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Reconstructing simple group actions

William M. Kantor®* and and Tim Penttila™*

Abstract. Let G be a simple primitive subgroup of Sy, specified in terms of a set of
generating permutations. If |G| > ns, efficient algorithms are presented that find “the
most natural permutation representation” of G. For example, if G is a classical group
then we find a suitable projective space underlying G. A number of related questions are
considered. Our notion of “efficiency” takes into account many existing notions, ranging
from practical to theoretical ones.
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1. Introduction

During the algorithmic study of subgroups of S,,, one often comes across a sub-
group G known to be simple [Lu2;Neu;Ka3-5;Ma;Mo]. It is then natural to ask
that the given permutation domain be replaced by another one closely related to
the structure of GG, such as an r—element set on which an alternating group A,
acts. Such a replacement result was, indeed, obtained in [Ka3,4] as an essential
ingredient of an algorithm for finding Sylow subgroups in polynomial time (com-
pare [Ma;Mo;KLM]); but this result suffered from the fact that the replacement
algorithm relied on additional permutation domains of size @(n?). The purpose of
this note is to provide procedures that are more efficient, avoiding such increased
space usage while attempting to limit the use of potentially “costly” algorithms.
Specifically, when given a simple primitive subgroup G 2 Mg, Mas of S, of order
> n®, we will find a set of one of the following sorts upon which G acts faithfully
in the “natural” manner:
(i) Anr-set, if G= A.;or
(ii) The set of 1-spaces of a vector space suitably related to the definition of
G, if G 1s a classical group.
The assumption that |G| > n® eliminates all exceptional simple groups of Lie
type, all but the stated two sporadic simple groups, and all but the most famil-

iar types of primitive permutation representations of the alternating or classical
groups. It is hoped that groups satisfying |G| < n® can be viewed as “very small”
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relative to n, and hence manageable in more direct manners (however, see Section
9).

Most of the arguments used here are geometric and fairly elementary. We do
not claim that the algorithms presented are in any sense optimal, or the last word
along these lines. In Section 8 we will also indicate how one can go much further:
constructing a vector space, basis, form and matrices [Ka3]. Throughout, we have
dealt only with deterministic algorithms.

2. Statement of results

We assume that groups are always input using a set of generating permutations.
Let G be a subgroup of S, = Sym(Q).

Hypothesis 2.1. The action of the simple primitive group G is permutation iso-

morphic to one of the following:

(a) The action on the set of all k—sets of an r-set, when G = A,, r>9;

(b) The action on the set of all partitions of an r—set into blocks of size k, when
G=A.,, r>9; or

(¢) The action on an orbit of k-spaces of the vector space V involved in the
definition of G when G is a simple classical group; and either G = PSL(V)
with dimV > 3, or G 2 PSL(V) and V has Witt indezx > 1.

We refer to [Di;Ta] for the standard terminology and basic properties concern-
ing the finite classical groups, and to [Ta, Ch.1;Wi] for the elementary notions
concerning permutation groups, especially primitivity and block systems. The jus-
tification for considering such a small class of permutation representations in Hy-
pothesis 2.1 is the following observation, which is based on the classification of
finite simple groups:

Proposition 2.2. Let G be a simple primitive subgroup of S,,.

(i) If|G| > n® then either Hypothesis 2.1 holds or G is a Mathieu group M, with
n =23 or 24.

(i) If G is an alternating group A, and if |G| > n?, then Hypothesis 2.1 holds.

(iii) If G is a classical group and if |G| > 4n3, then either Hypothesis 2.1(c) holds
or G = PSU(3,7) and n = 50; moreover, if G % PSL(d, q) for alld, q, then the
subspaces referred to in Hypothesis 2.1(c) are totally isotropic, totally singular
or nonsingular.

Some care is needed here. For example PSp(d, q) = PQ(d+ 1, ¢) when ¢ is even,
and for these groups the bound in (iii) allows Q to be an orbit of nonsingular
hyperplanes of the orthogonal space, but there is no way to view this permu-
tation representation in terms of an orbit of subspaces in the symplectic space.
Also, instead of PSp(4, 3) we usually consider the isomorphic groups PSU(4, 2) or
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PQ~(6,2), where more instances of Hypothesis 2.1 occur; but the various views of
this group are allowed in the proposition.

Proof. (Compare [Ka3], which uses the bound |G| > n® based on [Kal] and [LaS]
instead of bounds in [Li] and [LiS].) When G is an alternating group, bounds on
the orders of subgroups [PS] yield (ii). [Maz] takes care of the sporadic groups. In
view of the classification of finite simple groups, it remains only to consider the
groups of Lie type.

Bounds on the degrees of permutation representations of exceptional groups of
Lie type are given in [LiS]. Those results imply that the minimal degree of a faithful
permutation representation occurs for the permutation representation determined
by some parabolic subgroup. It is then easy to check that the condition |G| > n®
never holds (compare Section 9 below).

Suppose that G is a classical group with associated vector space V. If the
stabilizer Gy of a point z of Q is reducible on V| then Hypothesis 2.1 holds, and it
is easy to see that the associated subspaces behave as in (iii). If G, is irreducible
then an upper bound on its order is given in [Li] (compare [KILi]). A calculation
shows that the condition |G| > 4n® does not hold except in the single instance
mentioned in (iii). However, it should be noted that [Li] only gives the largest
irreducible subgroup. One must check the proof in [Li] in order to see that, in
those cases where a subgroup of index < |G/|'/3 is listed, there is no slightly smaller
subgroup satisfying this bound. Moreover, when G is (7, ¢) the bounds in [Li]
are inadequate for our purposes, and it is necessary to go through the derivation
of those bounds in order to check that no example arises (compare [KI]). O

Remark. If the assumption |G| > 4n3 in (iii) is weakened to |G| > n?, then
the only additional pairs (G, G;) are as follows: (PSU(6,2), PSU(4,3) - 2), and
(PQ(7,q),Ga(q)) with ¢ odd. Incidentally, the cases in which G is PSL(4,q) or
PSU(4,q) and G, is the normalizer of PSp(4,q) also occur here, but they re-
ally occur in the context of other vector spaces, namely, within the framework of
(PQ*(6,q),PO(5, q)); the same is true for (PQ™(6,2) = PSp(4, 3),2*As). See the

additional remarks following Theorem 2.3.

Throughout the remainder of this paper we will assume that Hypothesis 2.1
holds. We have framed our treatment so as to apply even if G s not as large as
required in the preceding Proposition; only rarely does this lead to any additional
complications. On the other hand, the simple classical groups of Witt index 1 have
been excluded since these are standard and elementary 2-transitive groups; while
for r < 9, A, is even easier to handle.

For purposes of our main result (Theorem 2.3), we will assume that procedures
(or oracles) are available for the following “basic” types of problems:

(B1) Find the orbits of a group on a given (small) set; moreover, find an element
taking one point to another in the same orbit.

(B2) Find |G]. Test whether or not a given permutation belongs to G.
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(B3) Find all minimal block systems of a transitive group; given a block of a
transitive group, find the block system it determines. (Of course, procedures
for both of these may have to be iterated a number of times in order to
replace a given transitive action by a primitive one; but this number will
always be < 3 in our procedures.)

(B4) Find the pointwise stabilizer of several objects (at most 5 points or blocks,
though usually at most 3). This requires some clarification. First, finding a
pointwise stabilizer of the form Hg,  ,; will presuppose that the stabilizers
Hy, .z, have been found at the same time for i = 1,...,j; here H denotes
a subgroup of G that has already been constructed, and j < 5 for the
situations we will encounter. Second, if z and y are points in any current
permutation domain for GG, then we also assume that we have available an
element of GG, moving y to any given point in y“+ (so we will have a set of
representatives of the cosets of Gy in Gg).

(B5) Pass to a new permutation representation of G whose degree usually is less
than that of G and in all cases is never much larger than that of G—in
particular, never larger than the size of the target set we seek (see the
remarks after the statement of the following theorem). Finding such a new
permutation representation is accomplished by finding a subgroup H of G
such that |G : H| is small (at most the size of the permutation domain), and
then finding the action of G on the corresponding set G/H of right cosets.

Procedures for such problems are (special cases of) standard tools in many ex-
isting approaches to permutation group algorithms: practical (CAYLEY/Magma
[Ca;BC]; GAP [Sch]), deterministic polynomial time [FHL;Lu2], Monte Carlo poly-
nomial time [CF] and parallel (complexity class NC) [LM;Lul;Lu3;KLM]. However,
no procedure is known for (B5) in the context of “nearly linear time” computa-
tion, so that only a few of our results apply to that model of computation (cf.
[Mo).

In addition to (B1-5) we presuppose various other simple procedures, such
as working with subsets of our permutation domain and factoring the order of a
group into primes.

In Section 6 we will prove our main result:

Theorem 2.3. There is an algorithm NATURAL_ACTION using only procedures
for the above “basic” problems which, when given G < S, as in Hypothesis 2.1,
oulputs a new set Il on which G acts either as the full alternating group, or as it
does on the set of all 1-spaces of a vector space underlying G 1f G 1s a classical
group. Moreover, on any input, NATURAL_ACTION uses at most 40 calls to such
procedures; no procedure is called for a set of size > |II|.

In most situations, |TI| is at most n; and it is never much larger than n. The
boundedness of the number of calls within NATURAL_ACTION seems to be dif-
ferent from other algorithms in print for the same sorts of problems [BKL; Ka3;
BLS]. Note, in particular, that not even normal closures or derived groups are used
in the algorithm in the theorem. Furthermore, we do not reconstruct recursively;
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for example, we pass directly from the set of k—sets of an r—set to the elements of
the r—set, rather than passing to the set of (£ — 1)-sets (see Section 7 for alterna-
tive approaches that do proceed recursively in some cases). Of course, the standard
procedures for some of the problems (B1-5) are themselves recursive. Moreover,
a significant amount of computation is needed to produce the new permutation
action of G on II (note that this action is, in general, intransitive: there can be as
many as three orbits). On the one hand, when new permutation representations
are produced for G or subgroups of GG, these are always of degree at most the size of
the target domain II; on the other hand, cosets of stabilizers are needed, and hence
so are tests to distinguish cosets. We have chosen to view these tests as all lumped
together (as one big test (B5)) each time a new permutation representation is
produced.

Theorem 2.3 mentions “a vector space underlying V. This may be a deceptive
phrase. There may be vector spaces such that a given group can be considered in
different ways as a classical group defined on each of them, and each such vector
space can be thought of as “underlying” G; the given permutation representation
will not indicate which of these vector spaces is desired in a given context. The
most familiar instance of this ambiguity occurs when G is PSL(d, q) = PSL(V)
with d > 2, in which case there is no “significant” difference between the projective
space underlying V and that underlying its dual space V*. (See Section 8(B) for
a brief discussion of the passage from one of these permutation representations
to the other.) If G is PSU(4,q) = PQ~(6,q), or PSp(4,q) = PQ(5,q) with ¢
odd, then we produce whichever incarnation of this group seems to arise most
naturally from the given permutation representation (see Remark 5.1 in order
to pass between two such equally “natural” permutation representations of G).
The case PSL(4,q) = PQ*(6,q) is handled similarly. When G = PQ*(8, q) there
is no readily discernible difference between the vector space defining G and its
8—dimensional half-spin modules, since each of these spaces comes equipped with a
quadratic form preserved projectively by G; and in fact a triality automorphism of
G transitively permutes this set of three vector spaces. Perhaps the most significant
of these ambiguities arises when G = PQ(2m + 1, q) = PSp(2m, q) with ¢ even,
but here we always reconstruct the symplectic space, which is both smaller and
“more natural”.

