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Lattices are studied and characterized in which all intervals above points are 
polar spaces. 

A lattice 9 is locally polar if each element is a join of points (atoms) and 
each interval L?$ = (y j x < y}, x a point, is a polar space (see Tits [6] or 
Buekenhout and Shult [4]). Recall that the rank of a polar space is the maxi- 
mum projective dimension of an element; since this number is finite, 9 has a 
1 and a 0. There is an obvious dimension function on 9, so lines and planes 
have the obvious meaning. We assume that Y has the following properties. 

(i) Each LP has rank n > 3; if x and x’ are distinct points, then x v X’ 
is 1 or a line. 

(ii) If D, E, F, are planes such that D A E and E A Fare lines, then there 
is a point x such that x v D, x v E and x v Fare 3-spaces. 

(iii) (Connectedness.) Given points p and q, there exist points p = 
X 0 , X, ,..., xk = q such that xidl v xi is a line for i = l,..., k. 

(iv) Three pairwise collinear points are always coplanar. 

THEOREM. lf 3’ is a locally polar lattice satisfying (i) through (iv), then 
there is a canonical embedding of 9 into a polar space of rank n f 1. 

In particular, B can be canonically embedded in a projective space of 
dimension at most 2n + 3, by the deep result of Tits [6]. 

This theorem has an obvious application to the program in Buekenhout [2]. 
Related results are found in Buekenhout [I] and Buekenhout and Hubaut [3]. 
Note, however, that our 9 need not be finite and that lines may have more 
than two points. 

The proof of the theorem is a straightforward application of the method 
in [5]: we introduce ideal points and lines in a fairly natural way, and then 
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appeal to the Buekenhout-Shult theorem [4]. After the proof, several 
examples are presented. 

Notation. For X E 2, dim X is one less than the minimum number of 
points with join X. For X, YE B we write X N Y when dim X v Y = 1 i- 
max(dim X, dim Y). Thus, (ii) states that x N D, E, F. 

Points are denoted by p, x, y, z, lines by K, L, M, N, X, Y, Z, and planes 
by D, E, F. 

Abbreviate {L, M} by LM whenever L - M. 
Define EM 0 LN whenever there is an x N L v M, L v N with (x v L) A 

(x v M) = (x v L) A ( x v N); the latter element is then a line. Let E denote 
the equivalence relation generated by 0 on the set of symbols LM. 

The equivalence classes of = are called ideal points and denoted 01, /I, y, 6. 
(Ideal lines are defined later.) If LM E 01 we write a: < L or L > 01. The most 
d&cult part of the proof of the theorem is the following fact. 

LEMMA 1. Assume (i) and (ii), and let KL E 01. 

(a) IfK A L = p, then (y. consists of all pairs of coplanar lines on p. 
(b) IfK A L = 0, then each point is on at most one line >ol. 

The proof of this lemma, and of the theorem itself, will be given in a 
sequence of steps. 

(I) If 1 # S E 9 and dim S > 4, then S is canonically embeddable in 
a projective space. In particular, if four lines of S have the property that 
five of the six pairs of lines are coplanar, then so is the sixth pair. 

Proof. See [5]. 

(II) IfLMoLN,andy~LvM,LvN,then(yvL)~(yvM)= 
(Y v L> A (Y v N). 

Proof: There is an x-LvM,LvN with (xvL)~(xviW)= 
(x v L) A (x v N) = X a line. Fix p < L. In the projective space underlying 
,Le”, the subspaces L v it4 v x and L v N v y have dimension 2, contain L, 
and hence span a subspace S of dimension at most 4 having L in its radical, 
Since IZ > 3, there is a point p v z of _Lpp in SI on neither L v M nor L v N. 
Let 2 = (z v L) A (z v A&). Then 2 < (L v M v x) v (p v z) # 1 (since 
L v M v x andp v z are perpendicular in 59). I&y (I) applied to L, M, X, Z, 
we find that X and 2 are coplanar. Then Z = (z v L) A (z v N) (by (I) 
applied to L, X, Z, N). Two further applications of (I) complete the proof, 

(III) If M,A4,0 n/r,M, 0 **. 0 M,nCr,+, , Y >, 3, then there exists an M 
satisfying M,M, 0 M,A4 0 MM,,, and A4 N Ml v Mz . 



