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1. Introduction

In this note we will prove the following:

Theorem 1.1. Let q be a power of 2. Let m be an odd integer such that
qm>8, and let m, m1 , ..., mn be any sequence of n+1�2 distinct divisors of
m such that each is divisible by the next. Then there are more than
[6 n

1(qmi+1)]�2m1 log2 q pairwise nonisomorphic nondesarguesian flag-
transitive affine planes of order qm with kernel containing GF(q).

At least [6 n&1
1 (qmi+1)] qmn�2m1 log2 q of these planes have kernel

GF(q). Moreover, we construct 7(mi)6i qmi planes, where the sum is over all
sequences (mi) behaving as in the theorem; and then we settle the
isomorphism problem for these planes (Theorem 5.2).

The proof combines methods in [Wi] and [Ka]: these planes arise from
symplectic and orthogonal spreads combined with changing from fields to
proper subfields, and methods in [Wi] are used to keep track of these field
changes. The latter is the difficult aspect of the construction, since it is just
such repeated field changes that could not be handled at all in [Ka] (and
hence restricted that paper to at most qm1�2 flag-transitive planes of order
qm, in the notation of the theorem). Nonisomorphism testing involves an
elementary Sylow argument.
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We note that these planes are the only known nondesarguesian flag-
transitive affine planes of even order admitting solvable flag-transitive
groups. Their orders comprise all integers of the form 22ab>8 with b odd
and not 1. Moreover, each of the planes admits a sharply flag-transitive
group that induces a qm+1-cycle on the line at infinity.

All of these planes arise from symplectic spreads. Coding-theoretic
aspects of this property are discussed in [Ka, Wi].

2. Ups and Downs: From Symplectic to Orthogonal and Back

We will briefly review some of the background required from [Ka].
Throughout this paper, all fields have characteristic 2. Consider a 2k-dimen-
sional vector space V over GF(q), equipped with a nonsingular quadratic
form Q of maximal Witt index. This means that there are k-spaces that are
totally singular (i.e., on which Q vanishes). Then V has (qk&1)(qk&1+1)
nonzero singular vectors. An orthogonal spread of V is a family 7 of
qk&1+1 totally singular k-spaces such that each nonzero singular vector is
in exactly one of them. We recall that there are two types of totally singular
k-spaces such that two totally singular k-spaces X and Y have the same type
if and only if dim X & Y#k (mod 2) [Ta, pp. 170�172].

There is also a symplectic structure on V, defined by the nonsingular
alternating bilinear form (u, v)=Q(u+v)&Q(u)&Q(v). If z is any non-
singular point of V, then z=�z inherits the nonsingular alternating
bilinear form defined by (u+z, v+z)=(u, v) for u, v # z=. If X # 7 then
(X & z=, z)�z is a k&1-dimensional totally isotropic subspace (i.e., ( , )
vanishes on it). Moreover,

7z :=[(X & z=, z)�z | X # 7] (2.1)

is a symplectic spread of z=�z: a family of qk&1+1 totally isotropic k&1-
spaces such that each nonzero vector is in exactly one of them.

This process can be reversed: any symplectic spread S of z=�z can be
``lifted'' to an orthogonal spread 7S of V such that (7S)z=S. We will
exhibit such a lifting explicitly in the next section.

Given a vector space V$ over a field K, with associated nonsingular
alternating form ( , ), if L is a subfield of K and T : K � L is the trace map,
then T( , ) defines a nonsingular alternating form on the L-space V$. If S
is a symplectic spread of the K-space V$ then S is also a symplectic spread
of the L-space V$.

Definition 2.2 [Wi]. Let S be a symplectic spread. Suppose that S$
is another symplectic spread arising via a (repeated) up and down process
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of passing from symplectic to orthogonal geometries and back, or passing
to subfields, as above. Then we call S$ a scion of S.

Corresponding to any symplectic spread S of any vector space there is
an affine translation plane A(S) defined in the usual manner [De, p. 219].
Its collineation group will be denoted Aut A(S). If S$ is a scion of S then
A(S$) will be called a scion of A(S).

