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k-Homogeneous Groups* 
WILLIAM M .  KANTOR 

1. Introduction 

A permutation group is called k-homogeneous if it is transitive on the 
k-sets of permuted points. 

Theorem 1. Let G be a group k-homogeneous but not k-transitive on a finite 
set f2 of n points, where n>=2k. Then, up to permutation isomorphism, one of the 

following holds: 

(i) k = 2 and G < AFL(1, q) with n = q-= 3 (mod 4); 

(ii) k = 3  and PSL(2, q)<<_G<_PFL(2, q), where n -  1 = q = 3  (rood 4); 

(iii) k = 3  and G=AGL(1, 8), AFL(1, 8) or AFL(1, 32); or 

(iv) k = 4 and G = PSL(2, 8), PFL(2, 8) or PFL(2, 32). 

Here AFL(1, q) is the group of mappings x ~ a x ~ + b on GF(q), where a 4= 0 
and b are in GF(q) and ~ A u t  GF(q). AGL(1, q) consists of those mappings 
with o-= 1. All the groups listed in the theorem are assumed to act in their 
usual permutation representations. 

We note that, conversely, each of (i)-(iv) produces examples of k-homo- 
geneous but not k-transitive groups. Thus, in (i) we need only consider maps 
of the form x ~ a 2 x+b. Moreover, PSL(2, q), q - 3  (mod 4), and the groups 
in (iii) and (iv) meet our requirements. 

This theorem completes results of Livingstone and Wagner [8], who 
showed that k must be at most 4. Clearly k > l .  For  the case k=2,  see L7], 
Proposition 3.1. The case k = 4  was considered in [6], but there is an error 
in the proof. Note that the hypothesis n>2k  is essential, since, for example, 
a 2-transitive group of degree n is (n-2)-homogeneous.  

The case k = 4 will follow easily from the case k = 3. If k = 3 and neither 
(ii) nor (iii) holds, it is easy to show that 3f iG] and the stabilizer of 2 points 
has precisely 3 orbits on the remaining points. However, the deep group- 
theoretic results presently known about 3'-groups do not seem to apply to 
our situation. Instead of these we use a combinatorial argument, based on 
the proof of Gleason's lemma ([43, Lemma 1.7), in order to employ induction. 

Our notation is that of Wielandt [93. If X is a subset of a permutation 
group then A(X) is its set of fixed points. 
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2. Induction 

In order to use induction to prove Theorem 1 when k=3, we wilt use 
somewhat different hypotheses. The result will be an easy consequence of 

Theorem 2. Let G be a group 2-transitive on a finite set f2, where n= 10 t > 2. 
Assume: 

(a) 3~/[G[; and 

(b) I f  ~ 4= fi then G~p has precisely 3 orbits on O - { ~ ,  ~}. 

Then n=5  and [G[=20. 

The following result will be used very frequently. 

Lemma 1 (Livingstone and Wagner [8], Theorem 3; Bender [1 ], Lemma 3.3). 
Let K be a group transitive on a finite set ~. Let r be a prime and R an r-subgroup 
maximal with respect to fixing >2 points. Then N(R) a(Ie) is transitive. 

Proof of Theorem 2. Let G be a counterexample with n minimal. By (a), 
n>5.  

For ~+fi  let ~(~, fl), i=  1, 2, 3, be the orbits of G~p on O -  {~, fl}; this label- 
ing is chosen in any way. (These orbits cannot necessarily be labelled so that 
~(~g, flg)=~(~, fl)g for all g~G, as some g might interchange ~ and fl and also 
interchange two of the orbits ~(~, fi).) For each i we have [~(~, fi)] > 1, as 
otherwise by (b) N(G,~) A(~) is 2-transitive of degree 3 or 4, contradicting (a). 

Let p be a prime such that there is a nontrivial p-group fixing > 2 points. 
Let P < G,~ be such a p-group maximal with respect to fixing > 2 points. 

Lemma 2. [A(P)I = 5, IN(P)A(e) I =20 and ]A(P) c~ F~ (c~, fl)] = 1, i=  1, 2, 3. 

Proof By Lemma 1, N(P) a(e) is 2-transitive. Let i=  1, 2, or 3. If a p-sub- 
group of G~ fixes > 1 point of F~(~,/3) it certainly fixes >2  points of f2. Thus, 
if A(P)c~Fi(~,fl)+O then by Lemma 1 N(P),~ is transitive on A(P)mFi(e, fi). 

If A(P) meets all F/(c~, fl) then (a) and (b) hold for N(P) a(l"), and the lemma 
follows from the minimality of n. Since N(P) a(e) is not 3-transitive by (a), A(P) 
cannot meet just one Fi(c~, fl). 

