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Note on GMW Designs

WILLIAM M. K ANTOR

Equivalence of GMW difference sets corresponds to isomorphism of the associated designs.

c© 2001 Academic Press

Let N andn be integers such thatn|N and 2< n < N. Let q be a prime power. The
difference sets introduced by Gordon, Mills and Welch in [1] produce symmetric designs with
the same parametersv = (qN

−1)/(q−1), k = (qN−1
−1)/(q−1), λ = (qN−2

−1)/(q−1)
as the point-hyperplane design of PG(N − 1,q). The purpose of this note is to prove that
inequivalent difference sets of this sort produce nonisomorphic designs.

There are various ways to construct the GMW designs. Since we wish to study designs
rather than difference sets, we will use the very nice alternative description in [4] rather than
the more standard difference set point of view [1, 6].

Consider the fieldsV = FqN ⊃ Fqn ⊃ Fq; let V◦ denote the dual of theFqn-spaceV ,
consisting of all linear functionalsf : V → Fqn . We will also viewV andV◦ asFq-spaces,
in which case we write〈v〉 for the 1-space spanned byv ∈ V − {0} and〈 f 〉 for the 1-space
spanned byf ∈ V◦− {0}. Fix a((qn

− 1)/(q− 1), (qn−1
− 1)/(q− 1), (qn−2

− 1)/(q− 1))
difference setD in F∗qn/F∗q (hence the assumptionn > 2), let D̃ denote the union inF∗qn of
the cosets comprisingD, and define the incidence structureD(N,n, D) as follows: its points
are the 1-spaces〈v〉, its blocks are the 1-spaces〈 f 〉, and〈v〉 and〈 f 〉 are incident if and only if
f (v) ∈ D̃∪{0}. As noted in [4], these are symmetric designs that include the “classical” ones
in [1] (where D is taken to be equivalent to a difference set with corresponding symmetric
design PG(n− 1,q)).

Since the case in whichD(N,n, D) is isomorphic to a projective space is fully handled
in [1, 4], we will exclude this possibility. The statements of the following theorems deal with
the fact that the same symmetric design can arise asD(N,n, D) for different values ofn
(which is why we have includedn in the notationD(N,n, D)).

THEOREM 1. Assume thatD is a symmetric design, not isomorphic to a projective space,
such thatD ∼= D(N,n, D) for some N,n and D and where n is chosen as small as possible.
ThenAutD ∼= 0L(N/n,qn)/Zq−1, where Zq−1 consists of the scalar transformations of V
induced byF∗q.

THEOREM 2. Assume that D is a difference set inF∗qn/F∗q such thatD(N,n, D) is not
isomorphic to a projective space.

(i) If D ′ is a difference set inF∗qn/F∗q, then D(N,n, D) ∼= D(N,n, D′) if and only if

D′ = aD for some a∈ F∗qn/F∗q.
(ii) Assume that D′ is a difference set inF∗

qn′ /F
∗
q, and that n and n′ are both minimal in

the sense of Theorem1. ThenD(N,n, D) ∼= D(N,n′, D′) if and only if n = n′ and
D′ = aD for some a∈ F∗qn/F∗q.

Some instances of Theorem2 are already known. These are surveyed at length in [6, pp. 77–
88]: the rank of theFp-code determined by an incidence matrix ofD(N,n, D) has been
computed whenq = 2 andD is classical or in a few instances whenq ≤ 9, and when these
ranks are different the designs cannot be isomorphic. However, it should be noted that these
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same rank results show that the ranks forD(N,n, D) andD(N,n, D′) are often the same, in
which case no nonisomorphism information can be obtained in this manner.

More generally, it appears that standard difference set methods are not strong enough to
decide design isomorphism. Therefore, we need to use other techniques: our approach to
Theorem2 depends on Theorem1, which in turn uses group theory and internal properties of
these designs.

Let h = N/n. We define aclumpof D(N,n, D) to be the set of points inFqnv for some
0 6= v ∈ V ; of course, clumps correspond to the points of PG(h − 1,qn). Let C denote the
set of all clumps. There is also the notion of adual clumpdetermined by a non-zero linear
functional. We will need the following observations, where each block〈 f 〉 is identified with
the set of points incident with it.

(1) The setC f of clumps in〈 f 〉 has size(qN−n
− 1)/(qn

− 1); these clumps arise from the
hyperplane of PG(h− 1,qn) corresponding to Kerf .