3. Construction of Orthogonal and Symplectic Spreads

For any field F let F (2) denote an extension of F of degree 2; if K is any
subfield of F we assume that F (2)

$K (2). Consider a subfield K such that
[ F: K] is odd, with associated trace map TK : F � K. The involutory
automorphism x [ x� of F (2) restricts to the involutory automorphism
of K (2). Define a nonsingular alternating K-bilinear form on F (2) by
(x, y)K :=TK (xy� +x� y). Since [F : K] is odd, TK (k)=k for k # K, so that
TK (x+TK (x))=0 for all x # F and hence

F=ker TK �K.

This elementary observation will be a fundamental part of our use of the
parity of [F : K].

Write C :=[` | ` # F (2), ` �̀ =1], so that F (2)*=F*_C. The letters %, # and `
will always denote elements of C. If % # C then %� : x [ %x defines an isometry of
the symplectic space F (2); let C� be denote the group of these isometries.

For fixed F (2) we will study the following compatibility hypothesis for a
triple (W, #, K ), where # # C and W is a K-subspace of F (2):

Hypothesis 3.1.

(i) W+K#=W�K# has dimension [F : K].

(ii) TK (ww� )=0 for all w # W.

(iii) (W, K (2)#)K=0.

(iv) S :=[%(W+K#) | % # C]=(W+K#) C� is a spread of F (2).

Since C� is transitive on S, A(S) is a flag-transitive affine plane. Also,
(ii) and (iii) imply that (W, W)K=0=(W, K#)K , so that W+#K is totally
isotropic and S is a symplectic spread. Note that we have not yet required
the full force of (iii). However we are about to exhibit an orthogonal
spread arising from S, and for this we will use (iii).

First we note that the conditions in (3.1) can, indeed, be met: if #=1
and W=ker TK , then we just saw that F=W�K#; (iii) is obvious,
TK (ww� )=TK (w)2=0 in (ii), and (iv) defines a desarguesian spread in F (2).

3flag-transitive affine planes
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Hypothesis 3.1 is, in fact, based on the only examples of flag-transitive
planes known to arise within F (2) (although we expect that there are large
numbers of others), and (iii) holds in these examples. In fact, using our
original spread as a starter, the following theorem inductively allows us to
construct large numbers of symplectic spreads that also arise from triples
satisfying Hypothesis 3.1.

Let L be a proper subfield of K with [F : L] odd, and equip the L-space
F (2) �L(2) with the quadratic form QL((x, *)) :=TL(xx� )+**� for
(x, *) # F (2) �L(2). As we are about to see, the quadratic form QL has
maximal Witt index. Note that (%� , 1) is an isometry whenever % # C; let
(C� , 1) denote the group of these isometries. Write WL | K :=ker TL | K , and
let 7S consist of the following subspaces of F (2) �L(2):

7S[%] :=(%(W+WL | K #), 0)+[(*#%, *) | * # L(2)] for % # C. (3.2)

Theorem 3.3. If Hypothesis 3.1 is satisfied by the triple (W, #, K ), then
the following hold.

(i) 7S is an orthogonal spread of F (2)�L(2).

(ii) If z=(0, `) with ` # C & L(2), then (7S)z is a symplectic spread
of the L-space z=�z (cf. (2.1)) that is equivalent to the symplectic spread

S(z) :=[%(W$+L#`) | % # C]

of the L-space F (2), where W$ :=W+WL | K #. Moreover, C� is transitive on
S(z) and Hypothesis 3.1 is satisfied by the triple (W$, #`, L).

(iii) (7S)(0, 1) is equivalent to S.

Proof. (i) Certainly (C� , 1) acts transitively on 7S. In order to check
that each member of 7S is totally singular of dimension [F : L]+1, by
transitivity it suffices to show this for 7S[1]. Here, note that
dimL(W+WL | K #)=[F : L]&1 (since dimL(W+K#)=[F : K][K : L]=
[F : L] and WL | K is an L-hyperplane of K), dimL L(2)=2, and
(W+WL | K#, 0) & [(*#, *) | * # L(2)]=0, so that dimL 7S[1]=[F : L]+1.
Moreover, if w # W, v # WL | K and * # L (2), then

QL([w+v#]+*#, *)

=TL([w+(v+*) #] [w+(v+*)#])+**�

=TL(ww� +(v+*) #w� +(v+*) # w+[v2+*v+*� v+**� ] ##� )+**�

=TL(ww� )+((v+*) #, w)L+TL(v)2+(*+*� ) TL(v)

=0

4 kantor and williams
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(by (3.1ii, iii), since v+* # K (2)), so that 7S[1] is totally singular. (Note
that we just applied the full force of (3.1iii).)

