k-Homogeneous Groups*

WILLIAM M. KANTOR

1. Introduction

A permutation group is called k-homogeneous if it is transitive on the k-sets of permuted points.

Theorem 1. Let G be a group k-homogeneous but not k-transitive on a finite set Ω of n points, where $n \ge 2k$. Then, up to permutation isomorphism, one of the following holds:

- (i) k=2 and $G \leq A\Gamma L(1, q)$ with $n=q \equiv 3 \pmod{4}$;
- (ii) k=3 and $PSL(2, q) \leq G \leq P\Gamma L(2, q)$, where $n-1=q \equiv 3 \pmod{4}$;
- (iii) k=3 and G=AGL(1,8), $A\Gamma L(1,8)$ or $A\Gamma L(1,32)$; or
- (iv) k=4 and G=PSL(2, 8), $P\Gamma L(2, 8)$ or $P\Gamma L(2, 32)$.

Here $A\Gamma L(1, q)$ is the group of mappings $x \to a \, x^{\sigma} + b$ on GF(q), where $a \neq 0$ and b are in GF(q) and $\sigma \in \text{Aut } GF(q)$. AGL(1, q) consists of those mappings with $\sigma = 1$. All the groups listed in the theorem are assumed to act in their usual permutation representations.

We note that, conversely, each of (i)–(iv) produces examples of k-homogeneous but not k-transitive groups. Thus, in (i) we need only consider maps of the form $x \to a^2 x + b$. Moreover, PSL(2, q), $q \equiv 3 \pmod{4}$, and the groups in (iii) and (iv) meet our requirements.

This theorem completes results of Livingstone and Wagner [8], who showed that k must be at most 4. Clearly k>1. For the case k=2, see [7], Proposition 3.1. The case k=4 was considered in [6], but there is an error in the proof. Note that the hypothesis $n \ge 2k$ is essential, since, for example, a 2-transitive group of degree n is (n-2)-homogeneous.

The case k=4 will follow easily from the case k=3. If k=3 and neither (ii) nor (iii) holds, it is easy to show that $3 \not \mid |G|$ and the stabilizer of 2 points has precisely 3 orbits on the remaining points. However, the deep group-theoretic results presently known about 3'-groups do not seem to apply to our situation. Instead of these we use a combinatorial argument, based on the proof of Gleason's lemma ([4], Lemma 1.7), in order to employ induction.

Our notation is that of Wielandt [9]. If X is a subset of a permutation group then $\Delta(X)$ is its set of fixed points.

^{*} Research supported in part by NSF Grant GP 9584.

2. Induction

In order to use induction to prove Theorem 1 when k=3, we will use somewhat different hypotheses. The result will be an easy consequence of

Theorem 2. Let G be a group 2-transitive on a finite set Ω , where $n=|\Omega|>2$. Assume:

- (a) $3 \nmid |G|$; and
- (b) If $\alpha \neq \beta$ then $G_{\alpha\beta}$ has precisely 3 orbits on $\Omega \{\alpha, \beta\}$. Then n = 5 and |G| = 20.

The following result will be used very frequently.

Lemma 1 (Livingstone and Wagner [8], Theorem 3; Bender [1], Lemma 3.3). Let K be a group transitive on a finite set Φ . Let r be a prime and R an r-subgroup maximal with respect to fixing ≥ 2 points. Then $N(R)^{A(R)}$ is transitive.

Proof of Theorem 2. Let G be a counterexample with n minimal. By (a), n > 5.

For $\alpha \neq \beta$ let $\Gamma_i(\alpha, \beta)$, i = 1, 2, 3, be the orbits of $G_{\alpha\beta}$ on $\Omega - \{\alpha, \beta\}$; this labeling is chosen in any way. (These orbits cannot necessarily be labelled so that $\Gamma_i(\alpha^g, \beta^g) = \Gamma_i(\alpha, \beta)^g$ for all $g \in G$, as some g might interchange α and β and also interchange two of the orbits $\Gamma_i(\alpha, \beta)$.) For each i we have $|\Gamma_i(\alpha, \beta)| > 1$, as otherwise by (b) $N(G_{\alpha\beta})^{A(G_{\alpha\beta})}$ is 2-transitive of degree 3 or 4, contradicting (a).