Sections 3-5 present algorithms for various possibilities allowed by Hypothesis
2.1. Section 6 glues these together. Throughout the paper, especially in Section 7,
we have indicated alternative algorithms. Section 9 contains remarks about other
simple groups. Section 8 indicates further aspects of “linear algebra” associated
with the Hypothesis: reducing permutation group computations to linear algebra
ones. Here we must be willing to increase the size of the set €2, since the underlying
vector space always is slightly larger than 2. Moreover, we use recursion in order
to introduce coordinates: a given point is labeled using what can be almost logn
field elements. We also reconstruct all elements of “the” field. Nevertheless, the
introduction of coordinates and linear transformations seems reasonably efficient,
and is certainly straightforward. Incidentally, our algorithms and proofs were de-
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vised in terms of simple-minded pictures of various situations, and we urge readers
to draw while reading.

The following procedure gives an indication of the general methodology in the
case of classical groups and provides a rough flow chart. In Section 6 we will prove
that this procedure is correct. The end of the present section contains notation
and terminology appearing in this algorithm or in later ones.

NATURAL_ACTION

Input: A simple primitive group G < Sym(Q2) of known order satisfying Hy-
pothesis 2.1.

Output: A set and an action of GG as required in Theorem 2.3.

Call ALT_ORDER. If G = A, for some r, call ALT1 and then ALT2.

Let p be the prime contributing the largest prime power to |G|, except when
|G| = |PSU(4, 2)| and n # 40, in which case let p = 2. (Then p is the characteristic
of G [Ar].)

If p|'n call CLASSICAL_NS (Section 5), producing a new set Q'. (Here € is
a G—orbit of nonsingular subspaces, and CLASSICAL_NS produces the set Q' of
isotropic or singular points of an underlying vector space.)

Now p,fn. Call PSL_.ORDER (Section 4). If G = PSL(d, ¢) for some d, ¢, call
PSL (Section 4).

Find all orbits A(X) of Gx such that |[A(X)]|,s is minimal subject to not being
1. Choose the largest such A(X).

Find all maximal block systems A(X) of G)A((X) of p’~length.

Suppose that G has rank 3. If n = (¢* +1)(¢®> + 1)(¢? + 1)(¢ + 1), use Q¥ _MAX
(Section 5) to find a new set Q'. If n = (¢ + 1)(¢?> + 1), use CLASSICAL_TS
(Section 5) to find a new set Q'. Otherwise, let Q' = Q.

Find a new set €' by using CLASSICAL_TS if G)A((X) is 2-transitive and
QT _MAX otherwise.

Replace © by Q' and call PROJECTIVE_SPACE (Section 6; this finds all re-

maining points of the underlying projective space if GG is an orthogonal or unitary

group.) &

Conventions: Throughout all of our algorithms we will tend to use notation sug-
gestive of the nature of the “points” being permuted. For example, elements of Q
will be denoted by capital letters, since they frequently “are” subsets or subspaces.
Similarly, when proving correctness (or making remarks within algorithms) we will
tend to view the objects produced as actually being inside the underlying r—set or
vector space. In other words, whereas we will have a permutation representation
of GG that is only permutation isomorphic to a familiar one, we will tend to identify
these representations. Nevertheless, it is essential to distinguish the two permu-
tation representations to some extent: some subspaces implicit in an algorithm
may not have been reconstructed in the algorithm. Consequently, we will have to
refer to corresponding features of the two permutation representations, leading to
a corresponding overuse of terms such as “corresponding”.
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Terminology: If H is a group acting on a set 7', then H” denotes the induced
action. If the action is transitive, we will consider block systems. A block system is
minimal if it is nontrivial and each block contains no nontrivial block; it is mazimal
if the induced permutation representation of H is primitive. Whenever U C T let
Hy denote the set-stabilizer of U; as indicated in the preceding paragraph, we will
be viewing subsets of some set other than 2 as the objects being permuted, and
we will want to be able to consider both actions simultaneously.

If G > H then G/H denotes the set of right cosets of H in G, which we always
view as coming equipped with the usual permutation representation of G on this
set.

If k is an integer and p is a prime, then k, denotes the largest power of p
dividing k, and kp = k/k,.

Suborbits: When G is transitive, we will need to consider orbits of Gx on Q for
X € Q (the “suborbits” of G); the number of such orbits is the rank of G. Given
an orbit A(X) of one stabilizer Gx, an orbit A(Y) of any other stabilizer Gy is
always assumed to be obtained as A(Y) = A(X)9, where X9 = Y. This amounts
to being given a (directed) graph on which G acts edge-transitively. However, once
Gx is in hand, there may be no need to store the entire set orbit A(X), since
it can specified by means of a single one of its members (i.e., A(X) = Y%x if
Y € A(X)). Frequently, an element g such that X9 =Y can be used to translate
questions about A(Y') back to A(X) without dealing directly with A(Y'). Note,
however, that such a simple-minded method may not work if we need to consider
sets such as A(X) N A(Y). Similarly, when we consider a block system A(X) for
G)A((X), we can specify it either using one block or the stabilizer in G'x of a block;
and the above element g again can be used to translate suitable questions about
A(Y) back to A(X).

We write AT(X) = A(X)U{X}.

3. Alternating groups

We begin with an arithmetic procedure:

ALT ORDER
Input: A group G as in Hypothesis 2.1.

Output: Whether or not G is isomorphic to an alternating group; and if it is, the
integer r such that G = A,.

Find |G|z = 281, Test whether |G| = r!/2for 9 < r = k+1,...,2k. If it is
not then G is not an alternating group, otherwise G =2 A,. &
Proof of correctness of ALT_ORDER. If m = [log, 7] then (r!); = 7 [r/2]] <
rE2,1/28 = rand (r)y > 7 (r—(20=1)/2) = r4+1—(r+1)2""—m > r—m—1.
Thus, if G = A, then k = |G|z + 1 is between » — 1 and r — log, r» — 1, and the
indicated procedure finds r.
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Suppose that the procedure determines that |G| = r!/2 for some r. By [Ar],
G is isomorphic to A, or PSL(3,4). If |G| = |PSL(3,4)] = |Ag| then G ¥ Asg
by Hypothesis 2.1(a,b), and the procedure correctly decides that G is not an
alternating group. O

ALT1

Input: G < Sym(€) permutation isomorphic to the action of A,, r > 9, on the
set of all subsets of some fixed size of the r—set.

Output: An r—set an action of G on that set as the alternating group.

If G is imprimitive, replace Q by a nontrivial block system and call ALT2.

Find k such that k + 1 is the rank of G and |Q| = (7).

If £ = 1 then output Q.

Let X € Q. Let A(X) be an orbit of Gx on Q of length k(r — k).

Find all minimal block systems of GA(X) (there are two of them), and let A(X)
be the one having k blocks. Let X’ and Y be distinct elements of the same member
of A(X), and let Y/ € A(X')NA(Y) — A(X).

Output G/(Gxy,Gxy!). ¢

Proof of correctness of ALT1. If Q consists of all k—sets of 2 then we may assume
that £ < r/2. Our permutation representation is imprimitive if and only if k = r/2,
in which case there is a unique nontrivial block system, and G acts on it as it does
on the set of partitions into two blocks of size k. Hence, ALT2 can be used in this
case. From now on we may assume that r > 2k. We may also assume that k& > 1.

IfY € Qthen |Y&x| = (f) (2__]:) where i = | XNY|. When 1 < i < k—1, the first
factor is at least k(k—1)/2 and the second factor is at least (r—k)(r—k—1)/2, so no
such orbit has length k(r—k). If i = 0, then |[Y&X| = (r—k)!/(r—2k)k! # k(r—k)
(recall that r # 7). If i = 1 then |Y&X| = k(r —k)!/(r — 2k + 1)!(k—1)! > k(r — k)
(since r > 2k > 4). If i = k — 1 then |Y%X| = k(r — k). This shows that A(X)
exists as required in the algorithm, and corresponds to i =k — 1.

Moreover, in this case Gx is imprimitive on Y¥x: if ¥V denotes an r-set on
which G acts as the full alternating group, then the block systems for G)A((X)
correspond to fixing a member of the k—set X or of the (r — k)-set V' — X. These
block systems have sizes k and r — k, respectively.

Let Z = XNY (of size k—1), {z} = X—7 and {y} = Y—7. Then the member of
A(X) containing Y consists of the elements of Q—{X} containing 7. In particular,
X' DZandVY' 2 Z. If {2’} = X' — 7, it follows that 2’ € Y as | X'NY'| = k—1;
similarly y € Y. Then Y/ C X'U{y} implies that Y/ = (7 —{u})U{z’, y} for some
uw€ Z,sothat X' —=Y' ={u}and Z:= X' NY'is (ZU {2'}) = {u} = X' — {u}.
Note that {y} =Y’ — X’ since X' #7Y.

Now Gxy = (Gy)zz and Gxiy: = (Gy)uz', where c ¢ ZUZ' andue Z — Z'.
Thus, (Gxy,Gxv') = Gy, and it is clear that |G/(Gxy,Gxiv')| =7 < (;) =
n. O

We now turn to an alternating group A, acting on the set of partitions of
an r—set into blocks of size k. It would, perhaps, be desirable to reconstruct the
r—set directly—and we do so when r = 2k, which is comforting in view of the fact
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that ALT1 calls ALT2 in the case of A, acting on r/2-sets. However, in general
we merely output the action of A, on k—sets, after which ALT1 can be used to
reconstruct the underlying r—set, as is done in NATURAL_ACTION in Section 2.

ALT2

Input: G < Sym(€) permutation isomorphic to the action of A,, r > 9, on the
set of all partitions of an r—set into blocks all of the same size.

Output: An r-set and an action of G on that set as the alternating group.

Let X € Q. Let A(X) be the shortest Gx—orbit on Q@ — {X}.

Let Y € A(X).

Find A(X)NA(Y). Let £ = (JA(X)NA(Y)|+2)/2. Find s such that |A(X)| =
(5)k%/e, where ¢ is 1 if k > 2 and 2 otherwise.

Let 7 € A(X)NA(Y).

Let H:= (Gxy,Gxz,Gyz) it k > 2; let H:= (Gxvy,g1,92) if k = 2, where
g1 € Gx interchanges Y and Z and g5 € Gy interchanges X and Z.

If s = 2, use (B5) to find and output G/H.

If s = 3, find G/H using (B5). Find the smallest maximal block system €’ of
G on G/H. Output Q'.