(2) If C1 andC2 are distinct clumps, then the intersection of the set of blocks containing
both of them contains exactlyqn

+ 1 clumps; by (1) these clumps arise from a line of
PG(h− 1,qn).

The derived group of a groupS is denotedS′.

(3) The construction shows that AutD(N,n, D) containsG = GL(h,qn)/Zq−1; that it
contains0L(h,qn)/Zq−1 is noted in [4]. Moreover,G′ is a homomorphic image of
SL(h,qn) [10, p. 23] that is transitive on points (and blocks), and clumps are blocks
for this transitive action, as well as for that ofG. (Note: We need two entirely different
standard uses for the term “block”, which can be easily distinguished from context.
See [11] for the standard background concerning primitive and imprimitive permutation
groups.)

Let p denote the prime dividingq. Before continuing we digress briefly by noting the fol-
lowing special case of a lemma of Tits [8, (1.6)] (the special case is easily proved using linear
algebra):

(∗) If M is a subgroup of GL(h,qn) that does not contain SL(h,qn) but contains a Sylow
p-subgroup of GL(h,qn), then there is a set of subspaces such thatM fixes each of
them and contains every Sylowp-subgroup of GL(h,qn) that fixes each of them.

(3′) Each nontrivial block ofG on points is contained in a clump. (This states that any
proper subgroupM of G containing the stabilizerGx of a pointx fixes the clump con-
taining x; that is, fixes the point of PG(h − 1,qn) containingx. To see this, note that
|G: M | divides(qN

− 1)/(q − 1) and hence is not divisible byp, so thatM contains a
Sylow p-subgroup ofG. SinceG = 〈G′,Gx〉, M cannot containG′ and hence must be
reducible by (∗). Then the only proper subspace ofV fixed byGx must also be fixed by
M .)

(4) If F is any dual clump of blocks not containing a clumpC, then the induced incidence
structure(C,F) is isomorphic to the design determined by the difference setD (i.e.,
if f ∈ V◦ and f (v) 6= 0, then forα, β ∈ F∗qn we have(α f )(βv) ∈ D̃ if and only if
β ∈ (α f (v))−1D̃).

(4′) If C is a clump then{C ∩ X | X is a block 6⊃ C} is the set of blocks of a symmetric
design, with point setC, isomorphic to the design determined by the difference setD
(proved as in (4); cf. [4, Lemmas 4 and 5]).
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We begin with a slight extension of [4, Theorem 7].

PROPOSITION3. If D is a symmetric((qN
− 1)/(q − 1), (qN−1

− 1)/(q − 1), (qN−2
−

1)/(q − 1)) design, and if S= S′ ≤ AutD is point-transitive and S/Z(S) ∼= PSL(N/n,qn)

for some n> 2, thenD ∼= D(N,n, D) for some D.

PROOF. S is a homomorphic image of SL(N/n,qn) [9], and hence we may assume that
S= SL(N/n,qn), not necessarily acting faithfully (as in the case of the designsD(N,n, D)
for suitableq). In view of the argument in the proof of [4, Theorem 7], it is only necessary to
show that the action ofSon points is completely determined (up to an automorphism ofS).

If x is a point then its stabilizerSx contains a Sylowp-subgroup ofS. SinceSx < S, by (∗)
it follows thatSx fixes some subspace ofV . Then(qN

− 1)/(q − 1) = |S: Sx| is divisible by
the number of subspaces of theh-spaceV of some dimension. Consequently, that dimension
must be 1 orh− 1 (e.g., using [12]). Up to an outer automorphism ofS, we may assume that
Sx fixes a pointx of PG(h− 1,qn) and acts irreducibly onV/x.

If h > 2 then(Sx)
′ induces at least SL(h − 1,qn) on V/x [10, p. 22] sinceqn > 3; by

(∗) and irreducibility we haveSx ≥ (Sx)
′. If h = 2 then(Sx)

′ is an elementary abelian group
consisting ofq transvections, and againSx ≥ (Sx)

′. More precisely, for anyh, with respect to
a suitable basisSx consists of allFqn-matrices

(a
∗

O
A

)
with A an(h− 1)× (h− 1) matrix and

a−1
= detA, while (Sx)

′ consists of all
( 1
∗

O
A

)
with detA = 1.

