Finite Geometries via

Algebraic Affine Buildings

William M. Kantor*

The purpose of this note is (1) to give a vague description of algebraic affine
buildings, (2) to give a brief description of arithmetic groups, and then (3)
to combine these subjects in order to discuss finite quotients of algebraic
affine buildings modulo suitable arithmetic groups.

1. Algebraic affine buildings

T’ll start with an example:

Let V be Q", with standard basis vy, ... ,v,. Let p be a prime, and
write O = {¢ | a,b € Z,p [ b}; this is a subring of Q such that O/pO =
GF(p). Let G(Q) denote the group SL(n,Q) of n x n matrices over Q of
determinant 1. The subgroup

0o o0 O
B pO O O
pO ... pO O

of G(Q) is called an Iwahori subgroup. Note that B mod p is a Borel
subgroup of G(O mod p) = G(GF(p)) = SL(n,p). (This type of notation
is intended to be thought of in terms of matrix groups, in which entries are
taken from the indicated rings.) Using G(Q) and B, an affine building A
is obtained as follows (cf. [10]):

A is a simplicial complex;

a simplex of A is a proper subgroup of G(Q) containing B;

Xisafaceof Viff X > VY.
The maximal simplexes (chambers) are just the conjugates of B. There are
n types of vertices, which are the conjugates of the subgroups of matrices

blocked as follows:
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for r = 1,...,n; for example, when r = n this group is just SL(n,0) =
G(0O). The above group is the stabilizer in G(Q) of the O-lattice

L. = Z 0% 4+ Z Ov;
i<r p i>r

and also of cL, for all ¢ € Q*. (An O-lattice is an O-submodule of V'
generated by a basis.) Therefore, vertices correspond to lattice classes
[L] = {cL | ¢ € Q*}; moreover, every O-lattice is the image of a unique L,
under G(Q).

Note that the star of [L,] is just the usual (spherical) building for
L,/pL,, ie., for G(GF(p)) = SL(n,p). The corresponding diagram re-

flects this fact: it is the extended Dynkin diagram of type A,,

having n nodes. (Hide any node and observe that the diagram A,_; is
left: the diagram of the building of SL(n,p).) There is also an obvious
dihedral group of graph automorphisms, generated by the usual graph au-
tomorphism of the SL(n,p) building together with an n-cycle (produced,
for example, by the diagonal matrix diag(1,1,...,1,p)).

All of the above goes through with the field Q,, of p-adic numbers in
place of Q, using the ring Z,, of p-adic integers in place of O. This produces
an isomorphic building.

This is an example of an algebraic affine building. The general case is
as follows [10].

K field with a complete, discrete valuation (such as Q)
@) corresponding valuation ring (Z, in the case of Q)
™ canonical prime (uniformizer) (p in the case of Q)
k = O/mO residue field (GF(p) in the case of Q,)
G(K) an absolutely simple, simply connected algebraic group over K
of rank ¢ > 2

G(0O) the corresponding group over O: think in terms of matrix entries;
this is assumed to be a maximal subgroup of G(K)

G(0) —» G(O mod 7) = G(k)

B Twahori subgroup, the preimage in G(K) of a Borel subgroup
of G(k)

A affine building of G(K)

As above, A is a simplicial complex whose simplexes are the proper
subgroups of G(K) containing a conjugate of B, with X a face of YV iff
X > Y. Chambers are the conjugates of B. The rank of A is ¢ + 1:
there are £ 4+ 1 different types of vertices. The requirement that G(O) is
special amounts to the fact that the associated diagram is the extended
Dynkin diagram corresponding to the Dynkin diagram of the finite group
G(k); the group G(K) always contains such subgroups [10]. In the example
given above, all the vertex stabilizers are special.
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A second example may help in wading through these definitions. Let
f be a quadratic form on a vector space V over Q,, of Witt index ¢ > 2.
The corresponding algebraic group G(K) is the commutator subgroup of
the orthogonal group of f. (Actually, in order to conform with the above
definitions I should in fact take G(K) to be the associated spin group.
However, the center of that spin group acts trivially on A, and hence can
be ignored for our purposes.) Here, vertices correspond to classes [L] of
suitable Zp-lattices L in V. (In unpublished work, Rehmann and Scharlau
have obtained necessary and sufficient conditions in order that a lattice L
produces a vertex — not just for this orthogonal situation, but for all the

classical groups.) 4

More concretely, consider the quadratic from f = Zmixi+4 on Qg,

1

with orthogonal group Q7 (8,Q,). Let e1, 2, €3, €4, f1, f2, f3, fa be the stan-
dard basis, so that with respect to the underlying bilinear form (e;,e;) =
0 = (fi, f;) and (e, f;) = 0;5. The vertices of A are the lattice classes
containing the lattices

Ll = (el>e2ve3>e4>flvf2;f37f4>Zp
€1
Ly = (Fa€2a63,€4,10f17f2,f37f4>z,,

€1 €3

L3 = (—,—763,64,f1;f2,f3;f4>zp
p p

€1 €2 €3 €4

L4:<_>_7_7_)f17f2)f37f4>zp
bp p p P
er e e
Ls:(—1,—2;—3;é,f1;f2,f3;€4>zp
bp p b P
The diagram is D4, extended Dy: with central node arising from Lg.

