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Note on GMW Designs

WiLLIAM M. KANTOR

Equivalence of GMW difference sets corresponds to isomorphism of the associated designs.

(© 2001 Academic Press

Let N andn be integers such that)/N and 2 < n < N. Let q be a prime power. The
difference sets introduced by Gordon, Mills and Welchliidroduce symmetric designs with
the same parameters= (qN —1)/(q—1), k= @V 1-1)/(q-1),» = q"V2-1)/(q—1)
as the point-hyperplane design of 86— 1, q). The purpose of this note is to prove that
inequivalent difference sets of this sort produce nonisomorphic designs.

There are various ways to construct the GMW designs. Since we wish to study designs
rather than difference sets, we will use the very nice alternative descriptidhrather than
the more standard difference set point of vieg].

Consider the field& = Fgn D Fgn D Fg; let V° denote the dual of thEqn-spaceV,
consisting of all linear functional$é: vV — Fgn. We will also viewV andV° asFq-spaces,
in which case we writév) for the 1-space spanned bye V — {0} and(f) for the 1-space
spanned byf € V° —{0}. Fixa((@"—-1)/(@—-1), @' -1)/@@-1), @ 2-1/@-1)
difference seD in Fj;n/F; (hence the assumption> 2), let D denote the union %, of
the cosets comprisin®, and define the incidence structidéN, n, D) as follows: its points
are the 1-spacds), its blocks are the 1-spacés), and(v) and( f) are incident if and only if
f (v) € DU{0}. As noted in B], these are symmetric designs that include the “classical” ones
in [1] (where D is taken to be equivalent to a difference set with corresponding symmetric
design PGn — 1, 0)).

Since the case in whicB(N, n, D) is isomorphic to a projective space is fully handled
in [1, 4], we will exclude this possibility. The statements of the following theorems deal with
the fact that the same symmetric design can arisB@s, n, D) for different values ofn
(which is why we have included in the notatiorD(N, n, D)).

THEOREM 1. Assume thab is a symmetric design, not isomorphic to a projective space,
such thatD = D(N, n, D) for some Nn and D and where n is chosen as small as possible.
ThenAutD = I'L(N/n, q")/Zq-1, Where Z_; consists of the scalar transformations of V
induced b)Ff;.

THEOREM 2. Assume that D is a difference setl-Fran/Fa such thatD(N, n, D) is not
isomorphic to a projective space.

() If D’ is a difference set i'Fa”/FE’ thenD(N, n, D) = D(N, n, D’) if and only if
D’ = aD for some a Fin/Fg.

(i) Assume that Dis a difference set irlF;n,/F*, and that n and hare both minimal in
the sense of Theore ThenD(N, n, D) = D(N, n’, D’) if and only if n = n’ and
D’ = aD for some a Fyn/Fg.

Some instances of Theorehare already known. These are surveyed at lengt6,ipg. 77—
88]: the rank of theF,-code determined by an incidence matrix[@N, n, D) has been
computed whem = 2 andD is classical or in a few instances when< 9, and when these
ranks are different the designs cannot be isomorphic. However, it should be noted that these
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same rank results show that the ranksBgiN, n, D) andD(N, n, D’) are often the same, in
which case no nonisomorphism information can be obtained in this manner.

More generally, it appears that standard difference set methods are not strong enough to
decide design isomorphism. Therefore, we need to use other techniques: our approach to
Theorem?2 depends on Theorefy which in turn uses group theory and internal properties of
these designs.

Leth = N/n. We define alumpof D(N, n, D) to be the set of points ifgnv for some
0 # v € V; of course, clumps correspond to the points of( PG 1, q"). Let C denote the
set of all clumps. There is also the notion oflaal clumpdetermined by a non-zero linear
functional. We will need the following observations, where each bldckis identified with
the set of points incident with it.

(1) The seCs of clumps in( f) has sizggN " —1)/(q" — 1); these clumps arise from the
hyperplane of PG — 1, g") corresponding to Kefr.

