of ��mq induced by a set of proper
subspaces has size at least qm + �, with equality if and only if the subspaces all have dimension m.
� Orthogonal spreads
Let V be anO+(�m, q)-space (for even q and�m ≥ �) with quadratic formQ. Then V has an orthogonal spread
Σ (first proved in [11], then rediscovered in [12]; cf. [16; 18]), and |Σ| = q�m−� + �. This leads to our simplest
examples:

Proposition 4.1. Σ is a maximal partial spread of size q�m−� + �, and is symplectic.
Proof. For even q, t.s. subspaces are also t.i., so Σ is symplectic. Maximality: since �m > �, the quadratic
form induced by Q on any �m-space has a nontrivial zero. Thus, every �m-space has nonzero intersection
with some member of Σ. 2

Remark 4.2. If d = ��m and q = � then |Σ| = �
�d + � (this should be compared to [20]).

Remark 4.3. If m > � then there is a maximal symplectic partial spread in V of size q�m−� + � that is not
equivalent to an orthogonal spread. For, let X ∈ Σ, let H be a hyperplane of X and let z ∈ H⊥ be nonsingular.
Then it is not di�cult to check that (Σ − {X}) ∪ {�H, z�} behaves as stated.
Lemma 4.4. Let E = �q ⊆ F = �qk with q even. If X is an E-subspace of an orthogonal F-space and |X| > qk�+k,
then X contains a nonzero F-singular vector.

Proof. We are given an F-space V equipped with a quadratic form Q and associated bilinear form f(, ); both
forms have values in F not in E. The symbol ⊥ will refer to the F-space V, while � �L refers to spanning an
L-subspace for L = E or F.

For i = �, . . . , k + �, we will construct E-linearly independent vectors x�, . . . , xi ∈ X and an E-subspace
Xi such that �x�, . . . , xi�E ≤ Xi ≤ �x�, . . . , xi�⊥F ∩ X and |Xi| ≥ |X|/|F|i. (In particular, x�, . . . , xk+� ∈�x�, . . . , xk+��⊥F ∩ X.)

Let � �= x� ∈ X and X� := �x��⊥F ∩ X. Then x� ∈ X� (since q is even and hence V is symplectic) and|X�| = |�x��⊥F ||X|/|�x��⊥F + X| ≥ |�x��⊥F ||X|/|V| = |X|/|F|.
For induction, let � ≤ i ≤ k and assume that we have x�, . . . , xi and Xi. Then |Xi| ≥ |X|/|F|i >

qk�+k/(qk)k ≥ |�x�, . . . , xi�E|. Let xi+� ∈ Xi − �x�, . . . , xi�E and Xi+� := �xi+��⊥F ∩ Xi. Then xi+� ∈ Xi+� ≤�xi+��⊥F ∩ �x�, . . . , xi�⊥F ∩ X and |Xi+�| = |�xi+��⊥F ||Xi|/|�xi+��⊥F + X| ≥ (|X|/|F|i)/|F|, as needed for induction.
Since �x�, . . . , xk+��E is in �x�, . . . , xk+��⊥E∩X andhas size qk+� > |F|, the additivemap �x�, . . . , xk+��E →

F obtained by restricting Q has nonzero kernel. 2

Remarks 4.5. Thepreceding argument didnot require anything about thenature of the quadratic form,which
could even have a large radical.
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Although the argument used the fact that all vectors are isotropic, it can still be used for unitary spaces
and orthogonal spaces of odd characteristic. One minor di�erence is that we need to know that Xi has an
isotropic vector xi+� ∈ Xi − �x�, . . . , xi�E. This is clear if Xi is the span of its isotropic vectors; and that holds
unless Xi/ rad Xi is anisotropic, hence of dimension� or (in the orthogonal case)�. Thus, there is a choice xi+�
for each i if we replace the condition |X| > qk�+k by |X| > (q�)k�+k+� for unitary spaces and by |X| > qk�+k+�
for orthogonal spaces.

These observations do not, however, lead to useful unitary or odd characteristic orthogonal analogues
of the next theorem: unfortunately, there is no unitary spread in dimension ≥ � [27] and no known odd char-
acteristic orthogonal spread in dimension > �.
Theorem 4.6. If q is even and m > (k + �)/�, then ��mk

q has a maximal partial spread of size q�mk−k + � that is
orthogonal and hence also symplectic.

Proof. Let V be an O+(�m, qk)-space with quadratic form Q, and let Σ be an orthogonal spread in V. Let
T : �qk → �q be the trace map. Then Q�(v) := T(Q(v)) is a quadratic form that turns V into an O+(�mk, q)-
space. Moreover, Σ is still an orthogonal partial spread in this space, of size (qk)�m−� + �.

Maximality: If X is an �q-subspace of V of dimension �mk, then |X| = q�mk > qk�+k. By Lemma 4.4, X
contains a nonzero �qk -singular vector that must lie in some member of the O+(�m, qk)-spread Σ. Thus, X
has nonzero intersection with some member of Σ. 2

Question 4.7. Is every O+(�m, qk)-spread also a maximal orthogonal partial spread in an O+(�mk, q)-space?
This seems plausible since it is correct when either m > (k + �)/� (by Theorem 4.6) or m = � [13] (cf. The-

orem 5.2(i)).

Remarks 4.8. If q = � and d = ��mk with m > (k + �)/�, then the maximal symplectic partial spreads in
Theorem 4.6 have size �

�k d + �, resembling Remark 4.2. Grassl’s computer data [13] suggests much more: for
even q there appears to be a maximal symplectic partial spread of size �i + � in Sp(�n, q)-space whenever
qn/� + � ≤ �i + � ≤ qn + �.

We will need the following elementary observation several times:

Lemma 4.9. If Σ is a maximal orthogonal partial spread of an O+(�m, q)-space with q even and m ≥ �, then it
is also a maximal symplectic partial spread.

Proof. Suppose that Y ∉ Σ is a t.i. �m-space such that Σ ∪ {Y} is a symplectic partial spread. The quadratic
form on V restricts to a semilinear map on the t.i. subspace Y; the kernel is a t.s. subspace Y� of dimension≥ �m − �. If dim Y� = �m then Y = Y� must have the same type as the members of Σ (cf. Section 2).

In any case let W be the t.s. �m-space containing Y� having the same type as the members of Σ. By
maximality, Σ∪{W} is not anorthogonal partial spread, so thatW∩X �= � for some X ∈ Σ. SincedimW∩X ≡ �m(mod �)we have dimW ∩ X ≥ �. Since Y�,W ∩ X ≤ W and dim Y� ≥ �m − �, it follows that Y� ∩ (W ∩ X) �= �
and hence that Y ∩ X �= �. This contradicts the fact that Σ ∪ {Y} is a partial spread. 2

� The embedding O+(�, qk) < Sp(�k, q)
Example 5.1. If q is even then an Sp(�, q)-space has a maximal symplectic partial spread of size q + � that is
also a maximal orthogonal partial spread.

Proof. An O+(�, q)-space has (q + �)� singular points partitioned by exactly two orthogonal spreads Σ, Σ†,
arising from the two types of t.s. �-spaces (cf. Section 2); each member of Σ and each member of Σ† meet
nontrivially. Possibly the most elementary (and most opaque) way to see that these are maximal symplectic
spreads is to count the number of t.i. lines containing at least one singular point. There are �|Σ|+(q+�)�(q−�)= (q� + �)(q + �) such lines, which is exactly the total number of t.i. lines. 2
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Theorem 5.2. Let q be even and k ≥ �.
(i) An Sp(�k, q)-space has a maximal symplectic partial spread of size qk + � that is also a maximal ortho-

gonal partial spread.
(ii) An Sp(�k, q)-space has a maximal symplectic partial spread of size �qk + �.
Proof. (i) The preceding example produces a maximal symplectic partial spread Σ of an Sp(�, qk)-space V
that is also a maximal orthogonal partial spread, and |Σ| = qk + �. Viewed over �q (using a trace map T as in
the proof of Theorem 4.6) the set Σ again is an orthogonal partial spread. It is a maximal symplectic partial
spread by [13], and hence also a maximal orthogonal partial spread.

