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1. INTRODUCTION 
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1'\ umerous applications already have been made of the monumental classification 
of the finite simple groups (CFSG) ,vithin algebra, cornbinatorics, model theory 
and computer f:>cience. See [GK] for a recent survey. Here I ,vill only consider 
applications to computational group theory~ in the intersection of algebra and 
computer science, emphasizing results ,,,hose statements make it far from clear 
hmv any simple group information could be applied. 

T,vo computer systems are \videly available for computational group theory: 
GAP (developed in Aachen by Neubiiser and Schonert [Sch], but now moved to St. 
Andrews); and YIAGMA (developed in Sydney by Cannon [CP]). These systems 
have been used for important applications within group theory and other parts 
of mat.hematics (d. [SeIl]) , occaBionally wit.h help from CFSG. Oue of t.he most 
important relationshipf:> bet,veen computer computations and f:>imple groupf:> wa.':> 
the conf:>truction and f:>tudy of many sporadic (and other f:>pecific) simple groups. 
However~ this brief survey focuses on the mathematics behind the algorithms: 
while practicality is certainly a very important aspect~ additional important ones 
are the discovery of ne\v ways to view standard group-theoretic results, the need 
for lIe'V ref:>ults about groups~ and complexity questions ,vithin computer science. 

INTRODUCTORY EXidvll'LE The following purely mathematical result can be 
explained to undergraduates: 

THEORE:Vl 1 [IKS]. If jJ is i1 prime dhTisor of the order of a. subgroup G of Sn, tllAIl 
t1le probctbilitJT t1lctt a random element of G has order divisible by p is at lea.':It 1/ n. 
This bound is tigllt if and onlJT if n is a. povver of p. 

A similar result is in [Ga]. There is a very practical motivation: a.':>f:>uming that 
there is a mechanism for finding random elements of G (ef. §§2,5), the theorem 
states that it "only" takes O(n) samples in order very likely to obtain an element 
of order divisible by jJ, and hence one of order p. The proof reduces to the ca .. .;;e of 
a simple group G, in ,vhich ca.':>e much more precise information if:> obtained about 
the proportion of elements of G of order divisible by any given prime. 

It should be emphasized that the standard proofs of Cauchy's Theorem, or 
more generally of Sylmv's Theorem, are not likely to be used in actual computations 
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to obtain elementf:> or i:>ubgroups of complica.ted groups. Therefore, other ideas a.re 
needed for computations. 

2. THE PEH.:VlUTATIOI\ GROUP SETTING; POLY:-.IOIvlL\'L TEtE 

The basic computa.tional situation dii:>cussed here is as £o11O\vl':>: a group is given~ 
specified as G = (5) in terms of i:>ome (arbitrary) generating set S of its elementsl

. 

The goal is then to find properties of G efficiently, such as IGI, the derived series, 
a composition series, Sylow subgroups; and so all. In this section S will be a set 
of pennutatioIlR of an n-elernent Ret, and then the \vo1'd "efficiently" might mean 
~'in time polynomial (or nearly linear) in the input length IS In of the problem". 

:".fany permutation group algorithmi:> are dei:>cribed in detail in a. new book by 
Scrcss [Scr2]. :."Jumcrous other aspects of computational group theory arc surveyed 
in [Si3,Serl], \vhich also discuss different \vays groups are cOInrIlonly input into 
computers, e.g., via presentations. See [Ball for additional background, especially 
regarding complexity questions \vithin various models of computation. 

The development of efficient computer algorithms for permutation groups wa.':> 
begun by Sims [Sil,Si2] (who then used his ideas for existence proofs for sporadic 
simple groups). Of fundamental importance \V;-l.." his use of a base n = {CtI, ... ,0:0} 
for G: any set of points \vhose poinhvise stabilizer is 1 (possibly n consists of n-l 
points). Let G (i) be the pointwise stabili7,er2 of (11 , ••• , O:i ~ so that G = G UJ) 2: 
G(I):> ... :> G(b) = 1 and IGI = rr':IG(i-I):GCi)1: here IG(i-i):GCi)1 is the lengt.h 
of the orbit 0, of Ct, under G(i-l). Sims developed a data structure to find a 
base and (generators for) all of these subgroups G(il and orbits 0, simultaneously 
and efficiently. This yielded IGI using only elementary group theory: it did not 
involve structural properties of groups. The first version of Sims's order algorithm 
analyzed in polynomial t.ime is in [FHL]::l O(lSln' + n:') versions are in [Kn,Je], 
and these methods cannot deer"ease the exponent 5 [Knl. 