Let W be in an H)A((X)_{Y}forbit that is also a G)A((},X)_{Y}forbit.

Let g € Gx with Y9 = W. Let I: = HY.

Let J: = (Ixy,fxz,fyz> if k > 2; let J:= (Ixy,il,i2> if k= 2, where il € IX
interchanges Y and Z and i3 € Iy interchanges X and Z.

Find G/J using (B5). Find the smallest maximal block system Q' of G on
G/J. Output Q. &

Proof of correctness of ALT2. We begin by identifying A(X):

Lemma 3.1. A(X) = {Y €Q|Y = (X —{A,B})U{A’, B'} where
X = (A= {a})U{b}, B = (B {b}) U {a)
for some aEAEX,bEBEX}.

Proof. Note that the G x—orbit described in the lemma has length (;) k?/e, where
¢ is defined in the algorithm. Consider any Y € @ — {X}, and assume that exactly
i blocks of X are not blocks of Y, so ¢ > 2; let A(1),..., A(¢) denote these blocks
of X. Then Y induces a partition Y (j) on A(j) having at least two parts.

If £ = 2 then [Y9x| > (f)(Zz — 2). If i = 2 the lemma is clear. Let ¢ > 3,
so that [YEX| > s(s — 1) = (5)2%/2 since s > 5, unless i is s. Note that X UY
produces a bivalent graph on r = 2s vertices. If there is a cycle of length > 4
then [YEx| > (25 — 2)(2s — 4) > s(s — 1). Otherwise, s is even and |[Y&x| >
(25 —2)(2s — 8) > s(s — 1). We may now assume that k£ > 3.

Suppose that Y (1) consists of k singletons. Then k& members of ¥ meet A(1)
(so that i > k); each of them meets some other A(j), and the intersection has at
least k images under Sym(A(j)). Thus, we obtain at least k¥ members of Y &x
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using elements of Gx fixing each of the A(j)’s. We can fix X, Y and all members
of A(1) while moving the remaining A(j)’s to (j:i) different 7 — 1—subsets of X.
Thus, |Y&x| > (j:i)kk Since r = sk > 9 and s > i > k > 3, it is easy to check
that [Y9*| > (5)k?, as required. (N.B.—~When r =9 and s = k = 3, the lemma
no longer holds.)

Now

vort 2 (5) L VG0 2 kst s - i
2

where kg denotes the smallest length of a nontrivial Si—orbit of partitions, so that
ko = k except when k = 4 and ko = 3. Then |Y | > s(s—1)k?/2 except, perhaps,
in the following cases:

() i=2

(i) k=3,s=1=3,

(i) k=4,s=i=3 or 4.
A straightforward case analysis shows that |Y%X| > s(s — 1)k?/2 in each of these
situations—except for the desired one, in which i = 2 and each Y (j) consists of a
1-set and a (k — 1)-set. O

We now return to the proof of the correctness of ALT2. Let Y € A(X) arise
from A, B,a,b, A’, B as in Lemma 3.1.

The set A(X) N A(Y) consists of those 7 € Q arising as in Lemma 3.1 from
A, B a,b*or A, B,a*,bfor somea* € A—{a}, B* € B—{b}. Then |[A(X)NA(Y)| =
2k — 2, so the algorithm correctly finds £ and s. We may assume that Z arises
from some A, B, a, b*.

We have Gxy = Gx{q3} and Gxz = Gx{q3+}, which generate Gxqp if & >
2. If k = 2 then B = {b,b*} and ¢y interchanges {a,b} and {a,b*}, so that
(Gxy,91) = Gxqap. Thus, in any case H = (GxaB,Gyap’) = Ga auB,x-{4,B}-

If s =2 then H = G, which has index r < n in G.

If s =3 and X = {A, B,C}, then H = G,¢, which has index < n in G. The
algorithm produces G/G,.

Let s > 4. The only H)A((X)_{Y}forbit that is also a G)A((;()_{Y}forbit corre-
sponds (as in Lemma 3.1) to all C, D,¢,d with C,; D € X — {A,B}, ¢ € C and
de D.

Now I = Ggascup,x—{c,p}- As above, (Ixy,Ixz,Iyz) or (Ixy,i1,i2) is
Iy auB,x-{a,B}- Then J = (G4 auB,x-1{4,B}Gas,cuD,a,AUB,X—{A,B,C,D}) 1S
G aup, which has index < n in G. The algorithm produces G/G,, which clearly
has size < n. O

Lemma 3.2. Assume Hypothesis 2.1(a) or (b). If ALT1 does not produce an
output, then ALT2 does.

Proof. We only need to check that, if ALT1 does produce an output, then we
cannot be in the situation of ALT2. However, in ALT1 we found k such that &+ 1
is the rank of G and |Q| = (}). No such k exists in the situation of ALT2. O
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It should be clear that the above algorithms work for symmetric groups in place
of alternating groups with no change.

4. PSL(V)

Throughout our discussions of classical groups there will be an underlying vector
space V' (which, of course, we will not have in hand) and an underlying projective
space. “Dimension” will always refer to vector space dimension, while “points”,
“lines” and “not meeting” refer to the projective space.

Once again we begin with an arithmetic procedure:

PSL_ORDER
Input: A classical group G of characteristic p as in Hypothesis 2.1.

Output: Whether or not G = PSL(d, q) for some d, ¢; and if it is, d and q.

Find ¢:= (|]Q| — 1),. Find d such that |G|, = ¢*4=1)/2, Test whether |G| =
|[PSL(d, q)|. If not then G 2 PSL(d, q) for any d, q, otherwise G = PSL(d, q). &

Correctness is easy to check. O

PSL

Input: G < Sym(€) permutation isomorphic to the action of some projective
special linear group on the set of all subspaces of some fixed dimension
of the underlying vector space of characteristic p.

Output: A set and an action of G on that set permutation isomorphic to that of
G on the set of all 1-spaces of the underlying vector space or its dual.

If G is 2-transitive on  then output €.
For X € Q let II(X) be the Gx—orbit such that |II(X)|, is second largest.

Find a maximal block system II(X) for Gg(X) of smallest size.
Let Y €y € I(X) and X € z € TI(Y).
Output G/(Gxy, Gyz) using (B5). &

Proof of correctness of PSL. We may assume that Q consists of the k—subspaces of
a d—dimensional vector space V over GF(q), where 2k < d. For Y € Q — {X} with
dim(X NY) = i, we have |[Y9x| = (X NY)%x|. |(X, Y}GX| -q=9° Here the final
term ¢(*=9” is the number of (k — i)-spaces in a 2(k — ¢)-space that do not meet
a given (k — 7)-space, and q(k_i)2 = |Y%x],. Consequently, TI(X) corresponds to
t = 1, in which case X NY is a point.

The nontrivial blocks of Gg(X) arise from fixing a point w of X, a (2k — 1)-
space W containing X, or a pair w, W. There are fewer points in X than there are
(2k — 1)-spaces containing X, except when 2k = d, in which case interchanging
the underlying space V and its dual interchanges the two maximal block systems.
So in any case we may assume that II(X) is the block system corresponding to
the set of points of X.
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Now XNY = w corresponds to both z and y. Then (Gxy, Gyz) = (Gxw, Gyw)
= (G, and this has index < n in G. O

5. Classical groups

We now turn to the most intricate part of this paper. Let V be a d-dimensional
vector space over GF(g), equipped with a suitable form (alternating, symmet-
ric, quadratic or hermitian). Let IsomV denote the isometry group of V, and let
PIsomV be IsomV modulo scalars; the group G we will study 1is the derived group
(PTsomV)’ [Di;Ta]. If W is a subspace of V' then TsomW will denote the group
of isometries of W (where the form on W is inherited from V). We will be con-
cerned with nonsingular subspaces, as well as subspaces on which the relevant
form vanishes: totally isotropic subspaces if G is symplectic or unitary, and totally
singular subspaces if G is orthogonal. As might be expected, the case of orthogonal
groups of characteristic 2 creates some complications. There, V is also a symplectic
space—so nonsingular points are perpendicular to themselves—and hence there is
a notion of “isotropic” subspaces, but we will never use this term for orthogonal
spaces.

If ¢ is even and d is odd then there 1s a 1-dimensional radical. In this situation,
the only subspaces that need to be considered in this paper are the nonsingular
hyperplanes: all other relevant subspaces can be more easily handled within the
context of the associated (d — 1)-dimensional symplectic space V/radV. All new
permutation representations we construct occur within the latter symplectic set-
ting. Thus, even when we reconstruct the totally singular points of the orthogonal
vector space, we can and will view these as points of the corresponding symplectic
space; and it is the latter space we will focus on later in Section 8.

Witt’s Lemma [Di;Ta] asserts that all elements of IsomW are induced by ele-
ments of IsomV. However, we will need to be slightly careful, since sometimes our
group G does not induce all elements of PIsomWV.

Remark 5.1. Switching between rank 3 permutation representations. Here
CLASSICAL sets ': = Q. However, instead of proceeding in this manner let A(X)
be the shortest nontrivial orbit of Gx on €, and let Z(X) be the unique nontriv-
ial block system of G5). Then the algorithm CLASSICAL_TS given below will
produce the rank 3 incarnation of G other than the one we started with. Thus,
in this case we can switch between the pairs of isomorphic groups PSp(4, ¢q) and
PQ(5, q) for ¢ odd, as well as PSU(4, q) and PQ~ (6, q).

There is one further isomorphism to consider: PSL(4,q) = PQ*(6,q). Con-
verting from the action of PSL(4,q) on points or planes to that of PQ¥(6,q)
on singular points simply requires finding the lines of the 4-dimensional vector
space (cf. Section 8(A)). On the other hand, if we have the set of singular points
of a PQT(6,q)-space then calling PSL will produce the points or planes of the
4—dimensional vector space.
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The beginning of the next two algorithms already occurs in CLASSICAL. These
are included here so that these algorithms can be self-contained.

CLASSICAL_TS

Input: G < Sym(Q) permutation isomorphic to the primitive action of some
simple symplectic, orthogonal or unitary group, of Witt index > 1, on
the set of all totally isotropic or totally singular subspaces of some fixed
dimension > 1 of the underlying vector space of characteristic p;

G is neither PSU(4, q) acting on the set of totally isotropic lines nor
PQ*(2m,q) with m even acting on an orbit of totally singular
m—spaces.

Output: A set of size < n and an action of G on that set permutation isomorphic
to that of G on the set of all totally isotropic or totally singular 1-spaces
of the underlying vector space.

Find all orbits A(X) of Gx such that |[A(X)]|,s is minimal subject to not being
1. Choose the largest such A(X).

Find a block system A(X) of G)A((X) on which Gx is 2-transitive.

Let Y €y € A(X) and X € z € A(Y).

Use (B5) to find and output G/(Gxy, Gyz). ¢

Proof of correctness of CLASSICAL_TS: Let dimX = k. We first identify A(X).
Note that Gx/O,(Gx) is isomorphic to a subgroup of GL(X) containing SL(X).

Lemma 5.2. A(X) ={Y € Q| rad(X,Y) is a point}.