We include slightly more detail: in [13] the �q-space (��qk )� is equipped with the alternating bilinear form�(u, v), (u�, v�)� := T(u ⋅ v� − u� ⋅ v). The partial spread Σ consists of the t.i. subspaces {(�, �, y�, y�) | y�, y� ∈�qk } and {(x�, x�, x�α, x�α) | x�, x� ∈ �qk } for each α ∈ �qk . These are t.s. �k-spaces for the quadratic form
Q(u, v) := T(u ⋅ v). In the preceding example, Σ† is Σj, where j : (x�, x�, y�, y�) �→ (x�, y�, x�, y�).

(ii) Choose any Z ∈ Σ. Obtain a new symplectic partial spread Σ� by removing Z and then, for each
�-dimensional �qk -subspace W of Z, adjoining one �-dimensional t.i. �qk -subspace that contains W and is
di�erent fromboth Z and themember of Σ† containingW. This produces amaximal symplectic partial spread
of the �qk -space V [5, Remark 2.12(2)].

In fact Σ� is also a maximal symplectic partial spread of the �q-space V . For, let X be a t.i. �k-dimensional�q-subspace of V having zero intersection with all members of Σ�. By (i), X has nonzero intersection with
some member of Σ, which therefore must be Z. Then X has nonzero intersection with some �qk -pointW of Z
and hence with the adjoined �qk -space in Σ� containingW, which is a contradiction. 2

The proof of (i) in [13] uses a neat computational idea. It would be interesting to have a more geometric
proof.

Example 5.3. Theorem 5.2(i) points to a general construction (compare Remarks 7.8). Let V = ��mq be an
orthogonal, symplectic or unitary space. Let X and Y be t.i./t.s. �m-spaces with zero intersection, and let ΣX
be a partial spread (of m-spaces) of X. Each A ∈ ΣX determines another m-space A� := A⊥ ∩ Y, and A + A� is
a t.i./t.s. �m-space. Then Σ := {A + A� | A ∈ ΣX} is a partial spread of the same type as the underlying space V.
(If A �= B ∈ ΣX then V = X ⊕ Y = (A ⊕ B) ⊕ (A� ⊕ B�), so that A ⊕ A� and B ⊕ B� have zero intersection.)

When ΣX is a maximal partial spread (or even a spread), some of these partial spreads may be maximal
orthogonal, symplectic or unitary partial spreads of size qm + � (as in Theorem 5.2(i) and Theorem 7.7), but
we do not see how to prove that. (See Question 7.6 for instances of such symplectic partial spreads that are
notmaximal. As noted earlier, there is no unitary spread in dimension ≥ � by [27].)
� Projections
Let q be even. A key ingredient of [16; 17; 18] is the fact that there is a natural transition between O+(�m, q)-
spreads and Sp(�m − �, q)-spreads. This uses any nonsingular point z of an O+(�m, q)-space and projects
into the symplectic space z⊥/z. This procedure also applies to orthogonal and symplectic partial spreads:

Lemma 6.1. Let z be a nonsingular point of an O+(�m, q)-space V .
(i) If Σ is amaximal orthogonal partial spread ofV, then Σ/z := {�z⊥∩X, z�/z | X ∈ Σ} is amaximal symplectic

partial spread of the Sp(�m − �, q)-space z⊥/z.
(ii) If Σ� is a maximal symplectic partial spread of z⊥/z, then there is a maximal orthogonal partial spread Σ

of V such that Σ� = Σ/z. Moreover, Σ is a maximal symplectic partial spread.
(iii) If Σ� is a maximal orthogonal partial spread of V and z� is a nonsingular point of V, then Σ/z and Σ�/z�

are equivalent symplectic partial spreads if and only if Σ� is the image of Σ under an automorphism of the
orthogonal geometry of V that sends z to z�.
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Proof. (i) Σ/z is a symplectic partial spread: If X and Y are distinctmembers of Σ and �z⊥∩X, z�∩�z⊥∩Y, z� �= z,
then z ∈ �x, y� for some points x ∈ z⊥ ∩ X, y ∈ z⊥ ∩ Y. Then x and y are perpendicular to z and hence to one
another, so that �x, y� is t.s. whereas z is nonsingular.

Maximality: Suppose that (Σ/z) ∪ {U/z} is a larger symplectic partial spread for some t.i. �m-space U of
V containing z. Let U� be the hyperplane of U consisting of singular vectors. The members of Σ all have the
same type (cf. Section 2). Let �U be the t.s. �m-space of that type containing U�. Then �U meets each X ∈ Σ in
at most a �-space and hence only in � (by Section 2, � ≥ dim( �U ∩ X) ≡ �m (mod �) and hence �U ∩ X = �).
Thus, Σ ∪ { �U} is an orthogonal partial spread properly containing Σ, whereas Σ is assumed to be maximal.

(ii) Choose a type of t.s. �m-space of V. If U/z ∈ Σ� let U� be the hyperplane of singular vectors of the
t.i. �m-space U, and let �U be the t.s. �m-space containing U� of the chosen type. Then the set Σ consisting
of these subspaces �U is an orthogonal partial spread: since distinct members of Σ meet in at most a �-space
and have the same type they have intersection �. Clearly Σ� = Σ/z.

Maximality: If Σ+ is an orthogonal partial spread properly containing Σ, then Σ+/z properly contains
Σ/z = Σ�, whereas Σ� is maximal.

The final statement follows from Lemma 4.9.
(iii) As a consequence of Witt’s Lemma [26, p. 57], an equivalence from Σ/z to Σ�/z� lifts first to z⊥ → z⊥�

and then to an automorphism of the orthogonal geometry on V sending z → z� and Σ → Σ�. The converse is
clear. 2

By (iii), a maximal orthogonal partial spread Σ produces many inequivalent maximal symplectic partial
spreads for di�erent choices of z, where the number of inequivalent ones requires knowledge of the automor-
phism group of Σ. This was crucial in [16; 17; 18].

Theorem 6.2. If k ≥ � then there is a maximal partial Sp(�k − �, q)-spread of size qk + �.
Proof. Use Lemma 6.1(i) and Theorem 5.2(i). 2

Theorem 6.3. If m > (k + �)/� then there is a maximal partial Sp(�mk − �, q)-spread of size q�mk−k + �.
Proof. Use Lemma 6.1(i) and Theorem 4.6. 2

Example 6.4. By Lemma 6.1(ii), the set of sizes of maximal partial Sp(�, �)-spreads is contained in the set of
sizes of maximal partial Sp(�, �)-spreads. This can be compared with the list in [13].

� �-dimensional partial spreads
In O+(�, q)-spaces, triality [29] allows us to use more easily visualized points and partial ovoids in place of
partial spreads: a triality map sends orthogonal (partial) ovoids to orthogonal (partial) spreads. We will use
this to produce maximal partial Sp(�, q)-spreads when q is even.