Finally, in order to show that 7S is an orthogonal spread it suffices to
prove that 7S[%] & 7S[1]=0 whenever % # C&[1]. As (C� , 1) is a group
of odd order, none of its elements can interchange the two types of totally
singular ([F : L]+1)-spaces of F (2)�L(2) (cf. Section 2), so the members
of 7S are all of the same type. Consequently, if 7S[%] & 7S[1]{0, then
this intersection must have even L-dimension. Then 7S[%] & 7S[1] &

(F (2)�L){0 since F (2)�L is a hyperplane of F (2)�L (2), so there exist
w, w$ # W, u, u$ # WL | K and l, l $ # L such that

(%(w+u#+l#), l )=(w$+u$#+l $#, l $){0

(cf. (3.2)). Since u+l, u$+l $ # K, it follows that %(w+[u+l ] #)=
w$+[u$+l $] # # %(W+K#) & (W+K#), so that %(w+[u+l ] #)=0 by
(3.1iv). By (3.1i), [u+l ] # # W & K#=0, so that 0=TL(u)=l (since
[F : L] is odd) and hence (%(w+[u+l] #, l )=0. This contradiction com-
pletes the proof of (i).

(ii) By Section 2, (7S)z is a symplectic spread of z=�z. Here,
z==F (2)�L`, so that

7S[%] & z==[(%(W+WL | K #), 0)+[(l`#%, l`) | l # L]]

#(%(W+WL | K #+L#` ), 0) (mod z)

by (3.2). Thus, (z, 7S[%] & z=)�z may be identified with the subspace
%(W+WL | K #+L#`) of F (2). Note that the alternating bilinear form on z=

is TL((x, l`), (x$, l $` ))=TL(xx$+x� x$), so that S(z) is indeed, a symplectic
spread of F (2). Clearly C� is transitive on S(z).

We now prove that (W$, #`, L) satisfies Hypothesis 3.1. Since S(z) is a
spread, (i) and (iv) are clear. Next, TL(w$w$)=0 whenever w$ # W$=
W+WL | K #: if w # W and v # WL | K , then

TL((w+v#) (w+v#) )=TL(ww� )+TL(v#w+v#w� )+TL(v)2=0

using conditions (3.1ii, iii) for (W, #, K ). Lastly, (W$, L(2)#`)L=0: if
w # W, v # WL | K and * # L(2), then

(w+v#, *#`)L=(w, *#`)L+(v#, *#`)L

=0+(*`+*`) TL(v)

=0
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(using (3.1ii) and *` # K (2), *`+*` # L and TL(v)=0). Consequently,
Hypothesis 3.1 is satisfied by our new triple, and (ii) holds.

(iii) W$+L#=W+WL | K #+L#=W+K#. K

Theorem 3.3 provides a method to produce flag-transitive scions of the
desarguesian plane. We now exhibit these scions explicitly.

4. Flag-Transitive Scions of the Desarguesian Plane

Let F=F0# } } } #Fn be a tower of fields with [F : Fi] odd for each i and
corresponding trace maps Ti : F � Fi . Write Wi :=ker Ti+1 |Fi . For each i,
let F (2)

i be a subfield of F (2) of degree 2 over Fi ; view F (2) as a symplectic
space over Fi with the associated alternating form defined by (x, y) i :=
Ti (xy� +x� y); and let `i # F (2)

i & C, where `0=1. Write #i :=6 i
0 `l and

S((Fi)
n
0 , (`i)

n
0) :={% \ :

n&1

0

Wi #i+Fn #n+ } % # C=. (4.1)

This should be compared to the following direct sum decomposition of F:

F=W0� } } } �Wn&1 �Fn , (4.2)

which is an inductive consequence of the fact that Fi=Wi �Fi+1 (since
[Fi : Fi+1] is odd). Of course, the images of F under C� form a desarguesian
spread in F (2). Thus, (4.1) amounts to ``perturbing'' that spread, as well as
the summands in (4.2), by suitable members #i of C. In fact, the sum
�n&1

0 Wi #i+Fn #n in (4.1) is direct; this is easily proved directly, but also
follows immediately from (4.2) together with the next theorem.

