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1. INTRODUCTION 

Suppose that G is a permutation group of degree n and let p be a prime 
divisor of /G/. In computational group theory it is a natural and important 
problem to find an element of G of order p. A polynomial-time (but 
impractical) algorithm for this is given in [Ka). In practice, an element of 
the desired type is obtained by "randomly" choosing elements of G and 
computing their orders. After a few tries, and with some luck, a p-singular 
element (i.e., one of order divisible by p) frequently turns up. The purpose 
of this article is to make it clear just how well this procedure can be 
expected to work. 

MAIN THEOREM. Let G be a pennutation group of degree n whose order is 
dil'isible by a prime p. The following then hold. 

(a) The probability that an element of G has order divisible by p is at 
least lin. 

(b) Equality occurs above if and only if either G is sharply 2-transitil'e 
with fl a power of p or G is the full symmetric group Sn with fl = P ~ 5. 

It is easy to see in the two situations described in (b) that the probability 
that a random element is p-singular is exactly l/n. The proof of the rest 
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of the theorem begins with a reduction to the case in which G is "almost 
simple" and is a primitive permutation group. (A group G is almost simple 
if its soc1e is a nonabelian simple group; in other words, if G is contained 
between a nonabelian simple group and its automorphism group.) The 
proof is then completed by an analysis of the various simple groups, using 
the classification theorem. The reduction occurs in Section 2, the alternat­
ing and sporadic groups are considered in Section 3, and the analysis of 
the groups of Lie type is presented in Sections 4-10. 

The fact that equality can occur in the main theorem shows that the 
naive algorithm mentioned earlier cannot work well in all cases. In fact, as 
has been pointed out by J. J. Cannon, it works rather poorly in practice 
when G = PSL(2, p) with n = p + 1; but in that situation it is straightfor­
ward to check that the probability is 2/(n - 1). It is easy to construct 
other examples where this procedure works poorly. On the other hand, the 
analysis in Sections 5-9 shows that the situation is better for Lie type 
groups of characteristic different from p. For these groups, the probability 
that an clement is p-singular is always at least 1 jp2, independent of the 
type of group; and it is also at least (I - P - I ) j2h, where h is the Coxeter 
number of the associated Weyl group. (These results are contained in 
Theorems 5.2 and 5.1, respectively.) Strong estimates are also obtained in 
the case of groups of Lie type in characteristic p (Theorem 10.0. 

In her thesis [Gal, A Gambini independently also found lower bounds 
for the probability that an element of G has order divisible by p when G 
is a permutation group of degree n whose order is divisible by p. While 
her results are not sharp, some of her methods are similar to ours. In 
particular, she also reduced the problem to simple groups and appealed to 
the classification in order to complete her proof. 

2. REDUCTION 

If G is any finite group, let /Lm(G) denote the probability that an 
element of G has order divisible by the positive integer m. Unless stated 
otherwise, our concern will be with the case in which m = p is a fixed 
prime, and usually we will suppress the subscript and write /L(G) instead of 
/L/ G). A simple example of this notation is the following elementary 
observation. 

LEMMA 2.1. If A is abelian then /L(A) = 1 - IjiAlp. 

Here, kp denotes the p-part of an integer k. The following is another 
trivial but useful observation. 

LEMMA 2.2. If N <1 G, then /L(G) ~ /L(G jN) + /L(N)jIG:NI. 
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Proof If a coset Nx is p-singular as an element of GIN, then every 
element in the coset is p-singular. This accounts for M(GIN)IGINIINI = 

M(GIN)IGI p-singular elements in G - N. The desired inequality now 
follows from the fact that N contains ,u(N)INI p-singular elements. I 

We now assume that the Main Theorem holds when G is almost simple, 
and we begin work toward proving the Main Theorem in general. We 
suppose that G is a permutation group on a set X with IXI = n, that 
pllGI and that ,u(G) :::; lin. Working by induction, we can also assume 
that the Main Theorem holds for each permutation group whose degree is less 
than n. Our task is to show that G is one of the groups mentioned in part 
(b) of the Main Theorem (and hence M( G) = 1 In). By our assumption, we 
may suppose that G is not almost simple, and so our goal is to prove that 
G is sharply 2-transitive with n a power of p. We assume that this is not the 
case and eventually derive a contradiction. 

We now proceed in several steps. 

Step 1. G is transitive on X. 
Otherwise, let Y c X be an orbit such that the induced permutation 

group G Y of G on Y has order divisible by p. Since IYI < n, we have 
M( G Y) ~ 1 II Y I > 1 In by the inductive hypothesis. Also, G Y is a homo­
morphic image of G, and hence lin 2. M(G) 2. M(G}') by Lemma 2.2. 
This is a contradiction. 

Step 2. G is primitire on X. 
Otherwise, let ~ be a nontrivial block system, so that I~I < n. If the 

group G'i. induced by G on 1 has order divisible by p, Lemma 2.2 and the 
inductive hypothesis yield lin 2. M(G) ~ M(G'i.) 2. 1/111> lin, a contra­
diction. Thus p + IG'i.I. 

Let M denote the kernel of the action of G on ~. Then M is an 
intransitive normal subgroup of G having order divisible by p, and we may 
assume that 1 is the set of orbits of M. For Y E 1, the groups MY all 
have the same order, and hence pllMYI for all Y E 1. If H denotes the 
(set) stabilizer of Y in G, then pllHYI and IG:HI = I~I = niIYI. Counting 
p-singular elements, and using Lemma 2.2 and the inductive hypothesis, 
we have 

IGI/n 2. M( G)IGI 2. M( H)IHI 2. M( H Y )IHI 2. IHI/IYI = IGI/n, 

and hence equality holds throughout. 
In particular, all p-singular elements of G lie in H, and hence lie in M 

since M = core(i(H), the G-core of H. But M contains elements of order 
p, and hence Cc;(M) :::; M. 

Also, M( H) = M( H Y) = 1 II Y I, and so by induction and part (b) of the 
Main Theorem, either H \' is sharply 2-transitive with IYI a power of p, or 
else H Y is the full symmetric group and IVI = p 2. 5. In either case, 
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Op.(H Y
) is trivial. Since Op.(M)<J H, it follows that Op.(M) acts trivially 

on Y; as Y E k was arbitrary, we must have Op.(M) = 1. Since J.L(H) = 
JL( H Y), Lemma 2.2 implies that J.L( N) = 0, where N is the kernel of the 
action of H on Y. In other words, N is a p' -group. Thus N n M .::; 
Op,(M) = 1 and N centralizes M. Then N = Cc/M) n N s M n N = I, 
so that H acts faithfully on Y. 

If H is sharply 2-transitive on Y, then the Frobenius kernel K of H 
consists of p-elements and hence is contained in M. Since K is a normal 
Sylow p-subgroup of M it is normal in G. Since H acts transitively on the 
nonidentity elements of K and H < G, it follows that some g E G - H 
centralizes some nonidentity element k E K. Therefore, either g or gk is 
p-singular, and this contradicts the fact that M contains all of the p-singu­
lar elements of G. 

The remaining possibility is that H Y is the full symmetric group and 
IYI = p. Since H2O H Y and M is nontrivial, it follows that M is isomor­
phic to either the alternating or the symmetric group on Y, and the 
automorphisms of M induced by H constitute the full automorphism 
group of M. We conclude that some element of G - H centralizes M, and 
this is again a contradiction. 

Step 3. G has no nontrivial abelian normal subgroup. 
Suppose that V <J G is elementary abelian. Since G is primitive, V is 

regular on X. Then G IV is isomorphic to a point stabilizer and hence can 
be viewed as a permutation group of degree n - 1. If plIG: VI, we have 

I/n ~ JL(G) ~ J.L(GIV) ~ 1/(n - 1) 

by Lemma 2.2 and the inductive hypothesis. This contradiction shows that 
G / V is a p' -group, and hence V is a p-group. 

Let H be a point stabilizer in G. Since V is regular we see that H 
complements V and the conjugation action of H on the elements of V is 
permutation isomorphic to the action of H on X. Also, H2O G /V is a 
p'-group. 

Each element of the form he with I! E H and I =1= e E C v(l!) is p-sin­
gular. This gives 

IGI/n ~ IGIJ.L(G) ~ E (ICv(h)l- 1) = IHlk ~ IHI = IGI/n, 
hEH 

where k is the number of orbits in the conjugation action of H on V - {I}. 
Consequently, equality holds throughout. It follows that k = 1 and hence 
G is 2-transitive. It also follows that every p-singular element g E G has 
the form g = he = eh, where h E H and I =1= e E V. Thus gP E H for all 
p-singular elements g E G, and since H was an arbitrary point stabilizer, 
we deduce that gP = 1 and hence h = 1 since h has p'-order. It follows 
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that C f.,(h) = 1 for 1 "* h E H, and hence G is sharply 2-transitive, con­
trary to our assumption. 

Remark. By Step 3, we know that the socle of our group G is the direct 
product of some number k ~ 2 of nonabelian simple groups. There are 
two ways to proceed: (i) directly, providing an elementary approach leading 
to a contradiction; or (ii) using the (equally elementary) O'Nan-Scott 
Theorem [Cam] together with the classification of finite simple groups in 
order to prove a result-stronger than needed-that gives another view of 
the situation we have arrived at. We will describe both approaches: in 
Steps 4-9, and in Theorem 2.4, respectively. We digress to present a 
lemma concerning permutation representations of direct products of sim­
ple groups. 

LEMMA 2.3. Let N be a pennutation group of degree n, and suppose that 
N = T

J 
X T2 X ... X Tk , where k ~ 2 and each subgroup 7; is simple and 

nonabelian. Assume that the product of every k - 1 of the 7; is transitiL'e. The 
following then hold. 

(a) Some product of k - 2 of the 7; is intransitil'e. 

(b) Ifsome T; is transitil 1e, then k = 2. 

(c) n ~ INIJ/2. 

Proof We recall that if a permutation group has the form A X B, 
where A and B are both transitive, then each of these subgroups is 
regular and they are isomorphic. If (say) T

J 
is transitive, we can write 

N = TJ X M, where M is the product of the remaining 7;. By hypothesis, 
M is transitive and hence M := T

J
• It follows that k = 2 and (a) and (b) 

hold. Also in this case, INI = IT/ = n 2
, so (c) holds. 

We proceed by induction on k. By the preceding paragraph, we may 
assume that no 7; is transitive and hence that k > 2. Writing N = T

J 
X M 

as above, it follows from the transitivity of M that T J is semiregular. Let ~ 
denote the set of orbits of T J and note that I~I = n/ITll. Then M acts 
transitively on ~, and we let K denote the kernel of this action, so that K 
is the direct product of some (possibly empty) collection of the 7;. Then 
M / K is a direct product of k I < k nonabelian simple factors and is a 
transitive permutation group on ~. If we delete any factor from M in 
order to obtain a product P / K of k I - 1 simple groups, then T

J 
X P is 

transitive by hypothesis, so that P / K is transitive on ~. In its action on ~, 
therefore, M / K satisfies the hypotheses of the lemma. 

By the inductive hypothesis, some product Q/K of all but two of the 
factors of M / K is not transitive on ~, and thus TJ X Q is not transitive in 
the original action, proving (a). Also by the inductive hypothesis, we have 
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n/IT)1 = I~I 2. IMIKI)/2, and hence 

n2 2. IT/IMI/IKI = INIIT)I/IKI. 

It suffices to show that I T)I 2. I K I in order to deduce (c) and complete the 
proof. 

Let Y E ~ and note that T) X K acts faithfully on Y, since the kernel of 
this action is normal in N and has fixed points. By definition, T) is 
transitive on Y, and thus K is semiregular on Y. Consequently, IKI s IYI 
s IT)I, as required. I 

We now return to the proof of the Main Theorem. 

