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1. Introduction

Given generators for a (quotient of a) finite permutation group or matrix group that 
is known (probably) to be simple, [29,25,38,3] and other papers require a computationally 
efficient isomorphism with an explicitly defined simple group. This type of result has been 
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extensively studied in the more general setting of black box classical groups [28,11–15,35]. 
In [27] we handled most but not all families of black box exceptional groups of Lie type, 
providing algorithms that do not quite run in polynomial time when the field size is 
large.

At present, for groups of odd characteristic there are no polynomial-time algorithms 
for such problems, neither in the black box setting nor even in the matrix group one. 
(For characteristic 2 see Section 2.2.) A standard way around this obstacle involves a 
lovely idea in [17] (used in [14,15,12,13,35] and discussed further in [38]): use an oracle
that constructively recognizes the groups SL(2, q) and PSL(2, q). This was motivated by 
[17,30], which provide a constructive polynomial-time Las Vegas algorithm for handling 
a group isomorphic to SL(2, q) or PSL(2, q) in any irreducible representation in charac-
teristic dividing q, running in time that is polynomial in the input length, assuming the 
availability of a Discrete Log oracle. These oracles have the effect of removing annoying 
factors q. The present paper requires such oracles for odd q in order to achieve polyno-
mial time. For statements of our results it is convenient to presuppose oracles for all q, 
but for even q this should be ignored, as discussed at length in Section 2.2.

The elements of a black box group G are assumed to be encoded by 0–1 strings of 
uniform length, and G is specified as G = 〈S〉 for some set S of elements of G; we will 
assume that |S| is small and hence suppress it in our timing estimates. Let μ be an 
upper bound on the time required for each group operation in G, let ξ ≥ μ|S| be an 
upper bound on the time requirement per element for the construction of independent, 
(nearly) uniformly distributed random elements of G [2,18], and let χ ≥ μ log q be an 
upper bound on the time requirement for each application of one of the hypothesized 
oracles in the following theorem, or let χ = μ log3 q log log q when q is even. (When q is 
even we do not require any oracle.)

Theorem 1.1. There is a Las Vegas algorithm which, when given a black box group 
G = 〈S〉 isomorphic to a perfect central extension of a finite simple exceptional group of 
Lie type of (twisted) rank > 1 and given field size q, other than any 2F4(2e) or 3D4(2e) – 
also assuming for odd q the availability of an SL(2, q)-oracle and a Discrete Log oracle 
for F∗

q (and also a PSL(2, q2)-oracle and a Discrete Log oracle for Zq+1 when G has type 
2E6(q), and also an SL(2, q3)-oracle and a Discrete Log oracle for F∗

q3 when G has type 
3D4(q)) – finds the following:

(i) The name of the simple group of Lie type to which G/Z(G) is isomorphic; and
(ii) A new set S∗ generating G, a generating set Ŝ of the universal cover Ĝ of the 

simple group in (i) and an epimorphism Ψ : Ĝ → G, specified by the requirement 
that ŜΨ = S∗.

Moreover, the data structures underlying (ii) yield algorithms for each of the follow-
ing:
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(iii) Given g ∈ G, find ĝ ∈ Ĝ such that g = ĝΨ , and a straight-line program of length 
O(log q) from S∗ to g; and

(iv) Given ĝ ∈ Ĝ, find ĝΨ and a straight-line program of length O(log q) from Ŝ to ĝ.

In addition, the following all hold.

(v) S∗ has size O(log q) and contains a generating set for G consisting of root ele-
ments.

(vi) The algorithm for (ii) is Las Vegas, running in O(ξ log q log log q+χ log2 q log log q+
log4 q) time and succeeding with probability > 1/2.
In additional O(ξ + χ log2 q) time it can be verified that G is isomorphic to a 
perfect central extension of the exceptional group in (i).

(vii) The algorithm for (iii) is Las Vegas, running in O(ξ+χ log q) time and succeeding 
with probability > 1/2; while the algorithm for (iv) is deterministic and runs in 
O(μ log q) time except for G of type 2E6, where it is Las Vegas, takes O(ξ+χ log q)
time and succeeds with probability > 1/2.

(viii) The center of G can be found in O(μ log q) time.

Parts (ii)–(iv) are the requirements for a constructive epimorphism Ψ : Ĝ → G. It may 
be worth noting that the algorithm for (iii) also works for (iv), but is much slower. The 
verification at the end of (vi) is omitted in some references, since G is assumed to be 
an epimorphic image of a specific group Ĝ which, in turn, is isomorphic to (a central 
extension of) an explicitly constructed subgroup G0 of G (as in Section 3.3, and in each 
of the later sections of this paper; cf. [27]). In practice, it is hard to imagine that this 
test would be omitted.

The stated times are designed to deal with all types of groups G simultaneously. As 
in [28,27], we will see that the times are significantly less for most G.

For the proof of the theorem we will modify the previous approach [27], simplifying 
some parts outlined in [27, Sec. 6]. The main goal is to find a long root group, after which 
much of [27] can be reused. It seems undesirable to entirely rewrite the previous paper 
since many of the same ideas can be used. Thus, the present paper is essentially a long 
addendum to that one, and the two should be used side by side. However, there are some 
new ideas involved, including [23] and elementary cohomology (Section 4.3). Related 
results appear in [31] in a different context that presupposes, among other things, an 
absolutely irreducible module for the group.