Our perturbation behaves as follows:

Theorem 4.3. S((Fi)
n
0 , (`i)

n
0) is a symplectic spread of the Fn-space F (2),

and C� acts transitively on this spread.

Proof. We will use Theorem 3.3 and induction on n in order to show
that (�n&1

0 Wi #i , #n , Fn) satisfies Hypothesis 3.1. For the base case n=0,
S((F0), (1))=F0C� is a desarguesian spread and the triple (0, 1, F0) tri-
vially satisfies Hypothesis 3.1.

Now assume that the triple (� j&1
0 Wi #i , #j , Fj) satisfies Hypothesis 3.1

for some j�0. As `j+1 # F (2)
j+1 & C, the spread S((Fi)

j+1
0 , (`i)

j+1
0 ) is

obtained as in Theorem 3.3(ii), since (� j&1
0 Wi #i)+Wj #j+Fj+1 #j `j+1=

� j
0 Wi #i+Fj+1 #j+1 . This completes the induction. K

Note that each plane A(S((Fi)
n
0 , (`i)

n
0)) is a flag-transitive scion of the

desarguesian plane of order |F0 |. Conversely, every flag-transitive scion of

6 kantor and williams
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that desarguesian plane is (isomorphic to) one of the planes just constructed
(cf. Section 6, Remark 1).

Definition 4.4. Call ((Fi)
n
0 , (`i)

n
0) a defining pair for the symplectic

spread S((Fi)
n
0 , (`i)

n
0), and a reduced defining pair if, in addition, `i {1 for

all i�1.

Corollary 4.5. Modify a defining pair ((Fi)
n
0 , (`i)

n
0) by deleting some

or all entries Fi and `i for which i�1 and `i=1. Then the resulting
pair ((F i$)

n$
0 , (`i$)

n$
0 ) is a defining pair for a spread S((F i$)

n$
0 , (`i$)

n$
0 ),

and S((Fi)
n
0 , (`i)

n
0)=S((F i$)

n$
0 , (`i$)

n$
0 ). Furthermore, if all `i=1 then

S((Fi)
n
0 , (`i)

n
0) is desarguesian.

Proof. First assume that j<n and `j=1. Then #j&1=#j and
Wj&1 #j&1+Wj #j=W$j&1 #j&1 , where W$j=1=ker Tj+1 |Fj&1

(by (4.2)).
Thus, by (4.1), ((Fi)

n
0 , (`i)

n
0) and ((F0 , ..., Fj&1 , F� j , Fj+1 , ..., Fn),

(1, ..., `j&1 , 1� , `j+1, ..., `n)) define the same spread (where ``hats'' denote
deletions). A similar argument works in case `n=1, as then
Wn&1 #n&1+Fn #n=Fn&1 #n&1. K

Corollary 4.5 implies that we may restrict consideration to reduced defin-
ing pairs when we study the scions arising from Theorem 4.3. However,
when we count planes we will fix one tower (Fi)

n
0 , in which case non-

reduced pairs account for subtowers.

5. Isomorphisms between Flag-Transitive Scions

The following elementary but general result permits us to decrease the
amount of calculation used in the proof of Theorem 1.1. Let F, F (2), and C�
be as before, let , : F � GF(2) be any nonzero additive map, and consider
the C� -invariant nonsingular alternating GF(2)-bilinear form (x, y) :=
,(xy� +x� y).

Proposition 5.1. Let S and S$ be symplectic spreads in the GF(2)-space
F (2) such that C� is transitive on each of them. If A(S) and A(S$) are
isomorphic, and if |F |>8, then S$=S_ for some _ # Aut F (2).