Once IGI can be found, many other properties of G, such <-1,,-: the derived series, 
solvability and nilpotence, can be determined in polynomial time. r..lore important 
from an algorithmic point of view \vas a :",JEI'vmETlSTTJP TEST: given h E 5'J.J decide 
whether or not hE G; and if it is, obtain h from the generating set S. The first of 
these is easy: one could test whether or not IGI = 1 (S U {h}) I; the second depends 
on the data structure in the order algorithm. A random element of G is nmv e;-l.."ily 
obtained as tbtb_l ... tl \vhere, for each 'I, t; is a random element of a transversal 
for G eil in G(i-I)' The above ideas were implemented in GAP and :r....fAGI'v1A. 

OBSTACLES TO POLY~Or..nAL-T[\IE CO:;vIPUTATION In polynomial time it is 
not possible to list the elements of any given permutation group. There are more 
serious obstacles to the algorithmic study of permutation groups. Consider the 
follmving problems for a given G = (5) ::; 51/.' 

CEl\TRALIZER: Given t E G of order 2, find its centralizer Cc (t). 
INTERSECTION: Given subgroups H,I( ::; G, find their intersection H n I{. 

1 lL is standard to ha.ve groups specified by generating sets. ,\ I"amiliar example is the group 

of Rubik's cube. 

2 Such subgroups are typically involved in "solving" Rubik's cube. 

:=! Sims has informed me that his original version also was a polynomial-time algorithm. 
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Here Cc(t), H, 1( and Hnl( are i:>pecified by generating i:>eti:>. Luki:> observed 
that Centrali7';er and Interi:>ection are polynomial-time equivalent and, what ii:> more 
surprising, that the following problem reduces to these in polynomial time. 

GRAPH ISO:;vIORPHISM: Given hvo n-vertex graphs, are they isomorphic? 

There are practical algorithms for Graph Isomorphii:>m; the main one is due 
to B. McKay and is contained in both GAP and YIAGMA. However, it is a long­
standing open question whether there is a polynomial-time algorithm for Graph 
Isornorphism. This \vould be settled by a polynomial-time algorithm for Central­
izer, but it i:>eems unlikely that one exii:>ts. Thus~ this leaves the a\vkward problem 
that centrali7';ers~ normali7';ers and intersections of arbitrary subgroups cannot be 
used in any of the algorithms considered here. This is discussed at length in [Lu3]. 

A remarkable result of Luks [LuI] combined "elemental")';' group theory \vith 
group-theoretic algorithmi:> (e.g.~ for intersecting a solvable group with any sub­
group of Sri) to obtain a polynomial-time Graph Isomorphism algorithm assuming 
that the valences of the vertices are bounded. 

3. POLY:-.IOIVllAL-TL\lE CO:\ll'UTATlON USING CFSG 

Structural properties of finite groups can help lead to algorithms and then be 
involved in proving their validity and timing. This ii:> \vhere CFSG enters. The 
breakthrough in the complexity of permutation group algorithms \vas Luks;i:> use 
of CFSG to determine a composition series: 

THEORE:\l 2 [Lu2;ne]. There is a polynomial-time algorithm that determines a 
composition series of Hny giFen G = (5) :s; Sr. · 

The proof used a familiar consequence of CFSG, the validity of ':Schrcier's 
con.iecture'~: the outer automorphism group of every finite simple group is solvable. 
A dozen years after it wa.';; first obtained, as part of his thesis neals observed that 
a i:>light modification of Luks's algorithm eliminates any need for CFSG! This is 
the premier example of a coni:>equence of CFSG in \vhich CFSG \vas eventually 
removed. It seems as if there should be more instances of other consequences of 
CFSG- (in various areas) which; once knmvn to be true, can then be proved in 
better or simpler \vays. An example begging for such a ne\v proof is Theorem 1. 