We will use standard notions discussed at length in [28,27], such as black box groups, 
straight-line programs, the parameters ξ and μ in the theorem, and primitive prime 
divisors. See [14, p. 97] for a discussion of χ. We will use the notation Ĝ, R̂, L̂, Q̂ in 
[27, Secs. 2.1, 3.1] for the “standard” models of the groups studied here, and for some of 
their subgroups. Finding nearly uniformly distributed elements of a black box group G
originated in [2], with another version in [18] (cf. [28,37]).
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As in [28,27] and other papers, our probabilistic estimates are very crude, leading to 
the use of samples of unreasonably large numbers of group elements in order to simplify 
the exposition.

This paper owes its existence to Ákos Seress. Even before the previous version [27]
had been accepted for publication, he had already strongly urged us to provide details 
for a polynomial-time version assuming suitable standard oracles. This led us to outline 
methodology for this purpose in [27, Sec. 6], with the expectation that would lead to the 
present paper.

The first author is also indebted to Ákos for teaching him many things about the 
subject matter of this paper – such as why explicit probability estimates (even very poor 
or ugly ones) are needed for implementations.

2. Preliminaries

2.1. Background

See [16] and [27] for the required notation and properties concerning the groups in 
Theorem 1.1. Let F = Fq, q = pe, for a prime p, and F′ = F except that F′ = Fq2 in the 
case 2E6(q). These fields are equipped with Fp-bases, one of whose elements is assumed to 
generate the multiplicative group when q is odd (for use with the hypothesized Discrete 
Log oracle); the basis for F′ contains one for F. We will ignore fields of very small 
order. Among other things, this allows us to avoid exceptional parts of Schur multipliers 
[19, p. 313].

2.2. Avoiding Discrete Logs

Discrete Logs are a fundamental tool in [17,30] for recognizing SL(2, q) in its absolutely 
irreducible representations over fields of characteristic p|q. As a result, both SL(2, q) and 
Discrete Log oracles were used for black box groups in [11–15,35], which constructed 
subgroups isomorphic to SL(2, q) that were then constructively recognized using the 
SL(2, q)-oracle. We refer to [11–14] for discussions of the definition and uses of such 
oracles.

Now that constructive recognition can be achieved in some characteristics without an 
SL(2, q)-oracle, we will explain why Discrete Logs are not needed at all if they are not 
used to produce isomorphisms with SL(2, q) subgroups.

In characteristic 2 [23] and in bounded odd characteristic [9], a field F ∼= Fq is con-
structed internally, using operations occurring in the underlying black box group G. 
Therefore any standard types of field calculations can be accomplished using black box 
group operations. For example, if s ∈ F and if f ∈ F [x] has “small” degree, then f(s)
can be found by means of operations in the underlying group G.

This was used in [23] to find values of the trace map Tr : F → Fp, which were used 
in turn to express any given element t ∈ F as t = f(s) when F = Fp[s], for some 
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polynomial f ∈ F [x]. We emphasize that t is obtained as f(s) rather than as a power sn, 
using operations in G. In particular, these operations are not performed within the cyclic 
group 〈s〉, so that Discrete Logs are not needed.

Theorem 1.1 also uses an SL(2, q3)-oracle, which is again not needed in characteristic 2. 
Theorem 1.1 also uses Discrete Logs in Zq+1. This group arises inside the multiplicative 
group of a field of order q2, which in turn comes from a (short root) SL(2, q2) subgroup 
of the black box group. Therefore, all of the comments made above continue to hold in 
this situation: once again Discrete Logs can be avoided for fields of characteristic 2.

2.3. Smaller rank preliminaries

As in [27, Theorem 1.3], we summarize the known results we need concerning classical 
groups (where μ, ξ and χ are as before):

Theorem 2.1. Let G = 〈S〉 be a black box group that is isomorphic to a nontrivial 
homomorphic image of SL(2, q), SL(3, q), Sp(6, q), SU(6, q), Spin−

8 (q) or Spin+
12(q). Then 

there are algorithms for the natural analogues of Theorem 1.1(ii)–(iv), where when q is 
odd we assume the availability of an SL(2, q)-oracle and a Discrete Log oracle for F∗

q (and 
also a PSL(2, q2)-oracle and a Discrete Log oracle for Zq+1 when G has type SU(6, q)). 
Moreover,

(i) Theorem 1.1(v) holds;
(ii) Theorem 1.1(ii) takes O(ξ log q log log q +χ log2 q log log q + log4 q) Las Vegas time, 

succeeding with probability > 1/2;
(iii) Theorem 1.1(iii) takes O(ξ + χ log q) Las Vegas time, succeeding with probability 

> 1/2; and
(iv) Theorem 1.1(iv) is deterministic and takes O(μ log q) time, except in type SU(6, q), 

where it takes O(ξ + χ log q) Las Vegas time, succeeding with probability > 1/2.

Theorem 2.1(ii)–(iv) correspond to Theorem 1.1(vi)–(vii).

Proof. This is contained in [11–15], except for the avoidance of oracles for even q as 
explained in Section 2.2, where each use of an SL(2, q)-oracle in (ii) is replaced by [23]
and χ is replaced by μ log3 q log log q. The need for a Discrete Log oracle for F∗

q or Zq+1
occurs in a long or short root SL(2, q) or SL(2, q2) subgroup (cf. [12, p. 183]), where it 
can be dealt with in characteristic 2 as in Section 2.2. �
2.4. Primitive prime divisors and generation

The notation ppd�(p; e) associated with primitive prime divisors is defined in [27, 
Sec. 1.1]. The next two lemmas and their proofs are very similar to [27, Lemmas 2.24, 
2.25], and hence the proofs are omitted.
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Long (root) subgroups are subgroups generated by long root groups. Short root sub-
groups are defined similarly. Examples are a long root SL(2, q) subgroup R̂ of Ĝ and its 
centralizer L̂.