2. Arithmetic groups

Let G(K) be as above. A subgroup G of G(K) is discrete if G, is finite
for each vertex x of A; and G is cocompact if it has a finite number of
chamber-orbits (or, equivalently, a finite number of orbits on some type of
vertices). These definitions are motivated by the topology on A inherited
from that of the field K.

More notation is needed in order to describe the basic example of a
discrete cocompact subgroup of G(K); in parentheses is the special case
of the rational field itself. (Note, however, that there is an additional
possibility being ignored here, in which the ground field F' has nonzero
characteristic.)

F' finite extension of Q
v place (valuation) (p or oo in the case of Q)
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K = F, completion of F' at v (Qp or R in the case of Q)
O, corresponding valuation ring if v is finite (Z, in the case of Q)

O" ={a € F|v'(a) >0 for all finite v’ # v}  (Z[L] in the case of Q)
G(F) is embedded in G(F,) in the obvious manner.

G =G(0")

Assume that G(F,) is compact for all infinite places v'. Fiz a finite
place v. Assume that G(F,) = G(K) is noncompact and has rank ¢ > 2.
Then: G is discrete and cocompact in G(Fy).

For example, if f is a quadratic form over Q then G(Q) is the (derived
subgroup of the) orthogonal group; the only infinite place is oo, with Qe =
R. Then the compactness of G(Q~) = G(R) simply asserts that f is
a definite quadratic form (over R). The group G is G(Z[%]) in case v
corresponds to the prime p.

Returning to the general case, a subgroup I' of G(F,) is called an
arithmetic group if T' N G(O?) has finite index in both I' and G(O"). A
fundamental theorem of Margulis asserts that every discrete cocompact
group I arises in essentially this manner (this requires the assumption that
¢ > 2; cf. [14]). While there are even more general definitions of this sort,
here it will only be necessary to consider G(O").

Thinking in terms of classical groups (although the following is true in
general), it is always possible to choose bases so that the stabilizer of a given
vertex of A looks like G(O,) [10]. This motivates considering the number
of orbits of G(O") on the coset space G/G(O,). This number is an integer
h that is independent of the choice of v — subject to the condition that
G(Fy) is noncompact and has rank > 2 [5]. This integer is called the class
number of G(F). This is a standard concept in the case of quadratic forms
(where, however, it is called the spinor class number: the class number has
a similar but slightly different meaning [3]).

Borel and Prasad [2] recently have shown that, given an integer h, there
are only a finite number of pairs F', G(F'), for which the class number is h.
In the special case of orthogonal groups this was proved in [9].

The case of greatest interest in finite group theory and finite geometry
occurs when h = 1. Here, G(O") is transitive on one of the vertex types of
the building. Note the bizarre fact that, whereas the buildings arising from
different places v are drastically different (the residue fields have different
characteristics, and hence so do stars within the buildings), nevertheless
transitivity for one v implies transitivity for all (suitable) v!

6
Example: Let F' = Q, f = fo, V = Qg. Then h = 1. This form is

1
clearly positive definite over R. The resulting building has diagram if

p =1 (mod 4) and otherwise. In either case there are obvious
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graph automorphisms possible. In fact, the full group of transformations
over Z[%] preserving f projectively is transitive on the set of all vertices if
p =1 (mod 4), and on the set of non-end-node vertices for the remaining
primes p. This is precisely the sort of example discussed in [6] in an ad hoc
manner.

This situation suggests that one should look for some kinds of classifi-
cation theorems. In a series of papers, using very detailed case arguments,
G. L. Watson determined all definite quadratic forms over Q of class num-
ber 1 in dimension n > 5 (as indicated above, the notion of class number
he used is not quite the same as what I have been using in the general case;
but class number 1 for Watson implies class number 1 for us; the converse is
probably true when n > 5, but this has yet to be proved). Watson showed
that n < 10: see the references in [13] for the cases n > 7; his results for
n = 5 and 6 remained unpublished at the time of his death in 1988.

In more recent work still in progress, R. Scharlau has considered the
corresponding problem of determining those quadratic forms over algebraic
number fields for which h = 1 (with h as defined above). He used [9] to
show that n < 14 — strengthening the estimates n < 34 in [9] and n < 18 in
[5] — and that the possibilities for the field F' are severely limited if n > 6.
This work did not use buildings, groups, or geometry. However, it should
eventually have interesting applications to finite geometry, for reasons to
be explained in the next section. 6

The above example with FF = Q and f = me is especially inter-

1
esting when p = 2. Here, G(Zz) is the stabilizer in G(Qz) of the lattice
L = Z§. Then the stabilizer in G = G(Z[3]) of L is just G(Z), which
is a finite group of the form 2°Ag. This acts on L/2L, which is a vec-
tor space over GF(2). The form f mod 2 is actually linear, with ker-
nel H = {(x;) € L | Sa; =0 (mod 2)}. There is then a quadratic form
1 f mod 2 induced on H/2L. This form is preserved by G(Z), the induced
group being Ag = O(5,2)". Thus, G(Z) is chamber-transitive on the build-
ing produced on H /2L, which is in turn the star of the vertex [L]. In view of
the transitivity of G on the vertices of the same type as [L], it follows that
G is chamber-transitive. This is one of the examples of chamber-transitive
groups classified in the result in [7], which to a large extent is subsumed
by the results contained in Meixner’s paper for this conference.