Step 4. G has a unique minimal normal subgroup. 
Suppose that M and N are distinct minimal normal subgroups. As G is 

primitive, both M and N must be transitive, and since M n N = 1 we 
conclude that each is regular. It follows that GIN is isomorphic to a point 
stabilizer and so can be viewed as a permutation group of degree n - 1. 
Also, we claim that IGINI must be divisible by p: otherwise p IINI = n = 

IMI, and yet IMIIIGINI, a contradiction. The inductive hypothesis and 
Lemma 2.2 now yield 

lin 2. J.L(G) 2. J.L(GIN) 2. 1/(n - 1), 

a contradiction. 
We establish some notation. By Steps 3 and 4, G has a unique minimal 

normal subgroup, and this subgroup-which we call N-is nonabelian. 
Write N = T) X T2 X ... X Tk , where the T; are G-conjugate nonabelian 
simple groups; here k 2. 2 since we are assuming that G is not almost 
simple. Let H be the stabilizer Gx in G of x E X, and observe that 
G = NH since G is primitive by Step 2. It follows that H acts transitively 
on the T; and hence IH: NH(T)I = k. Also, IH: Nf{CT) X T2 )1 s k 2

• 

Step 5. Suppose that N = A X B, and write m = \H: NH(A)\. If A is 
intransitive on X, with orbits of size r, then r :S m. If also B is intransitiL'e, 
then n s m 2

• 

Write K = NH(A)A and note that x K = x A
• Since H n K = Nf{(A), we 

have \H: H n KI = m. Also, IK: H n K\ = IxKI = IxAI = r, and hence 

IG:Klr = IG:KIIK:H n KI = IG:HIIH:H n K\ = nm, 

so that IG:KI = nmlr. 
Since A is intransitive, so is K (because x A = X K) and thus K does not 

contain the unique minimal normal subgroup N of G. It follows that 
coreG(K) = 1 and G has a faithful permutation representation of degree 
IG:KI. If IG:KI < n then the inductive hypothesis yields jL(G) 2. I/IG:KI 
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> l/n, which contradicts our standing assumption that f1(G).:o;; l/n. 
Thus, n .:0;; IG:KI = nm/r, so that r .:0;; m, as required. 

Finally, if B is intransitive with orbits of size s, apply the above 
argument with B in place of A in order to obtain s .:0;; m. (Note that 
Nf{(A) = Nf{(B).) Since A X B is transitive, each B-orbit must contain 
some member of the A-orbit r\ and hence n/s .:0;; r. Thus n .:0;; rs .:0;; m 2

, 

as required. 

Step 6. The product of any k - 1 of the groups 1'; is transitil'e. 
Otherwise, we may assume that A = T2 X T3 X ... X Tk has an orbit Y 

of size r < n. By Step 5, therefore, r.:o;; IH:Nf{(A)1 = IH:Nf{(T])1 = k. 
If q is any odd prime divisor of ITII, then since all 1'; have the same 

order, A contains an elementary abelian subgroup E of order qk - I. 

Furthermore, since N is transitive on X and every normal subgroup of A 
is normal in N, a nontrivial normal subgroup of A can have no fixed 
points on X. It follows that A (and hence also E) is faithful on Y. Since 
the smallest possible degree for a faithful permutation representation of E 
is q(k - 1), this gives q(k - I) .:0;; r .:0;; k. This is a contradiction since 
k :::0: 2. 

Step 7. k > 2. 
Suppose that k = 2 and choose a Sylow subgroup Q of TI with IQI > 2. 

Write M = Nu(Q) and note that M does not contain TI since TI is simple 
and nonabelian. It follows that core(;<M) = 1 since N is the unique 
minimal normal subgroup of G and N 2: T]. 

We claim that IG:MI < n. To see this, note that by Step 6, T] and T2 
are both transitive and hence regular, so that ITII = n. Now write K = 

Nc;( T I ), and note that IG: K I = k = 2 and M .:0;; K. By the Frattini argu­
ment, K = TI M and so 

IG:MI = 2IK:MI = 2ITI:T] n MI.:o;; 2IT[:QI = 2n/IQI < n, 

as claimed. 
The inductive hypothesis now yields f1(G) 2: l/IG:MI > l/n, a contra­

diction. 

Step 8. k > 4. 
By Step 6, Lemma 2.3 applies to N, and by Step 7 and Lemma 2.3(b), T] 

is intransitive. Let Y be an orbit of T[ of size r < n, so that by Step 5 we 
have r.:o;; IH: Nf{(T[)1 = k. But T] is nonabelian, simple, and faithful in its 
action on Y, so that r = IYI > 4. 

Step 9. End of proof. 
Writing 1= IT]I, we have INI = (k and so n 2: (k12 by Lemma 2.3(c). 

Thus 11 > t 2 by Step 8, and hence no 1'; X ~. can be transitive. By Lemma 
2.3(a), we may assume that T3 X T4 X ... X Tk is intransitive, so we can 
write N = A X B, where A = T] X T2 and B are both intransitive. Then 
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and this is our final contradiction. I 

Remark. Parts of the proof of the Q'Nan-Scott Theorem [Cam] are 
implicit in arguments used above. That theorem leads to the following 
observation, which is stronger than was needed in Steps 4-9 (a weaker 
version of which was also noted by Peter Cameron): 

THEOREM 2.4. If G is a primitil'e permutation group of degree n whose 
socle is neither abelian nor simple, then G has a faithful permutation represen­
tation of degree ~ 2m. 

Proof By the Q'Nan-Scott Theorem, the socle N of G is the direct 
product N = TI X ... X Tk of k ~ 2 isomorphic simple groups ~, and 
there are four types of actions of G to consider. 

Case I. X can be identified with xt for some set XI on which TI acts, 
in such a way that G ~ TlwrSk in the product action of this wreathed 
product. 

Here G acts faithfully on the union Y of k copies of XI' where 
IYI = klXl1 ~ 2IX//2 = 2m. 

Case II. n = ITll k
-

h for integers a, b with ab = k and a > 1; Nx = 

DI X ... X Dh , where (after renumbering the ~) Di is a diagonal subgroup 
of I;i _ I)a + I X ... X Tia ; and G acts transitively on {Tp ... , Tk } with block 
system {{I;i-I)a+ I"'" '0Jli = 1, ... , b}. In particular, k - b ~ k12. 

First note that, for every nonabelian finite simple "roup T I, Aut TI has a 
faithful permutation representation of degree < I Till 2. The straightforward 
proof consists of checking all possible simple groups, using the obvious 
action for alternating groups, an action on a class of parabolic subgroups 
for groups of Lie type, and a perusal of subgroup lists of sporadic groups in 
the ATLAS [CCNPW] (compare [FKLj). 

It follows that G ~ Aut TI wr Sk' and hence G has a faithful f;ermuta­
tion representation of degree < kITI II/2 ~ 2IT//4 ~ 2IT11(k-b) 2 = 2/n 
(for the middle inequality we used the fact that ITII ~ 60). 

Case III. n = IXI = IT//2, k ~ 2, and N has two subgroups of 
order n each of which is regular and normal in G. 

As in Case II we obtain a faithful permutation representation of G of 
degree < k1TIII/2 ~ 2IT//4 = 2m. 

Case IV. n = IXI = IT/, k ~ 2, and N is regular. 
Proceed as in Case III. I 



PROBABILITY A GROUP ELEMENT IS p-SINGULAR 147 

3. SOME SIMPLE GROUPS 

In view of the preceding section, in order to prove the Main Theorem it 
suffices to assume that G is an almost simple group. Thus, we will consider 
all of the finite simple groups. This section concerns some relatively 
straightforward cases. 

LEMMA 3.1. Let G = Am or Sm with m ~ 5. IfG lies in SIl' then m ~ n. 
If p is a prime dil'iding IGI, then /l)G) ~ lin, with equality if and only if 
p = m = nand G = Sm. 

Proof The first assertion is obvious. Let x be one of the m points 
permuted by G in its usual permutation representation. We will count 
those p-singular elements g E G one of whose cycles is a p-cycle contain­
ing x. If G = Sm then the number of such elements is at least 
(;'~ i )(p!lp)(m - p)! = m!/m, so that J..I./Sm) ~ 11m with equality if 
m = p; while if equality holds then every p-singular element has a p-cycle 
moving x, so that m = p. Similarly, if G = Am then the number of such 
elements g EGis at least (;'~i)(p!/p)IAm_pl ~ IAmilm (where Ao = 1); 
but in this situation the equality J..I./ A",) = 11m cannot hold, since it 
would imply first that m = p and then that J..I.I'(A",) ~ (;'~i)(p!lp)IAml = 

21m. I 

Remark. The inequality in the preceding lemma is very weak. Lemma I 
of [ET] provides the following pleasant formula for the probability that an 
element of Sn is not p-singular: 1 - J..I./Sn) = n\:~I'J(1 - 1/ip). In partic­
ular, if n ~ 4 then 1 - J..I.2(A n) = 2(1 - J-LlS,,» ~ 2( i)(%), which yields 
the following result (easily proved directly): 

LEMMA 3.2. If n ~ 4 then J-L2(A n) ~ t with equality only for n = 4,5. 

LEMMA 3.3. Let G be a subgroup of SI! haz'ing a unique simple nonnai 
subgroup Go, and let p be a prime dividing IGI. 

(j) If Go is sporadic then J..I./G) > lin and J..I.p(G) > T(~i. 

Oi) If Go is A 6 , PSL(2,7), PSL(2,8), PSL(2,11), PSL(3,4), 
PSU(3,5), 2Fi2)' or PSp(4,3) then J..I.p(G) > lin. 

(iii) If G = Go is any of the groups in (i) or (ii) then J..I.lG) > t. 
Proof 

(i) It is a straightforward matter to use the ATLAS [CCNPW] to 
check these assertions. It turns out that for each G ami p there is always 
at least one p-singular conjugacy class XC; such that IC(;(x)1 ~ n, where n 
is the degree of any faithful permutation representation of G. In fact, the 
only cases in which there is no such class having ICG(x)1 < n occur when 
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G is a Mathieu group MI" n = p = II or 23, where there are two 
p-singular classes of size IGI/n. Moreover, for every G and p in the 
lemma there is always a p-singular class of size > IGl/lOO-even for the 
larger sporadic groups. (Thus, the probability J.l)G) is much greater than 
that given in the Main Theorem.) 

(ii), (iii) Once again [CCNPW] can be used. However, a small 
amount of care is needed since that reference does not contain character 
tables for extensions of Go by noncyclic automorphism groups (Lemma 2.2 
makes part of this check easier). I 

At this point "only" the simple groups of Lie type remain to be 
considered. Some of those are handled here in (ii), instead of in the next 
section, because they have permutation representations of degree smaller 
than the lower bounds appearing in Lemmas 4.1 and 4.2. Note that, if 
G = Aut PSU3, 4) then JL7(G) = ft, where 21 is the smallest degree of a 
faithful permutation representation of Gil = PSL(3,4) but not, of course, 
of G. 

Remark. Later we will prove much more than is actually needed for the 
Main Theorem. It may be of some value to indicate an elementary 
approach to an approximation to what we need; this is implicit in Sections 
5-9 and somewhat resembles the method used in Lemma 3.1. Consider the 
case G = PSL(h, q), assume that p is a prime dividing IGI but not 
q(q - n, and let the integer m ;:::: I be minimal subject to plqm - 1. Let 
lEG have order p and arise from a linear transformation of the underly­
ing vector space that induces the identity on a subspace of dimension 
h - m. Then JL/G)IGI is at least the number of elements of the form t'u 
with t' conjugate to I and U E C(/t') unipotent. There are exactly 
q(h-l11~h-I11-I) such elements U E C(;(t'). It follows that JL/G)IGI ;:::: IG: 
C(i(t)lq(h-l11~h-m-I), and hence JLI'(G);:::: q(h-mKh-m-I)/(qm -1)ISUh 

- m, q)1 ;:::: (q - I)/(qh - I), where (qh - J)/(q - J) is the smallest de­
gree of a faithful permutation representation of G (we are excluding all 
exceptions to the preceding statement, since they were covered in Lemma 
3.3; cf. Lemma 4.0. The same type of argument can be used in other 
groups of Lie type: if t E G has order p, if qk is the order of a maximal 
unipotent subgroup of CG(t), and if p 1- q" then JLI'(G);:::: q2k /IC(/I)\; 
this is enough to prove the Main Theorem when G is not 
PSL(h, q), PSU(h, q) and the rank of G is not too small. However, more is 
needed in order to prove the Main Theorem for all almost simple groups 
of Lie type. A hint of stronger counting arguments is given in an example 
toward the end of Section 5. 

Similarly, if G has characteristic p and qk is the order of a maximal 
unipotent subgroup of G, then G has q2k - I nontrivial p-elements, and 
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this provides a lower bound on J-I} G) that is almost adequate for our 
purposes. Once again, far superior bounds will be given later (cf. Section 
10). 

4. LIE TYPE: PRELIMINARY REDUCTIONS 

Throughout the remainder of this paper let Go denote a finite simple 
group of Lie type. In order to prove the Main Theorem, in view of Sections 
2 and 3 we may assume that the group G appearing in that theorem lies 
between Go and Aut GO' (Note, however, that in all later sections G will 
denote an entirely different group!) In this section we will use results 
proved in Sections 5-7 concerning Go in order to prove the Main Theo­
rem in this case. As usual, p will be a prime dividing IGI. 