92 WILLIAM M. KANTOR 

Proof. Suppose r = 3. Then (ii) provides an x N &fi v M,,, for i = 
1,2, 3. By (II), (x v Mi> A (x v M,,,) is a line M independent of i. Then 
all requirements are met. 

Now suppose r > 3. By induction, there is an N satisfying MzN o NM,., . 
Now M,M, 0 M,N 0 NM,,, , and we are back in the r = 3 case. 

(IV) IfLMsLNthenLMoLNorM=.N. 

Proof. By (III), there is a line X satisfying ML o MX 0 XN and X N L v 
M. Use x < X to establish ML 0 LN if M # N. 

(V) IfKL=MN,KhL=O,andL,M>p,thenL=M. 

Proof. By (III), there is an X with KL 0 LX 0 XM. Now use x - K v L, 
L v X, X v M to complete the proof. 

Proof of Lemma 1. Part (b) is just (V). Suppose K A L =p and (II ,< MT 
By (II-i), there exists N with KL 0 LN 0 NM. If KL 0 LN via x then (x v K) A 
(x v L) must be x v p, from which p < N follows. Similarly, p < M. Con- 
versely, every line M >p is coplanar with some line N >p coplanar with 
L, and KL 0 LN 0 NM. This proves the lemma. 

DEFINITIONS AND CONVENTIONS. For 01 as in Lemma l(a), we identify 01 
with p. If (y. # p and there is a line >ol, p, this line is denoted 01 v p = p v 01 
and we writep - 01. 

The ideal line E # F determined by distinct planes E - F is defined by 

We write E # F < E, F and 01 < E, 01 < E #F for 01 as in the definition. 
There is an obvious definition for collinear ideal points. According to (I), 
this is the “correct” definition inside E v F. As in the case of ideal points, we 
have to show that E # F can be equally well computed using other pairs of 
planes. 

’ (VII) Suppose E -F, T is a 3-space > E, p < T, but p 4 E. Then 
thereexistsaplaneDwithp<D<TandE#F=E#D. 

Proof. Fix x < E. In .ZP, E v F and T are planes on E. There is thus a 
3-space T’ > E of $P with T’ -E v F, T. By (I), inside T’ v F there is a 
plane F’ satisfying F’ < T’ and E # F = E # F’. Similarly, there is a plane D 
withp < D < T and E #F’ = E # D. Similarly: 

“z (VIII) If OL < L < E, then every point p < E, p 4: L, is on a line 
N < E satisfying LN E a. 

Proof. Let LMEa and x-E,LvM. Set X=(xvL)~(xvM). 
Then LX E 01. Now (I) applies (within any 4-space > x v E = X v E). 
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(IX) Ideal points 01, ,6 are collinear iff 01 < L, /3 < M for some coplanar 
lines L, M. 

Proof. If 01, J3 < E # F, then the desired lines can be found in E. 
Conversely, assume OL < L, ,l3 < M, and L v M = E is a plane. By (VIII), 

LL’ E 01 and MM’ E /3 for some L’, M’ < E. Let x N E. Then X = (x v L) A 

(x v ~5’) and Y = (x v 44) A (x v M’) are lines by (II), and both are on 
xvE.Thus,F=Xv Yisaplane,andol,P<E#F. 

LEMMA 2. Assume (i) through (iii). If 01 is an idealpoint andA an ideal line, 
then 01 is collinear with some ,B <A. 

(X) For anyp and LY. there is a point q -p, cv. 

Proof. Let K,, , K1 ,..., K, be lines with 01 < KO, p < K, , and each 
& A Ki, a point. Assume n > 3, and consider KO , K1 , K2 , KS . There is a 
line L1 > K,, A K1 with L, - K,,K,.NowwehaveK,,K,vL,>K,~K~, 
so there is a line Lz coplanar with KS and satisfying K3. A K, < L, < K1 v L, . 

By (ii), there is a point x - KO v L, , L, v L, , L, v IL‘, . In particular, 
x-KIA&andol by (IX).NowsetKi=xvcu. and K~=xv(K,AK~) 
and decrease YE. 

If n = 2, the same argument applies, this time with x -p and 01. 