Let p be a prime such that there is a nontrivial p-group fixing >2 points. Let $P \le G_{\alpha\beta}$ be such a p-group maximal with respect to fixing >2 points.

Lemma 2.
$$|\Delta(P)| = 5$$
, $|N(P)^{\Delta(P)}| = 20$ and $|\Delta(P) \cap \Gamma_i(\alpha, \beta)| = 1$, $i = 1, 2, 3$.

Proof. By Lemma 1, $N(P)^{\Delta(P)}$ is 2-transitive. Let i=1, 2, or 3. If a p-subgroup of $G_{\alpha\beta}$ fixes >1 point of $\Gamma_i(\alpha, \beta)$ it certainly fixes >2 points of Ω . Thus, if $\Delta(P) \cap \Gamma_i(\alpha, \beta) \neq \emptyset$ then by Lemma 1 $N(P)_{\alpha\beta}$ is transitive on $\Delta(P) \cap \Gamma_i(\alpha, \beta)$.

If $\Delta(P)$ meets all $\Gamma_i(\alpha, \beta)$ then (a) and (b) hold for $N(P)^{\Delta(P)}$, and the lemma follows from the minimality of n. Since $N(P)^{\Delta(P)}$ is not 3-transitive by (a), $\Delta(P)$ cannot meet just one $\Gamma_i(\alpha, \beta)$.

Suppose that $\Delta(P)$ meets just two sets $\Gamma_i(\alpha, \beta)$. There is a natural 1-1 correspondence between the orbits O of $N(P)^{\Delta(P)}$ of ordered triples (α, β, γ) of distinct points of $\Delta(P)$ and the orbits of $N(P)^{\Delta(P)}_{\alpha\beta}$ on $\Delta(P) - \{\alpha, \beta\}$. If O is such an orbit then so are $O' = \{(\alpha, \beta, \gamma) | (\beta, \gamma, \alpha) \in O\}$ and $O'' = \{(\alpha, \beta, \gamma) | (\gamma, \alpha, \beta) \in O\}$. Since two of O, O', O'' are the same in our case, N(P) contains a 3-element $\neq 1$, which is not the case.

Lemma 3. No nontrivial element fixes more than 5 points.

Proof. If this is not the case, there is a prime p such that some nontrivial p-group fixes >5 points. Choose Q maximal among such p-groups. Set $\Delta = \Delta(Q)$ and $H = N(Q)^{\Delta}$. Let P > Q be as in Lemma 2.

By Lemma 2, $|\Gamma_i(\alpha, \beta)| \equiv 1 \pmod{p}$, i = 1, 2, 3. Thus, for any α^* , $\beta^* \in \Delta$, $\alpha^* \neq \beta^*$, we have $|\Delta \cap \Gamma_i(\alpha^*, \beta^*)| \equiv 1 \pmod{p}$, i = 1, 2, 3. (*)

If a p-subgroup of $G_{\alpha^*\beta^*}$ fixes >1 point of some $\Gamma_i(\alpha^*, \beta^*)$ then it fixes >5 points by Lemma 2. Thus, if $|\Delta \cap \Gamma_i(\alpha^*, \beta^*)| > 1$ then Q is maximal among the p-subgroups of $G_{\alpha^*\beta^*}$ fixing >1 point of $\Gamma_i(\alpha^*, \beta^*)$. By Lemma 1, $H_{\alpha^*\beta^*}$ is transitive on $\Delta \cap \Gamma_i(\alpha^*, \beta^*)$, i=1,2,3. In particular, by the minimality of n, H is not 2-transitive on Δ . Frequent use will be made of the fact that, for any distinct $\alpha^*, \beta^* \in \Delta$, $H_{\alpha^*\beta^*}$ has precisely 5 orbits on Δ .