(2) If C1 andC, are distinct clumps, then the intersection of the set of blocks containing
both of them contains exactty” + 1 clumps; by (1) these clumps arise from a line of
PGh —1,gM.

The derived group of a groupis denoteds.

(8) The construction shows that Ad¢N, n, D) containsG = GL(h, q")/Z4—1; that it
containsI'L(h, q")/Zq-1 is noted in f#]. Moreover,G’ is a homomorphic image of
SL(h, g") [10, p. 23] that is transitive on points (and blocks), and clumps are blocks
for this transitive action, as well as for that@f (Note: We need two entirely different
standard uses for the term “block”, which can be easily distinguished from context.
See [L1] for the standard background concerning primitive and imprimitive permutation

groups.)

Let p denote the prime dividing. Before continuing we digress briefly by noting the fol-
lowing special case of a lemma of Tit, [1.6)] (the special case is easily proved using linear
algebra):

() If M is a subgroup of Gth, g") that does not contain $h, q™) but contains a Sylow
p-subgroup of Glch, g"), then there is a set of subspaces such Mdixes each of
them and contains every Sylogrsubgroup of Glch, g™) that fixes each of them.

(3) Each nontrivial block ofG on points is contained in a clump. (This states that any
proper subgroup of G containing the stabilizeBy of a pointx fixes the clump con-
taining x; that is, fixes the point of P& — 1, q") containingx. To see this, note that
|G: M| divides(qN — 1)/(g — 1) and hence is not divisible by, so thatM contains a
Sylow p-subgroup ofG. SinceG = (G’, Gx), M cannot contailtt’ and hence must be
reducible by §). Then the only proper subspace\bfixed by Gy must also be fixed by
M.)

(4) If Fis any dual clump of blocks not containing a clu@pthen the induced incidence
structure(C, F) is isomorphic to the design determined by the differencelséte.,
if f e Veandf() # 0, then fora, 8 € F’n we have(af)(Bv) € D if and only if

B € (af (v))"1D).
(4) If Cis aclumptheqC N X | X is a block C} is the set of blocks of a symmetric

design, with point se€, isomorphic to the design determined by the differenceDset
(proved as in (4); cf.4, Lemmas 4 and 5]).
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We begin with a slight extension od,[ Theorem 7].

ProPOSITION3. If D is a symmetric(@N — 1)/(q — 1), @V1 - 1)/(q - 1), (qN2 —
1)/(q — 1)) design, and if S= S < AutD is point-transitive and BZ(S) = PSL(N/n, g™
for some n> 2, thenD = D(N, n, D) for some D.

PROOR Sis a homomorphic image of $N/n, g") [9], and hence we may assume that
S = SL(N/n, g"), not necessarily acting faithfully (as in the case of the dediifité, n, D)
for suitableq). In view of the argument in the proof of[ Theorem 7], it is only necessary to
show that the action db on points is completely determined (up to an automorphisi®).of

If x is a point then its stabilize®, contains a Sylowp-subgroup ofS. SinceS; < S, by (x)
it follows that S, fixes some subspace ¥t Then(q™N — 1)/(q — 1) = |S: S/ is divisible by
the number of subspaces of thespaceV of some dimension. Consequently, that dimension
must be 1 oh — 1 (e.g., using12]). Up to an outer automorphism & we may assume that
S fixes a pointx of PG(h — 1, g") and acts irreducibly o /x.

If h > 2 then(S;)’ induces at least Sh — 1, q") on V/x [10, p. 22] sinceq" > 3; by
() and irreducibility we haves, > (S()’. If h = 2 then(S)’ is an elementary abelian group
consisting ofg transvections, and agaf > (S;)’. More precisely, for any, with respect to
a suitable basi§, consists of aIFqn—matrices(i 2) with Aan(h — 1) x (h — 1) matrix and
a~! = detA, while (S’ consists of al( * Q) with detA = 1.