Proof. f Y € Q — {X} is such that rad(X,Y) is a point w (so X N Y1 = w),
then |[YEéx|, = |Gx:Gxylpy = |Gx:Gulp = (¢* — 1)/(g — 1). Also |[YEx|, is
the number of totally isotropic or totally singular k — 1-spaces of w™ /w that are
opposite X/w (i.e., which, together with X/w, span a nonsingular 2k — 2-space).
There always is such a ¥ € Q — { X'} since we have excluded the case in which G
is PQT(2m, q) with m even acting on an orbit of totally singular m—-spaces.

Consider any orbit Z9% with |Z%% |, minimal subject to not being 1. Then
X NZt # 0 since |Z9%| is not a power of p, so that [Z%% |, is at least |[(X N
2465 |, > (¢* = 1)/(g - 1). It follows that |(X N1 Z4)9x],. = (¢* — 1)/(g — 1)
and X N Z* is a point or a hyperplane of X.

We claim that XNZ+ = XNZ. For otherwise, XNZL ¢ Z,sothat ZNX1 ¢ X
and (X, Z N X*) is a totally isotropic or totally singular subspace properly con-

ntaining X, and [{X,Z N XJ‘)GX| is a factor of |Z9%|,/, whereas we have already
accounted for |Z79% |, = [(X NZ+)%x|, = (¢* —1)/(¢—1). This proves our claim.
If XNZt = XNZisapoint then Z € Y% and we are finished. Suppose that
XNZt =XnNZis ahyperplane H of X, so H = rad(X, Z); we may assume that
k > 2 so that H is not a point. This time |Z%%|, is the number of totally isotropic
or totally singular points of H+/H opposite X/H, so that |Z9x| < |Y%x|. O



14 W. M. Kantor and T. Penttila

We now return to the proof of correctness of CLASSICAL_TS. We found the block
system corresponding to the set of all points of X. Thus, y corresponds to the
point w = X NY; so does z. It follows that (Gxy, Gyz) = (Gxw, Gyw) = Gu,
which has index < n in G. O

Remarks. We assumed primitivity in CLASSICAL_TS. This avoided only one
case: the set of totally singular (m—1)-spaces when G = PQ*(2m, q). Of course, in
this case one could simply replace Q by a maximal block system and call MAX_Q7.

The case PSU(4,q) was excluded in CLASSICAL_TS in order to avoid the
possibility that € is replaced by a much larger set. On the other hand, this permu-
tation group is covered in its incarnation as Q7 (6, q) acting on the set of singular
points; and this permutation group is also covered within the above procedure if
one does not mind having the output set overly large.

Qf _MAX

Input: G < Sym(2) permutation isomorphic to the primitive action of
PQ*(2m, q) on an orbit of totally singular m—spaces, where m > 6
is even.

Output: A set of size < n and an action of GG on that set permutation isomorphic
to that of G on the set of all totally singular 1-spaces of the underlying
vector space.

Find all orbits A(X) of Gx such that |[A(X)]|,s is minimal subject to not being
1. Choose the largest such A(X). Let Y € A(X).

Find a maximal block system A(X) of G)A((X) of p’~length.

Use PSL for G)A((X) to find the set ' of points of X.

Find z € T lying in the smallest orbit of (Gxy)'. Find (Gx)..
Find ¢ € G sending Y to X and f € Gx sending X9 to Y.
Find z € T fixed by (((Gx):)?/ )x. Find h € Gxy with 2" = z.
Use (B5) to find and output G/((Gx)z, (Gx):)?"). &

Proof of correctness of @t _MAX: Suppose that |Z%x |p+ is minimal subject to not
being 1 for some 7 € © — {X}. As in CLASSICAL_TS, we may assume that
X N Z # 0; here, dimX N Z is even. Since |Zx|, > [(X N Z)¢x|,, it follows
that dimX N Z is 2 or m — 2. This gives us two choices for the orbit Z9X | and the
larger one occurs when X N7 is a line.

Thus, we chose Y so that X NY is a line. Then z is a point of X NY". Since gf
interchanges X and Y, it fixes X NY. Then ((Gx);)? is the stabilizer in Gy of a
point z = 2%/ of X NY, and this is the only point of X fixed by (((Gx)z)? )x =
Gyzx. Now ((Gx)x)gfh = (GY)(ng)h = ny, and hence <(Gx)x, ((Gx)x)gfh> =
G,. O

Remark. Note that not dealing with sets of size > |Q[ eliminates the following
simple procedure for QT _MAX: let Y € y € A(X), X € z € A(Y), and Q:=
G/{(Gxy,Gyz); call CLASSICAL_TS. Namely, here |G: (Gxy, Gyz)| can be quite

a bit larger than the size of our original set €.
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The next algorithm is perhaps the hardest one in this paper. In it the number
of isotropic or singular points is usually—but not always—Iless than the size of
each orbit of nonsingular subspaces.

CLASSICAL_NS

Input: G < Sym(Q) permutation isomorphic to the primitive action of some
simple symplectic, orthogonal or unitary group, of Witt index > 1, on
a G—orbit of nonsingular subspaces of the underlying vector space of
characteristic p.

Output: A set of size < 2.5n and an action of GG on that set permutation isomor-
phic to that of G on the set of all isotropic or singular 1-spaces of the
underlying vector space.

Let X € Q. Let A(X) be the union of the nontrivial Gx—orbits on Q of
p'—length. Let AT(X) = {X} UA(X).

Find g € G with X9 =Y € A(X).

Assume that (|AY(X)|,r — 1), = [AF(X)],, or that [A(X)| = ¢*(¢®> + 1) or
q(q? + 1) but not ¢?(¢? + 1) for some prime power ¢. Find the set w of points of
A(X) N A*(Y) fixed by Gxy. Find the block system A(X):= w%x of G)A((X),
and then find Gx,. Find f € Gx moving X? to Y and let J:= (Gxyu,9f).
Let Z € Q — ({X} Uw), chosen with |Z%%«|, minimal subject to the following
condition: 7 € A(X) if G)A((X) is not 2-transitive and 7 ¢ A(X) otherwise. Let
z € A(Z) be fixed by Jz. Output G/(J,Gz.) using (B5). (This portion of the
algorithm handled the cases in which X has dimension or codimension 1.)

Let A€ A(X) - A(Y), Ze A(X)NA(Y)NA(A), and y: = A(X)NAT(Y)N
AT(Z). 1f 2|y| < |A(X) N AT(Y)]| replace Z by an element of A(X)NAHT(Y) —y
and recompute y.

Let A’(X) be a Gx—orbit in A(X), let ¥ = y N A'(X), and find the stabilizer
Gxy = Gxy of the block y' of G5 XV

Let z:= AT(X)NA(Y)NA*(Z). Find f € Gx, with (29)/ = y.

Let J: = (Gxy,9f).

Find Q': = G/J using (B5).

Let ©” be a nontrivial block system for G2’ if one exists; otherwise let Q”: = (/.

pr* || output Q. pr||Q”| then replace 2 by " and call CLASSICAL_NS. ¢

Remarks. The algorithm only calls itself at most once at the end, replacing
an orbit Q of nonsingular lines in an orthogonal space first by an orbit Q" of
nonsingular points and then by the orbit of singular points.

The suggestion to use a union of G x—orbits is due to R. Liebler in the case
G = Q(5,q), dimX = 2, which has the annoying problem that Gxy can be 1. Note

that G)A((X) can only be intransitive when G is orthogonal and dimX = 2.

Proof of correctness of CLASSICAL_NS. Let dimX = k. We may assume that
either radV = 0 and k¥ < d/2, or radV # 0, V is an orthogonal space of odd
dimension and characteristic 2 and ¥ = d — 1. A check of the possible groups G
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shows that X1 has Witt index > 1 if radV = 0. Let ¢ be the size of the field
underlying V.
We begin with the simplest case:

CASEI.radV =0 and k = 1.

Here X and Y are nonsingular 1-spaces, and some Sylow p—subgroup P of Gx
fixes Y and hence also the line (X,Y). Tt follows that (X,Y) contains a unique
isotropic or singular point r (this is the radical of (X,Y) except when V is an
orthogonal space of characteristic 2). Moreover, Gx is transitive on A(X) since P
fixes only one isotropic or singular point of X+ and Gx(x,vy) is transitive on the
points of (X,Y) — {X,r}. In particular, some element of GG interchanges X and Y,
and hence gf can be found behaving as indicated in the algorithm.

Now w consists of the points # X, r of (X,Y) = (X,r), and J = (Gxw,9f) =
G(xy) since gf interchanges X and Y. (N.B.—The element gf is needed here

when ¢ = 2.) Then G)A((X) acts on the block system A(X) as it does on the set
of isotropic or singular points of X+, and hence has rank 3 or is 2-transitive,
and always is primitive in CASE 1. Moreover, (JAT(X)],r — 1), = [AT(X)]|, = ¢
here, except that |A(X)] is q(\/ﬁ?’ + 1) when G = PSU(4, \/7) and q(q” + 1) when
G = PQ(5,q); and that |A(X)| is not of the form ¢%(¢% + 1).

Subcase la. G)A((X) 15 not 2-transitive.

Here X1 has Witt index > 1. Consider any Z' € A(X) — w. Let Z' € w' with
w € A(X) — {w}. Then |Gxwz'lp = |Gxww|p and hence |Z'Fxw|, = |w/Gxu],.
Since Z' € A(X), w' corresponds to the isotropic or singular point 7' of (X, 7).
Depending upon whether ' is or is not in rt, |[#/¢Xw|, is q or is > ¢, respectively.
Since the algorithm chooses Z = 7' € A(X) —w with |Z%*w |, minimal, it follows
that ' € rL and hence that v+ D (X,7/) = (X, 7). Now (Z,r) can be viewed as
one of the members of A(Z), and is fixed by Gixy)z=7Jz.

We claim that there is just one isotropic or singular point of Z+ fired by Jz.
For, Gz induces at least PSL(2,¢) on the totally isotropic or totally singular
line L = (r, 7'}, and hence Gz, has a p-element ¢ acting nontrivially on L. All
isotropic or singular points of (X,Y,7) = X L L liein L, and ¢ fixes only the
point r of L; every point of Z+ not in L is moved by G xy z. This proves the claim.

It follows that z € A(Z) corresponds to r. Then (J, Gz.) = (G(x,vy, Gzr) prop-
erly contains G'(xy), fixes r, and hence is G, as required. Usually |G: (J,Gz.)| <
n; in all cases a calculation yields that |G: (J,Gz.)| < 2n.

Subcase Tb. G)A((X) 15 2-transitive.

Now X1 has Witt index 1, so that G is PSU(4, ), PQ™ (6, q) or PQ(5, q), where
q is odd in the latter case. In particular, V = X 1L X*.

This time consider any 7’ € Q — At(X), so (X, Z') N X+ = u is nonsingular.
Then |GXwZ’|p = |GXTu|pa so that |GXu)Z’|p # 1ifu e TJ‘ and |GXwZ’|p =11if
u & rt (recall that G§L is either a 3—dimensional unitary or a 3— or 4-dimensional
orthogonal group).