In this section we will exclude the following possibilities for Go treated 
in Lemma 3.3: PSL(2, 4) ~ A" PSL(2, 5) ~ A" PSL(2, 9) ~ PSp(4, 2) ~ 
An' PSL(2, 7) ~ PSL(3,2~ PSL(2,8) ~2Gi3)', PSL(2, 11), PSU(3,~), 
PSL(3,4), PSL(4,2) ~ A g , -Fi2)', and PSp(4,3) == PSU(4,2). Also, we Will 

not have to consider the non-simple group G 2(2) ~ PfU(3,3). 
Let h denote the Coxeter number of Go: the Coxeter number of the 

Weyl group of a (B, N)-pair for a split form of Go over an algebraically 
closed field k of characteristic s. In view of the list of excluded groups, this 
(B, N )-pair is unique up to conjugation. Similarly, let I denote the rank of 
a split form of Go over k. The groups Go are listed in Table I. See Section 
5 for a definition of the number q appearing in the table. There is an 

AiI_,.h ~ 2 
zAh_l,h~3 
BI.C"I ~ 2 

DI.1 ~ 4 
2D,,1~3 

Gz.q * 4 
J
D4 
F4 

2F4 

Eo. lE" 
E7 
Ek 
28-, 

2G~ 

TABLE I 
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integer e such that q = s" (and then let 8 = 0, unless Go =2Biq2), 
2G2(q2), or 2Fiq2), in which case q2 = S3 (and then let 8 = 2). 

Let me; denote the smallest possible degree of a faithful permutation 
representation of a group G. 

LEMMA 4.1. A lower bound for m" is gil'en in Table I. Vn 

Proof If Go is a classical group then this holds by [Co] or [Li]; note 
that we have excluded those groups Go that would have provided coun­
terexamples to some of these bounds. 

For 2Blq2) and 2Glq2) see [Su, Wa). In the case of the remaining 
exceptional or twisted groups [LS] provides a suitable lower bound on 
mc' - 1. (In fact, the bounds in [LS) are sufficient for most of what is 

'II 

needed for the Main Theorem even in the case of the classical groups.) I 

It should be noted that the above bounds are crude except in the case of 
type A h _}. Only in the latter case do any of the calculations of this section 
become at all delicate. Note that the case Gi4) could have been dealt with 
as in Lemma 3.3, but we want to indicate that excluded groups can be 
handled by the methods of this section if just a little more care is taken. 

LEMMA 4.2. 

(i) me;" > 2hlOut Gol. 

(ij) If Go is either PSL(3, q) with 31q - 1 or Go = PSU(3, q) with 
31q + 1, then mU n > 910ut Gol. 

(iii) If Go is not PSL(2, q) or PSL(3, q) then mUll > (5q I) /2)IOut Gol. 

(iv) If Go is PSL(3,q) then m Ci " > {q/(l - (3,q - J)q-2)}IOutGol. 

Proof This involves a straightforward but tedious application of Lemma 
4.1 combined with knowledge of Out Go [Carl], considering the various 
possibilities for Go separately. We will outline the argument only in the 
"hardest" case: part (i) with Go = PSL(h, q). 

By Lemma 4.1 we must show that (q" - 1) /(q - 1) > 2h . {minCh -
1,2)}e(h,q - 1). If h 2: 7 then qh-2 = se(h-2) 2: esh- 2 ;:>: 4eh. The cases 
h = 4,5,6 are easily handled directly. If h = 3 then PSL(3,4) is being 
excluded, and it is straightforward to check that m G" = q2 + q + 1 > 6e . 
(3, q - 1) (and that q2 + q + 1 > 9· 6e, as needed for (ii)). Finally, when 
h = 2 it is easy to check that q + 1 > 4 . e(2, q - 0. 

This completes the argument when Go = PSL(h, q). The unitary case is 
similar, though simpler. For all remaining groups of Lie type, the outer 
automorphism group of Go is smaller than we have just encountered, 
while mu" is noticeably larger than ql, making all of the inequalities quite 
a bit easier to deal with. However, when Go is G 2(q) with q = 3 or 4 the 
bounds in Table I are not adequate for our purposes; but in those cases, 
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the embedding PSU(3, q) < Gz(q) leads to the slight improvement m G " ~ 
m pSu(3.q) ~ q3, and this is strong enough to prove (iv). I 

LEMMA 4.3. If P =1= sand pllGol then /L(G) > l/m u" ~ lime;. 

Proof By Lemma 2.2, jJ.(G) ~ jJ.(Go)/IG:Gol. In Theorem 5.1 we will 
show that /L( Go) ~ ~ if either Go = PSL(3, q) with p = 3 = (q - 1)3 or 
Go = PSU(3,q) with p = 3 = (q + 1)3' while /L(Go) ~ (1 - l/p)/h ~ 
1/2h otherwise. Thus, Lemma 4.2(i, ii) produces the desired inequality. I 

LEMMA 4.4. Ifp =1= s, pllGI and p f IGol, then /L(G) > I/m(i" ~ I/m(;. 

Proof Since p f IGol, a Sylow p-subgroup of Out Go is central (a 
property of Out Go easily deduced from the description of this group in 
[Carl]). Then Lemma 2.2 implies that /L(G) ~ /LClLp) ~ t> l/m uli ' I 

LEMMA 4.5. If s = p then jJ.(G) > l/m(i" 2 l/m(i' 

Proof If Go = PSL(2, q) then /L(Go) = (q + l)(q - l)/[(q + l)q(q 
- 1)/(2, q - I)] = (2, q - I)/q. We must show that /L(G) > l/(q + 1). If 
plIG:Gol then, by Lemma 2.2, /L(G) ~ /LClLp) ~ t since Aut Go is abelian. 
Suppose that p f IG:Gol. If G contains no field automorphism then 
IG:Gol .:::; (2, q - 1) and hence /L(G) ~ (2, q - l)/qIG:Gol ~ I/q. If G 
contains a nontrivial field automorphism f then f centralizes some ele­
ment r of order p in Go. Then ICc/if)1 .:::; q'IG:Gol, where q = q,i with 
i ~ 2, so that /L(G) ~ l/q'IG:Gol ~ l/q'(2,q - De ~ i/q. 

If Go = PSL(3, q) then jJ.p(Go) = (1 - (3, q - l)q-2)/q by Example 
(b) in Section 10, and then /Lp(G) ~ {(I - (3, q - 1)q- 2 )/q}jIOut Gol > 
11m,;" by Lemma 4.2(iv). For all of the remaining groups, by Theorem 
10.1 and Lemma 2.2 we have /Lp(G) ~ (2/5q R)/IOut Gol, so that the 
desired inequality follows from Lemma 4.2(iii). I 

Note that Lemmas 4.3-4.5 complete the proof of the Main Theorem 
(modulo Theorems 5.1 and 10.1 below). 

5. GROUPS OF LIE TYPE: STATEMENTS OF RESULTS 
(UNEQUAL CHARACTERISTIC CASE) 

It will now be convenient to change notation. As before, let Go be a 
finite simple group of Lie type and let p be a prime dividing IGol other 
than the defining characteristic. However, now G will denote a simply 
connected simple algebraic group, defined over an algebraic closure k of a 
finite field, such that Go == Gf/Z F for a bijective endomorphism F of G, 
where Z = Z(G). (As usual, for any F-invariant set X we let XF denote 
the set of fixed points of F in X) In the few cases where Go has 
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non-conjugate (B, N)-pairs, any convenient choice can be used provided 
that its characteristic is not p. Let I and h denote the rank and Coxeter 
number of G. Let {) be the smallest integer such that Ffi is the Frobenius 
endomorphism corresponding to a definition of Go over a finite subfield 
IF,,h of k. (Then {) = 1 unless Go is a Suzuki or Ree group, in which case 
{) = 2. Thus, in the latter cases we will be dealing with 2Blq2), 2G / q 2

) 

and 2 Fiq 2); cf. Table I.) Throughout the remainder of this paper we will 
no longer exclude any of the cases Go treated separately in Sections 3 
and 4. 

THEOREM 5.1. IL(Go);;:: OlhXl - lip) except when p = 3 and Go ~ 
PSL(3, q) with (q - 0, = 3, or Go ~ PSU(3, q) with (q + 1)3 = 3, in which 
case IL( Go) = ~. 

Theorem 5.1 is an immediate consequence of the following result. 

THEOREM 5.1'. IL(GFIZ F);;:: (I1/z)O - lip) except when p = 3, G ~ 
SL(3, k), IZFI = 3 and IG FIZFI3 = 3, in which case IL(G!'/ZF) = ~. 

Theorem 5.1 emphasizes the type of Go. For a fixed prime p, we can 
also consider the number 

where Go runs over all finite simple groups of Lie type of characteristic 
not p having order divisible by p. 

THEOREM 5.2. IL2 = ±, IL3 = ~, IL5 = -z\, ILII = TIl' and ILl' ;;:: lip -
1/2p2 if P $. {2, 3, 5, Ii}. 

As in the case of Theorem 5.1, we will prove the corresponding result 
for groups of the form GFIZF; see Section 9. 

EXAMPLE. In order to outline the approach about to be taken, we 
consider the case Go = PSL(h, q), viewed using II X h matrices. Assume 
that p + q - 1 and that q is not too small. Semisimple elements are just 
s' -elements, where s is the prime dividing q. Each semisimple p-singular 
element t is a conjugate of suitable block diagonal matrix; the size of at 
least one of these blocks is divisible by the smallest integer m such that 
plqm - I. Note that there is a partition of h arising here. Each such 
p-singular element t centralizes various s-elements, and each p-singular 
element has a Jordan decomposition tli = ut, where t is p-singular and 
semisimple while u is an s-element (i.e., unipotent). We need to estimate 
the number of pairs (t, ll) that can arise here. This is accomplished by 
counting the number of pairs (t, T) with T a conjugate of an abelian group 
of block-diagonal matrices with blocks coming from extension fields of IF'i' 
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where the degrees of the extensions are the members of suitable partitions 
of h, one of which is the aforementioned partition. This yields a formula 
(Theorem 6.2) for J.L(SL(h, q », and this formula has a term arising from 
conjugacy classes in the Weyl group Sh of SL(h, q). Finally, we estimate 
this term in order to prove the desired inequality. 

We note the following amusing consequences of Lemmas 2.2, 3.2, and 
3.3 and Theorem 5.2: 

COROLLARY 5.3. If G is any group hal'ing a simple homomorphic image 
that is neither cyclic nor Lie type of characteristic 2, then J.LiG) z ~. 

6. MAXIMAL TORI 

As above let G be a connected reductive algebraic group defined over 
an algebraic closure k of a finite field, with center Z and Weyl group W, 
and let F be a surjective endomorphism of G such that G F is finite. 

Let :7 be the variety of all maximal tori in G. Then F acts on Wand on 
:7. The W-orbits in W for the action w' x = wxF( w)- I are called F-con­
jugacy classes in W, and the set of all F-conjugacy classes in W is denoted 
W / - F . The GF-conjugacy classes in yF (that is, the GF-conjugacy classes 
of F-stable maximal tori) are parametrized in a natural way by the 
F-conjugacy classes in W, and for C E W / - F we let 9C denote the 
corresponding GF-orbit in g+' (see Appendix A6). Let Tc be an element 
of c~; its stabilizer in G F has order IT!IIWIICI- 1 [SS, IL1.8].1t follows 
that 

1: ITFI = ~IIT!I = 11~\IG/l 
TE,'fc 

(6.1 ) 

Let T be an F-stable maximal torus of G. Then T> Z, and we say that 
T is p-relevant if pllTF /ZFI. We say that an F-conjugacy class C in W 
and its elements are p-relel'ant if the tori in .9(, are p-relevant. The 
probability J.L1t'(G, F) = J.L;'(G, F) that a random element in W is p-rele­
vant is 

THEOREM 6.2. 

H' 1 
J.L (G,F)=IWT L ICI. 

CEWI-F 
Clp-relevant 

J.L(GF/Z f
') = (1/IWI)LcEwI_F(1 - l/ITcF/Z F/p)/CI. 

In particular, 

(1 - l/p)J.LW(G,F).s J.L(GF/Z F) < J.L1l (G,F), 
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and the first inequality is an equality if and only if ITF /ZFl p :S; p for every 
F-stable maximal torus T of G. 

Proof In view of Lemma 2.1 this is a special case of the following 
result. 

THEOREM 6.2'. Let m be any integer and let K be an F-stable closed 
subgroup of Z( G). If m is prime to char(k), then 

1 
I1-m(G

F 
/KF) = IWI L I1-m{T//K

F
)ICI. 