Standard methods for finding Sylow subgroupi:> use exponential time in the 
worst case. However: 

THEORE:\l 3 [Kal]. Tllere are polynomial-time algorithms for tlle fol101l'ing proh­
lems. Given G = (5) <:: 5" and" prime p dividing IGI, 

(i) Find a Sylow p-subgroup of G containing any given p-subgroup of G; 
(ii) Gh·en SyloH' p-sllbgrollps Pl and P2 of G, find g E G with Pf = P2 ; and 
(iii) Find the nonnalizeT of a Sylow p-subgmup. 

The original arguments in [Kal] \vere streamlined in [Ka2,KLT\I]. The b;-l.."ic 
idea is to reduce finding Sylmv subgroups to finding them in simple groups and 
to conjugating them in arbitrary groups; then to reduce conjugating them to the 
simple group case; and finally to solve these types of problems for simple groups on 
a case-by-case basis. The algorithms in the theorem are impractical, but versions 
will go into GAP baBed on [YIo]. 
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QUOTTEKT GTlOCPS If lV:S! G ::; Sn~ one can ask for propertief:> and subgroupI':> 
of G/-N. For some questiOlli:> (a. composition i:>eries~ Sylmv subgroups) the traui:>i­
tions from algorithms for G to ones for GllV arc elementary. However; it is not 
necessarily possible for Gil\' to be represented as a permutation group of degree 
< 2'0/4, as P. Neumann ha.-: observed \vhen G is merely a direct product of dihedral 
groupi:>. Hence, there ma.y not be a permutation representation of a. quotient group 
G / AT to which previous resulti:> could be applied, 1':>0 that i:>ome algorithms ha.ve to 
be developed from scratch for GIN. One of the most unexpected examples of this 
is the center. It is not difficult to find Z (G) efficiently, but no elementary method 
is knmVIl for Z(G/-N). In [KL] this \V;-l.." computed in polynomial time, using the 
preceding algorithmic version of Sylow's Theorem via the follmving result: There 
is a polynomial-time algorithm for computing Corec;(H), given H -<: G -<: S". 

Here, the core CoreG(H) = n{ Hg 1 g E G} is the largest normal subgroup of G 
contained in H. As noted earlier, it is not kn(}\vn hmv to intersect t\VO subgroups of 
an arbitrary group in polynomial time, and this is probably impossible, presenting 
an apparent obstacle to computing C = Corec(H). Kevertheless, C can be found 
as follows: for each prime pllGI find a Sylow p-subgroup Q of G and let r := Q .. 

while (pG) i H find g E G with pg i H and replace P by P n Hg-' .. this 
only involves intersecting with p-groups (ef. [LuI]). Then C is generated by these 
subgroups P, one for each p. Nmv Lj1\T = Z(Gj1\T) can be computed as folhJ\vs: 
let (] = {(g~g) I 9 E G}, acting on the disjoint union of t\VO copies of our n-set, 
and let A. = 0(1 x G), B = 0(1 x N) and C = CoreA(B): then L is t.he projection 
of C onto the first copy of G. 

The results and methods in [KL] led to the QUOTIENT GROUP THESIS: If a 
problem, is in polynomial tiTfU~ for' permutation groups then it is also in polynornial 
time for quotients of permutation groups. It is not clear hmv this thesis could 
ever be proved~ but it holds for all ~'standard" questions concerning groups given 
as permutation groups. Hmvever, ridiculously different methods, involving simple 
groups, appear to be needed in the cases of permutation groups and their quotients. 

FASTER ALGOnTTTTMS As already ment.ioned, finding IGI requires time O(ISln"+ 
n:') by the met.hods in [Sil,Si2,FHL,Kn,Je]. The exponent. 5 can be decreased by 
a very different method based on a nonalgorithmic CFSG-based property of prim­
itive permutation groups [Ca]: If G ~ Sn, is pr'irnitim; and IGI > n 210g n, tlu~n 'fl., = 

(,;,),1;: for some m, l, k, and G is a subgroup of SmWrSk with socle (Am)k acting on 
the ordered k-tuples of I-subsets of an rn.-set. Thus, reductions to primitive groups 
lead either to groups that are not too big or to ones that are easily understood. 
This in turn led to an O(lSln:llog' n) time algorithm for finding IGI [BLS2]. 