We chose Z:= 7' € Q — At (X) with |Gxwz|, maximal, so u € rL and hence
rL D (X, u) = (X, Z). It follows that Jz fixes some z € A(Z) (corresponding to
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the line (7, 7)). This is the only fixed point of Jz in A(Z) since r is again the only
isotropic or singular point fixed by Jz = G(x ;) z. Once again this implies that
(J,Gz.) = Gy, where |G: {J,Gz.)| < 2n.

CASE II: radV =0 and &£ > 1.

Primitivity excludes the following situations: V' is orthogonal over GF(2) or
GF(3) and X is a hyperbolic line (since O%(2,2) and O% (2, 3) fix a nonsingular
point), as well as the case in which X1 € Q. Our first task is to determine A(X).
We begin with the following simple

Lemma 5.3. Suppose that W is a subspace of V, and y is an isotropic or singular

point of W+.

(i) The group of all (projective) transvections of (W, y) with center y is induced
by a subgroup of G. In particular, Gy ) is transitive on the complements to
y in (W,y).

(ii) Assume that, in addition, G is an orthogonal group and W is nonsingular
with dimW > 3. Then (Gww,y), Gw' (w,y)) = Gwy) for any complement
W' £ W toy in (W,y).

Proof. (i) We may assume that W = yL. Since all complements to y in y* are
isometric, by Witt’s Lemma the group 7' of those transvections of y* with center
y is induced by a subgroup T of Plsom V; also Isom y' is induced by a subgroup
of PIsomV . The representation of Isom y* on 7' is equivalent to that on y* /y, and
hence is irreducible. It follows that 7" lies in the derived group G of PIsomV.

(ii) The stated conditions on W imply that Gww,) acts irreducibly on
T/Cr(W), and hence is a maximal subgroup of the group induced on (¥, y) by
T Gwywy) = Giwy)- U

Lemma 5.4. If Y € Q—{X} is in a Gx-orbit of p'~length, then (X, Y)=X Lr
for an 1sotropic or singular point r.

Proof. Recall that V = X L X*. There is a Sylow p-subgroup P of Gx fixing Y
and restricting to Sylow subgroups of both G§ and G§L. Let Y/ denote Y or Y+,
and let U be the projection (X,Y’) N X1 of Y/ into X*. Then U is fixed by P.

Note that U # 0, as otherwise Y # X = Y’ and hence X+ = Y € Q, which
would contradict the primitivity of G on Q. We will consider two cases; these
roughly correspond to the possibilities k < d/2 and k = d/2.

Case 1. U # X+,

Since X1 has dimension > d/2 it has nonzero Witt index and is not an
O*(2, q)-space. Then the proper P—invariant subspace U of X1 has a nonzero
radical containing an isotropic or singular point r fixed by P.

Suppose that U # r. By Lemma 5.3, P contains an element ¢ inducing a
nontrivial transvection of (X,U) with center r and axis A D X. Since g fixes
Y' C (X,U), it follows that ¥’ must either be contained in A or contain r. The
first of these is impossible since (X,Y’) = (X,U) € A. So is the second: rt
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contains X, as well as U (recall that r is in radU), and hence also Y| so that
r ¢ Y’ since Y’ is nonsingular.

Thus, U = r, so that (X,Y’) = (X,r) is a (k + 1)-space with radical r. Then
X and Y’ are complements to 7 in (X, r), so that Y/ € Q by Lemma 5.3(i). Since
Y €Qand Y! ¢ Q we have Y/ = Y. This proves the lemma in this case.

Case 2. U = X*.

Here d = 2k, so since X1 ¢ Q the group G must be orthogonal. There is a
singular point r of X1 and a line L C X' containing r that are fixed by P (here
L is totally singular unless X+ has Witt index 1). Then L' is a hyperplane of rt
containing X, so by Lemma 5.3(i) there is an element g € P fixing (X, X+ N L*)
pointwise. Then [V, g] C L since Cy(g) D L*.

Since Y9 =Y, either Y or Y+ meets L; let Y’ be one of these meeting L. Then
the projection (X+,Y')N X of Y/ on X is not X. After interchanging the roles of
X and X1 we find that we are back in Case 1. Consequently, X is a hyperplane of
(X,Y"). Then (X,Y") = X L yfor a point y € X that is fixed by P and hence is
singular. Now Y’ € Q by Lemma 5.3(i), while Y € Qand Y+ ¢ Q,s0 Y/ =Y. O

Lemma 5.5. Let T'(X) be a nontrivial Gx —orbit of p'~length. Let Y € T(X).

(i) r=rad(X,Y) is an isotropic or singular point, and (X,Y) =X L r.

(i) Ifs= XN(XNY)L, then s is a point and (X1, Y1) = X+ L 5. Moreover,
s is isotropic or singular and is rad(X1 Y1), except that it is nonsingular if
G s an orthogonal group and dimX = 2.

(i) Ezclude the following case: (x) G is an orthogonal group of odd characteristic,
and dimX = 2. Then T(X) contains all hyperplanes of (X,Y) that contain
XNY but not r. Moreover, T'(X) is the only nontrivial Gx —orbit of p'length,
and there s an element of G interchanging X and Y.

(iv) T(X)NT*(Y) is contained in the set of 7 € Q—{X} such that (o) Z C (X,Y)
or (B) 7 D XNY, and contains all 7 of type (); it also contains all of type
(B) if (x) is excluded.

(v) Let A(X) be the union of all the nonirivial Gx-orbits of p'-length. Then
IAY(X)], = (JAY(X)]p — 1);;, with the following exceptions: G = PSU(5,q),
F=2, [AH(X)] = ¢ + 1)} G = PO*(6,0), k=2, [A*(X)| = (¢ + 1),

Proof. Part (1) is just Lemma 5.4. For the first statement in (ii), note that XNY =
X N st for a unique point s of X, and then (X1 Y1) = X+ 1| s

If V is orthogonal assume temporarily that k£ > 2 (recall that & > 1 already).
A Sylow p-subgroup P of Gx fixes Y and hence s. This implies (ii). Moreover,
Gxs has an element inducing 1 on X+ and transitive on the nonzero vectors in r,
so that Gx.,s is transitive on the hyperplanes # X of (X,Y) containing X N st
but not r. Hence, T'(X) is as described in (iii), and the relation between X and Y
is symmetric. Finally, if 7 € T(X)NT(Y) and Z p X NY then, since X N7 and
Y N Z are hyperplanes of 7, we must have 7 = (7N X, ZNY) C (X,Y). Clearly
Y has types (a) and (f). By Lemma 5.3(i), G(x,y), is transitive on the subspaces
of type (@) and G(x1y1), is transitive on those of type (3).
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This proves (i-iv) except when V is an orthogonal space and dimX = 2. In
that case, dimX® > 3. If p = 2 then P fixes a unique point of X, and that point
is nonsingular. Thus, s is nonsingular. However, the arguments in the rest of the
preceding paragraph remain valid.

Finally, assume that p is odd. Here P is the identity on (X, r), so any line of
this subspace, not containing r, lies in a G x—orbit of p’~length. Nevertheless, for
the weaker assertions required in (ii-iv), the above arguments remain valid.

In all cases (v) involves a brief calculation. O

We now return to CASE IT of CLASSICAL_NS.

Let X,Y,r s be as in the preceding lemma. The members of A(X) N AH(Y)
fixed by Gxy include the hyperplanes # X of (X,Y) containing X N'Y (these
are fixed since Gxy already fixes three hyperplanes X, Y and (X NY,s) of (X,Y)
containing X NY'); and these are all of the members of w except, perhaps, when G
is orthogonal, k = 2, and w U {X} consists of all ¢? lines of (X,Y) not containing
X NY. In particular, Gx, fixes (X,Y) and X NY, so that G is imprimitive on
A(X) in CASE I1.

By Lemma 5.5(iv), A(X) N A*T(Y) is the union of two subsets, respectively
of size ¢* — 1 (type (a)) and ¢?=* — 1 (type (B)). Hence, we may assume that
the algorithm chose Z in (B). (If dimX = dimX* then we can replace X by
X+ if necessary.) Then y = A(X) N AT (Y) N A+(Z) consists of all of (3), and
Gxy = Gx,xny = Gx,. Similarly, Gy; = Gy;. Since 7 is a member of yex f
can be found such that z9f = y.

By Lemma 53(11), J = (GXy,gf> = (GX<XJ_75) Gy XL s) gf) Los)s SO
Q] = |G:J| = |G: Gxa| [s95|/|(XH) 0
the nonsingular k—space X.

If s is isotropic or singular then J = (Gxy, 9f) = (Gxv(x1 sy, Gyr(xt o), 9f) =
G(x+,) by Lemma 5.3(ii), so |Q| = |G: J| = |G: Gx+] |sGx | /|(XH)Cexton,
59X consists of all isotropic or singular points of the nonsingular k-space X. Then
|s6x| < g% < ¢@F = |(X1)%=xL.9] (using W = XL in Lemma 5.3(i)). Conse-
quently, |G:J| < [G:Gx+| = n. Moreover, J = G x+ ,) is properly contained in

. Here, SGX is an orbit of pomts of

Here,

exactly one proper subgroup of G, namely G,. Thus, Q" corresponds to s“, and
CLASSICAL_NS outputs correctly in this situation.

Finally, if s is nonsingular then k = 2 and G is orthogonal. This time (X*, s)
is a hyperplane, and Gx; is a maximal subgroup of Gix+ ;). Once again J =
<GXy,gf> = (GX<XJ-,5) CY X+L)s) gf> XJ-,s)a where |G‘]| < |G:GXJ'| =n
since there are many more than |s¥X| < ¢ 4 1 hyperplanes isometric to X' in
(XJ‘)G<XL’S>. Thus, the algorithm replaces an orbit € of nonsingular lines by (what
amounts to) an orbit Q' = Q" of nonsingular points, and then calls CASE T of
CLASSICAL_NS.

CASE IIT: radV # 0 and k =d — 1.

Here V is orthogonal, p = 2 and d is odd. This case resembles CASE I. In
order to emphasize the similarities and facilitate visualization, it seems easiest
to view this permutation representation of G from the following slightly different
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perspective, using different language to describe the members of Q. Let v = radV,
and view V as the hyperplane »* in a (d 4+ 1)-dimensional orthogonal space U.
Then € can be viewed as a G—orbit of nonsingular lines X of U containing v but
not contained in V; here X is a nonsingular hyperplane of V', thereby matching
this description with our original one. If Y € Q—{X} then rad(X,Y) can be either
a singular or a nonsingular point of X+. (N.B.—Only singular points can occur if
g=2)

Once again we need to identify A(X) and A(X). A Sylow 2-subgroup P of Gx
fixes a unique point » € X1 C vt, and r is singular. It follows that A(X) consists of
those Y € Q such that rad(X,Y") is singular. Note that G xy fixes all lines of (X, V)
through v but no other lines of U. Once again (|A*(X)|,r — 1), = [AY(X)], = ¢.
Once again the block system A(X) corresponds to the set of all singular points
of X1, so that Gx acts primitively on it; w corresponds to (X,Y) = (X, r), and
J = G(X,r) .