Let $\alpha \in \Delta$. By (*) H_{α} has a nontrivial orbit Φ on $\Delta - \alpha$. Let $\beta \in \Phi$.

We claim that H_{α} fixes no point $\delta \in \Delta - \alpha$. For otherwise, $H_{\alpha\beta} < H_{\alpha} = H_{\alpha\delta}$, where each of these groups has 5 orbits on Δ and β is an orbit of $H_{\alpha\beta}$ but not of $H_{\alpha\delta}$. This is clearly impossible.

In particular, H fixes no point $\delta \in \Delta$.

Suppose that H is intransitive on Δ . Let Δ' and Δ'' be (nontrivial) orbits of H on Δ . Let $\alpha' \in \Delta'$ and $\alpha'' \in \Delta''$. Both $\Delta' - \alpha'$ and $\Delta'' - \alpha''$ are unions of certain of the 5 orbits of $H_{\alpha'\alpha''}$ on Δ . By (*), $|\Delta' - \alpha'| \equiv 1$ or 2 and $|\Delta'' - \alpha''| \equiv 1$ or 2 (mod p), but $|\Delta' - \alpha'| \equiv |\Delta'' - \alpha''| \equiv 2 \pmod{p}$ does not occur. We may assume that $|\Delta'| \equiv 2 \pmod{p}$ and $H_{\alpha'\alpha''}$ is transitive on $\Delta' - \alpha'$. Then H is 2-transitive on Δ' . Let $\beta' \in \Delta' - \alpha'$. Note that $\Delta' \neq \{\alpha', \beta'\}$ since $H_{\alpha'}$ cannot fix the point $\beta' \in \Delta - \alpha'$. Thus $|\Delta'| > 2$. Now $H_{\alpha'\beta'}$ has at least one orbit on Δ'' and hence at most two orbits on $\Delta' - \{\alpha', \beta'\}$. Consequently, $H^{\Delta'}$ is either 3-transitive or a transitive extension of a rank 3 group. As at the end of the proof of Lemma 2 we obtain $3 \mid H$, contradicting (a).

Thus, H is transitive on Δ . Recall that each orbit of $H_{\alpha}^{\Delta-\alpha}$ is nontrivial. Since H is not 2-transitive on Δ , we can find at least two orbits Φ , Φ' of H_{α} on $\Delta-\alpha$.

Here $|\Phi|$ and $|\Phi'|$ are >2. For suppose $|\Phi|=2$. Let $\alpha + \delta \in \Delta - \Phi$. By (*), $H_{\alpha\delta}$ fixes Φ pointwise, so $H_{\alpha\delta} \leq H_{\alpha\beta}$. Since $H_{\alpha\delta}$ and $H_{\alpha\beta}$ have 5 orbits, $H_{\alpha\beta}$ must fix δ . Consequently, $H_{\alpha\beta} = 1$, contradicting the fact that $|\Delta| > 5$.

Both $\Phi - \beta$ and Φ' are unions of certain of the 5 orbits of $H_{\alpha\beta}$ on Δ . By (*), $|\Phi - \beta| \equiv 1$ or 2 and $|\Phi'| \equiv 1$ or 2 (mod p). Interchanging Φ and Φ' we find that either (i) $|\Phi| \equiv |\Phi'| \equiv 2 \pmod{p}$, $\Delta = \alpha \cup \Phi \cup \Phi'$, and H_{α} is 2-transitive on Φ and Φ' ; or (ii) p = 2, $|\Phi| \equiv |\Phi'| \equiv 1 \pmod{2}$, $\Delta = \alpha \cup \Phi \cup \Phi'$, and H_{α} has rank 3 on Φ and Φ' .