Proof. By [Ka I (3.5)], we may assume that the given isomorphism is
induced by a symplectic transformation g of the GF(2)-space F (2). By
Zsigmondy's Theorem [Zs], there is a prime p such that C� contains a
Sylow p-subgroup P of Sp(F (2)) and such that P is irreducible on F (2).
Then P and Pg are Sylow subgroups of Aut A(S$) & Sp(F (2)), so that
Pgh=P for some h # Aut A(S$) & Sp(F (2)). Now gh # Sp(F (2)) is an
isomorphism A(S) � A(S$), and normalizes P.

7flag-transitive affine planes
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However, by Schur's Lemma the normalizer of P in GL(F (2)) is
[x [ ax_ | a # F (2)*, _ # Aut F (2)] (cf. [Hu, p. 187]), and the intersection of
this with Sp(F (2)) is just [x [ ax_ | a # C, _ # Aut F (2)]. (Namely, if x [ ax
preserves our form, then ,(xy� +x� y)=,(ax ay+ax ay) and consequently
,((xy� +x� y)(aa� +1))=0 for all x, y # F (2), so that aa� +1=0 and hence
a # C, as asserted.) Since C� leaves S invariant, it follows that gh has the
same effect on S as some element of Aut F (2). K

We can now give a complete solution to the isomorphism problem for
the planes we have been studying:

Theorem 5.2. Let S and S$ be scions of the desarguesian spread in F (2)

with respective reduced defining pairs ((Fi)
n
0 , (`i)

n
0) and ((F i$)

n$
0 , (`i$)

n$
0 ). If

|F0 |>8, and if A(S) and A(S$) are isomorphic, then n=n$, Fi=F i$ and
`i$=`_

i for some _ # Aut F (2) and all i.

Proof. Here F (2) is equipped with two alternating bilinear forms: S is
symplectic with respect to (x, y)Fn :=TFn(xy� +x� y), and S$ is symplectic
with respect to (x, y)F $n$

:=TF $n$
(xy� +x� y). We introduce a third alternating

bilinear form on F (2), namely (x, y) :=T(xy� +x� y), where T : F � GF(2) is
the trace map.

Note that T(TFn(x))=T(x) for all x # F: if we abbreviate L=Fn and
K=GF(2), then

T(TL(x))= :

_ # Gal(F�K)
* # Gal(F�L)

x*_

= :
\ # Gal(F�K )

(*(*, _) # Gal(F�L)_Gal(F�K ) : \=*_) x\,

where the indicated number is the odd integer [F : L] (since, for any \
and *, we must choose _=*&1\). This proves that T(TFn(x))=T(x), and
similarly T(TF $n$

(x))=T(x).

Thus, our new form refines the other two: (x, y)=T((x, y)Fn)=
T((x, y)F $n$

), so that S and S$ are symplectic with respect to the new form.
In view of Proposition 5.1, all we now need to know is when two of our
spreads coincide. While the required result offers no surprises, proving it
appears to be less straightforward than one might expect:

Lemma 5.3. Let S and S$ be scions of the desarguesian spread in F (2)

with respective reduced defining pairs ((Fi)
n
0 , (`i)

n
0) and ((F i$)

n$
0 , (`i$)

n$
0 ). If

S=S$ then n=n$, Fi=F i$ and `i=`i$ for all i.

8 kantor and williams
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Proof. We may assume that n�n$. We will prove by induction on j
that, for 0� j�n, we have Fi=F i$ for 0�i� j, `i=`i$ for 0�i< j, and

:
n&1

i=j

Wi (#i �#j&1)+Fn(#n �#j&1)

=%0 \ :
n$&1

i= j

W i$ (#i$ �#$j&1)+F $n$ (#$n$ �#$j&1)+ , (5.4)

where %0 is an element of C that is independent of j, #&1=#$&1=1, and
empty sums are deleted. By (4.1), F0=F=F $0 and S[1]=S$[%0] for
some %0 # C, so the base case holds.