For now we restrict to rank > 2:

Lemma 2.2. For ε ∈{1, 2} let k(ε) = ppd�(p; εe), and let �(ε) denote the (pe +(−1)ε)′-part 
of |Ĝ|. Let l be as follows for the indicated types of Ĝ:

k(ε) · l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ppd�(p; e) · ppd�(p; 2e) ppd�(p; 6e) F4
ppd�(p; e) · ppd�(p; 2e) ppd�(p; 3e) ppd�(p; 6e) E6
ppd�(p; 2e) · ppd�(p; e) ppd�(p; 3e) ppd�(p; 6e) 2E6
ppd�(p; e) · ppd�(p; 9e) E7
ppd�(p; 2e) · ppd�(p; 18e) E7
ppd�(p; e) · ppd�(p; 2e) ppd�(p; 4e) ppd�(p; 8e) E8
ppd�(p; e) · ppd�(p; 2e) ppd�(p; 18e) E8

(i) If τ ∈ Ĝ has order of the form k(ε)l, then τ�(ε) lies in a long root SL(2, q) subgroup 
or Ĝ has type F4 and τ�(ε) lies in either a long or short root SL(2, q) subgroup.

(ii) With probability ≥ 1/29, an element τ ∈ Ĝ has order of the form k(ε)l and τ�(ε)

lies in a long root SL(2, q) subgroup.
(iii) With probability ≥ 1/29, an element τ ∈ NĜ(R̂L̂) has order of the form k(ε)l and 

τ�(ε) ∈ R̂.

The integers l are almost the same as in [27, Sec. 2.9], changed only in order to 
guarantee in each case that k(ε) and l are relatively prime. Note that (1 − 1/2)(1 −
1/3)(1 − 1/5)(1 − 1/7)/72 > 1/29, where 72 = 2 · 2 · 3 · 6 is the largest possible index 
|NG(T ) : CG(T )| for a maximal torus T of G containing an element of the stated order 
(see the argument in [27, Lemma 2.24]). As usual, this estimate is far cruder than needed.

Remark 2.3. We do not know the primes dividing l, hence we do not know l. Consequently, 
we cannot write τ l in our algorithm (this was not noticed in [27, Sec. 2.9]). Instead we 
have used τ�(ε). In the E7- and E8-cases there are two choices for both k(ε) and �(ε)
(although in the E8-case the two choices coincide). We will write k(ε) and �(ε) for an 
element τ occurring in the first of these choices, and k(ε0) and �(ε0) for an element τ0
occurring in the second choice.

Lemma 2.4. Let R̂1 be a long SL(2, q) subgroup contained in L̂, and let l (or two such 
numbers, l and l0) be as in Lemma 2.2.

(i) If Ĝ is not of type E7 or E8, and if y ∈ L̂ has order of the form l, then L̂ =
〈R̂1, yq

2−1〉.
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(ii) If Ĝ is of type E7 or E8, and if y ∈ L̂ has order of the form l and y0 ∈ L̂ has order 
of the form l0, then L̂ = 〈R̂1, yq

2−1, yq
2−1

0 〉.

2.5. Bray’s algorithm

Since we know the order of the group Ĝ, we can precompute its odd part 2k+1 := |Ĝ|2′ .
If t ∈ G is any involution, then Bray’s algorithm [10] (cf. [1,8]) finds elements of CG(t): 

if g is a (nearly) random element of G such that |ttg| is odd, then

g̃ :=
(
ttg

)k
g−1 is a (nearly) random element of CG(t). (2.5)

For the timing of this algorithm we need [36, Thm. 1] for the groups G in Theorem 1.1: 
with probability ≥ 1/1000, |[t, g]| = |ttg| is odd for a random conjugate tg of t. Note that 
the actual lower bound is significantly larger than the stated bound, which will require 
us to choose unreasonably large numbers of (nearly) random elements. Two random 
elements generate G with high probability [26,33].

2.6. General strategy

Our goal is to reduce to situations already dealt with in [27]. For this purpose we need 
to provide substitutes for all parts of [27] that require a factor of q in the timing. Once this 
has been accomplished we refer to [27] for the remainder of the algorithm. In particular, 
probability and timing estimates require the inclusion of ones from parts of [27].

We use [7] for Theorem 1.1(i) and [5] for the last requirement in Theorem 1.1(vi).

3. Rank > 2 in odd characteristic

In this section we assume that G is a black box group in Theorem 1.1 of rank > 2
over a field of odd order q > 9.

3.1. Finding R and L

Lemma 3.1. The following can all be found in O(ξ log q log log q+χ log2 q log log q+log4 q)
time with probability > 1 − 1/29: (i) an involution t such that CG(t) has commuting, 
normal long root subgroups R ∼= R̂ and L ∼= L̂, (ii) these subgroups R and L, and (iii)
constructive isomorphisms ΨR : R̂ → R and ΨL : L̂ → L.

Proof. Find up to 104 nearly uniformly distributed elements y ∈ G [2,18], for each test 
whether |y| is even, and if so let t ∈ 〈y〉 be an involution.