�.� �-dimensional ovoids

Spreads and ovoids are known in O+(�, q)-spaces when q is prime, a power of � or �, or ≡ � (mod �) (some
of these ovoids are described in [15]). They have size q� + �.
Lemma 7.1. Let � be an ovoid in an O+(�, q)-space V, where q > �. Let a ∉ � be a singular point that is
the only singular point in �a⊥ ∩ ��⊥. (Examples appear below in Appendix B for all even q > �.) Then �� :=�� − (a⊥ ∩ �)� ∪ {a} is a maximal orthogonal partial ovoid of size q� − q� + �.
Proof. Clearly �� is an orthogonal partial ovoid. If b is a singular point not perpendicular to any member
of �� then b⊥ ∩ � ⊆ a⊥ ∩ �. Since both of these sets have size q� + � (e.g., by [15, p. 1196]), we obtain the
contradiction that both a and b are the singular point in �a⊥ ∩ ��⊥. 2
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460 � Kantor, On maximal symplectic partial spreads

Applying triality τ to the preceding lemma produces a maximal orthogonal partial spread ��τ of size
q� − q� + � in an O+(�, q)-space when q > �. If q is even then ��τ is also a maximal symplectic partial spread
by Lemma 4.9:

Theorem 7.2. If q > � is even then anO+(�, q)-space has amaximal symplectic partial spread of size q�−q�+�.
We can imitate the preceding result and remove several sets a⊥ ∩ � by using a specific type of ovoid.

Theorem 7.3. If q is even and � ≤ s ≤ q/�, then an O+(�, q)-space has a maximal orthogonal partial spread of
size ns := q� − sq� + (s − �)(q + �) + �s��(q − �) + �. There is also a maximal orthogonal partial spread of size
n� − � if q > ��. These are also maximal symplectic partial spreads.
Proof. As in Theorem 7.2 we will construct maximal orthogonal ovoids. Since this the only part of this paper
involving detailed computations, those computations have been postponed to Appendix B.

For the ovoid � in Appendix B, Example B.13(i) provides us with many sets S of s singular points disjoint
from � together with the sizes |�p∈S� p⊥ ∩ �| for all S� ⊆ S. Then

��s := �� − �
p∈S(p⊥ ∩ �)� ∪ S

is an orthogonal partial ovoid of size (q� + �) − s(q� + �) + �s��(�q) − �s��(q + �) + ⋅ ⋅ ⋅ ± �ss�(q + �) + |S| ={(q� + �) − s(q� + �) + �s��(�q)} − (q + �) + s(q + �) − �s��(q + �) + (� − �)s(q + �) + s.
Maximality of ��s: Suppose that b is a singular point not perpendicular to every member of ��s. Since � is

an orthogonal ovoid, b⊥∩�must be contained in�p∈S(p⊥∩�). By LemmaB.2, s(�q−�) ≥ ∑p∈S |b⊥∩p⊥∩�| ≥|b⊥ ∩ �| = q� + �, which contradicts our assumption that s ≤ q/�.
The same argument can be used for Example B.13(ii), producing the stated additional maximal orthogo-

nal partial spreads. Use Lemma 4.9 for the final assertion. 2

The preceding proof should be compared to the proofs of Theorem 7.13 and the more elementary The-
orem 9.1. In those proofs the needed intersection sizes are known for simple geometric reasons. Here there
does not seem to be a geometric explanation for the various intersection sizes occurring in Appendix B.

�.� �- and �-dimensional orthogonal ovoids

The next �-dimensional partial spreads (in Theorem 7.7) arise from small-dimensional ovoids.

Example 7.4. If � is an O−(�, q)-ovoid (i.e., an elliptic quadric) in an O−(�, q)-subspaceW of a nondegenerate
orthogonal �q-space V, then � is a maximal orthogonal partial ovoid of V .

Proof. If x is any point of V then x⊥ ∩W contains a hyperplane ofW and hence contains either p⊥ ∩W for a
singular point p ofW or n⊥ ∩W a nonsingular point n ofW. Each such hyperplane ofW contains a singular
point ofW, and hence meets � nontrivially. 2

A more general version of this example is a simple consequence of 5-dimensional results in [1; 3] (also
see Lemma C.1):

Lemma 7.5. If � is an ovoid in an O(�, q)-subspace of a nondegenerate orthogonal �q-space V, then � is a
maximal orthogonal partial ovoid of V .

Proof. Once again we will show that each point x of V is perpendicular to some point in �.We may assume
that U := ��� �≤ x⊥, so that H := x⊥ ∩ U is a hyperplane of U. By the preceding example, we may also assume
that U is not of type O−(�, q).

If H has type O+(�, q) then H contains a t.s. line, and each t.s. line of U meets each ovoid of U (by defini-
tion; cf. Section 2).

If H has type O−(�, q) then its set Λ of singular points is a classical quadric. Then Λ ∩ � �= � by [1; 3].
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Thus, H is degenerate. If there is a singular point y in its radical radH, then every t.s. line of U on ymeets
� at a point perpendicular to y.

Finally, if radH is a nonsingular point then q is even and the radical r of U is in H (since all hyperplanes
of U not containing its radical are nonsingular). Let “bar” denote the projection map U → U/r. Then H is a
tangent or secant plane of the ovoid � in the �-space U, so that H contains � or q +� points of �. If T/r is one
of these points, then the line T has a unique singular point, and this lies in both H ≤ x⊥ and �. 2

Question 7.6. Which ovoids in orthogonal spaces are partial ovoids in all larger-dimensional orthogonal spaces
over the same field?

This requires that (∗) all hyperplanes of the smaller orthogonal space meet the ovoid. Perhaps this does
not hold for any ovoids of O+(�, q)-spaces that span the underlying �-space (and there are, indeed, many
such ovoids for which (∗) does not hold). However, (∗) does hold for some of the known O+(�, q) ovoids:
those in [7, Theorem 3.9] or in [15, Section 7] and Appendix B.

Theorem 7.7. Let q be a prime power.

(i) There are inequivalent maximal partial O+(�, q)-spreads Σ of size q� + �:
(a) One for which O+(�, q)Σ has a subgroup SL(�, q�) acting �-transitively on Σ; and
(b) One occurring when q is odd but not prime and for which O+(�, q)Σ is intransitive on Σ.

(ii) If q = �e then there are inequivalent maximal partial Sp(�, q)-spreads Σ of size q� + � that are orthogonal
partial spreads:
(a) One for which Sp(�, q)Σ has a subgroup SL(�, q�) acting �-transitively on Σ; and
(b) One occurring when e > � is odd and for which Sp(�, q)Σ has a subgroup Sz(q) acting �-transitively

on Σ.

Proof. Let τ be a triality map for an O+(�, q)-space V. For � in the preceding example or lemma, Σ = �τ is a
maximal orthogonal partial spread of V.

For (ia) use an elliptic quadric and its group of isometries. For (ib) there are other choices for � in Lem-
ma 7.5, such as those in [15, Section 5].

If q is even then the only known choices for � in Lemma 7.5 are an elliptic quadric (Example 7.4) and a
Suzuki–Tits ovoid (cf. Appendix C). The stated groups arise from subgroups of �+(�, q) acting on �.

The various partial spreads are inequivalent as orthogonal partial spreads, since the correspondingmax-
imal orthogonal partial ovoids Στ−� = � are inequivalent.

In order to prove symplectic inequivalence in (ii), we use the isomorphism of Sp(�, q) andO(�, q) geome-
tries. We may assume that the partial spreads in (iia) and (iib) lie in hyperplanes of an O(�, q)-space. They
span these hyperplanes (twomembers of a partial spread already span). Hence, an element of ΓO(�, q) send-
ing one of our partial spreads to the other one respects the orthogonal geometries of these hyperplanes. We
just saw that this is not the case. 2

Remarks 7.8. We excluded q = � in (iib) since that produces the same partial spread as in (iia). Part (iia) is a
very special case of a result of Grassl (cf. Theorem 5.2). Is there an analogous generalization of (iib)?

Note that Sp(�, q)Σ contains subgroups SL(�, q�)×SL(�, q�) in (iia) and Sz(q)×O(�, q) ≅ Sz(q)×SL(�, q)
in (iib).