Suppose that A(P) meets just two sets F~(e,/3). There is a natural 1-1 corre- 
spondence between the orbits O of N(P) a (e) of ordered triples (e,/3, ~) of distinct 
points of A(P) and the orbits of N(P)~  e) on A(P)-{c~, fi}. If O is such an orbit 
then so are O'= {(~, fl, 7)1(/3, ~, c0~O} and O"=  {(~,/3, 7)1(~, ~,/3)~0}. Since two 
of O, O', 0" are the same in our case, N(P) contains a 3-element 4 = 1, which is 
not the case. 

Lemma 3. No nontrivial element f ixes more than 5 points. 

Proof If this is not the case, there is a prime p such that some nontrivial 
p-group fixes > 5 points. Choose Q maximal among such p-groups. Set A = A (Q) 
and H = N ( Q )  a. Let P > Q  be as in Lemma 2. 

By Lemma 2, [Fi(e, fi)[= 1 (mod p), i=  1, 2, 3. Thus, for any e*,/3* cA, ~* 4= fi*, 

we have [A ~ F/(a*,/3")1 -= 1 (mod p), i=  1, 2, 3. (*) 
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If a p-subgroup of G,,a, fixes > 1 point of some F~(c~*, ]3*) then it fixes > 5 
points by Lemma 2. Thus, if rA c~F/(e*, fl*)[ > 1 then Q is maximal among the 
p-subgroups of G~,p, fixing > 1 point of F/(~*, fl*). By Lemma 1, Ha, c, is 
transitive on A c~ F/(e*,/~*), i=  1, 2, 3. In particular, by the minimality of n, H 
is not 2-transitive on A. Frequent use will be made of the fact that, for any 
distinct ~*, fl*eA, H~,a, has precisely 5 orbits on A. 

Let ~eA. By (,) H, has a nontrivial orbit ~b on A - ~ .  Let fle4~. 
We claim that H, fixes no point 6eA-c~. For otherwise, H~p<H,=H~a, 

where each of these groups has 5 orbits on A and/~ is an orbit of H,p but not 
of H~.  This is clearly impossible. 

In particular, H fixes no point 6~A. 
Suppose that H is intransitive on A. Let A' and A" be (nontrivial) orbits 

of H on A. Let c(~A' and ~"~A". Both A ' - ~ '  and A " -  c(' are unions of certain 
of the 5 orbits ofH~, ~,, on A. By (,), [A'-  e ' [ -  1 or 2 and [A"-  e"[ = 1 or 2(mod p), 
but [A'-e'l-]A"-~"[=2(modp) does not occur. We may assume that 
I A']-=-2 (mod p) and H,, ~,, is transitive on A ' - e ' .  Then H is 2-transitive on A'. 
Let ~ ' e A ' - ~ ' .  Note that A'=t= {~', ~'} since H~, cannot fix the point ~ ' e A - e ' .  
Thus [A'[>2. Now H=,~, has at least one orbit on A" and hence at most two 
orbits on A'-{e',/3'}. Consequently, H a' is either 3-transitive or a transitive 
extension of a rank 3 group. As at the end of the proof of Lemma 2 we obtain 
3[[H[, contradicting (a). 

Thus, H is transitive on A. Recall that each orbit of H~-= is nontrivial. Since 
H is not 2-transitive on A, we can find at least two orbits ~, ~b' of H= on A - e .  

Here 14~ I and 145' I are >2. For suppose 14~1=2. Let e+6eA-~b. By (*), 
H~0 fixes ~ pointwise, so H~  < H~.  Since H~ and H~a have 5 orbits, H,a must 
fix 6. Consequently, H ,a=  1, contradicting the fact that IAI > 5. 

Both ~b-/~ and ~b' are unions of certain of the 5 orbits of H,~ on A. By 
(,), [4~-/3[--1 or 2 and ]4~'1 ~ 1 or 2(mod p). Interchanging ~b and 4~' we find 
that either (i) [4~1-14~'1-=2 (mod p), A =c~ ~ 4~ w ~b', and H~ is 2-transitive on 
and 4~'; or (ii) p=2,  ]~b]-=l~b'[_= 1 (rood 2), A = c ~ P ~  4~', and H~ has rank 3 on 
4~ and ~'. 

Note that H is imprimitive on A. This follows from [9], Theorem 17.7 if 
(i) holds. If (ii) holds and t~'l >[~Vl then, since in this case H~a is transitive on 
4~', 4~' is an orbit of H e and hence H~ is not maximal in H. 

We may thus assume that the global stabilizer K of e ~ ~b in H is transitive. 
Then K "~* is either 3-transitive or a transitive extension of a rank 3 group. 
Once again, as in the proof of Lemma 2 we obtain 3l[gl. 

This contradiction proves the lemma. 

We can now complete the proof of Theorem 2. Recall that each I,r~(e,/~)1 > 1. 
For i=1,2 ,  3, G~p acts faithfully on F/(~,/?) as a regular or Frobenius 

group. To see this, let p be a prime and xsG~ a p-element fixing >2  points 
of some F~(~,/3). By Lemma 2, x fixes >5  points, so by Lemma 3 x =  l. 