Now assume that our induction hypothesis holds for some 0� j<n. As
already noted, since S is a spread the sum in (4.1) is direct. In particular,
both sides of (5.4) have size |Fj |=|F $j |.

As [Fj : Fj+1]�3, we have dimFj+1
Wj=dim Fj+1�(2�3)[Fj : Fj+1].

In particular, dimGF(2) Wj�(2�3) dimGF(2) Fj ; similarly, dimGF(2) W$j�
(2�3) dimGF(2) Fj . Since the left side of (5.4) has a summand Wj (#j �#j&1)=
Wj `j , while the right side has a summand W$j %0(#$j �#$j&1)=W$j %0 `$j , it
follows that 0{Wj & W$j %0 `$j `&1

j �Fj , so that %0 `$j `&1
j # Fj & C=[1].

Thus, %0 `j=`$j . Then in case j=0 we see that %0=1, and so in any case we
have `j=`$j .

Divide both sides of (5.4) by `j in order to obtain Wj+X=W$j+Y, where
X :=�n&1

i=j+1 Wi (#i �#j)+Fn(#n �#j) and Y :=�n$&1
i= j+1 Wi$ (#i$ �#$j)+F $n$ (#$n$ �#$j).

Here, X�F (2)
j+1 since #i �#j=6 i

l=j+1 `l # F (2)
j+1 ; similarly, Y�F j+1$(2) .

First we show that Fj+1=F $j+1. Consider the trace map t : F (2) � F
given by z [ z+z� . Since 1{`i+1=#j+1 �#j # C we see that `j+1 � F0

and t(Wj+X )=t(X ) contains the nonzero subset Wj+1(`j+1+`j+1)
(or Fn(`n + `n) when j = n & 1). Here, `j+1 + `j+1 # Fj+1 , while
|Wj+1|�|Fj+1 | 2�3 as seen above. Consequently, the subfield of F generated
by t(Wj+X ) is Fj+1. Similarly, the subfield generated by t(W$j+Y ) is
F $j+1. Thus, Fj+1=F $j+1 , and hence Wj=W$j .

Next we show that X=Y, which is exactly the required condition (5.4)
with j in place of j&1. By symmetry, it suffices to prove that X�Y. If
0{x # X, then x=w+y for some w # Wj and y # Y, and it suffices to prove
that w=0. We have xx� =w2+w( y+y� )+ yy� , where x # F (2)

j+1 and hence
xx� # Fj+1; also yy� , y+ y� # Fj+1. Consequently,

xx� =Tj+1(xx� )=Tj+1(w)2+Tj+1(w( y+ y� ))+ yy� =yy� .

Thus, 0=w2+w( y+ y� ). If w{0, then 0=w+ y+ y� =Tj+1(w+( y+ y� ))=
y+ y� =w. Consequently, w=0 and X�Y, as claimed.

9flag-transitive affine planes
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Finally, when the induction terminates, Fn=F $n and

F $n `n=Fn(#n �#n&1)= :
n$&1

i=n

W i$ (#i$ �#$n&1)+F $n$ (#$n$ �#$n&1).

Suppose that n$>n. Then #$n$ �#$n&1 # F $n `n and W$n$&1(#$n$&1 �#$n&1)�F $n `n ,
where W$n$&1�F $n$&1�F $n . Then #$n$ �#$n&1 `n , #$n$&1 �#$n&1 `n # C & F $n=[1]
and hence `$n$=#$n$ �#$n$&1=1, which contradicts the fact that we are dealing
with reduced pairs.

Consequently, n$=n, F $n `n=F $n(#$n �#$n&1)=F $n`$n , and `&1
n `$n # C & F $n=

[1]. K

Corollary 5.5. If |F0 |>8, and if two defining pairs ((Fi)
n
0 , (`i)

n
0) and

((Fi)
n
0 , (`i$)

n
0) produce isomorphic planes, then `i$=`_

i for some _ # Aut F (2)

and all i.

Proof of Theorem 1.1. There are exactly 6n
1(qmi+1) defining pairs

using a given tower (Fi)
n
0 of fields. By (4.1), any element of the Galois

group of F (2)
0 over F (2)

1 stabilizes all spreads defined using the tower (Fi)
n
0 .