Find up to 10 · 240 pairs g, h of nearly uniformly distributed elements of G. For each 
such pair, test whether |ttg| and |tth| are both odd, in which case use (2.5) to obtain 
g̃, ̃h ∈ C := CG(t); test whether g̃ and h̃ both have orders of the form k(ε) · l appearing 
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in Lemma 2.2 (require that g̃ and h̃ have the two different order possibilities in the E7-
and E8-cases; cf. Remark 2.3); use the hypothesized SL(2, q)-oracle to test whether R :=
〈g̃�(ε), ̃h�(ε)〉 ∼= SL(2, q) and to obtain a constructive isomorphism ΨR : SL(2, q) → R (use 
R := 〈g̃�(ε), ̃h�(ε0)〉 in the E7- and E8-cases); use ΨR to check whether g̃ and h̃ induce 
inner automorphisms on R induced by some gR, hR ∈ R; and finally use Theorem 2.1 (or 
Theorem 1.1 for groups of type E7 in the E8-case) to test whether L̂ ∼= L := 〈g̃g−1

R , ̃hh−1
R 〉

and to find a constructive isomorphism ΨL : L̂ → L.
For correctness, note that the order of g̃ implies that t is the type of involution whose 

centralizer is as in the lemma. Then C has a subgroup of index 2 that is the central 
product of subgroups isomorphic to R̂ and L̂. Moreover, by [26,33], 〈g̃, ̃h〉 is (probably) 
either C or its subgroup of index 2 (since g̃, ̃h ∈ C are nearly uniformly distributed 
elements (2.5)), and we have found the latter subgroup RL together with R and L.

Time: O(ξ log q log log q + χ log2 q log log q + log4 q), dominated by Theorem 2.1.

Reliability: > 1 −1/29. For, by [36, Thm. 3], a single choice 〈y〉 will contain an involution 
t central in a Sylow 2-subgroup of G with probability ≥ 1/103, so that all 104 choices 
fail with probability ≤ (1 − 1/103)104

< 1/210.
By [36, Thm. 1], |ttg| and |tth| are both odd with probability ≥ (1/103)2. Then by 

[26,24,33], 〈g̃, ̃h〉 is either C or its subgroup of index 2 with probability > (1/5)(1/10)
(recall that q > 9). By Lemma 2.2(iii) and (2.5), g̃ and h̃ have the desired order(s) 
with probability ≥ (1/29)2; both induce inner automorphisms of R with probability 
(1/2)2. Each test of L̂ ∼= L using Theorem 2.1 (or Theorem 1.1 in the E8-case) succeeds 
with probability > 1/2. Hence, one of our pairs g, h produces the desired result with 
probability > (1/103)2(1/5)(1/10)(1/29)2(1/2)2(1/2) > 1/240, so that all 10 · 240 pairs 
fail with probability < 1/210. �

Note that we could have used a Monte Carlo algorithm to find the derived subgroup 
of C [4] (cf. [37, Thm. 2.3.12]). However, we still needed to find R and L, which led to 
the above procedure in place of normal closure and derived subgroup routines.

3.2. Root groups and Q

At this point we can use R̂ and L̂ together with ΨR and ΨL to perform standard 
calculations in RL. For G not of type E8 this involves straightforward linear algebra. 
When G has type E8 we refer to [27, Appendix], which uses the Lie algebra of Ê7(q).

Use ΨR and ΨL to find maximally split tori of R and of L; their product T0 is a 
maximally split torus of RL. Similarly, find NRL(T0). (Although T0 has index 2 in a 
maximal torus for G, it suffices for our purposes since q > 9.)

Find the set ΓL of all root groups of L normalized by T0. Two of them generate 
a long SL(2, q) subgroup R1 < L. Let t1 be the involution in R1. Using up to 107

choices, find a conjugate t2 of t such that both |tt2| and |t2t1| are odd, and therefore 
find an element y := (tt2)m(t2t1)m conjugating t to t1 and hence L to L1 := CG(R1), 
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where 2m − 1 = |Ĝ|2′ . Then R1L1 has index 2 in CG(t1), and T0 normalizes L1 since it 
normalizes R1. Also obtain a constructive isomorphism ΨL1 : L̂ → L1 using y and ΨL.

Use ΨL1 to find the maximally split torus T1 of L1 normalized by T0, together with 
NL1(T1). Then N := 〈NRL(T0), NL1(T1)〉 is the normalizer in G of a maximally split 
torus of G. (Note the simplification compared to [27, Sec. 2.10] due to the use of both L
and L1.)

Use ΨL1 to find the set ΓL1 of all root groups of L1 normalized by T1, so that ΓL∪ΓL1

lies in a set Γ of at most 240 root groups of G permuted by N . Find this set Γ using 
conjugation by elements of N , labelling these root groups Xα using elements α of the 
root system Φ for G containing the root system for RL (cf. [27, Sec. 2.11]). We now have 
a root group Xα corresponding to each α ∈ Φ.

Let Δ be a base of Φ containing a base of L, and let ν ∈ Δ be the highest root. We 
may assume that X±ν < R. Then L = 〈Xα | α ∈ Φ is perpendicular to ν and −ν〉.

Let Q be the group generated by those Xα for which α ∈ Φ is positive and not a root 
of L (as in [27, Sec. 2.13]). Then Xν ≤ Z(Q) and CG(Xν) = LQ.

There is a unique long root ν′ ∈ Δ not orthogonal to ν.

Time: O(ξ + χ log q).

Reliability: > 1 − 1/210. For, by [36, Thm. 1], we find a single t2 with probability 
≥ (1/103)2. Then all 107 choices fail with probability < 1/210.