CEW/-" 

Proof Let Xm be the set of all elements in G F whose images in 
G F /KF have order divisible by m. If g E G F has Jordan decomposition 
su, with s semisimple and u unipotent, then g E Xm if and only if s E Xm. 
By definition, IXml = IG Fll1-m(G F/K F). For a semisimple element t E X m, 
let Xm(t) be the set of all elements of GF which have t as semisimple part. 
Then Xm is the disjoint union of its subsets Xm(t) with t E Xm semisimple 
Moreover, IXm(t)1 is the number of unipotent elements in Cc(t)F = Cc,(t). 

Let Ym be the set of all pairs (t, T) consisting of a semisimple element 
t E Xm and an F-stable maximal torus T of G containing t. Bya result of 
Steinberg [St, 14.14, 15.1], Cc(t) has as many F-stable unipotent elements 
as F-stable maximal tori. Thus, by (6.1), 

IXml = IY,,,I = L IT () Xml 
TE.7' 

L I1-m(Tf/KF)ITFI 
TE/J+ 

I: I: I1-m{T f/K F)IT F I 
CEW/-r TEY,. 

L I1-m{T//K F
) L ITFI 

(.'EW/-,. TE.'/~. 

EXAMPLE. We will show how Theorem 6.2 can be used to compute 
I1-(G F /ZF) when p = 2 and G is simply connected of type A3 with 
char(k) "* 2. Here F is the Frobenius endomorphism for a definition of G 
over a subfield !Fq of k. Let e = 1 if (G, F) is split, e = -1 otherwise. The 
Weyl group W is isomorphic to S4 and the F-conjugacy classes in W can 
be parametrized in a natural way by the partitions of 4. The F-conjugacy 
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classes are just the conjugacy classes when (G, F) is split, while in the 
non-split case they are obtained by multiplying the conjugacy classes by the 
longest word wI) in W; in particular, the size of each F-conjugacy class is 
the size of the corresponding conjugacy class. Writing CA for the F-con­
jugacy class corresponding to the partition A, and 0. instead of Tc ' we 
h~e • 

\C(I.I,I.I)\ = 1, \C(2,1.I)\ = 6, \C(2,2)\ = 3, 

IC(3, I) I = 8, IC(4)1 = 6, 

and (ct. [Car4]) 

I
f" I 3 7;1.1.1.1) = (q - e) , 

/7;i:2)/ = (q + e)\q - e), 

l7;j,I)1 = (q2 + eq + 1)(q - e), 17;~')1 = (q2 + 1)(q + e). 

Note that (q2 + eq + 1)2 = 1 and (q2 + 1)2 = 2. 
Suppose that /ZF/ = 4. Let 1T = (q - e )2' Then 1T ~ 4 and (q + e)2 = 2. 

It follows easily that 

I FF I 7;2.2/Z 2 = 1T> 1, 

17;~',!,l/ZFI2 = 71'2. 2- 1 > 1, 

17;~,I)/ZFI2 = 71'.2- 2 ~ 1, 

Let P(X, Y) = 214X3y-2 + ±X 2 y- ( + kx + txy- 2• By Theorem 6.2, 
/-t(G F /ZF) = PO, 1) - PO/71', lip). 

Suppose now that /ZF/ = 2. Let 71' = (q + e)2' Then 71' ~ 4, (q - e)2 = 

2, and 

( ) - I 2 Ixy IX 2 IX 62 ( F ZF)-Let Q X, y - 24 Y + 4 + K + 4 . By Theorem . , /-t G / -
Q(I,1) - QO/71', lip)· 

The next section contains a generalization of this type of computation. 
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7. CYCLOTOMIC POLYNOMIALS AND EXCEPTIONAL 
GROUPS 

Theorem 6.2 allows us to obtain an explicit formula for f-t( G FI z F) for 
every prime p *' char(k) dividing IGf/Z"I. In this section we give results 
for the exceptional types (in which we include the triality twisted groups 
and the Suzuki and Ree groups) in the case where G is simply connected. 
The necessary data concerning Iz F I, (F- )conjugacy classes in Weyl groups 
and orders of maximal tori can be found, for example, in [St, pp. 131, 192, 
193], [Car2-4], [De], [OF], [OLi], [Shi 1,2], [Sho], [SS, II. 1.7], or can be 
easily worked out. 

Let 0 be as in Section S, and let A = 1'[char(k )1/ 0] (so A is one of the 
rings 1', 1'[JI] or 1'[/3]). For every F-conjugacy class C in W, IT!I can be 
considered in a natural way as a polynomial in q with coefficients in A. 
More precisely, let X(Tc ) = Hom(Tc , G,,) (where Gm denotes the multi­
plicative group of k viewed as an algebraic group). Then X(Tc ) is a free 
abelian group, and F induces an endomorphism of it in a natural manner. 
Let Xc E IR[ X] be the characteristic polynomial of the endomorphism 
q-I F of X(Tc ) ®Z IR. Then 

IT/I = Xc(q) and Xc E A[X] 

(see [CarS, 3.3.5] or Appendix AS). 
When A = l' the irreducible factors of Xc in A[X] are cyclotomic 

polynomials c,om(X), When A *' l' the factorization of Xc is slightly more 
complicated: in this situation we want factorizations of Xc which induce 
factorizations of ITtl = Xc(q) in 1'. For this reason we look for factors of 
the form c,om(X 2

), or factors I/J E A[X] of c,o",(X 2) such that I/J(q) E 1'. It 
turns out that the only further factorizations we need are the following. If 
A = 1'[JI] then c,olX) = c,o/X2) = (X 2 + JIx + 1)(X 2 - JIx + 1) 
and c,024(X) = c,oI2(X 2

) = (X 4 + JIX} + X2 + JIx + 1)(X 4 
- JIX} 

+ X 2 
- JIx + 1). If A = 1'[/3] then c,ollX) = c,06(X 2

) = (X 2 + /3x 
+ 1)(X 2 

- /3x + I). 
There is a cyclotomic polynomial c,o",(X) such that plc,om(qO). We choose 

m minimal with respect to this condition except when p = 2, in which case 
we also require that 4Ic,o,/qO). Let c,o(X) = c,om(XO), except if A *' l' and 
c,om(X 2

) factors as above, in which case we let c,o be the unique irreducible 
factor of c,om(X 2

) in A[X] such that plc,o(q). Let 7T = c,om(q8)p = c,o(q)p. 
For each F-conjugacy class C in W let i be the largest integer such that 

c,oi divides Xc- Then 7T
i divides Xc(q). Additional factors of ITtip arise 

due to the fact that c,om,(qO)p = p when m'lm *' 1 is a power of p or 
when p = m = 2 and m' = 1, so that these contributions depend on the 
type of (G, F), as well as on p and m, but not directly on q. On the other 
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hand, we must divide ITtip by IZ"lp' In this section we are only consider­
ing exceptional groups, in which case IZFlp:$ p, so that IZFlp again 
depends on the type of (C, F), m, and p but not directly on q. (N.B. If we 
had been considering groups of type AI we also would have had to take 
(IZFI, 1T) into account.) 

Consequently, there exist integers i ~ 0 and j depending on p, m, and 
the type of (C, F), but not on q, such that 17/IZFlp = rripi, and we 
associate with C the polynomial ICIIWI- 1 Xiyi E Q[X, y, y-l]. This pro­
duces a polynomial 

Pm . p( X, Y) = L { i~11 XiYlIC E WI -F and IT/IZFI" = rrlpi, 

(i,j) '1= (0,0) } 

in Q[X, y, y-l] with non-negative coefficients. By Theorem 6.2 and (2.1), 

j1-(C f /Z F
) = Pm.I'(I, 1) - Pm.I'(I/1T, lip). 

Note that at (I11T, lip) the monomials involved in Pm." take values of the 
form p f with f :$ O. Since I Z f II' :$ p for exceptional groups, in the tables 
below f = 0 occurs only when 1T = P and the monomial is XY- 1. Thus, if c 
is the coefficient of xy- 1 in Pm.!' then, by definition, j1-W(C, F) = 

P,,,. I' (1, ]) - 8"." Co In fact, c '1= 0 only in ,the following cases: for (m, p) = 

(],3) in type £6' (m, p) = (2,:n in type -£6 and p = 2 in type £7' In the 
corresponding polynomials the term involving XY- 1 will be printed in 
boldface. 

For most values of p (e.g .. if p -I- IWI), Pm.!' is actually a polynomial Pm 
in X and is independent of p. When P'n.!' = P,,, we have j1-(C f /Zf) = 
Pm(I) - PmO I rr). We give below the polynomials Pm along with those 
Pm.,,·s which are different from p,,,. (These polynom~als were obt~ined 
uSin& a simple computer program.) For groups of type -£6 we write -Pm. I' 
and "Pm for Pm.!' and Pm' respectively, reserving the notation Pm." and Pm 
for split groups of type Eo. 

T"pes E 2E We have .l ()' 6· 

P~ =2P1 = ~X + 'S47i;X 2 + 4kX 3 + ,iS2X4, 

P, = 2Pt> =;ikx + ~X2 +i,lX-X3. 

P5 = 2 Pill = *X, 

P,! =2P1H = -!;X, 
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with the following exceptions: 

P1,2 =2P2,2 = :b;y2 + *,XY+ :f4xy2 + -.kxy4 + ;',;:}X 2 + 22ti1X2y2 

+it;X2y3 + li52 X2y4 + *,X 3y + ~X3y2 + <k-X 3y3 

+ 2:hX4 + i~2X4y2 + li40X5y + 51~40X6, 

5~~} y2 + S~: y4 + 51~40 yo + *,XY + f4xy2 + *,xy 3 

+ ~xy4 + li40 Xy5 + fr;X2 + 7\:X2y2 + 16X2y3 

+ 1~2X2y4 + <k-X 3y2 + <k-X3y3 + 11~2X4y2, 

h!X yI + }~!IXY- 1 + -fIx + *,XY + ;';~X2y-1 + -tJX2 

+ ~X2y + ilX 3 y-1 + *,X3 + J~2X4y-1 + 2:h X4 

+ -d4()X 5 y- I + 5J~40Xhy-l, 

P 'P I y2 5 X I XY 7 X 2 1 X2y I X 3 1 X 4 
2,3 =- I 1 = 7i + Ih + (; + M + IH + 4X + 1152 , 

PI,5 = 2YH:X + n.xy + j~2~,X2 + JhX2y + 7\:x 3 + ,~isX4 + 14~OX5 

+ 51~4(IX6. 

Type £7' We have 

P P 12Sh963X 1171X2 7759 X 3 23 X 4 77 X5 I X6 
I = 2 'iiiii:i040 + 5120 + I3S240 + 3072 + I3X240 + 460XIl 

P4 = ,ft;X + t,X2, 

PH = ~X, 

P5 = PJO = n. X , 

P9 = PIX = ixX, 

with the following exceptions: 

227 y2 + 53 y4 + I yil + IIHYxy- I + 217 XY + 7 XY' 
4320 3456ii 2'!03040 5670 144(( %-

17 xy3 I xy4 1 xy5 43 Xl 7 X2y + 2304 + 3X4 + 460S0 + 360 + % 

41 2 2 7 2 3 J 2 y4 23 X 3 y- I + 231l4 X Y + 3S4 X Y + 3iifi X + lOilO 

+ 35 X.1y + 7 X3y2 + 13 X3y3 + I X4 + I X4y 
2304 3H4 LJ21 fl 2~H JH4 

13 X4y2 I X5y- I I X5y I X6 1 X7y- I + nl6 + 4320 + 3072 + 460XO + 29OJ041l ' 
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P P I y~ + 11>39 X 77 xy 1 xy3 691 X2 23 X2y 
I. -' = 2. -' = 144 716X + 31>0 + 1296 + Sliii + 2XS 

P -P 1.5 - 2.5 
J3XOWX I xy IX] X" I X2y 11)91 X] 1 X3y 
5R06()S + TIl + '11124 + 20 + 2764X + ffi . 

+ 3~~2X4 + n~~4IlX5 + 41)'XO X 6 
+ 290~1I411X 7, 

~;1~;~x + -&xy + !:;(I)X2 + i~~~X3 + 3~~2X4 + 13~;4iJX' 

Type Ex. We have 

P P 539179 X o5042X9 X 2 9799 X 3 62299 X 4 ]1 X' 
I = 2 iii,'i2lh + :i4X3h4XO + 2764HII + 11>5XHH(X' + '5529(; . 