This faster method arose from the study of the theoretical feasibility of parallel 
computation ,vith permutation groups, in which one allows a polynomial number 
of processors running in t.ime O(1og'(lSln)) (the cornplexit.y da.% "IC). Sims's 
method for order and membership testing is unavailable: it requires sequentially 
using a pointwise stabilizer sequence. Kevertheless, methods that later decreased 
the exponent 5 had already put those problems into KC [BLSl]-and are also 
used in ne,v methodology described in the next section and employed in GAP. 
These algorithms rely heavily on CFSG, <-1,,-: do parallel algorithms for finding a 
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composition series [BLSlj and Sylow subgroups [KLMj. 

4. NEARLY LJI\EATl ALGORTTTHv1S 

81 

It takes time at least IS In to read 151 permutations. It is remarkable that quite 
a few algorithms run in time not too far from this linear lmver bound. A nearly 
linear algorithm for a permutation group G = (5) ~ Sn, is one running in time 
O(lSln log' IGI) for some constant c. When applied to groups having a ba.,e of 

size O(log'" n) for sOlnee', O(ISlnlog' IGI) becomes O(lSlnlog,,+·Jn ), which is very 
close to linear in the input length. Kote that the cla.':>f:>ical simple groups~ in all 
of their permutation representations, have bases of siz;e 0(1og2 n). It appears that 
most practical group-theoretic computations involve either small-base groups or 
alternating or symmetric groups. 

RAKDOMIZED ALGORITHMS I will need informal definitions of Las Vegas and 
r..lonte Carlo algorithms. I30th are randomized algorithms. Tlw output of a ~'vlonte 
Carlo algorithm may be incorrect, but that only can happen \vith a small, user­
pref:>(Tibed probability. So there is ahvays an output~ but there if:> also the uncom­
fortable possibility of error. The output of a Las Vegas algorithm is correct, but 
there is a small, user-prescribed probability that nothing is output. This is more 
comforting. 

:.'vIost knmvn nearly linear algorithms arc :.'vIonte Carlo. These arc of more 
than theoretical interest, since a large part of the permutation group library in 
GAP is b;-l.."ed on implementations of nearly linear algorithms for many of the 
problemf:> dif:>cussed so far: finding IGI ~ the derived series and a composition f:>eries; 
and soon, finding and conjugating Sylow subgroups with some restrictions on the 
noncyclic composition factors [r..lo]. J\.Jany of these algorithms are described in 
detail in [Ser2]. In GAP the possibility of erroneous output presently is avoided by 
applying an O(ISln2 10gC IGI) algorithm essentially due to Sims in order to check the 
correctness of point stabili?;er constructions [Ser2]. Nmv, under mild ref:>trictions~ 
all of these nearly linear :.'vIonte Carlo algorithms can be upgraded to nearly linear 
Las Vegas ones, using algorithms Seress ,vill program into GAP: 

THEORE:vr 4 [KS1,KS2,KYlj. There arc nearly linear Las Vegas algorithms which, 
wIlen gi-\rAn G = (5) ::; Sn Y1,.ritll no composition factor isomOIpllic to any P SU(3, q), 
'B,(q), 'G,(q) or 'F4 (q), determine the i()l1owing: IGI, membership in G, a com­
position series ic)r G, a.nd ever~vt11ing else previously found only by Alonte Carlo 
a.lgoritllms. 

The proof starts with a known r..lonte Carlo algorithm that finds a composi­
tion series for G. For an alleged simple group that is a (composition) factor of this 
series, determine its order and isomorphism type and use a very fa .. .;;t constructive 
recognition test (d. 35). If the test fails, output nothing (the probability of this is 
small); othenvise verify the precise compof:>ition factors of G, hence find I GI. Know­
ing IGI with certainty in turn allmvs the outputs of all other knmvn nearly linear 
algorithms to be verified \vith certainty. 

Following [BLS 1], this approach departs significantly from the standard meth­
ods based on Sims~s point stabiliz;er ideas: by the time we have IGI ,ve have a com­
position series for G. Very fast simple group recognition algorithms ,vere essential. 
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Thei:>e ha.ve much ,vicIer applicability~ as '>\Till be i:>eell in the next section. 