In both (i) and (ii) there are t.s. �-spaces X, Y such that themembers of Σmeet X and Y in spreads of each
(cf. Example 5.3).

See [22] for a survey of O(�, q)-ovoids.
�.� Extending a partial spread

How can one search for maximal symplectic partial spreads? One obvious answer is to start with a symplectic
or orthogonal partial spread and try to extend it to amaximal one (thiswas the computationalmethod used to
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produce the table in [13]). The instances considered below may have extensions to maximal ones other than
the ones we provide.

Once again, points are easier to deal with than subspaces.

�.�.� O−(�, q)-ovoids
A simple example of an orthogonal partial ovoid is (� − {p}) ∪ {x}, where p is a point in the set � of singular
points of an O−(�, q)-space U and x ∉ U is a singular point in (p⊥ ∩ U)⊥ − U⊥ in a larger orthogonal space.
Proposition 7.9. For any q an O+(�, q)-space has a maximal orthogonal partial ovoid of size �q� + �.
Proof. In an O+(�, q)-space V consider anisotropic �-spaces A, A� and a totally singular �-space �p, p�� such
that �A, A�, p, p�� = A ⊥ A� ⊥ �p, p��. Let E = �A, p� and E� = �A�, p��, and let x be a point of �p, p��− {p, p�}.

Let U and U� be non-perpendicular O−(�, q)-subspaces of V such that E�⊥ > U > E and E⊥ > U� > E�. (In
order to construct these, note that p and p� are in t.s. lines �= �p, p�� of the O+(�, q)-space (A ⊥ A�)⊥. Choose
singular points u, u� ∈ (A ⊥ A�)⊥ − �p, p�� perpendicular to p� and p, respectively, but not to each other. Then
U := A ⊥ �p, u� = �E, u� and U� := A� ⊥ �p�, u�� = �E�, u�� are non-perpendicular O−(�, q)-subspaces such
that U = �A, p, u� < �A�, p��⊥ = E�⊥ and U� < E⊥ behave as required.)

If � and �� are the sets of singular points of U and U�, respectively, we claim that

�� := (� − {p}) ∪ (�� − {p�}) ∪ {x}
behaves as stated in the lemma. Clearly, |��| = q� + q� + �.

Orthogonal partial ovoid: x⊥ ∩ U = p⊥ ∩ U = E has only one singular point p, and p ∉ ��. Suppose that
there are perpendicular singular points y ∈ � − E and y� ∈ �� − E�. Since y ∈ U < E�⊥ and y� < E⊥, while E
and E� are perpendicular, we obtain to the contradiction that �y, E� = U and �y�, E�� = U� are perpendicular.

Maximality: Suppose that h is a singular point such that h⊥ ∩ �� = �. Then h⊥ ∩ U is a hyperplane of U
and hence contains a singular point, which must be p. Then h⊥ ∩ U = p⊥ ∩ U = E. Also h⊥ ∩ U� = E�. Now
h ∈ �E, E��⊥ = �p, p��, which contradicts the assumption that h is not perpendicular to x ∈ ��. 2

Theorem 7.10. For any q an O+(�, q)-space has a maximal orthogonal partial spread Σ of size �q� + �. If q is
even then Σ is symplectic.

Proof. Applying triality to the proposition proves the first part, while Lemma 4.9 implies the second part. 2

When q is even, Theorem 5.2(ii) contains another maximal symplectic partial spread of size �q� + � that
need not be orthogonal.

Note that these examples, and others in this section, would have been more awkward to describe using
t.s. �-spaces instead of points.

�.�.� Suzuki–Tits ovoids

Another example of an orthogonal partial ovoid is (� − {p}) ∪ {x}, where p is a point of a Suzuki–Tits ovoid �
in an O(�, q)-space U and x ∉ U is a singular point in (p⊥ ∩U)⊥ −U⊥ (cf. Appendix C). This time it is easier to
extend this to amaximal orthogonal partial ovoid of an O+(�, q)-space. In the next section wewill see further
advantages of � over an elliptic quadric.

Theorem 7.11. If q = ��e+� > � then an O+(�, q)-space has a maximal orthogonal partial spread Σ of size
q� + q + � that is symplectic.
Proof. By triality and Lemma 4.9, we need to construct a maximal orthogonal partial ovoid of the stated size
in an O+(�, q)-space V containing U. The radical r of U is also the radical of the �-space U⊥, and (p⊥ ∩ U)⊥ =
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�p, U⊥� = p ⊥ U⊥ for p ∈ �. Each singular point in the �-space (p⊥ ∩ U)⊥ lies on a t.s. line containing p and
meeting U⊥ in one of its q + � singular points.

For each singular point x� in U⊥ let x be any point in �p, x�� − {p, x�}. Let X be the resulting set of q + �
points x. We claim that

�� := (� − {p}) ∪ X
behaves as required. Clearly, |��| = q� + q + �.

Orthogonal partial ovoid: x⊥ ∩ U = p⊥ ∩ U since x⊥� ≥ U. Then x⊥ ∩ � = {p}. No two members of X are
perpendicular since no two singular points in U⊥ are.

Maximality: Suppose that h is a singular point such that h⊥ ∩ �� = �. Then h⊥ ∩ U is a hyperplane of U
that cannot contain a point of � − {p}. By Lemma C.1, h⊥ ≥ h⊥ ∩ U = p⊥ ∩ U. Then h ∈ (p⊥ ∩ U)⊥ = �p, U⊥�,
so that h lies on one of the above lines �p, x��, whereas h⊥ ∩ X = �. 2

�.� Smaller maximal partial spreads using Suzuki–Tits ovoids

We will describe counterexamples to Grassl’s conjecture, which was stated in the Introduction. Grassl has
also found counterexamples to his conjecture in an Sp(�, �)-space by using a computer search.

Theorem 7.12. If q = ��e+� > � then there is a maximal partial O+(�, q)-spread of size q� − q + �; this is also a
maximal partial Sp(�, q)-spread.
Proof. In view of triality and Lemma 4.9, it su�ces to construct a maximal partial O+(�, q)-ovoid of size
q� − q + �. We use the notation in Section 7.3.2 and Appendix C.

Let � be a Suzuki–Tits ovoid in an O(�, q)-space U. Embed U into an O+(�, q)-space V.
Let �� := �� − (x⊥ ∩ �)� ∪ {x} for a singular point x of U not in � (this uses dimU > �). Then |��| =

q� − q + � and �� is an orthogonal partial ovoid of U and hence of V.
Maximality: Suppose that h is a singular point of V such that h⊥∩�� = �.Wewill consider the possibilities

for the hyperplane h⊥ ∩U of U in Lemma C.1. We have h⊥ ∩� ⊆ x⊥ ∩� since h⊥ ∩�� = �. Also, �⊥ = U⊥ < x⊥
since x ∈ U = ���.

Case 1. h⊥ ∩ � = {p} for some p ∈ x⊥ ∩ �. Then h⊥ ∩ U = p⊥ ∩ U since Lemma C.1 implies that p⊥ ∩ U
is the only hyperplane of U meeting � just in p. Then h⊥ ≥ h⊥ ∩ U = p⊥ ∩ U implies that h ∈ �p, U⊥� ≤ x⊥,
whereas h is assumed not to be perpendicular to x ∈ ��.

Case 2. |h⊥ ∩ �| = q + �. Since h⊥ ∩ � ⊆ x⊥ ∩ � for sets of size q + �, we have h⊥ ≥ �h⊥ ∩ �� = �x⊥ ∩ ��.
Since x⊥ ∩ � projects into a plane of U/r we are in the situation of Lemma C.1(ii). Then �x⊥ ∩ �� = x⊥ ∩ U by
the end of Lemma C.1(ii). Now h ∈ �x, U⊥� ≤ x⊥, which produces the same contradiction as before.