Thus, Corollary 5.5 implies the result. K

6. Kernels and Equivalence of Orthogonal Spreads

We now calculate the kernels (cf. [De, pp. 132�133]) of our planes:

Theorem 6.1. If ((Fi)
n
0 , (`i)

n
0) is a reduced defining pair, and if |F0|>8,

then the kernel of the associated plane A(S((Fi)
n
0 , (`i)

n
0)) is isomorphic

to Fn .

Proof. We can view F n* as a subgroup of the full group H of
homologies of A(S((Fi)

n
0 , (`i)

n
0)) with center 0. We will show that these

groups are equal. By Zsigmondy's Theorem [Zs], there is a prime p such
that p | q2m&1 and p |3 qk&1 for 1�k<2m. Then C� contains a Sylow
p-subgroup P of GL(F (2)) (where F (2) is viewed as a GF(2)-space), and P
is irreducible on F (2). Moreover, P normalizes H, and hence it even
centralizes H since p is relatively prime to q2m&1.

On the other hand, by Schur's Lemma CGL(F(2))(P) is the multiplicative
group of a field, and hence is isomorphic to F (2)*. Thus, each h # H has the
form x [ ax for some a # F (2). The following Lemma completes the proof
of the theorem.

Lemma 6.2. If a # F (2)* and x [ ax induces the identity on
S((Fi)

n
0 , (`i)

n
0), where ((Fi)

n
0 , (`i)

n
0) is reduced, then a # F n*.

10 kantor and williams
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Proof. We will prove by induction on j that, for 0� j�n, we have
a # Fj and

a \ :
n&1

i=j

Wi #i+Fn #n+= :
n&1

i= j

Wi #i+Fn #n (6.3)

(as usual, empty sums are ignored).
For the base case note that dimGF(2) W0�(2�3) dimGF(2) F0 , so

0{aW0 & W0 and hence a # F0 (compare the proof of Proposition 5.3.).
Assume that (6.3) holds for some j with 0�j<n, divide (6.3) by #j , and
obtain a(Wj+X )=Wj+X where X :=�n&1

i= j+1 Wi (#i �#j)+Fn(#n �#j).
We first show that a # Fj+1. For, as ((Fi)

n
0 , (`i)

n
0) is reduced,

Wj+1(#j+1 �#j) (or Fn(#n �#n&1) if j=n&1) contains an element x � F0 .
Since x # X we have ax=w+ y for some w # Wj , y # X. ``Barring'' this equa-
tion and adding yields a(x+x� )= y+ y� , so that a=( y+ y� )�(x+x� ) # Fj+1.

Next, X=aX, which is just (6.3) with j replaced by j+1. The proof of
this exactly the one given in the next to last paragraph of the proof of
Proposition 5.3 (since Wj+X=Wj+Y with Y=aX ), and hence is omitted.

Finally, when the induction terminates at j=n we see that a # Fn , as
required. K

The preceding theorem can be used to discuss the equivalence of
orthogonal spreads:

Proposition 6.4. Write S=S((Fi)
n
0 , (`i)

n
0) and S$=S$((F i$)

n$
0 , (`i$)

n$
0 )

for defining pairs ((Fi)
n
0 , (`i)

n
0) and ((F i$)

n$
0 , (`i$)

n$
0 ), and let L be a proper sub-

field of both Fn and F $n$ such that [F : L] is odd. Then the orthogonal spreads
7S and 7S$ of the L-space F (2)�L(2) (cf. Theorem 3.3) are equivalent under
1O+(F (2) �L(2)) if and only if the affine places A(S) and A(S$) are
isomorphic.

Proof. According to [Ka I (3.6)], if A(S) $ A(S$) then 7S and 7S$

are equivalent by an element of 1O+(F (2)�L(2)). So only the converse
remains.

By Theorem 3.3(iii), A((7S)(0, 1) ) $ A(S) and A((7S$)(0, 1)) $ A(S$).
As in the proof of Proposition 5.1, if 7S and 7S$ are equivalent under

1O+(F (2) �L(2)) then they are equivalent via an element g normalizing
(C� , 1). Then 0�L(2) is an invariant subspace of g, and hence
(0, 1) g=(0, `) for some ` # L(2)*=L*_(C & L(2)*); we may assume that
` # C & L(2).