We have{(gN — 1)/(q — D}IS: (S| = 1S (S| = gN — 1 since(S,)’ is the stabilizer
in S of a nonzero vector. Thef8: (S)’| = q — 1, so thatS consists of all(i 2) with
a~l=detAc F:; and hence is determined up to conjugacy, as required. a

REMARK. If we allowedn = 1 or 2 in the proposition then the same argument would show
thatD is a projective space.

PROOF OFTHEOREM 1. The subgroupH of G inducing the identity on Kef consists
of all Fqn-matrices(g |h*—1) (with respect to a suitable basis), and hence has drfef—1

(q"-1) = qN~"(g" — 1) and is transitive on the vectorsh— Kerf. ThenH fixes(qN—" —
1)/(q—1) points ofD(N, n, D) and is transitive on the remainingN —qN—")/(q—1) points.

LetY denote a block of imprimitivity for the action ok = AutD on points such thaf acts
nontrivially and primitively on the corresponding block syst&m= Y#. Then

(#) Every member of is a union of members af (by (3) sinceX is a block system for
G).

The groupA* induced byA on X is a primitive permutation group having a subgroup
HZ fixing certain points and transitive on the remaining ones. All such primitive groups are
known [5], and one of the following holds:

() HZ fixes exactlyt members ofz, andA* is (t + 1)-transitive;
(I) |Z| = 22, 23 or 24,A% is a Mathieu group and the members¥fiixed by H* arise
from a block of the associated Steiner system;

() A* has a normal affine subgroup A8h, r), acting in its natural 2-transitive action,
for somem and some prime power, and the members & fixed by H arise from a
subspace of the underlying affine space; or

(IV) PSL(m,r) < A* < PI'L(m,r) for somem and some prime powar, where these
groups act in one of their natural 2-transitive actions, and the memb&rfixéd by H
arise from a subspace of the underlying projective space.
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We first consider further properties bff before dealing with cases (I)—(IV) separately.

Let P denote the normal elementary abelian Sylpwubgroup ofH of ordergN—" (con-
sisting of all transvection(sé |h*_1) with respect to a suitable basis). ThBrfixes (N " —
1)/(q — 1) points and acts semiregularly on the remaining ones. More&vacts faithfully
on ¥ and P* is semiregular on each of its nontrivial orbits. (NamelygiE P — {1} fixes
someY € X then, sincep)(|Y| by (#), g fixes a point ofY, so thatP also fixes that point and
hence also fixe¥.)

Let Sdenote the subgroup & generated by all of the conjugates®f Let K denote the
kernel of the action oA on X.

LEMMA 4. (i) S=S.
(i) If C is a clump then its pointwise stabilizerd in K is 1.
(i) KNS< Z(S and G centralizes K.

ProoOFR (i) By (3) and [LO, pp. 21-23],S > G’ = G” sinceq" > 3 andG’ is generated
by the conjugates oP lying in G. Now (i) follows from the fact thaS is generated by the
conjugates of5’.

(ii) By (#), K is the identity orC. If F is any dual clump then, by (1), each of its members
contains exactly the same clumps, and no block outgidmntains precisely these clumps.
Hence K fixesF.

If each member ofF does not contail© then, by (4),(C, F) is a symmetric design, and
K(c) acts on this design, fixing all points. Thu§c, is the identity on each dual clump none
of whose blocks contai@. Dually, K(c) is the identity on each clump not contained in any
member of any suclf. It follows thatK ) = 1.

(i) We claim that K normalizesH. For, if k € K thenH and HX = k~1Hk are the
identity on any clumgg in Cs, while HKZ = HZ_ If HK # H then(H, HX) N K # 1, which
contradicts (ii). ThuskK normalizesH.

Clearly H normalizesK , so thath~tk~thk € H N K = 1 wheneveh € H,k € K. Then
H centralizesK, and hence so does each conjugatédoin A. The conjugates oH in G
generates. O

We now return to the proof of Theorein Lety = |Y| and letC be a clump. TherigN —
/(@ - 1) = |XZ]y, andy divides|C| = (9" — 1)/(q — 1) by (#).