Case 3. � < |h⊥ ∩ �| < q + �. Since h⊥ ∩ � lies in a set x⊥ ∩ � that projects into a plane of U/r, this
contradicts the irreducibility in Lemma C.1(iii). 2

We can go further (mimicking the proofs of Theorems 7.3 and 9.1):

Theorem 7.13. An O+(�, q)-space has a maximal orthogonal partial spread of size q� − sq + �s − � whenever
q = ��e+� and � < s ≤ �q/� − �. Each of these is a maximal partial symplectic spread.

In particular, there is a maximal partial Sp(�, q)-spread of size q� −�q�/� + q +��q − �.
Proof. Once again we will construct maximal partial O+(�, q)-ovoids. Let �, U, V and r = radU be as before.
Choose distinct a, b ∈ �. Then {a, b}⊥ ∩U is a nondegenerate plane containing r whose q +� singular points
x form a conic. These points produce q +� subspaces �x, a, b, r� = x⊥ ∩U that induce a partition of � − {a, b}
using q + � circles �x := x⊥ ∩ � of the inversive plane I(�) determined by � [10, Section 6.4].

Let S be any set of s singular points x ∈ {a, b}⊥. We will show that

�� := �� − �
x∈S�x� ∪ S ⊂ U
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is a maximal partial ovoid of the stated size.
1. |��| = (q� + �) − � − |S|(q − �) + |S|.
2. Partial ovoid: If x ∈ S then �x = x⊥ ∩ � was replaced by x, and all such x lie in a conic of {a, b}⊥ ∩ U.
3. Maximality: Suppose that h is a singular point of V such that h⊥ ∩ �� = �. Then h⊥ ∩ � ⊆ �x∈S �x.

Lemma C.1 contains several possibilities for h⊥ ∩ �.
Case 1. h⊥∩� = {p} for some p ∈ �. Then p ∈ �x for some x ∈ S ⊂ ��. By LemmaC.1, h⊥∩U = p⊥∩U ≤ h⊥.

Then h ∈ �p, U⊥� ≤ x⊥, whereas h is assumed not to be perpendicular to x ∈ ��.
Case 2. h⊥ ∩ � is a circle of I(�). If h⊥ ∩ � contains {a, b} then h⊥ ∩ � = �x ⊂ x⊥ for some x ∈ S since

the circles �y, y ∈ {a, b}⊥, induce a partition of � − {a, b}. Then h⊥ contains ��x� = x⊥ ∩ U by Lemma C.1(ii),
which again produces the contradiction h ∈ �x, U⊥� ≤ x⊥.

If h⊥ ∩ � does not contain {a, b} then it meets each circle �x, x ∈ S, in at most two points. This produces
the contradiction q + � = |h⊥ ∩ �| ≤ �|S| = �s.

Case 3. h⊥ ∩ � is an orbit of a cyclic group T < G of order |h⊥ ∩ �| = q ± ��q + � (Lemma C.1(iii)). Note
that |T| divides q� + � and hence is relatively prime to q(q − �), the order of the stabilizer in G of a circle [25,
Theorem 9]. Thus, given circles C� and C�, at most one element of T can send C� to C�.

For each t ∈ T we have h⊥ ∩ � = (h⊥ ∩ �)t ⊆ �x∈S �t
x, involving two sets of s circles: {�x | x ∈ S} and{�t

x | x ∈ S}. For an ordered pair x, y of distinct elements of S there is at most one such t �= � with �t
x = �y.

Thus, if we choose t to be one of at least |T| − � − s(s − �) ≥ q − ��q − s(s − �) > � elements of T that do
not behave this way for all x, y, then we will have two disjoint sets of s circles, with the union of each set
containing h⊥ ∩ �. Since distinct circles meet in at most two points, q ±��q + � = |h⊥ ∩ �| ≤ s ⋅ s ⋅ �, which
is not the case.

Case 4. Λ := h⊥ ∩ � has size q + � but is not a circle, and its stabilizer in G has a cyclic subgroup T of
order q − � fixing two points c, d and transitive on Λ − {c, d} (Lemma C.1(iv)). By Remark C.2(ii), given circles
C� and C�, at most one element of T can send C� to C� unless C� = C� is one of the two circles fixed by T.

We have Λ − {c, d} ⊆ �x∈S �x and Λ − {c, d} ⊆ �y∈S �t
y whenever � �= t ∈ T. If �t

y arises from two such
t then �y is one of the two circles fixed by T (by Remark C.2(ii)), and �y − {c, d} and Λ − {c, d} are disjoint;
then �y is not needed for our union of �x to contain Λ − {c, d} and hence can be deleted. After at most two
T-invariant circles have been deleted, we can choose one of at least |T| − � − s(s − �) = q − � − s(s − �) > �
elements t ∈ T such that �t

x �= �y for all remaining �x, �y (with x, y ∈ S). Then we obtain two disjoint
sets of at least s − � circles with the union of each set containing Λ − {c, d}. This produces the contradiction(q + �) − � ≤ (s − �) ⋅ (s − �) ⋅ �. 2

Wehaveproved,more generally, that�� is amaximal partial ovoid of any nonsingular orthogonal�q-space
containing U, since every hyperplane of U has nonempty intersection with �� (cf. Question 7.6).
�.� Sp(�, q)-space consequences
Theorem 7.14. For even q > �, an Sp(�, q)-space has maximal symplectic partial spreads of size
(i) n� = q� − q� + �,
(ii) q� + �,
(iii) �q� + �,
(iv) q� + q + � if q = ��e+�,
(v) q� − q + � if q = ��e+�,
(vi) q� − sq + �s − � if q = ��e+� and � < s ≤ �q/� − �,
(vii) nr if � ≤ r ≤ q/� (where nr is defined in Theorem 7.3), and
(viii) n� − � if q ≥ ��.
Proof. Use Lemma 6.1(i) together with Theorems 7.2, 7.7, 7.10, 7.11, 7.12, 7.13 and 7.3. 2
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� �-dimensional partial spreads
We again consider arbitrary characteristic. In characteristic � the examples in the next theorem already ap-
pear in Theorem 7.14(i), but here we use an entirely di�erent method to prove maximality.

Theorem 8.1. If q is a prime power then an Sp(�, q)-space has a maximal symplectic partial spread of size
q� − q� + �.
Proof. In an Sp(�, q)-space let Σ be a desarguesian spread preserved by G = SL(�, q�) = Sp(�, q�) < Sp(�, q).
Let X ∈ Σ. Let U be a t.i. �-space such that U ∩ X = L is a line. If ΣU is the set of members of Σmet nontrivially
by U, then we will show that Σ� := (Σ − ΣU) ∪ {U} is a maximal symplectic partial spread of size q� − q� + �.

If U meets Y ∈ Σ − {X} nontrivially then U ∩ Y must meet U ∩ X = L trivially and hence is a point; the
number of such points is the number |Σ − {X}| = q� of points in U not in L. Thus, |ΣU | = q� + � and Σ� is a
symplectic partial spread of size q� + � − q�.

The set-stabilizer GX of X has order q�(q� −�). It has an abelian normal subgroup Q of order q� inducing
� on X and a cyclic subgroup S of order q� − � transitive on X − {�} and hence also on the q� + q + � lines L
of X. Then |GL| = q�(q − �).

Since Q is transitive on Σ − {X} it is transitive on the q� points in {L⊥ ∩ Y | Y ∈ Σ − {X}}, and hence also
on the q t.i. �-spaces �L, L⊥ ∩ Y� �= X containing L (where once again Y ∈ Σ − {X}). Then |GU | = q�(q − �).
Moreover, QU has order q� and is the subgroup Q[L] of Q that fixes each t.i. �-space containing L. Each of the
q orbits of Q[L] on Σ − {X} spans one of the q t.i. �-spaces �= X containing L.