Note that H is imprimitive on Δ . This follows from [9], Theorem 17.7 if (i) holds. If (ii) holds and $|\Phi'| \ge |\Phi|$ then, since in this case $H_{\alpha\beta}$ is transitive on Φ' , Φ' is an orbit of H_{β} and hence H_{α} is not maximal in H.

We may thus assume that the global stabilizer K of $\alpha \cup \Phi$ in H is transitive. Then $K^{\alpha \cup \Phi}$ is either 3-transitive or a transitive extension of a rank 3 group. Once again, as in the proof of Lemma 2 we obtain 3|K|.

This contradiction proves the lemma.

We can now complete the proof of Theorem 2. Recall that each $|\Gamma_i(\alpha, \beta)| > 1$. For i = 1, 2, 3, $G_{\alpha\beta}$ acts faithfully on $\Gamma_i(\alpha, \beta)$ as a regular or Frobenius group. To see this, let p be a prime and $x \in G_{\alpha\beta}$ a p-element fixing ≥ 2 points of some $\Gamma_i(\alpha, \beta)$. By Lemma 2, x fixes $x \in S$ points, so by Lemma 3 $x \in S$.

Thus, $G_{\alpha\beta}$ has a unique normal subgroup A regular on each $\Gamma_i(\alpha, \beta)$. Here |A| = (n-2)/3.

If n is even so is |A|, and all involutions fix 0 or 2 points. By an elementary lemma of Hering [5, p. 164, (2)], $G_{\alpha\beta}$ has at most two orbits on $\Omega - \{\alpha, \beta\}$, contradicting (b).

Thus, n and |A| are odd. Let $x = (\alpha \beta) \cdots$ be an involution. Then x normalizes A.

Suppose that $|G_{\alpha\beta}|$ is odd. Then x inverts A. If $\gamma^x = \gamma$ then x centralizes $G_{\alpha\beta\gamma}$. Thus, there are |A| involutions $(\alpha\beta)\cdots$. Counting the pairs consisting of an involution and one of its 2-cycles shows that the set I of involutions of G_{α} has |A| elements. Then $I \cup \{1\}$ is not a group, since $1 + (n-2)/3 \not / n - 1$. By Bender's theorem [2], G has a nontrivial normal subgroup of odd order, and by the Feit-Thompson Theorem [3] G has a regular normal elementary abelian subgroup. This contradicts the semiregularity of A on $\Omega - \{\alpha, \beta\}$. (It is not difficult to replace Bender's theorem in the above argument by Bender's generalization of Burnside's theorem on permutation groups of prime degree [2], Lemma 2.5, according to which either G_{α} is 2-transitive on I or $G_{\alpha} = N(A)_{\alpha} C(I)$.)

Consequently, we may assume that $|\Delta(x)| = 5$. Choose i such that $|\Delta(x) \cap \Gamma_i(\alpha, \beta)| > 1$.

Since $C_A(x)$ is transitive on $\Delta(x) \cap \Gamma_i(\alpha, \beta)$ ([9], Theorem 11.2), by (a) we have $|C_A(x)| = 5$, that is, $\Delta(x) \subseteq \Gamma_i(\alpha, \beta)$. Write $A = C_A(x) \times [A, x]$, where x inverts [A, x].

Let $\gamma \in \Delta(x)$. Since x normalizes $G_{\alpha\beta\gamma}$ it centralizes some involution $y \in G_{\alpha\beta\gamma}$. Here y inverts A, so that $xy \in G_{\gamma}$ centralizes [A, x]. Since $\gamma^{[A, x]} \subseteq \Delta(xy)$ and xy is an involution, |[A, x]| = 1 or 5, according to whether $|\Delta(xy)| = 1$ or +1. Consequently, |A| = 5 or 25 and n = 17 or 77.

