PERMUTATION GROUP ALGORITHMS VIA BLACK BOX
RECOGNITION ALGORITHMS

WILLIAM M. KANTOR* and AKOS SERESS'

*University of Oregon, Eugene, OR 97403, U.S.A.
tThe Ohio State University, Columbus, OH 43210, U.5.A.

Abstract

If a black box simple group is known to be isomorphic to a classical group over g
field of known characteristic, a Las Vegas algorithm is used to produce an explicit
isomorphism. This is used to upgrade all nearly linear time Monte Carlo permuta-
tion group algorithms to Las Vegas algorithms when the input group has no com-

position factor isomorphic to an exceptional group of Lie type or a 3-dimensional p

unitary group.

Key words ond phrases: computational group theory, black box groups, classical
groups, matrix group recognition

1991 Mathematics Subject Classification: Primary 20840, 20G40; Secondary:
20P05, 68Q25, 68Q40

1 Introduction

There is a large library of nearly linear time permutation group algorithms [BCFS,
BS, CF, LS, Mo, Ra, SchS, Ser]. Most of these are Monte Carlo (which means that
the algorithm can return an incorrect answer, although the probability of that can
be made as small as desired). The main result of this note is that Monte Carlo can §
be upgraded to Las Vegas (which means that the output is always correct, but the
algorithm may also report failure, although the prebability of that can be made as
small as desired), whenever there are suitable recognition algorithms for the simple
groups occurring as composition factors.

There is a growing literature of recognition algorithms for quasisimple groups of
Lie type. The first of these, due to Neumann and Praeger [NP], solved the follow-
ing problem: given a group & < GL(d,q) by a set of generating matrices, decide
whether ¢ contains SL(d, g). Subsequently, this result was generalized to the other |
classical groups [NiP1, NiP2, CLG1, CLG2, Ce, Prl, also assuming that matrices '
were given of the desired size over the desired field. A much more general setting
is where a quasisimple matrix group is given only as a black box group. Recently, §
Cooperman, Finkelstein and Linton [CFL) studied the case G = PSL(d,2), provid- .
ing a methodology for handling many such questions simultaneously. We extended 4
their result in [KS] to all classical groups over all finite fields. In [BCFL] black |
box groups isomorphic to PSL(d, ¢) will also be dealt with for any ¢ in a manner §
similar to [CFL]. :

A black boz group G is a group whose elements are encoded as 0-1 strings of
uniform length N, and the group operations are performed by an oracle (the “black §

KANTOR. SERESS: PERMUTATION GROUP ALGORITHMS 437

pox™). Given strings representing g.h € . the black box can compute strings
representing gh and g~ '. and decide whether or not g = k. Note that |G| < 2V
we have an upper bound on {G|. Algorithms usually 1y to-expleit the specific
features of the represeniation of the group they work with. By contrast, a black
box group algorithm does not rely on specific features of the group representation
ot on particulars of how the group operations are performed. It turns out that this
is a critical aspect of our uses for these algorithms (cf. Section 2.3).

We state our results about classical groups in a more general setting so their
applications for permutation groups can be extended easily when recognition algo-
rithms for additional groups become available.

Definition 1.1 Let F be a family of simple groups and f:F — R a function
taking positive values. We say that F is black box f-recognizable if. whenever a
group ¢ = {§) isomorphic t0 a member of F is given as a black box group encoded
by strings of length ¥ and, in the case of Lie-type &, the characteristic of G is
given, there are Las Vegas algorithms for the following:

{i) Find the isomorphism type of (5.

(i) Find a new set 8 of size O(N) generating G, and a presentation of length
O{N?)in terms of §*. (This presentation proves that (7 has the isomorphism
type determined in (i).)

(i) Given g € G, find a straight-line program of length O(N) from S* to g.

Moreover,

(iv) The algorithms for (i)-{iii) run in time G((€ + p)f(G)N¥), where £ is an
upper bound on the time requirement per element for the construction of
independent, (nearly) uniformly distributed random elements of G, g is an

upper bound on the time required for each group operation in &, and ¢ is
an absolute constant.