Subcase 1lla. G)A((X) 15 not 2-transitive.

As in Subcase Ia, this means that X+ has Witt index > 1. We chose Z € A(X)
with |Z&Xw»|, minimal, so the radical r’ of (X, Z) is perpendicular to r. Then r
is perpendicular to (X,r') = (X, 7). Now (Z,r) can be viewed as a member of
A(Z7), and is fixed by Jz.

As in Subcase Ia, r is the only singular point of Z1 fixed by Jz, and hence
there is only one z € Z(Z) fixed by Jz. Once again it follows that (J,Gz.) = G,.
This time |G: (J, Gz.)| < 2.5n (with equality occurring when G is Q(7,2) and Gx
is 07 (6,2)).

Subcase 111b. G)A((X) 1s 2—-transitive.

Here X1 has Witt index 1, so that G is PQ(5, q) with ¢ > 2. We chose Z in
the algorithm with Z ¢ A(X) and |Z9Xw|, minimal subject to Z ¢ (X,r). We
clarm that Z C r.

First consider any Z' € Q with Z’ C r* but Z' ¢ A(X), so ' = (X, 7) is
nonsingular. Then Gxz: has a normal subgroup €(3,¢) in view of its action on
X1 N7t and this subgroup induces 1 on (X, 7). An involution ¢ in this group is
1 on X, fixes r and (X,r) NV = (v,r), and hence induces a transvection of (X, r)
with center v. In particular, |Gxyz|2 # 1.

Conversely, consider any 7' € Q, 7/ € (X,Y), with |Gxyz/|2 # 1. Let w =
(X,Z'Y N X1. Then a Sylow 2-subgroup of Gxyz fixes the points r and w of
X1, Since X1 is an orthogonal space of Witt index 1, and G'x has a nontrivial
2-subgroup fixing the singular point r and the nonsingular point u, this is only
possible if 7 is perpendicular to w, and hence also to (X, w) = (X, Z').

This proves our claim. Tt follows that J fixes some z € A(Z) (corresponding to
(Z,7)). Once again, there is only one element of A(Z) fixed by Jz, {(J,Gz.) = G,
and |G:(J,Gz.)| < 2n. O

Remark. We emphasize that, even in CLASSICAL_NS, we have never used per-
mutation groups on sets of size greater than that of the output.
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6. All points

Before proving Theorem 2.3 we need to be able to reconstruct the set of all points
of a projective space from a suitable G-orbit of points:

PROJECTIVE_SPACE

Input: G < Sym(€) permutation isomorphic to the action of some simple clas-
sical group on an orbit of 1-spaces of a vector space V underlying G,
where || is not divisible by the characteristic p and G is not 2—transitive

on €.

Output: A set II and an action of G on Il permutation isomorphic to that of G
on the set of all points of the projective space corresponding to V.

We will separate the procedure into several parts.
1. Let X € Q. Let T'(X) and A(X) be the orbits of Gx on Q@ — {X}, where
A(X) is the shorter of these orbits. Let Y € T(X) and A(X,Y):= A(X)NA(Y).

Let Z € A(X,Y). Find the unique maximal block system A(Z) of Gﬁ(z).

Let z,y € A(Z) with X €z and Y € y. Let X' € z and Y’ € y with X # X'
and Y #Y".

Let q:= |:L‘| and K:= GXYZX’Y’~

2. Let g1 € Gsend Y to X and g3 € Gx send X9 to Y. Let H:= (Gxvy, g192).
Let A(X,Y) be the union of those H-orbits on © having length < q.

If |JA(X,Y)| = ¢+ 1, output Q.

Find subgroups L and F', as follows:

If [A(X,Y)| > 2 find ¢ € Gx sending Y to some point of A(X,Y) —
{X,Y}, and let L:= (H, HY) and F:= Gxyys;
if [A(X,Y)|=2let h € H move Z, and let L: = H and F:= (K, K").

3. Find the L-orbits on Q@ — (A(X,Y)UA(X,Y)) of length divisible by p. There
is either just one of them, £(X,Y), or two of them, 3(X,Y) and ¥/(X,Y).

Let W € S(X,Y).

Let u:= W (this is a block of LE(X’Y)). Find Gxy, and Lz,.

4. If |A(X,Y)| > 2 or p > 2, then L fixes some W' € E(X,Y) — {W}.
Find fi € G sending X to W and f; € Gw sending Y5 to W'. Find &:=
G/<GXYU, (nyu)flf2> using (B5).

If ¥(X,Y) was the only L-orbit on Q@ — (A(X,Y) UA(X,Y)), output QU &.

Otherwise, replace ©(X,Y") by ¥/(X,Y) and repeat, in order to obtain another
set ® on which G acts. Output QU ® U @',

5. Find g € Gyz, such that X9 = X'. Let J:= (Lz,g).

Find the (¢ — 1)st powers of the generators of Lz, . Let ¢ be such a power that
moves X.

Find j € J sending X to X’ and Y to Y.

Find ®: = G/(Gxyu, (Gxyy)?) using (B5). Output QU ®.
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Proof of correctness of PROJECTIVE_SPACE.

1. Since GG is not 2-transitive, the Witt index of V' is > 2. Then Gx has just
two nontrivial orbits, and Y € T'(X) if and only if X and Y are not perpendicular.
In particular, (X,Y) is a hyperbolic line, and A(X,Y) C (X, Y)L.

The block system A(Z) corresponds to the set of all lines in { Z}UA(Z) through
7, and q is the size of the underlying field. The totally isotropic or totally singular
lines (X,7) and (Y, 7) are distinct and span the plane (X,Y, 7). Since K =
Gx x'yvy'z fixes three points of each of these lines, it is the pointwise stabilizer of
(X,Y,Z) in G.

2. We have H = Gyxy) since gigs interchanges X and Y. Then A(X,Y)
consists of the members of Q on the hyperbolic line (X,Y), so |A(X,Y)] is 2,
4+ 1 or ¢+ 1 according to whether G is orthogonal, unitary or symplectic. In
particular, the output is correct if |A(X,Y)| =¢+ 1.

We claim that L and F' behave as follows: L is the sei-stabilizer G(x vy, and
F fizes (X,Y) pointwise while inducing at least (Isom(X,Y)L)’ on (X,Y)L‘

Namely, if [A(X,Y)| > 2 then G x y) is 2-transitive on A(X,Y). Then g exists
in2,and L = (H, HY) is G(x,y). Moreover, F' = Gxyys is the pointwise stabilizer
of (X,Y) in G.

On the other hand, if |[A(X,Y)| = 2 then L = H = G(xy). Moreover, F' =
(K, K") fixes all points of {X,Y) since K does; the group it induces on (X,Y)J'
contains all p—elements in (Isom(X,Y)L)’ that fix 7 or Z9, and hence contains
(Tsom(X, Y)J')’. This completes the proof of our claim.

3. Each G-orbit of nonsingular points has a representative in (X,Y). Moreover,
L is transitive on the set of nonsingular points of (X, Y) unless V' is an orthogonal
space of odd characteristic, in which case there are exactly two orbits, each of
length (¢ — 1)/2.

Any W € Q — (A(X,Y)U A(X,Y)) lies in a unique line (U, N) spanned by
points U of (X,Y) and N of (X,Y)L both or neither of which are nonsingular.
Here, |W % (x.7) | is divisible by pif and only if / and N are nonsingular. Conversely,
for any nonsingular point U of (X,Y) there is a unique Gxyy—orbit N¥xvu C
(X, Y)L of nonsingular points such that (U, N) contains an isotropic or singular
point W. We claim that all such W lie in the same G x y)-orbit. To see this,
it suffices to check that all members of Q lying in (U, N) belong to the same
same G(x yjuny—orbit. If GG is orthogonal of characteristic 2, there is only one
singular point in (U, N}, so there is nothing to prove. In all other cases, (X,Y, N)
is nonsingular, and G(x y,n) induces Isom(X,Y, N) on (X,Y, N). (For, (X, Y, N)J‘
is nonzero, and has dimension > 2 if GG is orthogonal.) Tt follows that Gx,y)yun is
transitive on the members of Q lying in (U, N}, which proves our claim.

In particular, G(xy) has at most two orbits on Q@ — (A(X,Y) UA(X,Y)) of
length divisible by p, with two occurring if and only if V' is orthogonal and ¢ is
odd.

By 2, F fixes U and has the same orbits as Isom (X, Y)J' on the set of nonsin-
gular points of (X,Y)J'. Thus, if W € (X,Y) then WEv = W is a block u of
LE(X’Y), with stabilizer L, = Ly.
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4. Here we are assuming that V is either orthogonal of odd characteristic
or unitary. As noted in 3, (U, N) contains at least two members W, W' of Q.
Both of these are fixed by Lw, as Ly fixes W, U, N and hence all points of
(U,N). Since ff, sends X to W and Y to W', we have (Gxvu, (Gxy.)172) =
(Gxvv,Gwwiw) = Gu.

Then ® can be identified with the orbit U“ of nonsingular points. If these are
all the nonsingular points then the output QU® is correct. If there 1s a second orbit
of nonsingular points then ®' corresponds to that orbit, and the output QU ® U @’
is correct.

5. Now G is orthogonal of characteristic p = 2. Note that 7 = rad(X,Y, 7). By
Lemma 5.3(i) there is an element g € Gz,y sending X to the point X’ of (X, 7)
chosen in 1. Then (Lz) is the stabilizer in G(xy,z) of (X,Y)! = (X,Y'), so
that J = (G(xv),9) = G(x,v,z)- (N.B.—Most of 5. concerns a small permutation
action: that of J on the set X7 of size 2q.)

The group Lz, = G(x y)zu acts on (X,Y), inducing a group of order 2; it also
acts on (XY, 7), inducing an abelian group of order dividing 2(¢ — 1) generated
by an involution and transformations inducing the identity on (X,Y). Then the
element ¢ constructed in 5 exists, and induces an involution on (X, Y, Z)—in fact,
a transvection having center U and axis (U, Z). Since t fixes 7, U and (U, X'} while
interchanging X and Y, it also interchanges z and y and hence X' = z N (U, X')
and y N (U, X').

By Lemma 5.3(i), there is some j € J sending X to X’ and Y to X'* (namely, a
transvection of (X,Y, Z) with center Z and axis (U, Z)). Then (Gxyu, (Gxyu)!) =
(Gxyvu,Gx xny) = Gu. As in 4, the output QU @ is correct. O

Remarks. Once again we note that we have only used permutation groups on
sets of size at most that of the output.

The above ideas can be varied in many ways. With some care, 5 can be modified
so as to apply to the situation in 4. On the other hand, 4 almost applies to the
situation in 5: an element of Ly moving X has exactly ¢/2 2—cycles on Q, each
determining a line through U, which can be used as in 4 to obtain Gy provided
that ¢ > 2. The case ¢ = 2 can be dealt with similarly by introducing an additional
point and dimension, but then this differs little from the approach in 5.