It is easy to eliminate these possibilities by considering the index of the normalizer of a Sylow 17- or 19-subgroup. Alternatively, note that the pointwise stabilizer of $\Delta(x)$ is now a 2-group of order ≤ 8 . Since this is normalized by a Sylow 5-subgroup F of C(x) it follows that $F \triangleleft C(x)$. However, we have seen that corresponding to each 2-cycle $(\alpha\beta)$ of x there is a group of order 5 in $C(x)_{\alpha\beta}$. Thus, F fixes $\Omega - \Delta(x)$ pointwise, which is ridiculous.

This completes the proof of Theorem 2.

3. Proof of Theorem 1

As already remarked in § 1, we need only consider the cases k=3 and 4. G is (k-1)-transitive (Livingstone and Wagner [8], Theorem 2(a)).

Let k=3. Let Φ be a set of 3 points. The global stabilizer of Φ induces a permutation group on the ordered triples of distinct points of Φ each of whose orbits has the same length 6/f. Here f=2,3 or 6. Each orbit of G of ordered triples of distinct points has length n(n-1)(n-2)/f. Consequently, if $\alpha \neq \beta$ then each orbit of $G_{\alpha\beta}$ on $\Omega - \{\alpha, \beta\}$ has length (n-2)/f.

Suppose that $|G_{\alpha}|$ is odd. By a result of Bender [1], either (ii) holds or G is solvable. In the latter case, G has a regular normal elementary abelian subgroup N of order $n=2^d$. By [9], Theorem 10.4, $G_{\alpha}^{\Omega-\alpha}$ has a regular normal

nilpotent subgroup M. Here M acts fixed-point-freely on N and hence is cyclic. Then $|N_{GL(d,2)}(M)| = (2^d - 1) d$ implies that $2^d - 2|6d$, so that (iii) holds.

We may thus assume that there is an involution of the form $(\alpha \beta)(\gamma)\cdots$. Then f=3, so that $3 \not\mid |G|$. Now Theorem 2 applies, whereas $n \ge 2k=6$. This completes the proof when k=3.

Now let k=4. We first show that there is a set Φ of 4 points whose global stabilizer is transitive on Φ . By Livingstone and Wagner [8], Theorem 3, we can find a set Δ with $|\Delta| \ge 4$ whose global stabilizer induces a 3-transitive group H on Δ such that each nontrivial element of H fixes ≤ 3 points of Δ . Certainly 4|H|. If H has an element of order 4 we can find the desired Φ . If $|\Delta| \le 9$ our assertion is also clear. Finally, if $|\Delta| > 9$ and if H contains a Klein group then this Klein group has an orbit of length 4.

It follows that G is transitive on the pairs (α, Φ) with $\alpha \in \Phi$ and $|\Phi| = 4$. Then $G_{\alpha}^{\Omega - \alpha}$ is 3-homogeneous but not 3-transitive. If G_{α} is as in (ii) or (iii), then (iv) holds. This completes the proof of Theorem 1.

References

- Bender, H.: Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben. Math. Z. 104, 175-204 (1968).
- Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt. J. Algebra 17, 527–554 (1971).
- 3. Feit, W., Thompson, J. G.: Solvability of groups of odd order. Pacific J. Math. 13, 771-1029 (1963).
- 4. Gleason, A.M.: Finite Fano planes. Amer. J. Math. 78, 797-807 (1956).
- Hering, C.: Zweifach transitive Permutationsgruppen, in denen zwei die maximale Anzahl von Fixpunkten von Involutionen ist. Math. Z. 104, 150–174 (1968).
- Kantor, W. M.: 4-Homogeneous groups. Math. Z. 103, 67–68 (1968). Correction Math. Z. 109, 86 (1969).
- 7. Automorphism groups of designs. Math. Z. 109, 246-252 (1969).
- 8. Livingstone, D., Wagner, A.: Transitivity of finite permutation groups on unordered sets. Math. Z. 90, 393-403 (1965).
- 9. Wielandt, H.: Finite permutation groups. New York: Academic Press 1964.

Prof. W. M. Kantor Department of Mathematics University of Oregon Eugene, Oregon 97403 USA

(Received October 12, 1970)