3. Finite geometries

After all of the infinite groups and complexes appearing in the previous
sections, it is now time to describe some implications for finite geometry.

If A and A’ are two simplicial complexes then a map ¢ : A — A’ is
called a cover if it is simplicial, onto, and for each vertex x the restriction
Pst(z) : St(x) — St(x¢) is an isomorphism. (There is a more general notion
of 2-cover [11], but covers will suffice for the present purposes.)
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The case of concern here is the one in which A is an affine building
obtained as in Section 1. Then A has rank £+ 1 > 3. Note that A’ will be
a complex that locally looks exactly like A: stars in A’ will be isomorphic
to stars in A. What do all the finite complexes A’ look like? There is
a discrete automorphism group A of A such that A’ =2 A/A; that is, A’
can be identified in a natural manner with the set of orbits of A on A. In
particular, A is cocompact; it is the group of deck transformations of the
cover [11].

However, not all discrete cocompact groups A produce a simplicial
complex A/A: just consider the case in which A happens to be transitive on
some type of vertices of A. This is one of the reasons for replacing simplicial
complexes by chamber systems when discussing building-like geometries
[11] (cf. [4]). Nevertheless, for purposes of finite geometry complexes are
the appropriate things to aim for. Fortunately, there is no difficulty finding
such complexes — and unfortunately there are simply too many of them:

If A is a discrete cocompact subgroup of G(K') then
1. So is every subgroup of finite index;

2. A is residually finite: the intersection of all the normal subgroups
of finite index is 1; and

3. There is a constant M (depending on G(F')) such that, if D is
a subgroup of A of index at least M, then A/D is a simplicial
complex and A — A/D is a cover.

Here, 1 is easy, 2 is not difficult, and 3 is an observation of Tits [12].
The net effect of these facts is that, as already stated, there are too many
possibilities for the simplicial complex A’. What is needed is some way to
narrow the study of such complexes. Not surprisingly, transitivity proper-
ties provide at least one way to do this.

The following simple construction produces finite complexes A’ with
large induced groups. Start with a discrete group G transitive on some
vertex type of A. Take any normal subgroup A of G such that G/A is
finite and not too small. Then, by 2 and 3 above, A’ = A/A will be a
simplicial complex on which G/A acts, and G/A will also be transitive on
a vertex type.

Example: Let f be a definite quadratic form on a vector space over
Q, let G(Q) be as usual, and assume that G(Q) has class number 1.
Let p be a prime, and assume that f has Witt index > 2 over Q, and
that G(Z,) is the stabilizer of a vertex of A. Then G = G(Z[%]) is
transitive on that vertex type. Now if m > 1 is an integer then let
A(m) = {g€ G| g=1(modm)}. This is a normal subgroup of G, and
G/A(m) is usually just G(Z/mZ). If m is sufficiently large then A/A(m)
will be a complex that locally looks exactly like A: stars in A/A(m) will
be isomorphic to stars in A.
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Problem: What properties does A’ = A/A have, either in the preceding
situation, or in the more general situation in which A is a normal sub-
group of a group G transitive on some vertex type, or in even more general
contexts?

Since there are evidently large numbers of finite geometries A’ obtained
even in the preceding example, it is not at all clear what sorts of properties
one should look for. Perhaps there are some kinds of configuration theorems
possible. At the moment, the only results are essentially asymptotic in
nature. These are motivated by [8], which contains analogous results when
A is the affine building (a tree) for SL(2, Q). Assume that G = G(0") is
transitive on some vertex type.

1. There is a constant C such that, if A<G, G/A is finite, and AJA
is a complex, then the diameter of AJA is < Cg log,(#), where # is the
number of vertices, or alternatively the number of chambers, of A (the
constant Cg depends on which definition of # is used).

Here, diameter refers to the usual diameter of a graph: the 1-skeleton
of A/A, or the chamber-graph of A/A. This result is asymptotically best
possible, as a simple counting argument shows; and it is an easy conse-
quence of results in [1]. However, even a bound on the constant Cg seems
to be very difficult to compute. By contrast, the following seems to be true
in general; I have only verified it in the case of quadratic and hermitian
forms:

2. There is a computable constant Cf, such that, for all A as above,
the geometric girth of A/A is > Cf, logy(#).

Here, the geometric girth is the length of the shortest circuit not homo-
topic to 0; homotopy refers either to the usual simplicial concept or to the
one for chambers [11]. For example, in the simplicial case of the Example
in Section 3, when p = 2 one can take Cf; = 5.

At this point it should be clear that this subject is in its infancy, at
least from the point of view of finite geometry. It is not yet clear what
the most important questions are; there certainly are few tools available to

study the geometries A’ = A/A.
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