5. BLACK BOX GROLl'S 

In 32 I mentioned a general computational setting for a. group G = (5). The most­
studied case of that setting is permutation groups. Another very natural setting is 
matrix groups: 5 is a set of invertible matrices over some field, \vhieh here is ahvays 
a finite field. The questions remain the same: efficiently find properties of G, such 
as IGI, solvabilit.y, a composition series, etc. If 5 c GL(d,q) t.hen t.he input lengt.h 
if:> ISld2 10g q (since log q hits a.re required to \vrite each of the d'2 entries). These 
problems seems to be very hard. However, under reasonable additional conditions, 
and allmving probabilistic algorithms, this has become an actively studied area. 
Some of the most interesting re~mlts have stemmed from ignoring the represen­
tation of G on ~ implicit in the above description (hence ignoring eigenvalues~ 
minimal polynomials and so on), and abstracting to the following notion. 

A black box group is a group G, whose clements are encoded by binaru strings 
of the same length J.V, such that routines ("oracles'~) are provided for 

{

multiplying t\VO elements~ 
inverting an clement~ 
deciding whether an clement = 1. 

Here G is specified as G = (5) for some set 5 of clements. Kate that IGI ::; 2'\ 
not all strings correspond to group elements. 

The b;-l.."ic examples are permutation groups and matrix groups. Hmvever, 
considering permutation groups as black box groups~ so that group operations can 
be performed much faster than permutation multiplication, has recently become a 
crucial tool within the study of permutation groups [Ser2,KSl]. Moreover, experi­
ence has shown that allmving fewer tools sometimes forces ne\v and better methods. 

According to an amazing result of nabai [na2], mu~ can find a nearly nnifoT'Tnly 
distributed random element of a black box group G = (5) using O(15IN') group 
operations. This tour de force involves combinatorial methods but nothing about 
the structure of G; note that IGI is never known here. A practical heuristic algo­
rithm in [CL1fl'\O] for finding random group elements is adequate for La .. .;; Veg;-l.." 
algorithms, in which correctness of the output is ultimately verified (d. [13a3]). 

At present the most general theorem concerning black box groups is 

THEORE:Vl 5 [13n,KSl]. There is a Las legas algoritllIn for the folloyT'ing problem. 
Suppose that a hlack box group G = (5) is ghren. together l'i'ith a list of primes 
that contains all prime divisors of IGI as well as oracles for handling elementaT,y 
abelian subgroups ofG and discrete logarithms, Then IGI and a composition series 
for G can be computed in time POl;YllOmial in both the input length and the size 
of the largest field iIl1/0lved in defining the Lie type composition factors of G, 

The additional oracle hypothesis presumes access to "discrete logarithms'~ 
(write any given deTfu~nt of IF; as a !)()WeT' of a given generatm) and "handling 
elementary abelian subgroups" E (i.e., the ability to do all standard linear algebra 
inE). As originally stated in [BB] the polynomial timing in the theorem also 
involved a polynomial in the smallest integer v( G) such that all nonabelian com­
position factors of G have faithful permutation representations of degree at most 
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v(G). The slightly stronger result stated above was obtained in [KSl] using simple 
group recognition algorithmf:>, dif:>cuf:>f:>ed belo\v. Sylmv f:>ubgroupf:> can abo be found 
in the situation of the theorem, but the permutation group literature [Kal] is no 
longer available for this as it was in [BB]. 

RECOGI\IZL'IG SHvll'LE GHOUl'S All modern Sylu\v subgroup algorithms for per­
mutation groups reduce to the ca .. "e of simple groups [Ka1,Ka2,:~'vIo,KL~'vI,CCH]. 
For any given simple permutation group one first determines an explicit if:>omor­
phism with a known simple group, afterwards studying Sylow subgroups of the 
concrete simple groups. Deterministic algorithms producing such isomorphisms 
are in [Kal,Ka2,KLlVI]. 

Outside the permutation group setting, the problem of nxognizing simple 
groups began \vith algorithms [l'\eP,~iP,CLG-l] for deciding \vhether a given sub­
group G = (S) -<: GL(d, q) contains SL(d, q) or a da."ical group a., a normal 
subgroup. These ,yere nonconstructive recognition algorithms, outputting either 
:'G contains a normal classical group~' , or :'G probably does not contain any clas­
sical group of d x d matrices <-1,,-: a normal subgroup". These rely heavily on CFSG: 
they search for certain matrices in G that occur with high probability in the rel­
evant cla..':>f:>ical groups, and then use a far-reaching nonalgorithmic conf:>equence of 
CFSG determining the subgroups of GL(d, q) containing such clements [GPPS]. 