Maximality: Assume that W ∉ Σ� is a t.i. �-space such that Σ� ∪ {W} is a symplectic partial spread. Then
ΣW ⊆ ΣU since Σ is a spread. Clearly,W meets eachmember of Σ in �, a point or a line. SinceW has q�+q+� >|ΣU | ≥ |ΣW | points, some intersection is a line, and it is unique (since two lines ofW wouldmeet nontrivially).
Thus,W arises in the same manner as U, and GW acts on ΣW = ΣU .

Since |ΣU | = q� + � does not divide |G|, GW cannot move X. Then GU , GW ≤ GX. Since the q nontrivial
orbits of Q[L] on Σ correspond to the t.i. �-spaces �= X containing L, we cannot haveW ∩ X = L.

However, the cyclic group S is transitive on the lines L of X and (by conjugation) on the corresponding
subgroups Q[L]. Then Q[W∩X] and Q[L] are distinct subgroups of order q�. They generate a subgroup of Q of
order > q� = |ΣX | − �, which is a final contradiction. 2

� �-dimensional partial spreads
Finally, we survey families of maximal partial spreads of Sp(�, q)-spaces. See [5; 13] for lists and tables of
known families. As noted in Section 1, we can use more easily visualized points in O(�, q)-space instead of
lines in Sp(�, q)-space due to the Klein correspondence [26, p. 196]. The following result involves a much
simpler version of the arguments used in Theorems 7.3 and 7.13.

Theorem 9.1 ([5, p. 1940], [28, Theorem 6.6]). (i) For odd q an Sp(�, q)-space has amaximal partial spread
of size q� − sq + �s − � whenever � ≤ s < (q + �)/�.

(ii) For even q anSp(�, q)-space has amaximal partial spreadof size q�−sq+�s−�whenever� ≤ s < (q+�)/�.
Proof. We will construct maximal partial O(�, q)-ovoids. Let � be an O−(�, q) ovoid in a 4-dimensional sub-
space U. Choose distinct a, b ∈ �, so that the set C of singular points in �a, b�⊥ is a conic.

(i) If x ∈ C then �x := x⊥ ∩ � is a conic in the nondegenerate �-space �x⊥ ∩ ��. The line �⊥x contains
exactly two singular points x, x� for a fixed-point-free involution x �→ x� of C, and �x = �x� .

Let S be any set of s < (q + �)/� points x ∈ C such that the conics �x, x ∈ S, are distinct (i.e., S ∩ S� = �).
We claim that �� := �� −�x∈S �x� ∪�x∈S{x, x�} is a maximal partial O(�, q)-ovoid of the stated size.

1. |��| = (q� + �) − � − |S|(q − �) + �|S|.
2. Orthogonal partial ovoid: If x ∈ S then �x was replaced by the subset {x, x�} of the conic C.
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3. Maximality: Suppose that h is a singular point such that h⊥ ∩ �� = �. Then h⊥ ∩ � ⊆ �x∈S �x, and
h⊥ ∩ � is either a point or a circle of the inversive plane I(�) determined by � [10, Section 6.4].

If h⊥ ∩ � is a point p then h⊥ ∩ U = p⊥ ∩ U. Then h ∈ (h⊥ ∩ U)⊥ = (p⊥ ∩ U)⊥ = �p, U⊥�, which has just
one singular point p, whereas p ∈ � is either in �� or is perpendicular to some x ∈ S.

Thus, h⊥ ∩ � is a circle. If h⊥ ∩ � = �x with x ∈ S, then h ∈ �⊥x = �x, x��, whereas h ∉ {x, x�}. Thus,
h⊥ ∩ � is a circle lying in the union of s circles of I(�), each of which it meets at most twice. This produces
the contradiction q + � = |h⊥ ∩ �| ≤ �s.

(ii) This is proved as above but is simpler: if x is a singular point in {a, b}⊥ then (x⊥ ∩ �)⊥ contains just
one singular point; no permutation x �→ x� is involved. 2

Example 9.2. A maximal partial ovoid of size �q − � in Sp(�, q)-space, q ≥ �, is constructed in [5, p. 1939].
The proof in that paper shows that this is a maximal partial ovoid in Sp(�m, q)-space for all m ≥ �.

This partial ovoid is the set of points in �����xi , yi+�� − {xi , yi+�}� ∪ {x, y} (subscripts mod �), where
x�, x�, x�, x are four points of X and y�, y�, y�, y are four points of Y for t.i. �-spaces X, Y intersecting in
�, with each pair xi , yi perpendicular and x, y not perpendicular.

Dualizing [26, p. 196] produces a maximal symplectic partial spread of size �q − � in Sp(�, q)-space for
even q ≥ �.
Example 9.3. For arbitrary q there are integer intervals that consist of sizes of maximal Sp(�, q) partial
spreads [24; 23]. While the ideas used in those papers resemble much more intricate versions of those in the
theorem, it is not clear whether those papers contain the above examples.

Example 9.4. There is a maximal partial spread of size q� − � in Sp(�, q)-space for q ∈ {�, �, �, ��}. This is
constructed using a subgroup of Sp(�, q) = SL(�, q) sharply transitive on ��q − {�} [21; 9; 6]. It is contained in
the non-symplectic spread of ��q corresponding to the associated a�ne irregular nearfield plane.

�� Concluding remarks
The preceding examples make it clear that there are rather few known types of maximal symplectic partial
spreads. There are amazingly few known types in odd characteristic, especially in view of the tables in [5; 13].
We mentioned a number of symplectic partial spreads whose maximality has yet to be decided.

Other examples are in [19, Theorem 1.2] and [8]: if q is odd then an Sp(�, q)-space has an SL(�, q�)-
invariant partial spread of size q� + � that is fundamental for the existence of a �D�(q) generalized hexagon.
This symplectic partial spread is probably maximal, but no proof seems to be known. When q is even the
maximality of the analogous symplectic partial spread is a special case of Proposition 4.1.

We have mostly ignored inequivalence questions. Suppose that q is even. The number of inequivalent
orthogonal spreads in O+(�m, q)-spaces is not bounded above by any polynomial in qm [18]; these produce
inequivalent maximal symplectic partial spreads in Proposition 4.1 and Theorems 4.6 and 6.3. In addition,
there are at least qqk/q�k� inequivalent examples in Theorem5.2(ii), �q−�s �/q�� for eachpair q, s in Theorem7.3,(q − �)q+�/q�� in Theorem 7.11, �q+�s �/q�� for each pair q, s in Theorem 7.13, �q+�s �/q�� for each pair q, s in
Theorem 9.1 and (q − �)(q − �)/� log q in Example 9.2.
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Appendices

A Mutually unbiased bases
Equip�N with its usual hermitian inner product (, ). Orthonormal basesB� andB� are calledmutually unbi-
ased if |(u�, u�)| = �/�N whenever ui ∈ Bi for i = �, �. Any set of MUBs (mutually unbiased bases) has size
at most N + �.

For a prime p set V = �np (row vectors) with its usual dot product x ⋅ y. Consider �N , N = pn, with the
standard basis labeledB∞ := {ev | v ∈ V} and the usual hermitian inner product (, ). Let ζ ∈ � be a primitive
pth root of unity (so that ζ = −� if p = �).

The MUBs mentioned in Section 1 can be described using sets S of symmetric n × nmatricesM such that
the di�erence of any two is nonsingular; explicit sets S are in [4; 17; 13]. Each partial symplectic spread Σ can
be written (after a choice of bases) as the subspaces of V ⊕ V of the form O ⊕ V or (V ⊕ O)� I M

O I � forM varying
through a set S as above. (The alternating bilinear form is �(x, y), (x�, y�)� = x ⋅ y� − x� ⋅ y.)