+ 497~:4(i X I> + :~X(':,(lHli X 7 + '(,90 7~900ii X H , 

P3 = Ph = ,~d:X + 5~~4X2 + 19~4X3 + I 55
1
5211 X 4 , 

P4 =j~~ X + 41~~ X 2 +7~H X -' + ;\(,i'Xi'X 4 , 

Ps = PIli ~X+ 6(\OX2, P7 = PI4 = -&X, P x = 2,-X + 3_ 1:12 X ", 

P9 = PIX hx, P I2 = i:4 X + 2~HX~ , PIS = P,II = ~JX, 

P211 = ix, P24 ~x, 

with the following exceptions: 

4X427y2 2237] y4 143 y6 I yH IIX9xy 
544:,20 + 2ii73600 + 24XR32ii + 69672901~' + 5670 

+ I xy7 + 2377 Xl + 133 X2y2 + 7 X2y3 
:'iX060HII 34020 1920 192 

+ 2~~liiX2y4 + 7~xXly:'i + IH41,20X2y6 + J(I,~OX-'y 

+ 1:~2X3y2 + 4~~KX3y3 + 4~~iiX3y4 + 'ix!3iX"y" 

+ ":~X,X4 + 5;~~I~X4y2 + 7~HX4y" + 2~i~X4X4y4 
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+ 5S0:,OS() X 7 + ;'Yh7~%OO X H , 

()IO Y 2 + 141'~117;JI: X + :h XY + *;;~~~~~ X 2 + 2~(J X 2 Y 

()'799 X4 IJ X) + 4.1 X() + 1 X 7 + I ()5"H-HH(HI + 552'16 497hMO 5XI160S() 

Type F4 • We have 

PI = Pz = :Mx + lii,x 2 + :isx' + li5Z X4 , 

P3 = P6 = ~X + ix 2
, 

P 3 X + I X2 
4 Th % ' 

tX , 

with the exceptions: 

~Y+ 2
1
S
Y
H

y2 + JIy3 + ii<iy4 + tXY+ txy2 + :isxy3 
+ -TH-X2 + i-x 2y + ~X2y2 + :&X 3y + ,i52X4 , 

Pu = Pu iy2 + ~x + tXY + h:X2 + -&X2y + 4kx 3 + li'2 X4 . 

Type C 2 . We have 

and ix, 
with the exceptions 



and 
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Type JD4 . We have 

PI = P2 = ~X + "iX2, 

PJ = Po = * X + ~ X 2 , 

Pl2 = ±X, 
with the exceptions 

P P I X 2 'xy ' y2 1.2 = 2.2 = 12 + "2 + 12 

and 

Type 2B2 . We have 

PI = ix and 

with the exception 

2 Type G 2 • We have 

with the exception 

P2 = ±X+ -:&X2, 

P4 = ~X + <h;X2, 

and 

Remark. Let 'I' be an opposition automorphism of G commuting with 
F (cf. [Kaw]). Then F' = F 0 'I' is also a Frobenius endomorphism and 
many polynomials which express properties of the finite group Gr" are 
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obtained up to sign by substituting -q for q in the corresponding 
polynomials for C F. This procedure, known as Ennola duality, is easily 
shown to give information for the problem under consideration. Namely, 
let wil be the longest clement in W. Then F'(w) = woF(w )w(J I. Since 
w(~ = 1 and F(wo) = W II ' the map w rio WOW induces a bijection from 
Wj- F to Wj- F' (indeed, wo'(xwF(x)~ I) = (WOxw1J 1 )(wow)F'(woxw,J I)~ I). 
Moreover, if C EO W j - f' and C' = WIIC EO W j - F" ' then the action of 
F' on X( Tc) corresponds to the action of F on X( Tc). I t follows that we 
have the polynomial identity Xc-(X) = ( - D'Xc( - X), where I = dim Tc is 
the rank of C. A similar relation holds for IZFI and IZFl For example, if 
C is of type Eo and F is a split Frobenius endomorphism, then IZII = 
0, q - 1) and IZFI = 0, q + 1), where q + I should be read as -( -q -
1). Note that the effect of Ennola duality on cyclotomic polynomials is to 
interchange <P1l and <P21l if n is odd and to fix <Pn if 41n. If -1 EO W, then 
(G, F) and (C, F') are isomorphic and we get equalities of the form 
Pm = P2m for m odd. When -: ~ $. W, as i.s the case for C of type E(, in 
the tables above, we get equalIties of the form Pm = - P2m and P2m = - Pm 
for m odd, as well as Pm =2Pm when 41m. 

8. A LOWER BOUND FOR J-L1l(G, F) 

In view of Theorem 6.2, the following result will complete the proof of 
Theorem 5.1: 

THEOREM 8.1. Let C be simple and simply connected and let h be the 
Coxeter number of C. If P if' char(k) is a prime factor of ICFjZFI, then 

II' 1 
J-L (C,F);?: h 

except when p = 3, C is of type A 2 , IZI'I = 3, and 91- ICr/Z F
/, in which 

case J-LH'(G, F) = t. 
Proof The various possibilities for (G, F) are known up to isomor­

phism [CarS]. For the groups considered in Section 7, the possibilities for 
J-tW(C, F) can be read from the polynomials Pm . p ' In all cases, a straight­
forward hand calculation yields J-LW(C, F) ;?: 1/11. (In many cases, one 
term of Pm." is large enough to prove the ,desired inequality.) 7 

We are therefore left with the types A" -A" B1, C" D" and "D,. In each 
of these cases F is the Frobenius endomorphism corresponding to a 
definition of G over some subfield IF" of k. 

Types AI' 2A ,. Here h = I + 1 is the dimension of the underlying 
vector space. Let c = 1 if (C, F) is split, c = - 1 if (C, F) is twisted. The 
F-conjugacy classes in Ware parametrized by the partitions of h. If CA is 
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the F-conjugacy class corresponding to the partition A = (AI' A2 , ••• ), then 
ICAI coincides with the size of the conjugacy class determined by A: either 
CA is that conjugacy class, or it is obtained from that conjugacy class by 
multiplication by w(J" Moreover, since IZFI = (h, q - 8) we have 

(see, e.g., [Car4j). For every m 2: 1, qm - 8
m is a multiple of q - 8, hence 

also of IZFl p ' 

Suppose first that IZFlp > 1. By (8.2), every partition with at least three 
parts corresponds to a p-relevant F-conjugacy class in W. Looking at the 
remaining partitions, we get 

1 1 h - I 

IV " I-p. <-+-.L..---
-II 2i~li(h-i) 

In particular, for h = 4 we have p.w> t. For h ~ 5, we have 

1 1 h-I 1 1 1 1 h-2 

-+- L ---<-+--+- L --­
h 2i~li(h-i)-h h-l 2i~2i(h-i) 

dx 1 1 1 f"'- I <-+--+- ------
h h-I 22 (x-I)(h-x) 

1 
=-+ 

1 + log(h - 2) 

h Ii - 1 

1 1 + log(5 - 2) 3 
<-+ <-- 5 5 - J - 4 . 

Consequently, if h ~ 4 then P.w ~ ± ~ Jill. 

(8.3) 

(8.4 ) 

If Il = 2 then p = 2 (since IZFl p > 1), one of the two classes of F-stable 
maximal tori is p-relevant, and therefore P.w = ~ by definition. Suppose 
that h = 3. Then p = 3. If (q - s)3 ~ 9 then, by (8.2), CO,LI) and C(2,1) 

are p-relevant and therefore P.w = t + t = ~. On the other hand, if 
(q - 8)1 = 3 then C(LLI) is the only p-relevant F-conjugacy class, and 
therefore P.w = t. 

Suppose now that IZFlp = 1. Let m be the smallest positive integer such 
that plqm - 8

m. 
Assume that m ~ 2. If m is a part of A, then CA is p-relevant by (8.2). 

By using inclusion -exclusion to count the number of elements of W 
corresponding to such partitions A, we find that 

(8.5) 



164 ISAACS, KANTOR, AND SPALTENSTEIN 

If m > h/2, the right side is l/m ;::: 1/1!. If m :$ h/2, then 

"w> ~(I __ 1_) > ~.~ >~. 
r- - m 2m - m 2 - h 

Finally, assume that m = 1. Then C(h) is the only F-conjugacy class 
which is not p-relevant. Therefore 

I 1 
W 

J.L =I-h;:::h· 

Remark. One can do better than (8.5): by imitating the proof of [ET, 
Lemma I] in order to take into account all of the permutations having a 
cycle of length diL'isible by m, we find that 1 - J.l..w = n~h!(nl(I - l/km) 
when m > I. 

Types BI , C I , with I ;::: 2. Here h = 2/, IZFI = (2, q - 1)-so in par­
ticular I Z F I p = 1 if P is odd-and F acts trivially on W. The conjugacy 
classes in Ware parametrized by all of the pairs (a, (3) of partitions of I 
(so I a I + I (31 = I), and if C corresponds to ( a, (3), then (cf. [Car4]) 

IT/I = (q'" - I)(q'" - I) ... (q13, + I)(qf3 2 + 1) .... (8.6) 

There exist if = ± 1 and a positive integer m :$ I such that qlll - if is a 
multiple of plZFl p • (We do not need to make any minimality assumption 
this time, although we will need to do so in the next section.) If (T = 1 
(resp. - I), every pair (a, (3) of partitions in which m is a part of a (resp. 
(3) gives a p-relevant class. It follows that 

(_1)'-1 

L ·'(2 r 1~1~I/m I. m 

If m > 1/2, the right hand side is 1/2m ;::: 1/21 = I/h. If m :$ 1/2, then 

II' 1( 1) 111 
J.L ~ 2m 1 - 4m ~ 2m . "2 ~ h· 

Types D I, 2DI , with I ~ 4. Here h = 21 - 2. If 8 = 1 when (G, F) is 
split and 8 = -1 otherwise, then IZFI = (4, ql - 8). In particular, IZFlp 

= 1 if p is odd. To every F-conjugacy class C in W one can associate a 
pair (a, (3) of partitions of I, and (8.6) holds [Car4]. The pairs which occur 
in the split case are exactly those in which {3 has an even number of parts 
and the pairs which occur in the twisted case are exactly those in which {3 
has an odd number of parts. In the split case, pairs in which all parts of a 
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are even and f3 is the empty partition correspond to two conjugacy classes 
in W; these two classes are simultaneously p-relevant or p-irrelevant (they 
are interchanged by a graph automorphism). 

There exist CT = ± 1 and a positive integer m s I such that qm - U is a 
multiple of plZFl p , with u = e if m = I. If u = 1 (resp. -1), every 
F-conjugacy class corresponding to a pair (ex, (3) of partitions in which m 

is a part of ex (resp. (3) is p-relevant. Counting the elements of W in these 
F-conjugacy classes, we get 

(-Ir- I 

" + Rw, '-- "(2)i l$i<l/m I. m 
(8.7) 

where 

f (_1)(//111)-1 

Rw~ \:(I/m)!(2m),;m 
if mil and u l /'" = e, 

otherwise. 

If 1= m, then u = e and f-Lw;::: 1/1;::: I/h. If 1/2 < m s I - I, or if 
m = 1/2 and u 2 

"" e, the right side of (8.7) is 1/2m ;::: 1/(21 - 2) = I/h. 
If m < 1/2, then 

f-Lw ~ _1_(1 __ 1_) ~ _1_. ~ ~ ~. 
2m 4m 2m 2 It 

It remains to consider the case where m = 1/2 and u 2 = e. Here q'" -
ulql - e, and we can instead use m = I, u = e. I 

9. PROOF OF THEOREM 5.2 

In this section we will prove Theorem 5.2, using the same method as that 
used for proving Theorem 8.1. Let vI' be the lower bound indicated for f-Ll' 
in Theorem 5.2. It is straightforward to use the tables in Section 7 to check 
that f-L(CF/Z F

) ;::: vI' when C is exceptional (not many cases need to be 
checked: since h s 30 the bound in Theorem 5.2 is better than the one in 
Theorem 5.1 only for small p). Moreover, we have f-L)(Cr/Z F

) = Is if C 
is of type En over IF" with (q2 + ])) = 5, and f-Lll(CF/Z f

) = ,~, if C is of 
type EH over IF" with (qH + qn + q4 + q2 + O" = 11 (q = 2 gives an 
example in each of these cases). Note also that f-L2(C F /ZF) = ± for 
C = PSL(2, q) with (q2 - 1)2 = 8, and that Theorem 5.1' gives examples 
with f-L,(CF/Z f

) = t. Thus, 

f-Lps vI' for P E {2,3,5,1l}. (9.1 ) 
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Now consider a simply connected group G of classical type, set I-L = 

I-L/GF/Z f
"), I-Lw 

= I-L~(G, F) and define q as in Section 5. We will make 
use of the fact that the function f(x) = x - ~X2, X ~ 1, is increasing. Note 
also that fO /p) = vp if p $; {2, 3, 5, II} and fO /p) ~ vp in all cases. 

