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k-Homogeneous Groups *

WiLLiam M. KANTOR

1. Introduction

A permutation group is called k-homogeneous if it is transitive on the
k-sets of permuted points,

Theorem 1. Let G be a group k-homogeneous but not k-transitive on a finite
set Q of n points, where n=2k. Then, up to permutation isomorphism, one of the
following holds:

(i) k=2 and G AT'L(1, g) with n=¢g=3 (mod 4);

(i) k=3 and PSL(2,9)SG=<PI'L(2,q), where n—1=¢g=3 (mod 4);
(iil) k=3 and G=AGL(1,8), AI'L(1,8) or AI'L(1, 32); or
{iv) k=4 and G=PSL(2,8), PI'L(2,8) or PI'L(2, 32).

Here AI'L(1, g) is the group of mappings x — a x’+b on GF(g), where a0
and b are in GF(q) and oceAut GF(q). AGL(1, q) consists of those mappings
with ¢=1. All the groups listed in the theorem are assumed to act in their
usual permutation representations.

We note that, conversely, each of (i)-(iv) produces examples of k-homo-
geneous but not k-transitive groups. Thus, in (i) we need only consider maps
of the form x — a® x+b. Moreover, PSL(2,q), g=3(mod 4), and the groups
in (iii) and (iv) meet our requirements.

This theorem completes results of Livingstone and Wagner [8], who
showed that k must be at most 4. Clearly k> 1. For the case k=2, see [7],
Proposition 3.1. The case k=4 was considered in [6], but there is an error
in the proof. Note that the hypothesis n=>2k is essential, since, for example
a 2-transitive group of degree n is (n—2)-homogeneous.

The case k=4 will follow easily from the case k=3. If k=3 and neither
(i) nor (iii) holds, it is easy to show that 3,y |G| and the stabilizer of 2 points
has precisely 3 orbits on the remaining points. However, the deep group-
theoretic results presently known about 3'-groups do not seem to apply to
our situation. Instead of these we use a combinatorial argument, based on
the proof of Gleason’s lemma ([4], Lemma 1.7), in order to employ induction.

Our potation is that of Wielandt [9]. If X is a subset of a permutation
group then A(X) is its set of fixed points.
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2. Induction

In order to use induction to prove Theorem 1 when k=3, we will use
somewhat different hypotheses. The result will be an easy consequence of

Theorem 2. Let G be a group 2-transitive on a finite set Q, where n=|0}>2,
Assume:

(@) 341Gl; and

(b) If a=p then G,z has precisely 3 orbits on Q—{a, B}.
Then n=5 and |G|=20.

The following result will be used very frequently.

Lemma 1 (Livingstone and Wagner [8], Theorem 3; Bender [ 1], Lemma 3.3).
Let K be a group transitive on a finite set @. Let r be a prime and R an r-subgroup
maximal with respect to fixing =2 points. Then N(R¥® is transitive.

Proof of Theorem?2. Let G be a counterexample with n minimal. By (a),
n>5.

For a# f let I:(a, ), i=1, 2, 3, be the orbits of G,; on Q— {a, f}; this label-
ing is chosen in any way. (These orbits cannot necessarily be labelled so that
I (a2, p&)=1I;(a, )¢ for all geG, as some g might interchange « and f and also
interchange two of the orbits I;(, f).) For each i we have |Ij(a, f)|>1, as
otherwise by (b) N(G, )" is 2-transitive of degree 3 or 4, contradicting (a).

Let p be a prime such that there is a nontrivial p-group fixing >2 points,
Let PG, be such a p-group maximal with respect to fixing >2 points.

Lemma 2. |A(P)| =5, IN(PYA®|=20 and |A(P) (o, B)| =1, i=1,2,3.

Proof. By Lemma 1, N(P)*® is 2-transitive. Let i=1,2, or 3. If a p-sub-
group of G, fixes >1 point of I(a, p) it certainly fixes >2 points of Q. Thus,
if A(P)nI;(, f)=0 then by Lemmal N(P),, is transitive on 4(P)nI;{x, B).

If A(P) meets all I;(x, §) then (a) and (b) hold for N(P)*®, and the lemma
follows from the minimality of n. Since N(P)*® is not 3-transitive by (a), 4(P)
cannot meet just one I;(x, f).