This suggested the need for constructive recognition algorithms: given G = 

(S) -<: GL(d, q) containing SL(d, q), the algorithm in [CLG2] writes any given 
element of SL(d, q) in terms of S. This has also been done for the symplectic 
groupf:> [Ce]. The nonconf:>tructive recognition algorithms are T\.lonte Carlo (more 
precif:>ely~ one-sided Monte Carlo [Ba3], since an output f:>uch a..':> ':contains SL(d~ q)" 
is guaranteed to be correct), and run in time polynomial in the input length; the 
constructive ones can be vie\ved as Las Vegas algorithms \vhose timing also depends 
on a small pmver of q, so that these do not run in polynomial time. 

The black box version of constructive recognition is conceptually hanier: there 
if:> no longer a vector f:>pace available, hence no linear algebra to rely on. The goal 
if:> an effective isomorphism4 ;p: G --+ H to a concrete verf:>ion H of the simple black 
box group G, whereas only the name of H is output in nonconstructive recognition. 
It \vas not at all clear that one could recognize a black box simple group in this 
manner, but in [CFL] this \vas shmvn to be possible \vhen G ~ PSL(d, 2). 

~'vlore generally, then; i.'] a La.'] Vega.'] algor·ithm, which, '/1J}u~n giVf.~n a black bo:r 
group G isomorphic to a simple group of Lie type of known characteristic~ con­
stmctive/y recognizes G in time polynomial in the input length and field size [KSl] 
(ef. [KYI]). The characteristic assumption is removed in [KS3] by assuming instead 
that there is a method (an oracle) for finding the order of any given element of G. 
'Vhen the characteristic is known, the idea is to (probably) construct an element 
in a large conjugacy class, one of \vhose powers if:> a (long) root element: then 
construct larger subgroups using random conjugates of these root clements; and 
ultimately make a recursive call to a group of rank one less than that of G (if G 
does not already have rank 1). The final step of the algorithm verifies the correct­
nef:>f:> of the output isomorphif:>m by computing a presentation for G (f:>ee belmv). 

4 Able to find gp or hcp-l for any given 9 E G or h E H. 
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Here the isomorphism type of G if:> not pa.rt of the input. Note tha.t the Lie 
rank I and logarit.hm of t.he field size q are polynomial in iV, since iV ? log IGI ? 
(i2logq)/4. While q appears in timing estimates of all known constructive recog­
nition algorithms, it should not be needed; at least when I is large. Analogous 
re~mlts for alternating groups are in [DL~PS]. 

PRESEYL\.TIONS La .. " Vega • .;; algorithms recognizing simple black box groups 
eventually need to verify a. presentation of a. kllO\Vn simple group, which for Ui:>e in 
Theorem 4 must be ,,,ritton in time polynomial only in the input length. In vic,,, of 
the time required to multiply out a permutation g given as a product of generators, 
verifying that 9 = 1 involves the lengths of presentatiom;5. For all simple groups 
except, perhaps, PSU(3,q), 2n2 (q) and 2G2 (q), there is a presentation of length 
O(log'IGI), using c = 2 and in most. cases even c = 1: the proof in [BGKLP] 
uses simple tricks to adapt the usual Curtis-Stcinberg-Tits presentations for these 
groups. It is perhaps surprising that the case ofthe very familiar groups PSU(3, q) 
ha.-: remained open for almost 10 years. Short presentations have the follmving 
nonalgorithmic coni:>equence needed in the proof of Theorem 4: Every finite group 
G, with no composition factor of the form rSU(3, q), 'BAq) or 'G,(q), has a 
presentation of total length O(log"IGI). The exponent 3 is best possible. 

These short presentations also were used in [J\.Ja] to prove the existence of a 
constant e such that there are at most ncdlogn d-generator groups of order n \vith 
no composition factor rSU(3, q), 'B,(q) or 2G2(q), and each such group can be 
defined by meani:> of cd log n relations in those d generators. Ai:> \vith Theorem 1, 
we see that algorithmic needs have led to a result about finite groups. Of course; 
it is not surprising that many applications of CFSG- have needed new properties 
of simple groups (d. [GK]). 
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