Proof of Lemma 2. We are given a and .A = E # E’. Pick p < E. By (x>, 
there is a point q N a, p. As above, there are planes F1 , F2 such that E A F1 is 
a line, p v q < F1 , q v 01 < F2 , and F1 A F, is a line. By (ii), there is an 
x - E, F1 , F2 . Then x - 01, and by (VII) there is a plane E” with E # E’ = 
E # E” and x < E” < x v E. Now x v 01 is coplanar with some line L satis- 
fying x < L < E”. By (I), L and E # E” are on a common ideal point p. 
Since ,kI < E # E” and (x v a) v (x v j3) is a plane, this proves the lemma by 
(IX). 

LEMMA 3. Assume (i) throzagh (iv). If 01 is collinear with two ideal points 
fi, y of an ideal line A, then OL is collinear with every ideal point ofA. 

Axiom (iv) is used as follows. 

(XI) Suppose CL < Ni , and L A Ni = pi is a point, for i = 1,2. Then 
Nl-Nz. 

Pro05 By (III), there is a line N > 01 coplanar with both N1 and N2 . Let 
x < N. Then x v p1 v pz is a plane by (iv), and x v pi is perpendicular to 
N v N3--?: in 2P. Thus, x v pz v N1 is a 3-space T containing N v p1 v pz . 
It follows that N, N1 , Nz < T, and hence that N1 v Nz is a plane by (I). 

(XII) Let 01, /3, A be as in the lemma, with A = E # E’. Then there is a 
point x N 01, E with x v 01- x v p. 
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Proof. By (III) and (IX), there are lines L1 - L, - L8 -L, with p < 
L1<E,/3-=cL3,a?<L4. Let y-L,vL,, L,vLB,L3vL4. By (VIII), 
y - 01. By Lemma 1 and (VIII), y v ,9 exists and is coplanar with L . Since 
Y”&VL, we have y v 01 “~vB.Anyx~E,L~v(yv~)), (vvB)v 
(y v c$) meets our requirements. 

Proof of Lemma 3. Let x - 01, E with x v cy. - x v p. By (VII), we may 
assumex<E’<Evx.Thenlety-ol,E’withyvol-yvy.Wemay 
assume y < E < E’ v y. Then y v p, y v y < E by (VIII). We can apply 
(XI) to L=~vy,iV~=xv~, N,=yvol and obtain XVOI-yv01. 
Then x v y N x v 01, so (x v y) v (x v a) v (x v /3) is a 3-space containing 
y v 01 and y v p. Thus, y v 01 -yvp. We already know yvol-yv y. 
Thus, using J?v we see yvol-E. Then yvol-yvX for all X<E# 
E’ = A, as required (see (IX)). 

Proof of the Theorem. Let 01 be an ideal point, 01 < L, and cy fp < L. 
Pick any 4 -p not coplanar with L. Then 4 and 01 cannot be collinear by 
(XI). In view of Lemmas 2 and 3, the Buekenhout-Shult theorem [4] now 
completes the proof. 

EXAMPLES. A lattice associated with the simple group F,, (see Buekenhout 
and Hubaut [3]) has n = 2 in (i): 8” is of type SU(6,2). In this case, (I) even 
fails: The points and planes in a 3-space form a Steiner system S(22,6, 1). 
However, for the case of SU(7, K), O(7, K) and O-(8, K), assuming (ii) 
through (iv) the theorem should still be true. 

That (i), (iii), and (iv) do not imply (ii) is seen from the following examples. 
Let V be an orthogonal or unitary vector space, and let 9 consist of o, V, 
the vectors in V, and the translates of all totally singular subspaces. Of 
course, one can also delete some such points and subspaces and still arrange 
to have a locally polar lattice. If instead V had been chosen to be symplectic, 
then (ii) and (iv) would both fail. 

Examples satisfying (ii), (iii), usually (i), but not (iv), are constructed as 
follows. Let K be a field of characteristic 2, V a nondegenerate orthogonal 
vector space over K, and R a nonsingular l-space. Then 9 consists of (m, 1, 
and) all (X + R)/R =x for X a totally singular subspace not contained in 
RI. If W < R’- is a singular l-space, then gF is clearly just the polar space 
for Wl/ W. Thus, 5? is locally polar. If K is perfect, an easy computation 
shows that any two points are collinear! Since any K contains GF(2), it 
follows that (iv) fails. Note that, if K # GF(2), then one can again delete 
some elements of 9 and still arrange to have a locally polar lattice. Lemmas 1 
and 2 hold here, the ideal points being those of 9 along with all l-spaces of 
RI/R. 
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