3.3. The group G0

Proceed as in [27, Sec. 2.12] in order to obtain

• a label Xα(t) of any given element of any root group Xα by an element t in F or F′, 
and then also

• generating sets S∗ ⊂ ∪α∈ΦXα of G0 := 〈Xα | α ∈ Φ〉 and Ŝ ⊂ ∪α∈ΦX̂α of Ĝ of size 
O(log q), as well as

• the natural epimorphism Ψ : Ĝ → G0 sending Ŝ → S∗.

3.4. Completion of the proof

Both effective transitivity with the help of long SL(3, q) subgroups, and linear algebra 
in Q/Xν , are handled exactly as in [27, Secs. 2.13 and 2.14].

We find a straight-line program from S∗ to any given element of G as in [27, Sec. 2.15]. 
More precisely, in order to deal with [27, Prop. 2.39(iii)] we use a call to the hypothesized 
Discrete Log oracle: we are given g ∈ G and need to find a straight-line program to g from 
our new generators. We reduce to the situation where g normalizes both Xν and X−ν . 
As in [27, Prop. 2.39(iii)] we also have the element hν′(ζ) for a generator ζ of F∗. Both 
g and hν′(ζ) act on R = 〈Xν , X−ν〉, and the Discrete Log oracle provides us with 
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an exponent k such that ghν′(ζ)k centralizes R. At this point the rest of the argument 
used in [27, Prop. 2.39(iii)] goes through.

Now [27, Cor. 2.42 and Sec. 2.16] complete the proof of Theorem 1.1 for rank > 2 and 
odd q.

4. Rank > 2 in characteristic 2

In this section we assume that G is a black box group in Theorem 1.1 of rank > 2 over 
a field of even order q > 4. We will modify the previous approach [27, Sec. 2] slightly, 
and also in Section 4.3 outline a second modification for one part of the algorithm.

4.1. Preliminaries

Lemma 4.1. Two elements r1, r2 of G that lie in long SL(2, q) subgroups R1, R2, re-
spectively, and have order either ppd�(p, e) or ppd�(p, 2e), satisfy the condition that 
〈r1, r2〉 = 〈R1, R2〉 is a long Spin−

8 (q) subgroup with probability > 1/100.

Proof. We first show that two long SL(2, q) subgroups of G generate a Spin−
8 (q) subgroup 

with probability > 1/81. (As usual, our estimate is rather weak in order to simplify 
arguments.) For probability purposes, we can start with a long SL(2, q) subgroup R
together with one of its long root groups Z; and choosing a conjugate of R is the same 
as choosing two opposite long root groups Z1, Z2. Therefore, we choose a long root 
group Z1. With probability > 1/3 it is opposite Z [27, Lemma 2.26], in which case 
S := 〈R, Z1〉 ∼= SL(3, q) with probability ≥ 1/3 [27, Lemma 2.27(i)]. Choose a long root 
group Z2. With probability > 1/3 it is opposite Z2. If S ∼= SL(3, q), then 〈S, Z2〉 ∼=
Spin−

8 (q) with probability ≥ 1/3 [27, Lemma 2.27(ii)]. Hence, 〈R, Z1, Z2〉 ∼= Spin−
8 (q)

with probability > (1/3)4, as claimed.
Now consider two elements ri of order as in the lemma, lying in long SL(2, q) sub-

groups Ri (i = 1, 2). We will show that, if J := 〈R1, R2〉 ∼= Spin−
8 (q), then 〈r1, r2〉 = J

with probability > 1 − 1/210. In view of the preceding paragraph, the resulting lower 
bound (1/81)(1 − 1/210) > 1/100 will prove the lemma.

If V is the natural module for J = Spin−
8 (q) ∼= Ω−(8, q), then [V, ri] = [V, Ri] for 

i = 1, 2, so that J0 := 〈r1, r2〉 is irreducible on V . We will repeatedly use the fact that 
[V, ri] = [V, Ri] is of type 4+, as well as the assumption that q is even.

We consider the possible maximal overgroups M of J0 using [26, p. 74, Table 3.5.f], 
starting with the possible “geometric” groups

(1) Ω−(8, q0) with qr0 = q for some prime r, or Ω−(4, q2) ∼= SL(2, q4) (a member of the 
class C3).

The possibility M = Ω−(4, q2) is eliminated using [V, ri].
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For the possible overgroups M in class S(Ω−(8, q)) in characteristic 2 we use Stein-
berg’s Tensor Product Theorem: we need tensor products of 2-restricted representations, 
hence of dimension 2 or 4. By [34, Tables 6.6–6.53], only

(2) SL(3, q) and SU(3, q)

have degree 8 representations. (Note: The irreducible 8-dimensional group Spin7(q) lies 
in Spin+

8 (q) rather than Spin−
8 (q), due to triality.)

We next consider twisted tensor product possibilities. The only groups having 
2-restricted representations of dimension 2 are SL(2, q), whereas the ones having 
2-restricted representations of degree 4 are SL(2, q2) ∼= Ω−(4, q), Sz(q), Sp(4, q) and 
SL(4, q). None of the latter embeds into Ω−(8, q). Similarly, the 8-dimensional representa-
tion of SL(2, q3) that is the twisted tensor product of three 2-dimensional representations 
of SL(2, q3) embeds into Ω+(8, q) and hence not into Ω−(8, q).

To find the maximal overgroups in Aschbacher class S(Ω−(8, q)) having odd char-
acteristic, we use [21, Table 2, p. 97] and [20, Table 2, p. 31]. With the exception 
of PSL(2, 7) ∼= SL(3, 2) occurring in (2), there is no example. (Note: The irreducible 
8-dimensional Fq-representations of A6 ∼= PSL(2, 9) and A9 embed into Ω+(8, 2) and 
hence not into Ω−(8, 2).)