We have{(qN
− 1)/(q − 1)}|Sx: (Sx)

′
| = |S: (Sx)

′
| = qN

− 1 since(Sx)
′ is the stabilizer

in S of a nonzero vector. Then|Sx: (Sx)
′
| = q − 1, so thatSx consists of all

(a
∗

O
A

)
with

a−1
= detA ∈ F∗q and hence is determined up to conjugacy, as required. 2

REMARK . If we allowedn = 1 or 2 in the proposition then the same argument would show
thatD is a projective space.

PROOF OFTHEOREM 1. The subgroupH of G inducing the identity on Kerf consists
of all Fqn-matrices

(
∗

O
∗

Ih−1

)
(with respect to a suitable basis), and hence has order(qn)h−1

(qn
−1) = qN−n(qn

−1) and is transitive on the vectors inV −Ker f . ThenH fixes(qN−n
−

1)/(q−1) points ofD(N,n, D) and is transitive on the remaining(qN
−qN−n)/(q−1) points.

Let Y denote a block of imprimitivity for the action ofA = AutD on points such thatA acts
nontrivially and primitively on the corresponding block system6 = YA. Then

(#) Every member ofC is a union of members of6 (by (3′) since6 is a block system for
G).

The groupA6 induced byA on 6 is a primitive permutation group having a subgroup
H6 fixing certain points and transitive on the remaining ones. All such primitive groups are
known [5], and one of the following holds:

(I) H6 fixes exactlyt members of6, andA6 is (t + 1)-transitive;
(II) |6| = 22,23 or 24,A6 is a Mathieu group and the members of6 fixed by H6 arise

from a block of the associated Steiner system;
(III) A6 has a normal affine subgroup ASL(m, r ), acting in its natural 2-transitive action,

for somem and some prime powerr , and the members of6 fixed by H arise from a
subspace of the underlying affine space; or

(IV) PSL(m, r ) ≤ A6 ≤ P0L(m, r ) for somem and some prime powerr , where these
groups act in one of their natural 2-transitive actions, and the members of6 fixed byH
arise from a subspace of the underlying projective space.
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We first consider further properties ofH before dealing with cases (I)–(IV) separately.
Let P denote the normal elementary abelian Sylowp-subgroup ofH of orderqN−n (con-

sisting of all transvections
( 1

O
∗

Ih−1

)
with respect to a suitable basis). ThenP fixes (qN−n

−

1)/(q − 1) points and acts semiregularly on the remaining ones. Moreover,P acts faithfully
on6 and P6 is semiregular on each of its nontrivial orbits. (Namely, ifg ∈ P − {1} fixes
someY ∈ 6 then, sincep6

∣∣ |Y| by (#), g fixes a point ofY, so thatP also fixes that point and
hence also fixesY.)

Let S denote the subgroup ofA generated by all of the conjugates ofP. Let K denote the
kernel of the action ofA on6.

LEMMA 4. (i) S= S′.
(ii) If C is a clump then its pointwise stabilizer K(C) in K is 1.

(iii) K ∩ S≤ Z(S) and G centralizes K .

PROOF. (i) By (3) and [10, pp. 21–23],S ≥ G′ = G′′ sinceqn > 3 andG′ is generated
by the conjugates ofP lying in G. Now (i) follows from the fact thatS is generated by the
conjugates ofG′.

(ii) By (#), K is the identity onC. If F is any dual clump then, by (1), each of its members
contains exactly the same clumps, and no block outsideF contains precisely these clumps.
Hence,K fixesF .

If each member ofF does not containC then, by (4),(C,F) is a symmetric design, and
K(C) acts on this design, fixing all points. Thus,K(C) is the identity on each dual clump none
of whose blocks containC. Dually, K(C) is the identity on each clump not contained in any
member of any suchF . It follows thatK(C) = 1.

(iii) We claim that K normalizesH . For, if k ∈ K then H and Hk
= k−1Hk are the

identity on any clumpC in C f , while Hk6
= H6 . If Hk

6= H then〈H, Hk
〉 ∩ K 6= 1, which

contradicts (ii). Thus,K normalizesH .

Clearly H normalizesK , so thath−1k−1hk ∈ H ∩ K = 1 wheneverh ∈ H, k ∈ K . Then
H centralizesK , and hence so does each conjugate ofH in A. The conjugates ofH in G
generateG. 2

We now return to the proof of Theorem1. Let y = |Y| and letC be a clump. Then(qN
−

1)/(q − 1) = |6|y, andy divides|C| = (qn
− 1)/(q − 1) by (#).