A straight-line program of length m reaching some g € & can be thought of as a
sequence of group elements (g1,..., ¢,) such that g,, = g and for each i one of the
following holds: g; € §*, 0or ¢; = gj_l for some 7 < 4, or g; = g;gx for some j, k < i.
More precisely, since we do not want to store the group elements themselves, the
straight-line program reaching g is a sequence of expressions {wy, ..., wy,,) such that,
for each i, either w; is a symbol for some element of $*, or w; = (w;,—1) for some
J < t,0or w; = (w;, wy) for some j, k < i, such that if the expressions are evaluated
the obvious way then the value of w,, is g. This more abstract definition not only
requires less memory, but also enables us to construct a straight-line program in
one represeniation of G and evaluate it in another, which is an important feature
of the algorithms.

We shall prove the following two theorems. Let ¢ denote the family of all finite
simple groups, and let m: G — R be the function such that m(G) is the degree of
the smallest faithful permutation representation of G.

Theorem 1.2 Given a permutation group @ = {8) < 5, such that all nonabelian
cotnposition factors of G are from a black bor m-recognizable family F, a base and

KANTOR, SERESS: PERMUTATION GROUP ALGORITHMS 438

strong generating set for G can be computed n nearly linear Las Vegas lime.

Bases and strong generating sets (SGS) are the basic data structures in algo-
rithms for permutation groups; we shall define them in Section 2.1. We call an
algorithm nearly linear if its running time is of the form O{n5|log*|G}) for some
constant k. We shall justify the name and elaborate more on this notion in Sec-
tion 2.2.

The novelty in Theorem 1.2 is that the base and SGS construction is Las Vegas, -
Earlier nearly linear time algorithms used the Monte Catlo construction of [BCFS].
All currently known nearly linear Monte Carlo algorithms can he modified so that
after an initial base and 5GS computation, all further steps of the algorithm are
deterministic or Las Vegas. Thus, for the groups described in Theorem 1.2, we ean |
upgrade the entire nearly linear time library to Las Vegas.

The algorithm in Theorem 1.2 differs significantly from the traditional SGS con-

structions [Sil, Si2); by the time we have found |G| we have also constructed a 2

composition series for . In this respect, the algorithm resembles the parallel han-
dling of permutation groups [BLS1] and the current fastest deterministic algorithms
for computing strong generating sets [BLS2, BLS3].

The second theorem is a constructive version of a result from [BGKLP] about }
short presentations of groups.

Theorem 1.3 There is @ nearly linear Las Vegas algorithm which, when given o B

permutation group (G satisfying the composition factor restriction of Theorem 1.2,
computes a presentation of length O(log? |G|) for G.

Using the terminology of this paper, the main result of [KS) can be stated as:

Theorem 1.4 [KS] The classical simple groups, with the possible exception of the
3-dimensional unitary groups, comprise a black boz m-recognizable family. '

We shall also use a similar result for the alternating groups.

Theorem 1.5 [BLNPS] The alternating groups comprise a 1-recognizable family -
(é.e., one can take f(G) =1 for all alternating groups G).

It is easy to check that cyclic groups of prime order are m-recognizable and, ob-
viously, sporadic simple groups are 1-recognizable. Hence, combining the previous 3
two theorems with Theorem 1.2 we obtain the

Corollary 1.6 Given a permutation group G < 5, with no exceptional Lie type or ":
3-dimensional unitary composition factors, all known nearly linear time algorithms
dealing with G can be upgraded to Las Vegas algorithms.

We note that in [KS] 2 new generating set S§* satisfying Definition 1.1(iii) was]
found within the required time bound in 3-dimensional unitary groups as well, but]
it is an open problem whether these groups have a presentation of length O(log2 |G]}
as needed in 1.1(if). '

KANTOR, SERESS; PERMUTATION GROUP ALGORITHMS 434

Actually, in [KS] we prove more than Theorem 1.4: an isomorphism A with a
group of matrices in the correct dimension is constructed, defined by the images
of generators, together with procedures to compute the image of any element of
¢ under A or of any element of G\ under A7l The analogous isomorphism for
alternating groups is constructed in [BLNPS]. These procedures are very useful
for further computations with (7, such as the construction of Sylow subgroups
[Ka, Mo]. For possible applications of (KS] in matrix recognition algorithms see
[BB] and [Pr] in these Proceedings.

In (KS] there are also more precise umings of algorithms thar required in The-
orem 1.4. For example, we show that the family of classical groups, with the

possible exception of 3-dimensional unitary groups, is black box f-recognizable for
the function

2

=1 1 ifG=PSL{d, g) for some d
fiG) = q" for ail other G defined on a vector space ovet GF{q).