For each possible overgroup M we need to estimate the number of pairs (t1, t2) lying 
in a J-conjugate of M , where ti is G-conjugate to ri.

For the groups in (1), elements ri of the required ppd order centralizing a 4−-subspace 
of V cannot lie in a subfield group M = Spin−

8 (q0) unless q = q2
0 , in which case r1 and r2

have ppd order dividing q − 1. Since q ≥ 8, we find that the proportion of pairs (t1, t2)
lying in J-conjugates of M is |MJ ||rMi |2/|rJi |2 ≤ 1/211.

Finally, for the groups M ∼= SL(3, q) or SU(3, q) in (2), V is the adjoint mod-
ule and q ≡ 2 resp. 1 (mod 3) in order to have M contained in Spin−

8 (q). Since 
dim CV (ri) = 4, it follows that (in the natural M -module) each element ri is conju-
gate to r′i = diag(αi, αi, α

−2
i ) for some αi, where αiᾱi = 1 in the unitary case. Then 

CV (r′i) consists of all 
(A 0

0 Tr(A)
)

for 2 × 2 matrices A that are hermitian in the unitary 
case, and CV (r′i) has type 4− due to the nature of q (mod 3). This time we find that the 
proportion of pairs (t1, t2) lying in J-conjugates of M is |MJ ||rMi |2/|rJi |2 < 1/212.

The previous probabilities produce the desired lower bound 1 − 1/210. �
Lemma 4.2. Let g be an element of a long SL(2, q) subgroup R and have order either 
ppd�(p, e) or ppd�(p, 2e). Then R is the unique long SL(2, q) subgroup containing g.

Proof. Suppose that g ∈ R, Rx with R �= Rx, x ∈ G. Then L < H := 〈L, Lx〉. The 
maximal overgroups M of L in G are NG(Q) and NG(L), and also M = Sp(8, q) when 
G = F4(q) since q is even (e.g., by [32, Thm. 1.1]).

If H ≤ NG(Q) then H = H ′ ≤ CG(Q) = QL, so that H = QL. Then g ∈ CG(QL) =
Z(Q), whereas |g| �= 2.

The group NG(L) contains only one copy of L.
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Finally, if L < H ≤ M = Sp(8, q) with G = F4(q) then, since H is not in NM (L), we 
see that H is M or Ω±(8, q), or lies in NM (Z(Q)), where |Z(Q)| = q7. Each of the first 
three possibilities contains a maximal torus T of G, which produces the contradiction 
g ∈ CG(H) = CG(H) ∩ CG(T ) = CG(H) ∩ T = 1. In the final case, H = (Q ∩M)L =
CM (Z(Q)), so that g ∈ CG(H) = Z(Q), which is again a contradiction. �
4.2. Finding J , R

Choose up to 218 elements g ∈ G to find one whose order has the form k(ε)l in 
Lemma 2.2 and, in the E7- and E8-cases, another element g0 of the second order k(ε0)l0, 
say, in that lemma. Let �(ε1) denote �(ε0) in the latter situations and �(ε) otherwise 
(cf. Remark 2.3).

Choose up to 1000 conjugates g1 of g (or of g0 in the E7- and E8-cases), in order 
to find one such that J := 〈g�(ε), g�(ε1)

1 〉 is a long Spin−
8 (q) subgroup (cf. Lemma 4.1), 

using Theorem 2.1 (or a recursive call to Theorem 1.1) up to 10 times for each g1 to test 
whether Ĵ := Spin−

8 (q) ∼= J and to find a constructive isomorphism ΨJ : Ĵ → J .
Use Ĵ and ΨJ to find long root SL(2, q) subgroups R and R1 of J containing g�(ε)

and g�(ε1)
1 , respectively (cf. Lemma 4.1). In addition, find CJ(R) and opposite long root 

groups Z and Z− in R, together with R2, a long root SL(2, q) subgroup of CJ(R) (lying 
in a long root Ω+(4, q) subgroup of J containing R).

In the E7- and E8-cases use ΨJ to find a J-conjugate g∗ of g1 such that g
�(ε1)
∗ ∈ R.

Time: O(ξ log q log log q + χ log2 q log log q + log4 q), dominated by Theorem 2.1.

Reliability: > 1 − 1/28. For, by Lemma 2.2(ii), g has the desired order with probability 
≥ 1/29, so that one of our 218 choices behaves correctly with probability > 1 − 1/29. 
We obtain g0 with the same probability. By Lemma 4.1, one of our 1000 choices for g1
produces the desired generation with probability > 1 −1/210. Finally, one of the 10 calls 
to Theorem 2.1 (or a recursive call to Theorem 1.1) succeeds with probability > 1 −1/210.

4.3. Finding L

Recall that |g| has the form k(ε)l. Since gk(ε) centralizes g�(ε) ∈ R it normalizes R
(by Lemma 4.2). Then gq

2−1 ∈ CG(R) since |gq2−1| is relatively prime to |R|. If we 
exclude the E7- and E8-cases, then L := 〈gq2−1, R2〉 is CG(R) by Lemma 2.4. Similarly, 
in the excluded cases gq

2−1
∗ ∈ CG(R), so that L := 〈gq2−1, gq

2−1
∗ , R2〉 is CG(R), again by 

Lemmas 4.2 and 2.4.