Case(I). First suppose thath > 2. SinceH fixes exactly(qN−n
− 1)/(qn

− 1) clumps, by
(#) we havet ≥ (qN−n

− 1)/(qn
− 1)≥ qn

+ 1> 5 and henceA6 contains the alternating
group. Again by(#), the subgroupB of A sendingC to itself also induces at least the alter-
nating group onC. If C1 andC2 are distinct clumps then it follows that their stabilizer inB is
transitive on the remaining clumps, but this contradicts (2).

The caseN/n = h = 2 is harder since (2) is then vaccuous and this case can actually occur.
First we will consider the possibility thatA6 contains the alternating group. By Lemma4(iii),
S is a central extension of that alternating group. IfB denotes the subgroup ofS sendingC
to itself, thenB′C is the alternating group by(#). ThenB′C acts onC − {C} as the alternating
groupA|C|−1 of degree|C|−1= qn > |C|. On the other hand,B′C/(B

′
∩K ) acts on the set of

B′ ∩ K -orbits withinC. SinceA|C|−1 is simple it has no proper subgroup of index< |C| − 1,
so thatB′C induces onC a subgroup ofB′ ∩ K . Then|B′C| ≤ |B

′
∩ K | ≤ |S∩ K | ≤ 2 by [7].

However,B′ containsG′, andG′C induces onC a cyclic group of order(qn
−1)/(q−1). This

contradiction shows thatA6 does not contain the alternating group.
Nevertheless,A6 is (t + 1)-transitive, wheret is the number of members of6 fixed by H ,

which in turn are determined by fixed points ofH . By (#)we havet = {(qN−n
−1)/(q−1)}/y,
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wherey = |Y| divides|C| = (qn
− 1)/(q − 1). Moreover,|6| = {(qN

− 1)/(q − 1)}/y =
(qn
+ 1)t .

We will compare this information with a list of all 2-transitive groups (excluding alternating
and symmetric groups) found, for example, in [5]. First of all, t + 1 ≤ 5 in view of (t + 1)-
transitivity, and hence|6| = (qn

+1)t cannot be of any of the following forms: 11, 12, 22, 23,
24, 176, 276, 2s−1(2s

± 1) with s ≥ 3, or a prime power. Now the aforementioned list shows
that onlyt = 1 is possible. SinceA6 is a 2-transitive group of degreeqn

+ 1, other than the
alternating or symmetric group, having an abelian subgroupP6 of orderqn with an orbit of
lengthqn, the list yields PSL(2,qn) ≤ A6 ≤ P0L(2,qn). Moreover,y = (qn

− 1)/(q − 1)
and6 = C.

If 0 = 0L(2,qn)/Zq−1 denotes the subgroup ofA in (3), it follows that AC = 0C =
P0L(2,qn). Thus, the only placeA and0 might differ is in the kernelK of the action ofA on
C, so it suffices to show thatK ≤ G. Suppose thatk ∈ K −G. By Lemma4(iii), 〈G∩K , k〉 is
an abelian group acting onC, whereG∩ K is transitive onC. Thus, there is someg ∈ G∩ K
such thatkg fixes a point ofC, commutes with the transitive groupG∩ K , and hence fixes all
points ofC. This contradicts Lemma4(ii). Thus, A = 0, as required.

Case(II). HereqN−n
= |P6 | = 24, the size of the complement of a block of the associated

Steiner system, whereasn|N andn ≥ 3.

Case (III). We first claim thatr is a power ofp. For suppose not. CertainlyP6 acts on
W = Fm

r , and its set of fixed points is a subspaceU . Recall thatP6 acts semiregularly on
each of its nontrivial point-orbits, and hence onW − U . Sincep does not divider , P6 acts
fixed-point-freely onW/U according to [2, p. 187], but that is impossible for a noncyclic
abelian group according to [2, p. 69].

Thus,r is a power ofp, which contradicts the fact that(qN
− 1)/(q − 1) = y|6| = yrm.