Types A" 2A ,. Let h = I + 1 and e be as in Section 8. Suppose first 
that IZFI" ~ p. If h ~ 4, we have seen in Section 8 that I-Lw ~ t, and for 
p -=1= 2 it follows that I-L ~ 0 - l/p)(t) ~ vp. By Theorem 5.1' we have 
I-L ~ vI' if h = p = 3. Now assume that p = 2, so that h is even. We claim 
that I-Lw ~ ~ if h -=1= 4. By (8.4) this holds for h ~ 10 since then 1 - I-Lw 

~ Jt + (1 + logS)/9 ~ t. Also, I-Lw = ~ if h = 2, we can use (8.3) if 
h = 8, and if h = 6 we can use the additional fact that the partition (4,2) 
corresponds to a 2-relevant F-conjugacy class (in view of (8.2) and the fact 
that IZFI2 = 2). This proves our claim, and hence by Theorem 6.2 we have 
I-L ~ ~ I-Lw ~ V 2 for h -=1= 4. Finally, if p = 2 and h = 4, the formulas for 
1-L2(G f /Z F) given in Section 6 show that I-L ~ I;~ ~ V 2 when IZFI = 4 and 
I-L ~ 1

7
2
1
X ~ V 2 when IZI'I = 2. 

Suppose now that IZ1'I p = I. Let m be the smallest positive integer such 
that plqm - em. Note that m ~ p - I. If m = I then we saw in Section 8 
that I-Lw ~ 1 - 1/ h, so that I-L ~ 1f, by Theorem 6,2 and the definition of 
vI'. Suppose that m ~ 2. If A has r parts equal to m, then I-L(T[jZF) ~ 1 
- I/p' (cf. Lemma 2.1). By a variation on the inclusion-exclusion formula 
we find that 

Therefore 

I ( 1 )' I-L ~ L (-1)'-1 -,,-, 1 --
'<;i<;iz/m l.m p 

I-L ~ ~ (1 - ~) - 2~2 (1 - ~ r = f( ~ (1 - ~ ) ) 
~f(-I (1 - 2.)) = f(2.) = 2. - _I, ~ v,, 

P - 1 P P P 2p" I 

Types B" Cl , with I ~ 2. Suppose first that p is odd, Let m ~ I and 
if = ± 1 be such that plqm - if, with m as small as possible, Note that 
m ~ (p - 1)/2. We have 

" i-I 1 ( 1 ) i I-L~ f..., (-1) .1-- , 
I <;i<;'/m i!(2m)' P 
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so that 

f-t ~ _1 (1 _~) _ ~(1 _ ~)2 =f(_l (1 _ ~)) 
2m p 8m- p 2m p 

( 1 ( 1 )) ( 1 ) >f 1-- =f-
- 2( P - 1) /2 P P 

1 
=---->v p 2p2 - p' 

Suppose that p = 2. Since q is odd and IzFI = 2, it follows from (8.6) 
that any conjugacy class in W corresponding to a pair (a, f3) of partitions 
in which a and f3 together have at least two parts is necessarily 2-relevant. 
Therefore f-tw ~ 1 - l/n ~ t and hence f-t ~ ± by Theorem 6.2. 

Types D" 2D" with I ~ 4. Suppose first that p is odd. Let e, a, and 
m s I be as in Section 8, with a = e if m = I, and m minimal subject to 
these conditions. In particular, m s (p - 1)/2. We have 

(_1);-1 ( 1); L 1 - - + R, 
t· I.(2m)' p 1,;,;<I/m 

where 

{ 

(_I)(/Iml-I ( I)'lm 
2 1 - - if mil and a'im = e, 

R = (l/m)!(2m)i!m p 

o otherwise. 

If m = I, then a = e and f-t ~ R = (I - l/p)/m ~ 2/p ~ vp' 

If m s I - 1 and m "* 1/2, or if m = 1/2 and a 2 "* e, then, as in the 
case of type B" we have 

1 ( 1 ); "(_1);-1 1--
'-' t· I.(2m); p 1,;,;,;,I/m 

~ _1 (1 _ ~) _ ~ (1 _ ~) 2 = f( _1 (1 - ~)) ~ f( ~) ~ v . 
2m p 8m- p 2m p p p 

If m = 1/2 and e = 1, then I s p - 1. We have already seen in Section 8 
that f-tw ~ 1//, and therefore f-t ~ l/p ~ 1f,' 
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Suppose now that p = 2. Recall that IZ/'I :0:; 4. If an F-conjugacy class C 
in W corresponds to the pair (a, 13) of partitions, let r( C) denote the total 
number of parts of a and 13. For r 2 1, let W, be the union of the 
F-conjugacy classes C with r(C) = r, and let W" 3 be the union of the w,'s 
with r 23. We have IWII = IWI!I :0:; IWI!4, and it follows from (8.3) and 
(8.4) that IW" 3 1 2 IWI!4. In view of (8.6), every element in Wz 3 is 
2-relevant, and so are at least half of the clements in W2 • This implies that 
Ji-w 2 ~ and therefore Ji- 2 ±. 

We have checked that JL 2 III' in all cases. In view of (9.1), this proves 
Theorem 5.2. I 

10. EQUAL CHARACTERISTIC CASE 

Throughout this section the notation and the assumptions will be the 
same as those in section 5, except that p is now assumed to be the 
characteristic s of G. 

( F) > 2 - 8 THEOREM 10.1. Ji-p G - <;q . 

Remarks. We need this only in the case where GF/Z F is simple and 
hence only when G is simply connected. The result holds as long as G is 
reductive, connected, but not just a torus. However, the case presented 
here is slightly easier to prove. 

The constant ~ is not best possible. It is likely that it could be replaced 
by ~. 

The proof is based on a case by case analysis together with the next 
proposition. For t E G F semisimple, let n(,(t) = dim C(,(t) - leG), where 
leG) is the rank of G, and let f(;<O = 1 - q-",,(t). If T is a maximal torus 
containing t, then nc,(t) is the number of roots a of T in G such that 
a(t) = 1 (compare [CarS, p. 92)). For an F-stable maximal torus T in G, 
let 'Pc;(T) be the average of the function fe; on TF. If T' is GF-conjugate 
to T, then 'Pc;(T') = 'Pc;(T). Therefore we can also view 'Pc; as a function 
on W, constant on F-conjugacy classes: 'Pr;(w) = 'Pe;(Tc ) where C is the 
F-conjugacy class containing w. 

PROPOSITION 10.2. JLp(G/:) = (l/IWI)Lw E w'Pc;(w). 

Proof Every element x E G F has a Jordan decomposition x = tll = lit 

with t E G f semisimple and II E G F unipotent, and x is p-singular if and 
only if II *' 1. There are exactly q"c;(I) unipotent elements in G F that 
commute with t (compare the proof of Theorem 6.2'). The total number of 
p-singular elements in G F is therefore equal to the sum of qnu(l) - lover 
all semisimple elements t E G f

-. As there are exactly q"(iU) F-stable 
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maximal tori in G that contain t, this is also the sum of !c;{t) over all pairs 
(t, T) consisting of a semisimple element t E G F and an F-stable maximal 
torus T containing t. Thus, exactly as in the proof of Theorem 6.2' (cf. 
(6.1)), 

EXAMPLES. 

(a) Let G = SL:.. Let z = (q - 1,2) = IZFI. We have IWI = 2. The 
identity corresponds to a maximal torus Tr,1, I) with lTr,r 1)1 = q - 1. Let 
t E Tr,r I)' If t is central then fl(i{t) = 2, and fl(,(t) = 0 otherwise. It 
follows that 'P(i(Tr,I.I» = z(1 - q-2 )/(q - J) = z(J + q-I )q-I. 

The other element in W corresponds to a maximal torus Tr,c/ with 
1Tr,~)1 = q + 1, and 'P(;(Tr,C» = z(I - q-2 )/(q + 1) = z(] - q-I )q- . The 
average of z(I + q - I )q - I and z(I - q -1 )q - I is zq- I. Thus, by the 
proposition, fJ)G F

) = (q - 1,2)q-l. (Of course, it is easy to check di­
rectly that there are Z(q2 - J) p-singular elements in G F.) 

(b) Let G = SL 3 and z = (3, q - 1) = IZFI. 
Let Tr, I. I. II be the diagonal subgroup of SL 3• If t E Tr,1. I. I) is diag(a, b, c) 

then abc = I and F(r) = diag(a q
, b q

, c'i). In particular, 11;r I, 1)1 = (q - 1)2. 

Moreover, ll(i(t) = 0 if a, b, and c are all distinct, ll(i{t) = 2 if two of 
a, b,c are equal, and fl(/t) = 6 if a = b = c. Thus, there are z elements 
t E Tr,~.: I. I) such that flr;{t) = 6 and 3(q - z - 1) such that 11(,(0 = 2, 
while fl(,(t) = 0 for all remaining elements in Tr,i: 1, I)' 

Let Tr,2. I) be an F-stable maximal torus corresponding to a transposi­
tion. Choosing a basis consisting of eigenvectors, we see that Tr,2. 1) is 
represented by diagonal matrices diag(a, b, c) with abc = 1. After permut­
ing the clements of the basis if necessary, F induces the map diag(a, b, c) 
~ diag(b 4 ,a4 ,c4 ). Let t E Tr,2.1) be diag(a,b,c). Then t E Tr,rl) if and 
only if a Elf,;" b = a'i, and c = a-(q+l). In particular lTr,rl)1 = q2 - 1. 
Moreover, flr;(t) = 0 if a $. IF", 11(;(1) = 2 if a E IF" and a3 

-=1= 1, and 
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l1(,(t) ~ 6 if a E IF" and a-' = 1. Thus, there are exactly z elements 
t E ~~,I) with 11(;(0 = 6 and q - 1 - z with 1l(;Ct) = 2, while l1(;Ct) = 0 
for the remaining elements, 

Let ~.11 be an F-stable maximal torus corresponding to a 3-cycle, 
Choosing a basis consisting of eigenvectors of ~.1)' we see that ~.1) is 
represented by diagonal matrices diag( (I, b, c) such that abc = 1, After 
permuting the elements of the basis if necessary, F induces the map 
diag(a, b, d ~ 4iag(b 'l , c", a"), Let t E ~11 be, diag(a, b, d. Then t E ~~) 
if and only if a'r + q + I = 1, b = all, and c = a"'. In particular I~~')I = q2 + 
q + 1. Moreover, l1u(t) = 0 unless a E IF" and a.1 = 1, in which case 
11c;(t) = 6. Thus, there are exactly z elements t E ~~) with 11(;Ct) = 6, and 
11c;(t) = 0 for the remaining elements. 

It follows that 

1 
f.Lp(G

f
) = 6{'Pd~I'I'I») + 3'Pc;{~2,1)) + 2'Pd~.1))} 

*{(Z(1 - q-6) + 3(q - z - 1)(1 _ q-2))(q _ 1)-2 

+3(z(1 - q-O) + (q - z - 1)(1 - q-2))(q2 - 1)"1 

+2(z(1 - q-6))(q2 + q + 1)-I} 

= q - I _ zq -.' = (1 _ (q ~ 21,3) ) q - I • 

We turn now to the proof of Theorem 10.1. For the sake of clarity we 
will assume for now that 0 = 1, and indicate later how the argument can 
be modified to cover the Ree and Suzuki groups. 

Our task is to find sufficiently many elements in W for which 'Pc; ( w) is 
large enough. Consider an F-stable maximal torus T, Let a be a root of T 
in G and let (Ker( a »0 = S. Then l1r;Ct) ~ 2 for every t E S since - a 
also has S in its kernel. Throughout the proof we will consider those roots 
a fixed or inverted by F (cf. Appendix A.9). If F fixes a then ISFI/ITf'1 = 

I/(q - 1), and it follows that 'P(;CT) ~ (I - q--2)IS F I/IT F I = (I + 
q-I )q-I. Similarly, if F inverts a, then IS/;I/ITFI = I/(q + 1), and 'P(/T) 
~ (I - q-2 Xq + I)-I = (I - q-I )q-I, In many cases this approximation 
is sufficient to prove Theorem 10.1. First we consider the easy cases. 