Let QM : V → �p be a quadratic form associated with the symmetric bilinear form uM ⋅ v on V, so that
QM(u+v) = QM(u)+QM(v)+uM ⋅v for all u, v ∈ V. If p > � then QM(v) = vM ⋅v/�. If p = � use QM(v) = vUM ⋅v,
where UM is obtained from M by replacing all entries below the diagonal by �. If

F(Σ) := �B∞,BS
M | M ∈ S�, BS

M := � ��N �v∈V ζ a⋅v+QM(v)ev ������ a ∈ V�, (A.1)

then F(Σ) is a set of MUBs when p > �. If p = � then F(Σ) is a set of real MUBs (i.e., in �N) provided that
Σ is an orthogonal partial spread. Using the quadratic form Q�(x, y)� = x ⋅ y this means that S consists of
skew-symmetric matrices M (i.e., symmetric with zero diagonal, so that Q�(x, xM)� = �).

Complex MUBs also arise when p = �. Let�BS
M := � ��N �v∈V i� �a⋅ �v+ �v �M⋅ �vev ������ a ∈ V�, (A.2)

where “hats” denote that the vector or matrix has entries �, � viewed inside �� (so that �a, �v ∈ �n�). Then{B∞, �BS
M | M ∈ S} is again a set of MUBs.

See [4; 17] for proofs and the related finite group framework. Our maximal symplectic partial spreads
produce sets ofMUBs that aremaximal within that framework. It is not at all clear that these are alsomaximal
as sets of MUBs in �N , though this may be the case if Σ is su�ciently large.

B Desarguesian ovoids in O+(�, q)-space
In order to prove Theorem 7.3 we will consider a specific orthogonal ovoid in an O+(�, q)-space with q > �
even. Let F = �q� ⊃ K = �q, with trace map T : F → K and norm N : F → K. Then Q(a, β, γ, d) := ad + T(βγ)
turns V := K ⊕ F ⊕ F ⊕ K into an O+(�, q)-space.

The q� + � points �(�, �, �, �)� and �(�, t, tq+q� , N(t))�, t ∈ F, form an ovoid � on which G := SL(�, q�)
acting �-transitively. In [15, p. 1204] this is called a desarguesian ovoid (since it arises from a desarguesian
spread of an Sp(�, q)-space using Lemma 6.1(ii) and triality), and it is observed that G has exactly two orbits
of singular points of V, one of which is �. If q > � and p is any singular point not in �, then �p⊥ ∩ �� = p⊥
[15, p. 1204], as required in Lemma 7.1.

Notation B.1. Let π ∈ F with T(π) = � �= T(π�+q). Use the nondegenerate symmetric K-bilinear form T(xy) on
F to see that πq ∉ {t ∈ F | T(πt) = �} = K + Kπ.
Lemma B.2. If p� and p� are distinct singular points not in �, then |p⊥� ∩ p⊥� ∩ �| ≤ �q − �.
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468 � Kantor, On maximal symplectic partial spreads

Proof. By the transitivity ofGwemayassume that p� = �(�, �, π, �)�and p� = �(a, β, γ, d)� for some a, β, γ, d.
We need to estimate the number of solutions t to the equations

T(tπ) = � = aN(t) + d + T�βtq+q� + γt�
corresponding to points �(�, t, tq+q� , t�+q+q� )�. By (B.1) we can write t = u+ vπ with u, v ∈ K. Then the second
equation is

aN(u + vπ) + d + T(β[u + vπ]q+q� + γ[u + vπ]) = �,
which expands to

a{u� + uv�T(πq+q� ) + v�N(π)} + d + u�T(β) + uvT(βπ) + v�T(βπq+q� ) + uT(γ) + vT(γπ) = �. (B.3)

For each u this is a K-polynomial in v of degree at most three, and hence has at most three roots v ∈ K if it is
not the zero polynomial. Let B be the number of “bad” u for which this polynomial in v is the zero polynomial.
Then |p⊥� ∩ p⊥� ∩ �| ≤ (q − B)� + Bq + � (the last term occurs since �(�, �, �, �)�may be in the intersection).
We will show that B ≤ �, which produces the bound in the lemma.

The coe�cients of our polynomial show that, for a “bad” u, we must have aN(π) = �, T(βπq+q� ) = �,
uT(βπ) + T(γπ) = � and u�T(β) + uT(γ) + d = �. If T(βπ) �= � then there is one “bad” u, while if T(βπ) =
T(γπ) = � then there are at most two “bad” u unless T(β) = T(γ) = d = �.

Thus, we must show that T(βπq+q� ) = T(βπ) = T(γπ) = T(β) = T(γ) = � cannot all occur. Since T(β) =
T(βπ) = �, by (B.1) we have β = xπ with x ∈ K. Then � = T(βπq+q� ) = xT(N(π)), so that x = �. Similarly, since
T(γ) = T(γπ) = � we have γ = yπ with y ∈ K. Now p� = �(�, �, yπ, �)� = p�, which is not the case. 2

Notation B.4. Let �� ⊂ � consist of �(�, �, �, �)� and �(�, t, tq+q� , t�+q+q� )�, t ∈ K. There are (q +�)� singular
points in �⊥� , all having the form �(�, β, γ, �)�with T(β) = T(γ) = T(βγ) = �. The sets �� and �⊥� are acted on
by a naturally embedded subgroup G� = SL(�, q) of G containing the transformations

us : (a, β, γ, d) �→ (a, β + sa, γ + as� + βqs + βq� s, d + as� + T(β)s� + T(γ)s)
j : (a, β, γ, d) �→ (d, γ, β, a)

with s ∈ K. These act on each of the q + � lines �(�, β, �, �), (�, �, β, �)� with T(β) = � �= β that partition the(q + �)� singular points in �⊥� , sending
us : (�, β, γ, �) �→ (�, β, γ + βs, �)
j : (�, β, γ, �) �→ (�, γ, β, �). (B.5)

Definition B.6. An ordinary point is a singular point in �⊥� of the form �(�, β, γ, �)� such that either β = �
and T(γ�+q) �= �, or T(β�+q) �= � (recall that T(β) = T(γ) = T(βγ) = �). Since any β ∈ F∗ has characteristic
polynomial x� + T(β)x� + T(β�+q)x + N(β), the ordinary requirement can fail for some β, γ if and only if q ≡ �(mod �). Moreover, if β ∈ F − K then βq ∈ βK ⇐⇒ βq−� ∈ K ⇐⇒ β(q−�,q�+q+�) ∈ K ⇐⇒ β� ∈ K ⇐⇒
T(β�+q) = �.

For π in (B.1), since T((aπ + πq)(aπ + πq)q) = (a� + a + �)T(π�+q) all points of the line �(�, aπ +
πq , �, �), (�, �, aπ + πq , �)�, a ∈ K, are ordinary if and only if a� + a + � �= �, so that all points are ordinary if
q ≡ � (mod �), but there are two lines of this form all of whose points are not ordinary when q ≡ � (mod �).

The significance of ordinary points is the following

Lemma B.7. If p is an ordinary point then

(i) p has the form �(�, �, γ, �)� with T(γ) = � or �(�, β, aβ, �)� with T(β) = � and a ∈ K, and
(ii) pg = �(�, �, π�, �)� for some g ∈ G�, where π� behaves as π does in (B.1): T(π�) = � �= T(π��+q).
Proof. Wemay assume that p = �(�, β, γ, �)� with β �= �.

(i) Since p is ordinary, we have seen that βq ∉ Kβ, so that β and βq span ker T. Write γ = kβ + bβq with
k, b ∈ K. Then � = T(βγ) = bT(β�+q) implies that b = �.