Now A(S) $ A((7S)g
(0, 1) g)=A((7S$)(0, `) ). By (the proof of)

Theorem 4.3, A((7S$)(0, `)) has associated defining pair ((F i$)
n$+1
0 , (`i$)

n$+1
0 ),

where F $n$+1=L and `$n$+1=`.

11flag-transitive affine planes
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The kernel A(S), and so also of A((7S$)(0, `) ), contains Fn and hence
properly contains L. On the other hand, Theorem 6.1 implies that, for
fixed ((F i$)

n$
0 , (`i$)

n$
0 ), among all of the planes with defining pairs

((F i$)
n$+1
0 , (`i$)

n$+1
0 ), where F $n$+1=L and `$n+1 # L(2), the only one whose

kernel is larger than F $n$+1 has `$n$+1=1 and hence is A((7S$)(0, 1) ) $

A(S$). Thus A(S) $ A(S g) $ A(S$), as required. K

Theorem 6.5. Let m an odd composite integer, and let m, m1 , ..., mn&1 , 1
be any sequence of n+1�3 distinct divisors of m such that each is
divisible by the next. If |F |=qm and |L|=q, then there are at least
>n&1

1 (qmi+1)�2m1 log2 q pairwise inequivalent orthogonal spreads of
F (2) �L(2) each invariant under a transitive cyclic group of orthogonal trans-
formations.

Proof. This is immediate from Proposition 6.4 and Theorem 1.1. K

Remark 6.6. The planes A(S((Fi)
n
0 , (`i)

n
0)) are precisely the flag-

transitive scions of the desarguesian plane of order qm=|F0 |. For, we know
that each of these planes is such a scion. Conversely, any flag-transitive
scion of the desarguesian plane is isomorphic to one of our planes. For, let
A be such a flag transitive scion. Then the proof of Proposition 6.4 shows
that any cyclic subgroup of 1O+(F (2)�L(2)) of order qm+1 is conjugate
to (C� , 1). Thus, inductively we may assume that A is isomorphic to
A((7S)z) for one of the spreads S in Theorem 4.3 and some nonsingular
point z. Then z=(0, `) for some ` # C, and hence A((7S)z) also arises in
Theorem 4.3.

Remark 6.7. Proposition 6.4 is based on ideas in [Wi], where the sizes
of fields play a crucial role in the proofs of equivalence of other types of
planes (including semifield scions of desarguesian planes) and orthogonal
spreads, as well as of certain codes. Moreover, the arguments in [Wi] are
much more complicated than those used here. For example in our
Theorem 6.1, Zsigmondy's Theorem was a standard type of crutch for us,
but is not available in much of [Wi].

Remark 6.8. We have seen that each of our planes, A(S((Fi)
n
0 ,

(#i)
n
0), is naturally associated with all of the others, A(S((Fi)

n
0 , (#i$)

n
0)),

defined using a fixed tower, (Fi)
n
0 , of fields. On the other hand, implicit

in the proof of Proposition 5.3 there are subplanes, A(S((Fi)
n
j , (#i)

n
j )),

arising from suitable subsets, (Fi)
n
j , of our original tower, (Fi)

n
0 . In fact,

each such subplane, A(S((Fi)
n
j , (#i)

n
j )), is the set of fixed points of an

automorphism, x [ x |Fj |, of F (2). Thus, we also see that scions of the
original desarguesian plane, AG(2, |F0 | ), breed scions of its subplanes,
AG(2, |Fj | ).
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Remark 6.9. In the proof of Theorem 1.1 we used an elementary Sylow
argument in order to sidestep knowledge of the full automorphism groups
of our planes. According to a result announced by Hering in 1973 [He],
assuming the classification of finite simple groups the full collineation
group of each of our planes is solvable, and hence lies in the 1-dimensional
affine group A1L(1, F (2)). However, it would be of interest to have a direct
and more geometric proof of this fact.
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