Thus, G~p has a unique normal subgroup A regular on each Fi(c~,/~). Here 
rAf =(n-2) /3 .  
18" 
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If n is even so is JAI, and all involutions fix 0 or 2 points. By an elementary 
lemma of Hering [5, p. 164, (2)], G~r has at most two orbits on ~-{c~,/~}, 
contradicting (b). 

Thus, n and IAF are odd. Let x=(~fi).., be an involution. Then x normal- 
izes A. 

Suppose that IG~pl is odd. Then x inverts A. If ?x= 7 then x centralizes 
G~r Thus, there are IA I involutions (cd?).... Counting the pairs consisting 
of an involution and one of its 2-cycles shows that the set I of involutions of 
G~ has IAt elements. Then I,,~, {1} is not a goup,  since 1 +(n-2)/3Xn-~l: By 
Bender's theorem [2], G has a nontrivial normal subgroup of odd order, and 
by the Feit-Thompson Theorem [3] G has a regular nm-mal elementary 
abelian subgroup. This contradicts the semiregularity of A on t?-{c~, ~}, (It 
is not difficult to replace Bender's theorem in the above argument by BendeFs 
generalization of Burnside's theorem on permutation groups of prime degree 
[2], Lemma 2:5, according to which either G~ is 2-transitive on I Or G~= 
N(A)  C(O.) 

Consequently, we may assume that td(x)l=5: Choose i such that 

Since Ca(x) is transitive on A(x)c~Fi(~,/3) ([9], Theorem It.2), by (a) we 
have t Ca (x) l = 5, that is, A (x) ~ Fi(e, fi). Write A = Ca (x) x [A, x], where x inverts 
[A, x]. 

Let yea (x). Since x normalizes G~a~ it centralizes some involution v~G 
Here y inverts A, so that xysG:, centralizes [A,x]. Since ?~A'xt~_A(xy)and 
xy is an involution, ][A, x]t = 1 or 5, according to whether ]A (xy)l= 1 or ~ t. 
Consequently, IAI = 5 or 25 and n= 17 or 77. 

It is easy to eliminate these possibilities by considering the index of the 
normalizer of a Sylow 17- or 19-subgroup. Alternatively, note that the point- 
wise stabilizer of A (x) is now a 2-group of order < 8. Since this is normalized 
by a Sylow 5-subgroup F of C(x) it follows that F <  C(x). However, we have 
seen that corresponding to each 2-cycle (~fi) of x there is a group of order 5 
in C(x)~.r Thus, F fixes f2-A (x) pointwise, which is ridiculous. 

This completes the proof of Theorem 2. 

3. Proof of Theorem t 

As already remarked in w 1, we need only consider the cases k-- 3 and 4. 
G is (k-D-transitive (Livingstone and Wagner [8], Theorem 2(a)). 

Let k = 3. Let ~ be a set of 3 points. The global stabilizer of r induces a 
permutation group on the ordered triples of distinct points of �9 each of whose 
orbits has the same length 6If. Here f =  2, 3 or 6. Each orbit of G of ordered 
triples of distinct points has length n(n-1)(n-2)/f Consequently; if e+ /3  
then each orbit of G~ on t2 -  {0~, fl} has length (n-2)/f 

Suppose that IG~[ is odd. By a result of Bender [1], either (ii) holds or G 
is solvable. In the latter case, G has a regular normal elementary abelian sub- 
group N of order n=2  ~. By [9], Theorem I0.4, G~ -~ has a regular normal 
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nilpotent subgroup M. Here M acts fixed-point-freely on N and hence is 
cyclic. Then [NGL(d ' 21 (M)[= (2 d -  1)d implies that 2 d -  216 d, so that (iii) holds. 

We may thus assume that there is an involution of the form (cG~) (7 ) " .  
Then f =  3, so that 3~/Ia[. Now Theorem 2 applies, whereas n>  2 k =  6. This 
completes the proof when k = 3. 

Now let k=  4. We first show that there is a set q~ of 4 points whose global 
stabilizer is transitive on qs. By Livingstone and Wagner [-8], Theorem 3, we 
can find a set A with [A[>4 whose global stabilizer induces a 3-transitive 
group H on A such that each nontrivial element of H fixes <3  points of A. 
Certainly 41[H [. If H has an element of order 4 we can find the desired 45. 
If [A[< 9 our assertion is also clear. Finally, if [A I> 9 and if H contains a Klein 
group then this Klein group has an orbit of length 4. 

It follows that G is transitive on the pairs (e, ~b) with c ~  and I'bl=4. 
Then G~ -~ is 3-homogeneous but not 3-transitive. If G, is as in (ii) or (iii), 
then (iv) holds. This completes the proof of Theorem 1. 
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