Case(l). First suppose that > 2. SinceH fixes exactly(qN~" — 1)/(q" — 1) clumps, by
(#) we havet > (V" - 1)/(q" — 1)> " + 1 > 5 and henceA* contains the alternating
group. Again by(#), the subgrouB of A sendingC to itself also induces at least the alter-
nating group ort. If C; andC; are distinct clumps then it follows that their stabilizerBris
transitive on the remaining clumps, but this contradicts (2).

The caseN/n = h = 2 is harder since (2) is then vaccuous and this case can actually occur.
First we will consider the possibility tha> contains the alternating group. By Lem#di),
Sis a central extension of that alternating groupBlflenotes the subgroup &sendingC
to itself, thenB’C is the alternating group be#). Then B¢ acts orC — {C} as the alternating
groupAci—1 of degredC|—1 = q" > |C|. On the other handB;/(B'NK) acts on the set of
B’ N K-orbits withinC. SinceA¢|_1 is simple it has no proper subgroup of indexC| — 1,
so thatB, induces orC a subgroup o8’ N K. Then|B;| < |[B'NK| < [SNK| < 2 by [7].
However,B’ containsG’, andG¢. induces orC a cyclic group of orde(q" —1)/(q—1). This
contradiction shows thak* does not contain the alternating group.

NeverthelessA™ is (t + 1)-transitive, where is the number of members &f fixed by H,
which in turn are determined by fixed pointstéf By (#) we havet = {(qQN""—1)/(q—1)}/y,



Note on GMW designs 67

wherey = |Y| divides|C| = (q" — 1)/(q — 1). Moreover,|Z| = {(Q" — 1)/(q — 1)}/y =
(" + Dt.

We will compare this information with a list of all 2-transitive groups (excluding alternating
and symmetric groups) found, for example, . [First of all,t + 1 < 5 in view of (t + 1)-
transitivity, and hencgz| = (gq"+ 1)t cannot be of any of the following forms: 11, 12, 22, 23,
24,176, 276, 271(25 + 1) with s > 3, or a prime power. Now the aforementioned list shows
that onlyt = 1 is possible. Sincé\* is a 2-transitive group of degreg + 1, other than the
alternating or symmetric group, having an abelian subg@tipf orderq” with an orbit of
lengthqg", the list yields PSK2, q") < A* < PI'L(2,q"). Moreover,y = (@" — 1)/(q — 1)
andX =C.

If I = I'L(2,q")/Zq-1 denotes the subgroup @ in (3), it follows that A® = I'¢ =
Pr'L(2, g"). Thus, the only placé& andI” might differ is in the kerneK of the action ofA on
C, so it suffices to show thad¢ < G. Suppose thdt € K — G. By Lemmad4(iii), (GNK, k) is
an abelian group acting db, whereG N K is transitive orC. Thus, there is somge GNK
such thakg fixes a point ofC, commutes with the transitive gro@n K, and hence fixes all
points ofC. This contradicts Lemma(ii). Thus, A = T", as required.

Case(ll). HereqN—" = |PZ| = 24, the size of the complement of a block of the associated
Steiner system, whereasN andn > 3.

Case(Ill). We first claim thatr is a power ofp. For suppose not. Certainlp> acts on
W = FM, and its set of fixed points is a subspa¢eRecall thatP* acts semiregularly on
each of its nontrivial point-orbits, and hence Wh— U. Sincep does not divide, P* acts
fixed-point-freely onW/U according to 2, p. 187], but that is impossible for a noncyclic
abelian group according t@[p. 69].

Thus,r is a power ofp, which contradicts the fact thegN — 1)/(q — 1) = y|Z| = yr™.

Case(lV). Precisely as in (lll) we find that is a power ofp.

We have(@" — 1)/(q - 1) = y¢™ — 1)/(r — 1), wherey|(q" — 1)/(q — 1). By [12] it
follows thatgN = r™, so thaty = (r — 1)/(q — 1) and hence = q! for some integeyj.
Thenj <nsince@’ —1)/q-1)=y<@"-1/(@-1D.