Cohomological digression. We will present an alternative method for finding L. The pre-
ceding approach recycled the elements g (and g0) already used to find J . It was natural 
since these elements (or J-conjugates of them) were also used to write a generating set 
for L. The following alternative approach does not seem as fast in general, and certainly 
has no effect on the overall timing, but nevertheless might have some interest. We will 
take a much more relaxed and less detailed approach than usual, ignoring crucial details 
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of timing and probability. We start with a very elementary cohomological observation 
(which does not even involve finite groups or finite vector spaces):

Lemma 4.3. Assume that H is a group acting on a vector space V . Let h ∈ Z(H) be 
such that the linear transformation −h: v �→ −vh fixes no nonzero vector and has order 
dividing the odd integer 2m + 1. If V �H = 〈X〉, then H is generated by the elements 
x• := [h, x][h, x]h2 · · · [h, x]h2m

x−1, x ∈ X. Moreover, x• = ([h, x]h−2)m+1(−h)x−1.

Proof. Let h′ := −h, of order dividing 2m + 1. Then h′ − 1 is invertible, so from 0 =
(h′ − 1) 

∑2m
0 h′ i we obtain 0 =

∑2m
0 h′ i. If x = sv ∈ HV with s ∈ H, v ∈ V , then 

[h, x] = h−1hsv = h−1hv = (v−1)hv = vh
′+1, so that

x• = [h, x][h, x]h
′ 2 · · · [h, x]h

′ 2m
x−1

= v1+h′
v(1+h′)h′ 2 · · · v(1+h′)h′ 2m

x−1 = v0+h′ 2m+1
x−1 = vx−1 = s−1.

Since 〈x•〉 ≡ 〈x〉 (modV ), it follows that H = 〈X•〉.
For the last part, use the group-theoretic version of “Horner’s Rule” [6, p. 512]: 

x• = [h, x] · h′ −2[h, x]h′ 2 · h′ −4[h, x]h′ 4 · · ·h′ −2m[h, x]h′ −2 · h′ 2m+2 · x−1 collapses to 
([h, x]h−2)m+1h′x−1. �

We now use the lemma to find L. Let 1 �= z ∈ Z. Define C := CG(z) = QL, where 
Q := O2(C) and L = CG(R) have yet to be found. A conjugate z′ of z is opposite z (i.e., 
|zz′| is odd) with probability > 1/3 [27, Lemma 2.26]. Two random elements generate L
with high probability since L is a simple group of Lie type [26,33], so that three random 
elements of C generate C with high probability. Hence, we (probably) find C using (2.5).

There is a maximal torus 〈h〉 of R normalizing Z. Then h has order q − 1 > 1 and is 
fixed point free on the elementary abelian 2-groups Q/Z and Z. In particular, L = CC(h).

Random elements x1, x2, x3 of L〈h〉Q generate L〈h〉Q mod 〈h〉Z with high probability. 
Lemma 4.3 with V = Q/Z implies that x•

1, x•
2, x•

3 and h• = h−1 (probably) generate 
L〈h〉Z mod Z. Lemma 4.3 with V = Z produces generators x′

1, x′
2, x′

3, h of L〈h〉. Here 
x′
i acts on Z as some element of 〈h〉 does. Find that element h′

i ∈ 〈h〉 using Section 2.2. 
Then we have found L = 〈x′

1h
′
1
−1, x′

2h
′
2
−1, x′

3h
′
3
−1〉.

As in Section 3.1 we could have used derived subgroups [4] to obtain L from x•
1, x•

2
and x•

3, but the above seems simpler and possibly more efficient.

Remark 4.4. (1) In the lemma, h can be replaced by hn for suitable integers n (such as 
−1 or 2), so that there are other words in h and x that evaluate to s−1. Using suitable 
products of such words and their inverses produces infinitely many words that behave 
like x• but do not appear to be “equivalent” to one another in any standard sense.

(2) While the preceding lemma is pleasantly independent of finiteness, in odd char-
acteristic there is an even easier way to accomplish the same goal. Assume that H is 
a group acting on a vector space V over a field of odd characteristic p. Let h ∈ Z(H)
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induce −1 on V . If V �H = 〈X〉, then H = 〈[h, x](p+1)/2x−1 | x ∈ X〉. For, if x = sv

with s ∈ H, v ∈ V , then [h, x] = h−1hv = v1−h = v2, so that [h, x](p+1)/2x−1 = s−1.

This ends our digression.

4.4. Conclusion

As in [27, Sec. 2.13] (cf. Section 3.2 above), find constructive isomorphisms ΨR : R̂ → R

and ΨL : L̂ → L, and then T0 (which is a maximally split torus of G in characteristic 2), 
the root system Φ, the root groups Xα, and Q. Using Section 2.2, as in Sections 3.3
and 3.4 we can now repeat the remainder of [27, Sec. 2] in order to complete the proof.

5. Odd characteristic and rank 2

In this section we assume that G is a black box group in Theorem 1.1 of rank 2 over 
a field of odd order q > 9. We provide a simple reduction to [27, Sec. 3]. Let ε = 1 for 
G2(q) and 3 for 3D4(q).

Choose up to 40 elements x ∈ G in order to find one of even order. Let t be the 
involution in 〈x〉.

Choose up to 4 · 107 pairs g, h ∈ G, and for each test whether |ttg| and |tth| are odd, 
in which case let C := 〈g̃, ̃h〉 ≤ CG(t) (cf. (2.5)). For some g, h we will probably have 
C � R ◦ L with R a long root SL(2, q) subgroup and L a short root SL(2, qε) subgroup; 
find R and L as in [28, Sec. 3.6.2]. Use the hypothesized oracles to obtain constructive 
isomorphisms ΨR : SL(2, q) → R and ΨL : SL(2, qε) → L.