As noted at the start of Section 5, in the case of orthogonal spaces of odd
dimension d and characteristic 2 PROJECTIVE_SPACE does not construct the
points of the corresponding projective space, but rather those of the symplectic
space of dimension d — 1.

Proof of Theorem 2.3. In Section 3 we saw that ALT_ORDER, ALT1 and ALT2
correctly decide whether or not G is isomorphic to an alternating group A, and,
if it 1s, they produce the natural action of G on an r-—set.

Assume that G is a classical group. In NATURAL_ACTION, 2 corresponds
to a G-orbit of subspaces, each of dimension k, say (cf. Hypothesis 2.1). The
characteristic p of G was found correctly [Ar]. Note that, when G = PSp(4,3) =
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PSU(4,2), the only characteristic 3 instances of Hypothesis 2.1 occur when n = 40;
this explains the exception at the start of NATURAL_ACTION.

If p|n then © corresponds to an orbit of nonsingular subspaces. In Section 5 we
saw that CLASSICAL_NS outputs correctly.

We may now assume that p*n. The possibility G = PSL(d,q) is identified
and handled by PSL_ORDER and PSL, which obtain the set of all points or
hyperplanes of the underlying projective space.

It remains to consider the case in which G is a symplectic, orthogonal or unitary
group on V| and Q is an orbit of totally isotropic or totally singular k—spaces for

some k > 1. In CLASSICAL_TS and Q*_MAX we identified A(X) and saw that

there is a unique maximal block system of G)A((X) of p’~length, provided that k£ > 1
(here we do not have to exclude the case G = PSU(4, ¢q) and k = 2, since it arises

with G = PQ7(6,¢) and £ = 1). When k£ = 1 it is easy to check that G)A((X) has
a unique maximal block system, corresponding to the totally isotropic or totally
singular lines through X.

The instances in which G has rank 3 are as follows: (i) Q is the set of all totally
isotropic or totally singular points; (ii) V' has Witt index 2 and © is the set of all
totally isotropic or totally singular lines; (iii) G is PQ*(8, ), acting on an orbit
of totally singular 4-spaces; or (iv) G is PQ* (10, ¢q), acting on an orbit of totally
singular 5-spaces. Since PSp(4,q) = PQ(5,¢) and PSU(4,q) = PQ~(6,q), case
(ii) can be viewed as (i) except when G is PSU(5,¢) and n = (¢ + 1)(¢® + 1).
Case (iii) can be viewed as (i) in view of triality. Case (iv) is also singled out
in NATURAL_ACTION. The possibility G = PQ*(6,q) = PSL(4,q) in (i) has
already been treated as PSL(4, q). It is straightforward to check that the degrees
dealt with separately in NATURAL_ACTION only arise in the desired cases.

If G does not have rank 3, then k > 1. Except when G is PQ¥(2k, q) with k£ > 6

even, in Section 5 we saw that G)A((X) is 2-transitive of degree (¢* —1)/(¢—1), and

CLASSICAL_TS produces the set Q' of all isotropic or totally singular points. If G
is PQT(2k, q) with k > 6 even, then QT _MAX produces the set ' of all isotropic
or totally singular points.

Finally, when PROJECTIVE_SPACE is called for Q' it yields the set of all
1-spaces of the underlying vector space, as required.

This completes the proof of Theorem 2.3, except for the final sentence. The
crude estimate of 40 amounts to a fairly straightforward count, and is left to the
reader. (The boundedness on any input of the number of calls to procedures for
“basic” problems is, of course, somewhat easier to check.) The final part of the
theorem has been noted repeatedly in Sections 3-6. O

In practice, point stabilizers are more time-consuming than orbit calculations
(all existing algorithms use orbit computations as part of stabilizer computations).
The bound at the end of Theorem 2.3 can even be met while also holding down
the number of stabilizers used, for example by employing orbit computations to
find elements of G that conjugate already computed stabilizers to other ones (see
the remark concerning suborbits at the end of Section 2). On the other hand, the
count in the theorem has to be viewed with a certain amount of suspicion. When
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producing new permutation representations, many tests are needed in order to
distinguish cosets; we have chosen to count these tests as all lumped together once
for each new permutation representation.

7. Variations

There are many variations on the procedures presented in Sections 3-5. As men-
tioned in Section 2, we have chosen to avoid recursion when possible, in the sense
that we have proceeded directly from the given permutation representation to one
on some of the points of an underlying r—set or vector space.

However, some readers may prefer to pass successively from sets or spaces of
one size to smaller ones—at least in some situations. In the case of an orbit of
nonsingular k—spaces (k > 1) of a vector space V it may be tempting to pass to
nonsingular (k — 1)-spaces; but of course this is not possible in the symplectic
case, and seems difficult in any event. On the other hand, all remaining situations
of Hypothesis 2.1 can be handled in a relatively uniform manner; this resembles,
and motivated, part of CLASSICAL_NS.

We leave to the reader the straightforward proof that the following produces a
correct output when G is PSL(V), or when G is a classical group acting on the set
of all totally isotropic or totally singular subspaces of dimension < (d —1)/3.

PSL4TS

Input: G < Sym() permutation isomorphic to a primitive action of one of the
following sorts, for some vector space of characteristic p:
(a) the full projective special group of the underlying vector space, in
its action on the subspaces of a fixed dimension, or
(b) some simple symplectic, orthogonal or unitary group, of Witt index
> 1, on the totally isotropic or totally singular subspaces of a fixed
dimension of the underlying vector space.

Output: A set and an action of G on that set permutation isomorphic to that of
G on the set of all 1-spaces in (a), or of all isotropic or singular 1-spaces
in (b), of an underlying vector space.

If G is 2—-transitive on 2, output Q.

Let X € Q. Let A(X) be an orbit of Gx on Q — {X} with |A(X)|, minimal.
Let Y € A(X).

Let A€ A(X)—A(Y), Ze A(X)NAY)NA(A) and y: = A(X)NAT(Y)N
AT (7).

If y = A(X) NAT(Y) then output Q.

If ly] < JA(X)NAT(Y) —y]|, replace Z by an element of A(X)NA(Y)—y and
recompute y.

Find the block system y“* | and then Gxy.

Let ¢ € G move Y to X and f € Gx move XJ to Y.

Find Q' = G/{Gxy, gf). Recursively replace Q by Q'. &
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Here we have emphasized a very different orbit of Gx than used in CLASSI-
CAL_TS (note that we could have finished as in Q*_MAX; using Section 8(A)).
Remark 5.1 contains a similar algorithm. Another similar one can be used in place

of ALT1:
ALT1'. Same input and output as ALT1.

If G is 2—-transitive on Q, output Q.

Let X € Q. Let A(X) be an orbit of Gx on @ — {X} with |[A(X)| minimal.
Let Y € A(X).

Let Z € A(X)NA(Y) and y:= A(X)NATY) N AHZ). If |y| < [(A(X) N
A*(Y)) — y|, replace Z by an element of A(X) N A(Y) — y and recompute y.

Find the block system y“* | and then Gxy.

Let g € G move Y to X and f € Gx move XJ to Y.

Find Q' = G/(Gxy, gf). Recursively replace Q by Q. &

It is easy to check that the output is correct when r > 9.

8. Vector spaces and linear algebra

The results just presented do not quite provide a vector space upon which a classi-
cal group G acts. Of course, there may not be such a vector space: a simple classical
group arises as the quotient of a group of linear transformations modulo scalars,
not necessarily as a group of linear transformations. While this may appear to be
a relatively minor distinction, it certainly is not minor in an algorithmic setting.
Namely, in addition to reconstructing a projective space and a vector space V one
must also produce a group G* of linear transformations whose quotient, modulo
scalars, is G—and such that the group of permutations induced by G* on the set of
all 1-spaces of V' is permutation isomorphic to that of G on the set II constructed
in NATURAL_ACTION.

All of this can be found in [Ka3], [Ma] and [Mo] in the sequential, parallel
and nearly linear settings, respectively. The approach is fairly simple, and will
undoubtedly also work well in practical contexts. There does not seem to be any
point in reproducing those algorithms here, so we will simply outline what is
involved, frequently using somewhat different methods than in [Ka3] so that the
reader has more than one choice to consider. We emphasize that the methodology
is straightforward and essentially very classical geometry.

Throughout this section we will assume that GG is a simple classical group given
as a group of permutations of a set Il in a manner permutation isomorphic to
the action of G' on the set of all 1-spaces of a vector space V underlying G, as
in the output of PROJECTIVE_SPACE. We will identify II with the set of these
1-spaces. We will always assume that dimV > 4, and when G % PSL(V) that V
is a nonsingular space having Witt index > 1 (in particular, TI will never be the
set of points of an odd-dimensional orthogonal space of characteristic 2).
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There are a number of facets to the conversion from a permutation group to
a linear group acting on a vector space. These appear in several subsections: (A)
Lines; (B) Subspaces; (C) Frames; (D) Coordinates; (E) Forms; and (F) Linear
transformations.

As in CLASSICAL, we may assume that the characteristic p of V' is known.
Unlike previous sections, members of II will be denoted by lower case letters: they
are points of V.

(A) Lines.

There are at most three G—orbits on II. Let 2 be the unique orbit of p’~length.
If z € Q let A(z) denote the shortest orbit of Gy on @ — {X}. Then there is a
unique nontrivial block system A(z) of G, on A(z). Blocks have prime power size
q.

The dimension of the desired vector space V is the integer d such that [IT| =
(¢~ /(g —1). B

If y € B € A(z) then B' = (B — {y}) U {2} is in A(y). Moreover, the group
induced by (Gzp,Gyp') on the set L = B U {z} contains PSL(2,¢) as a normal
subgroup.

Whenever y and z are distinct points of I, let [y, z] denote the union of all
G, .—orbits on II of length < ¢. This is just a line of our projective space. We will
assume that, whenever we need a line through two points, we can quickly construct
it. This could be accomplished by having access to the set of all lines; but it is
probably more practical to create a lookup table consisting of the following: a
representative (z,y) of each non-diagonal orbit of G on TI x II; the set [z, y]; and
a complete set of coset representatives of G4y in G.

There can be more that ¢ orbits on II x II. While there are fewer orbits of
unordered pairs of points, moving an ordered pair to another can be accom-
plished easily in at most two stages (cf. CLASSICAL_NS and step 4 of PRO-
JECTIVE_SPACE).

Assume that G is not 2-transitive on I1. Let z € Q and y € Q—({z}UA(z)), and
find [z,y] N Q. Then G is symplectic, orthogonal or unitary according to whether
[z, NQis ¢+ 1,20r \/q+ 1.

(B) Subspaces.

We wish to determine the subspace spanned by any given nonempty subset S of
II.