It seems very likely that the set of all groups of Lie iype is a black box f-
recognizable family with f(G) < m{G). Research is presently under way on the
groups of Lie rank > 2 other than $F4(g). Possibly the biggest obstacle is condition
(ii) of Definition 1.11in the case of rank 1 groups: finding O(log®|G|)-length presen-

tations for PSU(3, q), 2B (¢) and 2G2(¢) has been a very annoying open problem
for several years (cf. [BGKLP]).

2 The proofs

2.1 Bases, strong generating sets, and Schreier trees

Fundamental data structures for computing with permutation groups were intro-

duced by Sims in [Si1, Si2]. A base for a permutation group & < Sym(§2) of degree
nis a sequence B = (81 ., 300 of points from Q such that the pointwise stahilizer
Gp = 1. The point-stabilizer chain of G relative to B is the chain of subgroups

G=GW>ag? > . 5 gmiy _ 1,

k. where GU1) = G(g,,..5-,) The base B is called nonredundant if there is strict
£ inclusion G > GO for all 1 < i < M then (log|G|)/(logn) < |B] <log|G|. A

* strong generating set {SGS) for G relative to B is a set § of generators of G with
the property that

NG =G for1<i< M 41,

Let B = (B1,...,84) be a base of the group G, let G = G > GO >
> GMHY _ o b the corresponding point-stabilizer chain, and let R; denote
a transversal for GUH) in GU) 1 <5 < M. Such a transversal can be computed
. from the $GS by a standard orbit computation of ,fj'f;('), keeping track of the group

Ments sending 8; to the points of the orbit. Each g € G can be written uniquely
the form

§=7TMTM_1---Tor, 1 € R;. (2.1)

KANTOR, SERESS: PRRMU [ATION GROUP ALGORITHME 440

The process of factoring g in this form is called sifting of stripping. Note that the
order of G can be obtained easily as |Gl = Hﬂl |£:].

In practical computation, the transversals R; usunally are not computed and
stored explicitly; rather, they are encoded in a Schreier-tree data structure. Sup-
pose that 2 base B and an §Gi5 & for ¢ relative to B are given. A Schreier-tree
data structure for G is a sequence of pairs (Sy, T)) called Schreier trees, one for each
base point F;, 1 €1 < M, where T; is a directed labeled tree with all edges directed
toward the root 3;, and with edge-labels selected from the set §;:= & nGgl ¢ W,
The nodes of T; are the poluts of the orbit ;’3?“). The labels satisfy the condition
that, for each directed edge from v to § with label A, sz lyisa node of T},
then the sequence of the edge-labels along the path from v to J; in T; is a word
in the elements of §; such that the product of these permutations moves ¥ to B;.
Thus each Schreier tree (S:.1y) defines inverses of the elements of the transversal
R; for G4F1) in GO,

Given an arbitrary SG§ S relative to B, an algorithm in [BCFS] constructs a
new SGS T in O(anS|10g2 |G|} deterministic time such that the depth of each 1
Schreier tree defined by T is at most 2log |G|. We call a Schreier-tree datastructure &
shallow if the depth of each tree is at most 2log|G|. A shallow Schrejer-tree data
structure supports membership testing in O(nM log |G]) time. We will assume that §
all bases computed in our algorithms are nonredundant and that all Schreler-tree o8
data structures we consider are shallow. '

2.2 Nearly linear time algorithms

Tn groups of current interest for implementations, it frequently happens that the de- 4
gree of G = {§) is in the tens of thousands or even higher, so even a ©{n?) algorithm § 1
may not be practical. On the other hand, log |G| is often small. Therefore, a recent 8
trend is to search for algorithms with running sime of the form O(niS|log" |G]). &
More precisely, given a constant ¢, & family G of permutation groups is called 2 IR
family of small-base groups ifall G € G of degree n admit bases of size O(log® n); or, K
equivalently, if there is a constant ¢ such that log |G} = O(logC' nyforecach GEG ¥
of degree n. For example, all classical simple groups, in all of their permutation :
representations, comprise 2 small-base family (with ¢ = 2).