Time: O(χ + μ log q).

Reliability: > 1 − 1/29. For, some x has even order with probability > 1 − 1/210 in 
view of [22, Thm. 5.2]. By [36, Thm. 1], with probability > (1/103)2 both |ttg| and |tth|
are odd, in which case C is as stated with probability > (1/5)2 (as in [28, Lemma 3.8]); 
and find R and L (and then also ΨR and ΨL) with probability > 3/4 [28, Sec. 3.6.2]. 
Hence, none of the 4 · 107 choices for g, h produce R and L with probability < (1 −
{(1/103)2(1/5)2(3/4)})4·107

< 1/210, so that the procedure succeeds with probability 
> 1 − 1/29.

Given R, L, ΨR and ΨL, we can repeat [27, Sec. 3] in order to complete the proof.

6. Characteristic 2 and rank 2

In this section we only consider the case G ∼= G2(2e), e > 2.

6.1. Preliminaries

Let q ≡ δ ≡ δ′ (mod 3), where δ = ±1, and δ′ ∈ {1, 2}.

Lemma 6.1. With probability ≥ 5/18, an element g ∈ G has order 3 ppd�(p; 3δ′e). In that 
case the element of order 3 in 〈g〉 lies in a short root SL(2, q) subgroup.
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Proof. Let J be a long root SLδ(3, q) subgroup of G, so that Z(J) = 〈y〉 has order 3 in 
view of q (mod 3). Then CG(y) contains a long root SL(2, q) subgroup whose centralizer is 
a short root SL(2, q) subgroup containing y. Thus, G contains elements g of the required 
sort.

The probability of choosing an element g of the stated order is at least (1/3)(1 − 1/6)
(as in [27, Lemma 2.24]). Moreover, in that case, by Sylow’s Theorem g lies in a conjugate 
J1 of J and CJ1(g) is a maximal torus of both G and J1. In particular, Z(J1) ≤ 〈g〉 and 
Z(J1) is conjugate to Z(J). Then Z(J1) lies in a short root SL(2, q) subgroup. �
Lemma 6.2. With probability > 1/10, two different subgroups of order 3 each lying in a 
short root SL(2, q) subgroup both lie in such a subgroup.

Proof. All such subgroups Y of order 3 are conjugate in G. We have seen that CG(Y )
is a long root SLδ(3, q) subgroup and Y lies in a short root SL(2, q) subgroup D. There 
are a := |G: SLδ(3, q) · 2|(|G: SLδ(3, q) · 2| − 1) ordered pairs of distinct conjugates of Y , 
and b := |G: NG(D)| · 1

2q(q + δ)(1
2q(q + δ) − 1) such pairs lying in conjugates of D. (Here 

NG(D) ∼= SL(2, q) × SL(2, q).) Thus, two distinct conjugates of Y lie in a conjugate of 
D with probability ≥ b/a > 1/10. (This is where the magic of G2 is visible: there is no 
analogous result for 3D4.)

We still need to verify that distinct Y , Y g lie in at most one short root SL(2, q) sub-
group. For otherwise, CG(〈Y, Y g〉) contains distinct long root SL(2, q) subgroups R1, R2
that lie in CG(〈Y 〉) = SLδ(3, q). Then either 〈R1, R2〉 = SLδ(3, q) has center Y = Y g, 
or δ = + and 〈R1, R2〉 has the form q2 SL(2, q). Since Y, Y g < SL(2, q), some conju-
gate Y g′ satisfies 〈Y, Y g′〉 ∼= SL(2, q′) for some q′. Now NG(〈Y, Y g′〉) has a subgroup 
q2 SL(2, q) × SL(2, q′), and this must lie inside a parabolic subgroup of G. A parabolic 
subgroup containing q2 SL(2, q) has the shape q2+3 GL(2, q) and hence contains no sub-
group q2 SL(2, q) × SL(2, q′), producing the desired contradiction. �
6.2. Algorithm

Choose up to 36 elements g ∈ G in order to find one of order 3 ppd�(p; 3δ′e), in which 
case let y be an element of order 3 in 〈g〉. Choose up to 100 conjugates y′ �= y±1 of y, and 
for each test whether t := [y′, y′ y] or (y′y′ y)my′ is an involution, where 2m + 1 = q2 − 1
[23, Prop. 4]. Then t is a long root element or G.

Choose up to 108 pairs g, h ∈ G, and for each test whether |ttg| and |tth| are both odd, 
in which case let C := 〈g̃, ̃h〉 ≤ CG(t) (cf. (2.5)); this is probably of the form R×X, with 
X the short root group containing t and R a long root SL(2, q) subgroup. Find R (e.g., 
using ppds as in Lemma 3.1, or the fact that R = 〈g̃2, ̃h2〉 with very high probability). 
Find a constructive isomorphism ΨR : R̂ → R using [23].

Find a long root group Z of R and hence of G. Let 1 �= z ∈ Z.
As above, find CG(z) (testing the same 108 pairs g, h ∈ G), which has the form Z×L

for a short root SL(2, q) subgroup L; and then find L and a constructive isomorphism 
ΨL : L̂ → L.
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Time: O(ξ + χ), with χ = μ log3 q log log q by [23].

Reliability: > 1 − 1/28 using Lemmas 6.1 and 6.2 and imitating Section 5.

As in Section 5, we can now repeat the remainder of [27, Sec. 3] in order to complete 
the proof.
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