Types B/, C/. We can think of Was a group of linear transformations 
of 4)/ consisting of transformations obtained by permuting the coordinates 
and mUltiplying any number of them by - 1. The roots correspond to the 
vectors ±ej (I ::; i ::; [) and ±ej ± e

J 
(I ::; i < j ::; I), and the action of F 
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on a torus corresponding to the element w: Q' ~ Q' is qw- 1 (see 
Appendix A.7). Thus, if there exists i such that wee) = ei , then 'P(;Cw) Z 

(I + q)q-I; and if there exists i such that wee) = -ei , then 'Pc;(w) Z (I 
- q)q - I. Let x, be the probability that an element in W fixes at least one 
basis vector ei , and let y, be the probability that an element in W inverts 
at least one basis vector e, but does not fix any ei • Then x, z y, (if w E W 
inverts some basis vector ei then - w fixes ei ) and t-tp( G f') z x,(I + 
q-I)q-I + y,(I - q-I)q-I z (x, + y,)q-I. But x, + y, is the probability 
that an element in W fixes or inverts at least one basis vector, and this is 
the same as the probability that an element of S, fixes at least one of the / 
points it permutes. For each /, this probability is at least t. Thus t-t/GF) z 
1 -I 
'2q 

Type G~. The only elements that do not fix at least one root are the 
rotations. Thus, half of the elements in W fix at least one root, and 
t-tpCG F) Z ~(I + q-I)q-I Z tq-I. 

Type F4 • An explicit computation shows that 575 of the 1152 ele­
ments of W fix at least one root. It follows that 

(G F» )75(I+q-l)q-l> 'i7'iq-IZ_.~q-l. t-tp - 1152 - 11<;2 , 

Type Eo' An explicit computation shows that 17,371 of the 51,840 
elements of W fix at least one root and that 10,809 elements fix no root 
but invert at least one. It follows that 

(G F) > 17371(1 + - I) -I + 'OK09(1 _ -I) -I >2SIS-'!.q-1 > :! -I t-tp - 51X40 q q 51K40 q q - 'iIK40 - 5q . 

Type E 7 . In this case 952,435 of the 2,903,040 elements of W fix at 
least one root and 733,069 elements fix no root but invert at least one. It 
follows that 

( G F) > 952435 (1 + - I) - 1 + 7]]004 (1 - I) - 1 IIlX5504 - 1 t-t" - 290.1040 q q 2903040 - q q Z 2403040q 

2 - 1 
Z <.q . 

Type Ex' In this case 228,350,039 of the 696,729,600 elements of W 
fix at least one root and 150,831,449 elements fix no root but invert at least 
one. It follows that 

(G F) > 22X])(K)]9(1 + -I) -I + 150S]1449(1 _ -I.) -I >_ 3741RI4KK -I 
t-tp - h9h729h(~) q q 1l96729h(M) q q i"/07290()ijq 
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Type 2 E6 • In this case the action of F involves multiplication by - q 
instead of q as in the case of type Ef>. It follows that to detect F-stable 
maximal tori with roots fixed (resp. inverted) by F, we must consider 
elements of the ordinary Weyl group of type E6 that invert (resp. fix) some 
roots. There are 16,335 elements that invert at least one root and 11,845 
that do not invert any root but fix at least one of them. This leads to the 
estimate 

(G F) > 163.15(1 + -I) -I + IIX4S(1 -I) --I 2HIHO -I 2-1 J.t" - 51H40 q q <;IX40 - q q ~ sTil40q ~ <;q . 

Type _1D-\. In this case the action of F can be described using a coset 
determining an element of order 3 of W(F-\)/W(D4 ) =' 53 (see Appendix 
A.5). It turns out that 64 of the 192 elements of W give fixed roots, 64 
elements give inverted roots, and there is no overlap. Therefore we get 

(G F) M(I -I) -I b-l(1 -I) -I 2 -I 2-1 ILp ~ 192 + q q + In - q q = -,;q ~ sq . 

When 8 = I we are left with the harder cases: groups of type A or D. 

Types A" 2A ,. Let h = I + 1. We identify W with 5". Let W E 5". In 
the split (resp. twisted) case, W corresponds to tori in which F fixes (resp. 
inverts) at least one root if and only if w has two I-cycles, and F inverts 
(resp. fixes) at least one root if and only if w has at least one 2-cycle. 

First, consider the split case. Let a" be the probability that a permuta­
tion in SI! has no I-cycle and bl! the probability that a permutation in S" 
has no I - or 2-cycle. The probability x" that an element w E 5,1' has at 
least two I-cycles is then I - al! - a"-I' and the probability Yl! that w has 
at most one I-cycle and at least one 2-cycle is a" + a"_1 - bl! - bh - I • 

From the inclusion-exclusion formula we obtain 

II (-I)' 
a" = L --.,-, 

i~() I. 
b" = L 

i.j~[J 

i + 2j s II 
2 j " ., 

I.) . 

As h ->x, al! -> e- I and b" -> e- 3
/

2
. These imply that ~6~ al! ~ ~ and 

bh ~ ± for large enough h, and it is easily checked that these inequalities 
hold for all II ~ 4. It follows that x" ~ ~ and y" ~ :ih for II ~ 5. For h ~ 5 

th h (G F) 1(1 + -I) -I + 7(1 -I) -I 29-1 we us ave J.t" ~ "4 q q 30 - q q ~(,oq 

~ iq-I. For h = 4 we have x" = ;4 and y" = -il, and therefore IL/G F
) 

7(} -I) -I + 1(1 -I) -I 5 -I 2 -I F I 2 ~ 24 + q q H - q q ~ TIq ~ sq . or I = ,xii = y" 
= ~ and therefore IL/G F

) ~ q-I. Finally, for h = 3, x h = i, y" = ~, 
and J.t,,(G F) ~ i(1 + q-I)q-I + ~(I - q-I)q-I = (t - ±q-I)q-I ~ 
( l _ -'-) - I _ -'- - 1 

3 6 q - zq . 
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In the twisted case, let 2 x h be the probability that an element of S h has 
at least one 2-cycle, "Yh the probability that an element of Sh has at least 
two I-cycles and no 2-cycle, and ch the probability that an element of 5h 

has no 2-cycle. Let b" be as above. Then 2Xh = 1 - C", 2YiI = eh - bh -

bh - 1, and 

It follows easily that ~ ~ eh ~ ~ for h :2: 3. Since b" ~ ± for h :2: 4, while 
h2 = 0 and hJ = t, we have h" + hh-l ~ k for every h :2: 3. Then 

J-Lp(G f ) :2: 2x,,(1 + q-l)q-l +2y,,(1 _ q-I)q-l 

= (1 - c/r)(1 + q-l )q-l + (e il - h" - b"_I)(I _ q-l )q-t 

= (I - ~)(I + q-t)q-t + (t - hI! - b,,_t)(l - q-t)q-t 

+ 2(t - C,,)q-2 

:2: ~(1 + q-I)q-I + lI(1 - q-l)q-t:2:~q-t:2:~q-t. 

Type D, or 2 D,. The method used so far fails because when the 
Frobenius endomorphism of an F-stable maximal torus fixes or inverts a 
pair of roots, it fixes or inverts at least one other pair of roots. There are 
therefore fewer elements in W that correspond to such a behavior of F. 

Let T be an F-stable maximal torus. There is an isomorphism of the 
character group X(n = Hom(T, G,,.) of T with the subgroup of Q' 
generated by the standard basis (e,)t sis I and the vector t(1, 1, ... ,1), and 
such that the roots correspond to the vectors ± ei ± ej (1 ~ i < j ~ n. Let 
a ± j ± j be the root corresponding to ± ej ± ej . The Frobenius endomor­
phism F acts on X(T) by multiplication by q composed with a signed 
permutation O"r of the basis that is determined up to conjugacy under W 
(see Appendix A.7). The group YeT) = Hom(Gm , T) is dual to X(T) (over 
Z) and can be identified with the subgroup of Q' generated by the vectors 
±ei ± e

J 
(1 ~ i < j ~ /). These vectors correspond in YeT) to the coroots 

a ; j ± j [Bou, pp. 256-257]. 
With this description, the Weyl group W becomes a subgroup of index 2 

in a Weyl group ~ of type R,. Let u-t+ = Wand u-t- = ~ - W be the 
two cosets. Note that WI' W, and Uf ± can all be defined in this manner for 
I :2: 1. When dealing with F-conjugacy classes and the action of F on 
F-stable maximal tori and their character groups, it is natural to replace W 
by a suitable coset of W in W, namely by Uf- in the twisted case, and Uf+ 
(= W) in the split case (see Appendix A.5). We handle the two cases 
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simultaneously, and we let e stand for + or - for G split or twisted, 
respectively, 

Suppose that T and a are as before, and that aT E Utjt: stabilizes the 
subset {e l' - e l' e 2' - e 2}' Then the subgroup S of T generated by the 
images in T of the coroots [\':; ± j with 3 .::;; i < j .::;; I is an F-stable 
subtorus of T. Consider the quotient group T IS. Its character group 
X(T IS) can be identified with the subgroup of X(T) consisting of all 
elements orthogonal to the vectors ± ej ± ej , 3 .::;; i < j .::;; I, Thus, X(T / S) 
is the subgroup generated by e l and e2 , The subtorus S is contained in the 
kernel of the roots [\' 1 + 2 and [\' 1 _ 2' By Lang's theorem the natural 
homomorphism Tf ~ (T /SV' is surjective and its kernel is SF (Appendix 
AI). Let K be the union of the kernels of the characters of T / S induced 
by [\'1- 2 and [\'1 + 2' Observe that Ker{ [\'1- 2 )/S and Ker( [\'1 + 2)/ S look like 
the subgroups {diag(t, Olt E k*} and {diag(t, t- 1 )It E k*} of GL2 , respec­
tively. Then 'Pe(T) z (IK FI/KT/S)"'IX1 - q-2). Moreover, since K is the 
union of two one-dimensional tori that intersect in (q - 1,2) .::;; 2 points, 
we get the following. 

(j) If aO) = 1 and a(2) = 2, then 'P(/T) z «2(q - 1) - 2)/(q -
1)2), (1 _ q-2). 

(ij) If aO) = 2 and a(2) = 1, then 'Pc;(T) z «(q - 1) + (q + 1) -
2)/(q2 - 1)). (I - q-2). 

(iii) If a(1) = - I and a(2) = - 2, then 'Pc;(T) z «2(q + 1) -
2)/(q + 1)2). (1 - q-2). 

If q = 2 these values can be replaced by :~, #" and 1
7
0' respectively, as can 

be seen by direct computation. For example, in case (iii), /(T/S)FI = 9, 
each of the two kernels which constitute K contains three F-stable points, 
and the identity is the only common point. Thus IKFI = 5, and nc(s) z 4 
for every s E: S, so that 'Pc;(T) z «(1 - 2-- 4) + 4· (I - r 2»/9 = k 

Given a signed permutation a E: TV, let mt (a) and m;- (a) be respec­
tively the numbers of positive and negative cycles of a of length i. The 
discussion above shows the following. 

(j) If mt(a) z 2, then 'Pc/a) z «2q - 4)/(q - 1)2).(1 - q-2). 

(ij) If m~(a) z 1, then 'Pc(a) z «2q - 2)/(q2 - 1)).(1 _ q-2). 

(iii) If ml(a) z 2, then 'Pc;(a) z (2q/(q + 1)2).(1 - q-2). 

If q = 2 these values can be replaced by ~, -ft' and i" respectively. 
For 1 z 0, let WI = 2/- II!. Then WI = IUtj+1 = IUtj-1 for 1 z 1. Define 

Wr~ = 1 and Wr~ = 0, so that Utj" is now defined for all 1 z O. For a subset 
X of Wt, let Pt(X) = lXI/WI (thUS, for 1 z 1, P/ is the obvious probabil-
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ity measure on ~t:). Let 

In view of (i)-(iii), we have 

if q ~ 3, and 

(G F) e 15 + t: 3 + e 7 J.Lp ~ x, . Ttl y,' Ttl z,' Ttl 

if q = 2. In order to prove that J.L/G F
) ~ tq-l, it is therefore enough to 

prove that 

xt(2q - 4)(q + 1)2 + y/(2q - 2)(q2 - 1) + zt(2q)(q - 1)2 

~tq(q2-l), (10.3) 

if q ~ 3, or 

( 10.3') 

if q = 2. It is easily checked that 

- 1 
Z4 = 12' 

When I = 4, an easy computation shows that (10.3) or (10.3') holds, except 
in the split case if q =:; 5. Explicit computations using tori of codimension 2 
(instead of codimension 1) show that, if a is an element of W4+ corre­
sponding to a positive 4-cycle, then 'PG(a) ~ 2q-2 - q-4. There are 48 
such elements in W. Taking their contribution into account gives the 
required lower bound for J.L/G F

) in the remaining cases. (When q is 2 or 
3, one can also use [CCNPW] to determine J.L/G f

) exactly.) 
Suppose now that I ~ 5. It is easily checked that if 

yt ~ ih, zt ~ 10, (lOA) 
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then (10.3) and (10.3') hold. We claim that (l0.4) actually holds for every 
1 ~ 5. For 1 ~ 0 let 

cl' = P/,{£Tlm~(£T) = 0, m;(£T) = 0, mj(fT) = oJ, 

u t' = P," { £T I m ~ ( £T) = 0, m; ( £T) ~ I}, 

l't = P/,{cTlmt(£T) =O,m;(£T) =O,mj(£T) ~2}. 