Suppose that 4(P) meets just two sets [;(x, ). There is a natural 1-1 corre-
spondence between the orbits O of N(P)*® of ordered triples (o, 8, y) of distinct
points of A(P) and the orbits of N(P)45" on 4(P)—{e, }. If O is such an orbit
then so are O'={(a, 8, PI(B, y, x)e 0} and 0" = {(«, B, V)|(y, =, f)eO}. Since two
of 0, 0', 0" are the same in our case, N(P) contains a 3-element = 1, which is
not the case.

Lemma 3. No nontrivial element fixes more than 5 points.

Proof. If this is not the case, there is a prime p such that some nontrivial
p-group fixes > 35 points. Choose Q maximal among such p-groups. Set 4 = 4(Q)
and H=N(Q). Let P>Q be as in Lemma 2.

By Lemma 2, [I;(o, p)l=1(mod p), i=1, 2, 3. Thus, for any a*, f*e4, o* & %,

we have |4 A L%, f*)|=1 (mod p), i=1,2,3. (%)
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If a p-subgroup of G, fixes >1 point of some I;(a*, f*) then it fixes >S5
points by Lemma 2. Thus, if |4 n I} (z*, *)|>1 then Q is maximal among the
p-subgroups of G,z fixing >1 point of I;(a* f*). By Lemmal, H, ;. is
transitive on 4 N I (a*, f*), i=1, 2, 3. In particular, by the minimality of n, H
is not 2-transitive on 4. Frequent use will be made of the fact that, for any
distinct o*, f*eA, H,. 4 has precisely 5 orbits on 4.

Let aeA. By (%) H, has a nontrivial orbit @ on A —o. Let fe®.

We claim that H, fixes no point ded—a. For otherwise, H,z;<H,=H,;,
where each of these groups has 5 orbits on 4 and f is an orbit of H,; but not
of H;. This is clearly impossible.

In particular, H fixes no point de4.

Suppose that H is intransitive on 4. Let 4" and 4" be (nontrivial) orbits
of Hon 4. Let o'e4’ and o”€A4”. Both A4’—¢« and 4” —«" are unions of certain
ofthe 5 orbits of H,, .- on 4. By (%), |4’ —a'|=1 or 2and [4” —&”|=1 or 2(mod p),
but |4'—d|=]|4"—a"|=2(mod p) does not occur. We may assume that
|4'|=2(mod p) and H,, . is transitive on 4’—o'. Then H is 2-transitive on 4'.
Let f'ed’—a'. Note that 4'={o, f'} since H, cannot fix the point f'ed—a'
Thus |4']>2. Now H,., has at least one orbit on 4” and hence at most two
orbits on 4’—{o/, p'}. Consequently, H* is either 3-transitive or a transitive
extension of a rank 3 group. As at the end of the proof of Lemma 2 we obtain
3||H], contradicting (a).

Thus, H is transitive on 4. Recall that each orbit of H ~* is nontrivial. Since
H is not 2-transitive on 4, we can find at least two orbits @, @ of H, on A —u.

Here |@| and |®'| are >2. For suppose |@|=2. Let adeA—&. By (),
H,; fixes @ pointwise, so H,; < H,,. Since H,; and H,; have 5 orbits, H,; must
fix 6. Consequently, H,,=1, contradicting the fact that |4]>5.

Both @—f and @' are unions of certain of the 5 orbits of H,; on 4. By
(%), [@—pl=1 or 2 and |@'|=1 or 2(mod p). Interchanging ¢ and & we find
that either (i) (9|=|P'|=2(mod p), A=aw U, and H, is 2-transitive on P
and @'; or (ii) p=2, |P|=|?'|=1(mod 2), A=au U P, and H, has rank 3 on
¢ and &'

Note that H is imprimitive on 4. This follows from [9], Theorem 17.7 if
(i) holds. If (ii) holds and [@'| = |®| then, since in this case H,, is transitive on
@', @' is an orbit of H,; and hence H, is not maximal in H.

We may thus assume that the global stabilizer K of ou @ in H is transitive.
Then K*“?® is either 3-transitive or a transitive extension of a rank 3 group.
Once again, as in the proof of Lemma 2 we obtain 3||K].

This contradiction proves the lemma.

We can now complete the proof of Theorem 2. Recall that each | (o, B)| > 1.

For i=1,2,3, G, acts faithfully on I;(o, f) as a regular or Frobenius
group. To see this, let p be a prime and xeG,; a p-element fixing =2 points
of some I}{c, ). By Lemma 2, x fixes >3 points, so by Lemma 3 x=1.