We call a permutation group algorithm a nearly linear time algorithm if its
running time for any G = {8y < Snis O(n|S|log® |G|). The name is justified by
the fact that, if G is a member of a small-base family then the running time is a
nearly linear, O(n|5| logcu(n|5|)), function of the input length. We will require the
following algorithms of this sort: 3

Theorem 2.2 There are Monte Carlo nearly linear time algorithms which, when;
given G < Sy, find the following: :
(i) [BCFS] A base, strong generating set, and a shallow Schreier-tree data struc-§
ture for G; :

(i) As a consequence of (i): given a homomerphism @G — Sy, specified by the]
images of generators, data structures which enable the nearly linear time,

FANTOR, SERESS: PERMUTATION GROUP ALGORITHMS 441

computation of @{g) for any ¢ € G and a pretmage of any g € (G):

(iii) [BS] A composition series G = Ny Ny --- 1 Ny = 1 and. for each
1<i<m—1, ¢ homomorphism p;: Ny — 5, with kerg; = Ny, ‘

A large part of the permutation group library in GAP [Sch+] consists of imple-
mentations of nearly linear algorithms.

2.3 Permautation groups as black box groups

Suppose that a base B = (,...,3ar), 2 strong generating set & with respect 10
B, and a shallow Schrefer-tree data structure 7 = {{$;,73) | 1 < ¢ £ M} arc
given for some 7 < Sym((2), where the sum of the depths of these M Schreier trees
is £ = O(log? |G|). We may assume that the $GS S is closed under taking inverses.

Any ¢ € G can be written uniquely in the form (2.1) for elements r; of the
transversals whose inverses were coded by S7, Each such inverse can be written as
a word in the strong generators S, following the path in the appropriate Schreier
sree. Taking the inverse of this word and using the fact that § = §~!, we obtain
the r;, and s0 g, as a word in § in a well-defined way. The length of the word
representing ¢ is at most ¢; this word is called the standard word representing g.
We note the following:

Lemma 2.3 [n deterministic O(t|B|) time, given an injection f: B — Q, it is
possible to find o standard word represenling some g € G with BY = f(B) or to
determine that no such element of G exists.

This algorithm relies on a base, SGS and Schreier-tree daia structure. However,
those inputs are computed by Monte Carlo algorithms, and hence may not be
correct. Therefore, it is possible that the preceding algorithm returns an incorrect
answer — though with small probability.

Now we show how to consider G as a black box group H; this wiil be crucial
for Theorems 1.2 and 1.3, The elements of H are defined to be the standard
words representing the elements of G; these are strings over the alphabet &, of
length at most t. Of course, we can write the elements of H as 0-1 strings of
uniform length N: & can be coded by [log(|8] + 1}]-eng 0-1 sequences for the
numbers 1,2,...,{&]; every standard word can be padded by 0’s to length ¢. Since
[S} and t are O(log? |G]), N is Ollog? |G| loglog |G1). As customary in the analysis
of permutation group algorithms, we assume that small numbers can be read in
0(1) time, and therefore we shall ignore the factor log log |G} above; this is at worst
logn, and hence is appropriate within the nearly linear time context.

Formally, we have an isomorphism #:(G — H with the following properties.
Each g € (7 defines an injection f: B — Q by f(8;) = 37, and then Lemma 2.3 can
be used to compute gy in O(¢|B|) = O(log® |G}) time. Conversely, given b € H,
hy~! can be computed in O(rlog? |G|} time, by multiplying out the product of the
elements of » as a permutation.

Each h ¢ H is represented by a unique string, so comparison of group elements
can be performed in O(log?|G!) time. In order to take the product of sy, hy € H,

KAN1OR, SERESS: PERMUTATION GROUP ALGORITHMS 442

we concatenate these two words. and define a fanction f: B — Q by f(3):= _ﬁfllhz_
Then the standard word representing hihy can be obtained by Lemma 2.3. This
procedure runs in O(log® |G]) time. Similarly, to take the inverse of some h € H, we
take the inverse of the word h. This defines an injection f: B — (, and again we use _
Lemma 2.3 in O(log® |G|) time. Hence, we have a black boz oracle which performs &
the black bor group operalions in Oflog?|G]) time, which is potentially faster than ¥ '
the ordinary permutation multiplication. In particular, if G < S, is a member of |
a small-base family, then, in the notation of Definition 1.1, p = O(log® n) for some
constant ¢. Recall, however, that this oracle can give incorrect answers if our base,
SGS or Schreier-tree data structure was incorrect.

(Nearly) random elements of G and of subgroups of G can be constructed,
by a remarkable algorithm of Babai [Bal, in O(u log® |(7]) time. (An apparently
practical heuristic algorithm for this purpose is given in [CLMNO).)

Summarizing, we cau copsirucl an isomorphism between a permutation group
G < &, and a black box group H such that the word length N of the encoding of
H, as well as the time requirement for the group operations in i and constructing
random elements in H are bounded from above by a polylogarithmic function of
log |G- Therefore, we can perform O{n) group operations in H within nearly linear |
time. Note that if we considered G as a black box group, with the original per- §
mutation multiplication as black box group operation, then O(n) group operations 1
would result in an O(n?) algorithm.