For 1 ~ 1 we then have 

xi' = 1 - at' - ~at- I' y/ = ut + ~u/,_ I' 

u/' = a/, - bl', 

For 1 ~ 6 we have 

( 10.5) 

These can be checked, for example, as follows. Partitioning J.t'i" according 
to the type and the length of the cycle containing 1, we get for 1 ~ 2 the 
recursion relations 

c"= - c-t: + "(c++c~) 1 ( /- J ) 
/ 21 /-2 "- I I ' 

i~() 

and therefore for 1 ~ 4, 

1 
at" = 21 (a/-_"I + al'_2 + (2/- 2)a(_I)' 

1 
be = -(b- e + b" + (21 - 2)b" ) / 21 /-1 /-3 /-1 ' 

1 
cl' = 21 (C/--"2 + cr-3 + (2/- 2)c,"_I)· 

These formulas show that once the inequalities in (10.5) hold for three 
consecutive values of I, they hold for all larger values of I. In this way we 
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find that (10.5) holds for I ~ 6, and it follows that (lOA) holds for every 
I ~ 8. Explicit computations show that (l0.4) actually holds for every I ~ 5. 

Finally, we turn to the cases in which a = 2. 

Type ~B2' There are qH unipotent elements in G F, hence at least (in 
fact, exactly) qH - 1 p-singular elements (where p = 2). Since IGI'I = 

q4(q2 _ 1)(q4 + 1), we have p)G f ') > (q2 + 1)q-4 2. q-- 8. 

Type lG e. There are q12 unipotent elements in G F, hence at least 
ql2 _ 1 p-singular elements (where p = 3). Since IGFI = q6(q2 - I)(qll + 
I), we have p)G I') ~ (q4 + q2 + I)q-6 ~ q- 8. 

Type 2 F4 • In this case it is not enough to count unipotent elements, 
and we cannot simply look for maximal tori T that have some roots fixed 
or inverted by F. Indeed, F interchanges short and long roots. What we 
can look for are subsystems of rank 2 in the root system which arc globally 
F-stable. Such subsystems occur in particular when we have a root Q' 

which is fixed by F2. There is then a 2-dimensional F-stable torus S < T 
contained in Ker(a), and ITf/Sfl = q2 - 1. For such an F-stable maxi­
mal torus we therefore have 'P(;(T) ~ (t - q-2 )j(q2 - I) = q-2. Repre­
sentatives of the F-conjugacy classes in Wand the orders of their stabiliz­
ers are given in [Shi2]. With the notation used there, we find that the 
maximal tori corresponding to the F-conjugacy classes of the clements WI' 

w2' w,' and W4 satisfy this condition, and we therefore have J,L/G F
) 

I -2+ I -2+ I -2+ 1-2_ 9 -8 
~ u;q 4q "ii,q "ii,q - loq . 

APPENDIX 

We discuss here various issues pertallllOg to F-stable maximal tori, 
F-conjugacy classes in the Weyl group, and related matters. We consider a 
simple algebraic group G defined over an algebraic closure k of a finite 
field of characteristic p > 0, equipped with an endomorphism F such that 
for some m ~ 1, F'" is the Frobenius endomorphism of some definition of 
G over a finite field (with the notation of Section 5, we can take m = {». 

A.1. A crucial tool in the study of (G, F) is a theorem of Lang, 
generalized by Steinberg, which asserts in particular that for any F-stable 
closed connected subgroup H of G, the map H ~ H, x ~ XF(X)-I is 
surjective [SS, 1.2.2]. A typical application of Lang's theorem is that if 
H < K are F-stable closed subgroups of G and H is connected, then the 
natural map KFjHf ~ (KjH)F is surjective. Indeed, if F(kH) = kH, 
with k E K, then k - 1 F( k) E H, and by Lang's theorem applied to H 
there exists therefore h E H such that hF(h)-1 = k- I F(k). Then kh E kH 
and F(kh) = kll. 
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A.2. Given a maximal torus T < G, we can consider the WeyJ group of 
T in G, WeT) = N(JT)jT. This Weyl group is adequate for many pur­
poses, but it is not canonical. If T' is a second maximal torus, then there 
exists g E G such that T' =IIT, and conjugation by g induces an isomor­
phism from weT) to WeT'). This isomorphism is not unique in general. 
For example, when T' = T, we get the inner automorphism of WeT) 
induced by the coset gT. A way to remedy this situation is to consider the 
set .J of all pairs (T, B) consisting of a maximal torus T and a Borel 
subgroup B > T of G. Then G acts transitively on 1. If (T, BUT', B') E 

f and g E G are such that T' = gTg-' and B' = gBg-', then the isomor­
phisms ij~:': WeT) ~ WeT') and jJ.lt: T ~ T' induced by conjugation 
by g are well-defined. We get in this way direct systems (W(T)(T.B»(T.B)EY 
and (~T.B»(T.B)E.Y in which all maps are isomorphisms. We define the 
Weyl group Wand the maximal torus T of G to be the respective direct 
limits of these constant direct systems. Moreover, every w E W induces an 
automorphism ("w of T. Let iT B: WeT) --4 Wand jr B: T ~ T be the 
isomorphisms determined by (T, '8). (This approach is similar to that used 
in [DL, pp. 105-106].) 

A.3. There are Frobenius maps on T and W, defined as follows. Let 
(T, B) E J. Then F: T --4 T is defined by F = j F(T).F( B) 0 F 0 (jT. B)-' , and 
ifw = iT.B(nT) with n E N(,(T), then F(w) = iF(7IJ(B)(F(nT». Forw E W 
we have then ° F(w) 0 F = F 0 Bw' If both T and Bare F -stable, then the 
F-actions on T and W can be read directly from the F-actions on T and 
weT) (in [CarS, pp. 84 ff.], an F-stable pair (To, Bo) is chosen once and for 
alI). 

A.4. The character group of an algebraic torus T is the abelian group 
XCT) = Hom(T,Gm ). If 'P: S ~ T is a homomorphism of algebraic tori, 
we let 'P* denote the homomorphism of abelian groups X(T) ~ XeS) 
defined by A >--> A 0 'P. 

Consider the endomorphism F* of X(T) induced by F: T --4 T. If F 
corresponds to a split structure of G over a finite field of order q, then F* 
is just multiplication by q. In general there exists n ;;:: 1 such that F" 
corresponds to a split structure, and F*n is then multiplication by some 
power qn of p. We set q = (qn)'1 II (this definition of q agrees with that 
given in Section 5). Then F* = qf, where f is an automorphism of finite 
order arising from the graph automorphism induced by F (when 0 = 2, 
this actually holds only in X(T) ®Z IR). In particular f belongs to the group 
A of all automorphisms of the root system of G (again, when {) = 2 this 
definition needs some stretching; root lengths must be ignored). 

A.S. The action of W on X(T) defined by w" = 8: I (") is faithful 
and allows us to think of W as a normal subgroup of A. Since 0 F(w) 0 F = 

Fo Ow, we have F(w) = f-' wf in A. The map W ~ wr-', w >--> wf-' in-
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duces therefore a bijection between the F-conjugacy classes in Wand the 
W-conjugacy classes in wr-I. For twisted groups of type A, or £6' we have 
f = -Wo, where W II is the longest element in the Weyl group. For groups 
of type D" I ~ 5, A is a Weyl group of type B" and (G, F) can actually be 
realized as an F-stable subgroup in a group of type B,. For D4 , A is a Weyl 
group of type F4, and (G, F) itself can be realized as an F-stable subgroup 
of a group of type F4 (we need this only for 'D4; for other groups of type 
D4 it is more convenient to usc a subgroup of A which is a Weyl group of 
type B4 ). 

A.6. Consider now an F-stable maximal torus T of G. Let B > T be a 
Borel subgroup. Then F(B) is also a Borel subgroup containing T, and 
there exists I' E N(i(T) such that F(B) = I'BI,-I. Then I'T depends only 
on (T, B), and we get therefore an element w = iT, n(LT) E W which 
depends only on T and B. This element w is also characterized by the 
condition (-)" = ir.B o(jr.F(B»-I. It depends on the choice of B, but its 
F-conjugacy class in W is independent of B. We get in this way a map from 
the set Y+' of all F-stable maximal tori in G to the set W / - F of all 
F-conjugacy classes in the Weyl group. This map is obviously constant on 
GF-conjugacy classes in Y+, hence induces a map g+/G F -+ W / - F ' 

which can be shown to be a bijection by repeated use of Lang's theorem 
(compare [CarS, p. 84]). 

A.7. Given an F-stable maximal torus T in G and a Borel subgroup 
B > T, the maps F*: X(T) ~ X(T) and F*: X(T) -+ X(T) satisfy 
(jr H) - I 0 F* 0 H. H = F* 0 (-):', where w is the element of W such that 
(-)" =h,B°(jr.F(B»-I. Indeed, since F =iF(T).f'(B)oFo(ir.Ii)-', we have 
F * .* F* ('''' )-1 d' r." . ( . )-1 h = Jr.B ° 0 Jhl)Jul) ,an smce t-.!" = JT.1i ° iT.F(Ii) ,we ave 
r.,,'" ( .* ) - I .* Th 
t".!" = ir.FIB) 0 ir.B' us 

( '* ) - I F* '* _ ('* )" I .* F* ('* ) ,1.* F* r.~* iT.B ° °ir.n - ir.B °ir.Bo ° iF(l).F(B) °rr.R = Ot-.!" .• 

This means that F* acts on X(T) in the same way in which F* ow- I acts 
on X(T). 

A.S. This shows also that qF* -I has finite order. Let Xl' be the 
characteristic polynomial of qF* -I , or equivalently the characteristic poly­
nomial of we-I EA. We show that ITFI = Xr(q). We note first that the 
definition of the character group makes sense for every algebraic group. 
This notion is extremely powerful for diagonalizable algebraic groups, that 
is, algebraic groups which can be embedded as closed subgroups of 
algebraic tori. Indeed, X induces a contravariant equivalence of categories 
between diagonalizable algebraic groups and finitely generated abelian 
groups without p-torsion [Bar, p. 113]. Since TF is a closed subgroup of T, 
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X(T F ) is a quotient of X(T). It is clear that for every A E (F* - OX(T) 
and every t E TF we have A(t) = 1. Conversely, it is easily checked that if 
t E T is such that AU) = 1 for every A E (F* - 1)X(T), then t E TF. It 
follows that X(T F ) and X(T)/(F* - 1)X(T) are isomorphic up to p-tor­
sian. However, X(T)/(F* -OX(T) has no p-torsion (since q-'F* has 
finite order, F* is nilpotent mod p, hence F* - 1 is invertible mod p). 
Thus X(T/') ~ X(T)/(F* - OX(T) and therefore 

IT/'I =IX(TF)I =IX(T)/(F* - l)X(T)1 =ldet(F* - 1)1 

= I det( F* - 1) II det( qF* - I ) I 
=Idet(q - qF*')1 = det(q - qF* ') = Xr(q). 

(Observe that q - qF* ' is orientation preserving since q > 1 and qF* , 
has finite order.) 

A.9. Suppose now that a E X(T) is a root of G. Let u., be the root 
subgroup corresponding to a. Then there exists a root f3 such that 
F( U.,) = Vf3" This root is characterized by the property that f3 0 F = q <t a 
for some positive integer q" (q" is always a power of the characteristic, 
qu = q if 0 = 1 and q"q{3 = q2 if 0 = 2). We say that F fixes a if a 0 F is 
a positive multiple of a, or equivalently if F(U.) = V". If B > T and 
W E Ware as above and a = ji, ia), then a is fixed by F if and only if 
(wf- l X 0') = 0'. Thus a is fixed by F if and only the element of wr- I 

associated to (T, B) fixes 0' in the usual sense. Similarly, we say that F 
inverts a if a 0 F is a negative multiple of a, or equivalently if F(U.) = 
V_n' This is also equivalent to the requirement that (wf-I)(O') = -0'. 
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