(ii) By (B.5), puk j = �(�, �, β, �)� behaves as stated. 2
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Lemma B.8. If p�, p� and p� are pairwise non-perpendicular ordinary points, then

(i) |p⊥� ∩ p⊥� ∩ �| = �q and
(ii) |p⊥� ∩ p⊥� ∩ p⊥� ∩ �| = q + �.
Proof. By Lemma B.7(ii) we may assume that p� has the form �(�, �, π, �)� and p� = �(�, β, γ, �)�, where
T(β) = T(γ) = T(βγ) = �. Also T(βπ) �= � since p� and p� are not perpendicular. All (�, �, �, �) and(�, t, tq+q� , N(t)), t ∈ K, are in each of the stated intersections, so we will focus on vectors (�, t, tq+q� , N(t))
with t = u + vπ ∉ K that lie in an intersection.

(i) Here (B.3) states that
uvT(βπ) + v�T(βπq+q� ) + vT(γπ) = �. (B.9)

Since T(βπ) �= �, each v �= � determines a unique u. This argument reverses: the intersection size is (q + �) +(q − �).
Before continuing we massage (B.9). By Lemma B.7(i), γ = kβ for some k ∈ K. Since dimker T = �we can

write β = xπ + yπq with x, y ∈ K. Since � �= T(βπ) = yT(π�+q) we have y �= � and β ∈ ((x/y)π + πq)K. We may
assume that β = aπ + πq with a ∈ K. Then

p� = �(�, aπ + πq , k(aπ + πq), �)�. (B.10)

Also T(βπ) = T(π�+q), so that (B.9) becomes

uT(π�+q) + v[aN(π) + T(π�q+q� )] + kT(π�+q) = �. (B.11)

(ii) We may assume that p� = �(�, β�, γ�, ��) with γ� = k�β� and β� = a�π + πq for some k�, a� ∈ K. Then(a + a�)(k + k�)T(ππq) = T(βγ� + γβ�) �= � since p� and p� are not perpendicular. Then a �= a�, and the two
versions of (B.11) imply that

v = k + k�a + a� T(π�+q)N(π) , u = k + k + k�a + a� �a + T(π�q+q� )N(π) �, (B.12)

which proves (ii). 2

Example B.13. (i) If S ⊆ {�(�, �, π, �)�, �(�, aπ + πq , a�π + aπq , �)� | a ∈ K,a� + a + � �= �}, then
�������p∈S p⊥ ∩ ������� = �������

q� + � if |S| = �
�q if |S| = �
q + � if |S| ≥ �.

(ii) If S ⊆ {�(�, �, π, �)�, �(�, πq , �, �)�, �(�, π + πq , π + πq , �)�, �(�, aπ + πq , a�π + a�πq , �)�} for an arbitrary
a ∈ K − {�, �} such that a� + a + � �= �, then

�������p∈S p⊥ ∩ ������� =
�������������
q� + � if |S| = �
�q if |S| = �
q + � if |S| = �
q + � if |S| = �.

Proof. All of the stated points are ordinary. Since |p⊥ ∩ �| = q� + � [15, p. 1204], we will assume that |S| ≥ �.
(i) In (B.10), k = a for all listed points other than �(�, �, π, �)�. By (B.12), t = T(π�q+q� )

N(π) + T(π�+q)N(π) π is in every
intersection (which is easily checked directly); so is ��, so that every intersection has size ≥ q +�. Since any
intersection of three sets p⊥ ∩ � has size q + � (by Lemma B.8(ii)), so does any intersection of at least four
such sets.

(ii) The last three of these four ordinary points correspond to the pairs (a, k) = (�, �), (�, �), (a, a�) in
(B.10). Then (B.12) and di�erent �-sets in S produce di�erent values of v, so that |�p∈S p⊥ ∩ �| = q + � if|S| = �. The remaining sizes are given in Lemma B.8. 2
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C Suzuki–Tits ovoids: background
We will need information concerning a Suzuki–Tits ovoid � in an O(�, q)-space U with radical r, where q =
��e+�. The standard view of these ovoids is in symplectic space. For our purposes, the view from an O(�, q)-
space has advantages, such as lying in an O+(�, q)-space.

Let �� denote a standard Suzuki–Tits ovoid in the symplectic �-space U/r [31]. If �x, r�/r ∈ �� then the line�x, r� has a unique singular point. Thus, there is a set � of q� + � singular points of U that projects onto ��.
The group Sz(q) lifts from a subgroup of Sp(�, q) to a group G < O(�, q) preserving �.

See [10, Section 6.4] for information concerning the inversive plane I(�) produced by �.
We will assume that q > �. Then U = ��� since G does not act on an O±(�, q)-space. (If q = � then �

spans an O−(�, �)-space.)
Lemma C.1. Every hyperplane meets �. More precisely, there are exactly five G-orbits of hyperplanes H of U:

(i) Tangent hyperplanes H = p⊥ for p ∈ �, with r ∈ H and H ∩ � = {p};
(ii) Secant hyperplanes H = x⊥ containing r, where x is a singular point not in �, x⊥ ∩ � is a circle of I(�)

and �x⊥ ∩ �� = x⊥;
(iii) O−(�, q)-hyperplanes H for which H ∩� is an orbit of a cyclic subgroup of G of order |H ∩�| = q±��q+�

acting irreducibly on U/r; and
(iv) O+(�, q)-hyperplanesH forwhichH∩� contains an orbit of a cyclic subgroup ofG of order |H∩�|−� = q−�

that fixes two points of H ∩ �. Moreover, H ∩ � is not one of the circles in (ii).

Proof. (i) Projectingmod r shows that each point of � behaves as stated.
(ii) If x is a singular point not in � then each of the q + � t.s. lines on x meets � since � is an ovoid, so

that |x⊥ ∩�| = q+�. Also, dim �x⊥ ∩�� = �, as otherwise x⊥ ∩� would project into a plane of U/r, and hence
be contained in a conic, which is not the case since q > � [30, pp. 51–52]. Since �x⊥ ∩ �� lies in the �-space
x⊥, these subspaces coincide.

(iii) This is [2, Theorem 1(a)].
(iv) The set of singular points of H is partitioned by q + � t.s. lines, and each t.s. line of U meets � since

� is an ovoid. Thus, |H ∩ �| = q + �.
We use the orbits of G to find GH . There are exactly two point-orbits on U/r: �� and the remaining q(q�+�)

points. There is a subgroup of G of order q − � that fixes four points of U/r and induces all scalars on each of
these �-spaces [14, p. 183]. Since each line containing r has a unique singular point, the two point-orbits on
U/r produce four point-orbits on U − {r}.

Since G has five point-orbits it also has five hyperplane-orbits, so that all q�(q� + �)/� hyperplanes H in
(iv) lie in an orbit. Then |GH | = |G|/[q�(q� + �)/�] = �(q − �), so that GH is dihedral of order �(q − �), with
orbits of size � and q − � on � [25, Theorem 9].

For the final assertion, if H ∩� lies in two hyperplanes then it is in a plane, and hence is a conic, whereas
in (ii) we already saw that �x⊥ ∩ �� = x⊥. 2

Remarks C.2. Finally, we collect elementary properties of the group T appearing in Lemma C.1(iv). Consider
the action of G = Sz(q) on �.

(i) The stabilizer of a circle has order q(q − �) [25, Theorem 9] and fixes a unique point c. Here Gc is a
Frobenius group of order q�(q − �).

(ii) A subgroup T of order q − � fixes two points c, d ∈ � and has q + � other orbits on � of size q − �.
If � �= t ∈ T then t fixes exactly two circles: it lies in a unique subgroup of order q(q − �) of the Frobenius

group Gc (or Gd). If C is either of these circles then T is transitive on C − {c, d}.
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