First suppose that G is 2-transitive on II, so G = PSL(d, q). Construct a
d—tuple zy ...z of points, as follows. Let 1 € II, and for £ = 1,...,d — 1, let
Zr41 be any point in the longest orbit Ly, 5, of Gz, 5, on II. Note that the
complement of Ly, 5, is just the set of all 1-spaces of the subspace spanned by
{z1,..., 2} There are exactly |II| images of Q@ — L, .z, , under G, and these are
the hyperplanes of II: we have produced the permutation representation of G on
the 1-spaces of the dual V* of V. Now given any subset S of II, there is an obvious
iterative construction for the intersection [S] of all the hyperplanes containing S,
using at most d — 1 iterations; and this is the subspace spanned by S. However,
this seems unnecessarily time-consuming in some situations. For example, if S
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consists of the points z1, ...,z together with one further point s, then first find
[z1,...,2zk]; if s & [21,..., 2] then find an element of G, ., sending zr41 to s
and hence [z1,...,2p41] to [S].

Now suppose that GG is not 2-transitive on II. Once again we begin by finding
hyperplanes. For z € II the hyperplane z* is obtained as follows: within each orbit
of G on II find the shortest orbit # {z} of G, and then let 1 be the union of
these G'z—orbits with the following exceptions:

o If z € Q, or if G is orthogonal of characteristic 2 (cf. (A)), then include 2 in

zt; and

e If G is orthogonal, ¢ = 2 and |Q| = (22 + 1)(204=2/2 4 1), and if 2 € T — Q,
then =1 consists of {z}, the shortest G —orbit on Q — {z} and the longest
G y—orbit on II — Q.

It is straightforward to check that z* is a hyperplane of the underlying projective
space. Note that there is no need to compute z* for each z € II, only one such
computation is needed for each G-orbit on II-—and there are at most three such
orbits.

Now if S is any subset of II, first calculate S*: = N{st | s € S}; then [S]: = St+
is, once again, the subspace spanned by [S].

Remarks. Note that the introduction of hyperplanes is actually easier in the
case of the classical groups other than PSL(d, ¢), since hyperplanes are nicely tied
to orbits of points.

Lines were used in [Ka3] in order to determine subspaces of V. This special
case of (B) is given in (A) because lines are especially significant in subsections
(D) and (E), and are found more easily using the method of (A) than (B).

(C) Frames.

We next construct a frame: a d—tuple z1, ..., z4 of points of Il that will span
V (once we actually construct V!). Recall that we already know d.

If G is 2—transitive on IT then we have already done this in (B).

Suppose that G is not 2-transitive. Let z; € Q and x5 € Q—z1, and recursively

let zopp1 € QN {xy,..., 221}t and xopys € QN {xy, ... 290}t — m%‘k_l_l; this
produces points z1,...,Zamy, where m is the Witt index of V. If d = 2m + 1 let
Zama1 be any point of {z1, ..., 2o}t if d = 2m +2 let 29,41 and zo,,42 be any

distinct points of {z1,..., zom}t. &

This constructs a frame, but in (D) we need slightly more: subspaces such as
[£1,...,2;] for i = 1,...,d — 1. These are readily obtained using (B)—and were
obtained in the course of the construction when G = PSL(d, q).

(D) Coordinates.

A straightforward procedure for introducing coordinates is given in [Ka3, p. 372],
based on [VY]. The frame in (C) and iteration are used to label all of the points
of the subspaces [z, ..., ;] by vectors in V:= GF(¢q)? fori =2,...,d.
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Here we wish to indicate a variant of that procedure that does not label all of
the points of II by vectors, but instead is designed to label any points one comes
across in the course of using coordinates.

We will label the points of I by those nonzero vectors of V' for which the last
nonzero coordinate is 1.

(i) Preprocessing steps.

Forr=2,...,d—1, find [z1,..., 2]

For 1 <k<dfind Xp:=[z;|j#k]l.For 1<k <m<dfind Xpp:=[2; | ] #
k,m]l =Xy N Xy and Xigm:= [z | j £ 1L k,m]l= X1 N XN X!

Choose u € T — U Xg. For 1 < k < m, find w1fm: = [u, X1gm] O [21, Tk, Zm]-

Label z; using the ith standard basis vector of GF(q)?. Label u as (19) =
(1,...,1).

Coordinatize the plane X(3) = [z, 22, x3] using GF(q)® x 0973 so that uj15 and
123 are labeled (1,1,0,0973) and (1,1, 1,0973), respectively. (For this purpose one
must first introduce multiplication and addition on a set such as [z, 23] — {21}
in order to recover a field GF(q) from II; and then use it to label the points of
[£1, 2, z3]. This is a standard projective plane coordinatization; cf. [Ka4, p.372].)

For m > 3 label ujan, as (1,1,0m73,1,04-™).

If m > 2and y € [x1,2m] — {Z1,Zm}, find the label (b,1,0972) of [y, uiam] N
[z1, 23], and label y as (1 — b,0m~% 1,04"™),

If 1 <k <mandy€ [z, Tm] — {Z, Zm}, find the label (0¥~1 b 0m—F-1 1
09=™) of [y, u1rm] N [z12¢], and label y as (05~ 1 —b,0m %=1 1 04=™). (Now all
points of [z, m] have been labeled for 1 < k< m < d.)

(ii) Coordinatizing arbitrary points.

Let z € IT — {z1}. Find the largest m > 2 such that ¢ [z, ..., 2m_1].

For k = 1,...,m — 1 find the label (071 a;,0m~1 1,09™) of [Xgm,z] N
[Zk, Tm]. Let a,, = 1.

Label z as (a1, ..., amn, 04"™). &

It is straightforward to check that all of this is consistent and labels the points
of II as in linear algebra.

As far as timing is concerned, note that d = dimV is O(logn). Also, ¢ is small
relative to n. Thus, while the number of computations used here is no longer
bounded, this procedure is nevertheless in polynomial time (even in the parallel
class NC), and should be reasonably fast in practice.

(E) Forms.

Assume that G is not 2-transitive on II. We now determine an alternating,
symmelric, quadratic or hermitian form on V such that (i) Q is its set of isotropic
or singular points, and (ii) the relation “y € z1” on II corresponds to perpendic-
ularity. A form of the desired type is unique up to multiplication by a nonzero
scalar. We no longer require any group: we are merely trying to find a form that

yields (i) and (ii).
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Start with the frame in (C). We may assume that z; = (e1) and zo = (f1),
where (e1,e1) = (f1, /1) = 0 and (e, f1) = 1 (in the orthogonal case we also
require that the desired quadratic form @ vanishes on z;, 1 <i < 2m).

For 1 < i < m write 22;—1 = (¢;) and z2; = (f;); determine the scalar « such
that (e; —e;)t N [f1, fi] = (fi + afi), and replace f; by af; in order to guarantee
that (e;, fi) = 1. (Of course, there are various other ways to go about rescaling f;
in order to ensure this.) This uniquely determines our formon {e1, f1,...,em, fm),
by sesquilinearity.

This leaves us with the possibility that there is a point (u) in (e, f1,..., em,
fm)t. If d is odd then test each @ € GF(q) in order to find one such that
(e1 + afi +u) € Q, in which case the condition (e; + af1 + u,e1 + afi1 + u) =0
determines (u, u) (namely, —2a if V' is orthogonal and —a — @ if V is unitary). As
above, this uniquely determines the form on V by sesquilinearity.

Suppose that d = 2m + 2, so that G is an orthogonal group. Choose any two
points (u), (v) in {e1, f1,...,€m, fm)L. As above, test all field elements using the
conditions (e; + afi +u) € Q, (e1 +a'fi+v) € Qand {e1+ " fi+u+v) €Q
in order to uniquely determine the values Q(u) = —a, Q(v) = —a’ and Q(u+v) =
—a'’. This uniquely determines @, as required. >

Note that the number of computations required here was small: O(dq), though
not O(1).

Remark. In [Ka3, Section 13] part of the above was accomplished in a slightly
different manner, by using the group G* we are about to construct: G* 1s a
group of isometries, elements of it can be found moving (u), (v) or (u + v) into
(e1, f1, €2, f2), and this determines the form.

(F) Linear transformations.

At this point we have a vector space V', but GG does not act on V. We need a
group of linear transformations inducing G. We will find such a group, in fact one
that is either perfect or the direct product of a copy of G with (—1).

Let ¢ € G. Find ((1d))g = (b1,...,bq) and zf = (a;1,...,a;4) fori =1,...,d.
Then solve the system of linear equations X;¢;(ai1, ..., a;4) = (b1,...,ba) for
scalars ¢;, and represent g by the matrix with rows ¢;(a;1,...,a:q) fori=1,...,d.

In particular, starting with each of the generators g; of G we obtain a matrix My
inducing a linear transformation ¢ that produces the same permutation on II as
gr- Since (G arises from matrices of determinant 1, we can multiply M}, by a scalar
in order to have det M}, = 1. Now let G* be the group of linear transformations
of V generated by the t;. Then G* is a perfect group of linear transformations
inducing G on II, except perhaps when G is orthogonal and —1 has spinor norm
—1, in which case G* = G or G x (—1). For most purposes this ambiguity is
probably insignificant, but of course one could either compute the derived group
or else provide a definition for the spinor norm in order to remove the possibility
G x (—1) (e.g., using Wall forms as in [Ta, p. 163].

Once again timing considerations are straightforward since d = O(logn).
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9. Related questions

We have avoided dealing with exceptional groups of Lie type by starting with
a suitable inequality |G| > n®. However, it would be interesting to have analo-
gous algorithmic results for those groups as well, under the assumption that the
given permutation representation is sufficiently natural (e.g., on a class of maximal
parabolic subgroups). This may even be essential if further progress is to be made
using “natural” permutation representations of simple groups.

If G is an exceptional simple group of Lie type and acts primitively on an
n-set Q, then |G| > n* except in the following instances: G is Fes(q) acting on
a class of maximal parabolic subgroups of type Ds(q); F7(q) acting on a class of
maximal parabolic subgroups of type Fs(q) or Dg(q); or Fs(q) acting on a class
of maximal parabolic subgroups of type E7(q). The geometry of the permutation
representation has been studied in each of these cases [Co]. If one requires only
that |G| > n3, then there are further parabolic permutation representations to
consider, as well as exactly one non-parabolic one: F4(q) > Ba(q) [LS].

Sporadic groups also present some inconveniences. As noted earlier, if G is a
Mathieu group M,,, n = 23,24, then |G| > n®, and there are no other occurrences of
this inequality when G is sporadic. In addition, |G| > n* precisely for the following
cases (cf. [Maz]): Mia,n = 12; Mas,n = 22; Coy,n = 2300; Coz,n = 2300;
Fy3,n = 31671; Fi,,n = 306936.

It is natural to ask to what extent simplicity was actually needed in previous
sections. If G lies between an alternating or classical group and its automorphism
group, then similar results hold, although there are a few more situations to con-
sider (cf. [Ka2]). However, the extra effort required does not seem of sufficient
value; and whenever any such result is needed, a version of our results can be
deduced from the simple case studied here.

Finally, we note that there are entirely different probabilistic approaches to
questions such as those dealt with in Theorem 2.3 (e.g., in [KS]). Moreover, there
are algorithms in [Ka6], [Mo] and [KS] that pass directly to the vector space V
from the set of isotropic or singular points, with some of the geometry in coordi-
natization replaced by the use of suitable p—groups.
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