Thus, G,; has a unique normal subgroup A4 regular on each I;(«, ). Here
|A|=(n—2)/3.

18*
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If m is even so is {4}, and all involutions fix 0 or 2 points. By an elementary
lemma of Hering [5, p.164, (2)], G,; has at most two orbits on Q—{a, §},
contradicting (b),

Thus, n and |4] are odd. Let x=(af)-- be an involution. Then x normal-
izes A.

Suppose that |G,4| is odd. Then x inverts 4. If y*=7 then x centralizes
G,p,- Thus, there are |4} involutions (xf)---. Counting the pairs consisting
of an involution and one of its 2-cycles shows that the set I of involutions of
G, has |4 elements. Then I'w {1} is not a group, since 1+(n~2)/3 yn—1. By
Bender’s theorem [2], G has a nontrivial normal subgroup of odd order, and
by the Feit-Thompson Theorem [3] G has a regular normal elementary
abelian subgroup. This contradicts the semwegulam‘cy of 4 on @—{u B}. {It
is not difficult to replace Bender’s theorem in the above argument by Bender’s
generalization of Burnside’s theorem on permutatmn groups of prime degree
[2], Lemma 2.5, according to which either G, is 2-tramsitive on I or G, =
N(4), C())

Consequently, we may assume that |4(x)]=5. Choose i such that
140N I, B)|> 1.

Since C,(x} is transitive on 4(x)n (o, B) ([9], Theorem 11.2), by (a) we
have |C4(x)|= 5, that is, 4(x) S I}(x, f). Write 4= C,(x)x [ 4, x], where x inverts
[4,x].

Let yed(x). Since x normalizes G,;, it centralizes some involution yeG,,.
Here y inverts 4, so that xyeG, centralizes [4, x]. Since y* < 4(xy) and
xy is an involution, |[[4, x]{=1 or 5, according to whether {4(xy)|=1 or +1.
Consequently, |4]=35 or 25 and n=17 or 77.

It is easy to eliminate these possibilities by considering the index of the
normalizer of a Sylow 17- or 19-subgroup. Alternatively, note that the point-
wise stabilizer of 4(x) is now a 2-group of order <8. Since this is normalized
by a Sylow 5-subgroup F of C(x) it follows that F<1 C(x). However, we have
seen that corresponding to each 2-cycle (¢ f8) of x there is a group of order 5
in C(x),p. Thus, F fixes Q—A(x) pointwise, which is ridiculous.

This completes the proof of Theorem 2.

3. Proof of Theorem 1

As already remarked in § 1, we need only consider the cases k=3 and 4.
G is (k—1)-transitive (Livingstone and Wagner [8], Theorem 2(a)).

Let k=3. Let @ be a set of 3 points. The global stabilizer of & induces a
permutation group on the ordered triples of distinct points of @ each of whose
orbits has the same length 6/f Here f=2,3 or 6. Each orbit of G of ordered
triples of distinct points has length n(n—1)(n—2)/f. Consequently, if a+f
then each orbit of G,; on 2—{«, 8} has length (n—2)/f.

Suppose that |G,| is odd. By a result of Bender [1], either (ii) holds or G
is solvable, In the latter case, G has a regular normal elementary abelian sub-
group N of order n=2% By [9], Theorem 10.4, GZ™* has a regular normal
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nilpotent subgroup M. Here M acts fixed-point-freely on N and hence is
cyclic. Then |Ngy 5)(M)|=(2"—1)d implies that 2/—2|64, so that (iii) holds.

We may thus assume that there is an involution of the form (af)(y)---.
Then f=3, so that 3 /{G|. Now Theorem 2 applies, whereas n=2k=6. This
completes the proof when k=3.

Now let k=4. We first show that there is a set ¢ of 4 points whose global
stabilizer is transitive on @. By Livingstone and Wagner [§], Theorem 3, we
can find a set 4 with |4|=4 whose global stabilizer induces a 3-transitive
group H on 4 such that each nontrivial element of H fixes =<3 points of 4.
Certainly 4||H|. If H has an element of order 4 we can find the desired &.
If |4] £9 our assertion is also clear. Finally, if [4]>9 and if H contains a Klein
group then this Klein group has an orbit of length 4.

It follows that G is transitive on the pairs («, ¢) with ae® and |P|=4.
Then G£~* is 3-homogeneous but not 3-transitive. If G, is as in (ii) or (iii),
then (iv) holds. This completes the proof of Theorem 1.
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