Case(IV). Precisely as in (III) we find thatr is a power ofp.
We have(qN

− 1)/(q − 1) = y(r m
− 1)/(r − 1), wherey|(qn

− 1)/(q − 1). By [12] it
follows thatqN

= r m, so thaty = (r − 1)/(q − 1) and hencer = q j for some integerj .
Then j ≤ n since(q j

− 1)/(q − 1) = y ≤ (qn
− 1)/(q − 1).

Now S6 = S′6 = PSL(m,q j ) with N = mj. SinceS6 ∼= S/Z(S) by Lemma4(iii), in
view of Proposition3 and the remark following it we havej > 2 andD ∼= D(N, j, D′) for
some difference setD′ in F∗

q j /F
∗
q. Then j = n by the hypothesized minimality ofn.

Thus,y = (qn
− 1)/(q − 1), 6 = C, and PSL(h,qn) ≤ AC ≤ P0L(h,qn). Now we can

complete the proof exactly as in (I). 2

PROOF OFTHEOREM 2. (i) If ϕ: D(N,n, D′) → D(N,n, D) is an isomorphism then it
sends AutD(N,n, D′) to AutD(N,n, D). Let Z denote the cyclic subgroup of both
AutD(N,n, D) and AutD(N,n, D′) induced byF∗

qN/F
∗
q. ThenZϕ = ϕ−1Zϕ lies in the group

AutD(N,n, D), described in Theorem1, which has just one conjugacy class of cyclic sub-
groups of order(qN

−1)/(q−1) (e.g., by Schur’s Lemma). Thus, for someg ∈ AutD(N,n, D)
we haveZϕg

= Z, so thatϕg induces an automorphism of the cyclic groupZ.
If 1 and1′ are the difference sets inZ determined by blocksX andX′ of D(N,n, D) and

D(N,n, D′), respectively, then1′ϕg is the difference set inZ determined by the blockXϕg of
D(N,n, D) and hence is a translate of1. This means that1 and1′ are equivalent difference
sets, so thatD′ is a translate ofD by [1, Theorem 4] or [6, pp. 77–78]. The easy converse is
also in [1, Theorem 4].

(ii) Minimality implies thatn = n′. 2

REMARKS. (1) In view of the theorems,D and the wayD(N,n, D) was constructed from
PG(h − 1,qn) can be recovered from the designD(N,n, D). Our proof does not, however,
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provide a purelygeometricmeans of recovery, which would be far preferable. Instead, we
have used [5], which depends on very difficult group theory, and hence its use is uncomfort-
ably reminiscent of using a cannon to kill an ant. However, we hope that knowing that these
theorems are true will make it more likely that much nicer proofs can be found.

In this direction, we conjecture that, under the minimality assumption of Theorem1, clumps
are the only setsC of points ofD(N,n, D) such that{C ∩ X | X is a block 6⊃ C} is the set
of blocks of a symmetric design, with point setC, having the same parameters as PG(n −
1,q). If true, this would produce a simpler proof of both theorems. (Note that the minimality
assumption is needed, as otherwise AutD(N,n, D) would not sendC to itself.) Is there a
coding theoretic interpretation of this conjecture? Is the conjecture more approachable in the
case of the classical GMW designs, where minimality is automatic and the design is built up
from two projective spaces?

(2) The caseh = q = 2 of Theorem2 appears in [3, Theorem 3.4]. However, the proof
given there assumes that any design isomorphism must send the subgroup SL(2,2n) in (3)
of the automorphism group of one of the designs to the corresponding automorphism group
in (3) of the other design. We have seen that this is not the case unlessn is minimal in the
sense of Theorem1. It was exactly the need to make this assertion correct up to conjugacy
that originally led to Theorem1.

(3) Proposition3 requires a comment in view of the interesting Mathematical Review
(#97m:51005) of [4], which states the following: “It is shown that any design with the pa-
rameters ofPN−1,q can be constructed by their procedure [i.e., the one in [1]] if and only if
the design admits GL(m,qn) for somem andn such thatN = mn.” The review does not men-
tion transitivity, hence also not that [4] assumes the precise action of GL(h,qn). It is not at all
clear whether the proposition holds as stated without the transitivity assumption: it is plausi-
ble that SL(h,qn) could act on a design having these parameters (possibly not faithfully, just
as in the case ofD(N,n, D) for suitableq) and yet have many orbits, even including some
fixed points. Of course, the nature of some orbits would be severely restricted by (∗), perhaps
so much so that the proposition could be generalized to the statement in the review.
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