Now S* = S¥ = PSL(m, q}) with N = mj. SinceS® = S/Z(S) by Lemmad(iii), in
view of Proposition3 and the remark following it we have > 2 andD = D(N, j, D’) for
some difference sdd’ in F;j /Fg- Thenj = n by the hypothesized minimality of.

Thus,y = (@" - 1)/(q — 1), £ = C, and PSkh,q") < A® < PT'L(h,q"). Now we can
complete the proof exactly as in (1). ]

PROOF OFTHEOREM 2. (i) If ¢:D(N,n, D’) — D(N, n, D) is an isomorphism then it
sends AUD(N,n, D) to AutD(N,n, D). Let Z denote the cyclic subgroup of both
AutD(N, n, D) and AuD(N, n, D’) induced by:(’;N/Fa. Thenz¢ = ¢~1Zy liesinthe group
AutD(N, n, D), described in Theorerh, which has just one conjugacy class of cyclic sub-
groups of ordetqN—1)/(q—1) (e.g., by Schur's Lemma). Thus, for soge AutD(N, n, D)
we haveZ¥9 = Z, so thatpg induces an automorphism of the cyclic grazip

If A andA’ are the difference sets i determined by blockX and X’ of D(N, n, D) and
D(N, n, D'), respectively, them\’#9 is the difference set iz determined by the blocK#? of
D(N, n, D) and hence is a translate af This means thah andA’ are equivalent difference
sets, so thaD’ is a translate oD by [1, Theorem 4] or §, pp. 77—78]. The easy converse is
also in [1, Theorem 4].

(i) Minimality implies thatn = n’. O

REMARKS. (1) In view of the theoremd) and the wayD(N, n, D) was constructed from
PG(h — 1, g™ can be recovered from the desiBxiN, n, D). Our proof does not, however,
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provide a purelygeometricmeans of recovery, which would be far preferable. Instead, we
have usedq], which depends on very difficult group theory, and hence its use is uncomfort-
ably reminiscent of using a cannon to kill an ant. However, we hope that knowing that these
theorems are true will make it more likely that much nicer proofs can be found.

In this direction, we conjecture that, under the minimality assumption of Thebrelmmps
are the only set€ of points ofD(N, n, D) such thaC n X | X is a blockp C} is the set
of blocks of a symmetric design, with point 98t having the same parameters as(RPG
1, q). If true, this would produce a simpler proof of both theorems. (Note that the minimality
assumption is needed, as otherwise [N, n, D) would not send’ to itself.) Is there a
coding theoretic interpretation of this conjecture? Is the conjecture more approachable in the
case of the classical GMW designs, where minimality is automatic and the design is built up
from two projective spaces?

(2) The caseh = q = 2 of Theorem2 appears in3, Theorem 3.4]. However, the proof
given there assumes that any design isomorphism must send the subgr@up"sln (3)
of the automorphism group of one of the designs to the corresponding automorphism group
in (3) of the other design. We have seen that this is not the case umissainimal in the
sense of Theorerh. It was exactly the need to make this assertion correct up to conjugacy
that originally led to Theorert.

(3) Proposition3 requires a comment in view of the interesting Mathematical Review
(#97m:51005) of 4], which states the following: “It is shown that any design with the pa-
rameters ofPn_1,q can be constructed by their procedure [i.e., the ond]jnfland only if
the design admits GIm, g") for somem andn such thatN = mn.” The review does not men-
tion transitivity, hence also not that][assumes the precise action of @L.g"). It is not at alll
clear whether the proposition holds as stated without the transitivity assumption: it is plausi-
ble that Sich, g™) could act on a design having these parameters (possibly not faithfully, just
as in the case dD(N, n, D) for suitableq) and yet have many orbits, even including some
fixed points. Of course, the nature of some orbits would be severely restrictedl pgchaps
so much so that the proposition could be generalized to the statement in the review.
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