2.4 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2 Let G = {(T) < S, be a permutation group. Compute a j
base and strong generating set, and a composition series G = N> Nab- Nm =1, 3
by the nearly linear Monte Carlo algorithms in Theorem 2.2. The composition
series algorithm also provides homomorphisms ;: Nj — Sp with keri; = Nijq, for
1 €14 < m— 1. We also compute strong generating sets for all N; with respect to
the base of (3. We will verily the correctness of the base and strong generating sets §
for the subgroups N; by induction on i = mym —1,..., L. i

Suppose that we already have verified an SGS for Niyi. Using Theorem 2.2, we
compute a base, SG§, shallow Schreier-tree data structure, and an isomorphism %;
with a black box group for the image Nip; (cf. Section 2.3), which is a subgroup ¥
of §,, and is allegedly isomorphic to a simple group. Our first goal is to obtain in]
nearly linear Las Vegus time @ presentation of length O(log? | Nii|) for Nipi, using §
a generating set 87 such that a straight-line program of length O(log | Nipil) from |
8 to any given elemnent of Nip; can be obtained in nearly linear Las Vegas time.

As a consequence of the classification of finite simple groups, we know that there]
are no three pairwise nonisomorphic simple groups of the same order. So we have]
at most two candidate simple groups C for the isomorphism type of Ny, and in
the ambiguous cases we try both possibilities. Also, if |N;p;| > 8!/2 then | Niil
determines whether Ny, is of Lie type, and if it is, its characteristic. Hence, usi
that N;p; is from an m-recognizable family, we can obtain 7, a presentation,
and straight-line programs in Nipgbi, in nearly linear Las Vegas time. By Theo-§
rem 2.2(ii), the preimage S} of 8¢ can also be obtained in neasly linear time. :

KANTOR, SERESS: PERMUTATION GROUP ALGORITHMS 443

Now the correctness of the 5G5S for N; can be proved the following way. Let 7;
be the set of generators of N; computed by the composition series algorithm { The-
orem 2.2(iii)}. We check that (i) Nip1 < Ny and N; # Ny (i) (ST YNy /Nisa
satisfies the presentation computed for N;p;; and (iii) 7; (S*(p‘_i)N,_H, where
hwﬁl denotes a lift (i.e., an arbitrary preimage) of & € 8 C Nip;. Checking
(i)-(iii) shows that | Ny \ = FN,“HN ;. If | V;| is equal with the value for | ¥;| com-
puted from the alleged SGS of N; then the SGS construction is correct: it is known
that the alleged order of a group obtained from the Monte Carlo SGS construction
is not greater than the true order, with equality if and only if the SGS construction
is correct.

For {i), conjugate the generators of N;;; by the elements of T;, and check that
the resulting permutations are in N;;; (since the correctness of Ny, is already
known, membership testing giving guaranteed correct results is available for that
group). Also, check that not all elements of 7; are in Niy. For (ii), multiply out
the relators that were written in terms of 87, using the permutations in S"Q:Jg ;
then check that the resulting permutations are in N;yy. Finally, for (iii) write
straight-line programs from &7 to 7ip;, and for each t € 7; evaluate it starting
from S:tp;l (this is where we use our unusually precise definition of straight-line
programs). This produces some ™ € (877 1Y; check that *t~' € N;y.. By (ii)
and (iii}, we have checked that the factor group N;/N; 1, = C.

At the end of the induction, we have obtained a correct SGS for the group
Ny = {7;) which was output by the composition series algorithm. After that, we
verify that G = Ny by sifting the elements of the original generating set 7 in ;.

To justify the nearly linear running time of the entire algorithm, note that m
is O(log|G|) so it is enough to show that the ith step of the induction runs in
nearly linear time. We have already seen that the constructions of hoth S and
the presentation of N;p; are within this time bound. Since both |7, |S?| are
O(log |G|), while the length of the presentation is O(log® |G|} and the Schreier-tree
data structure of N, is shallow, the number of permutation mulitiplications in
(i)-(iii) is bounded from above by a polylogarithmic function of |GY.

We note that we have to require that calls to the algorithms in Theorems 1.4,
L5, and 2.2 fail with probability < 1/(elog|G|), since during the induction,
O(log |G|) such calls may be made; however, this multiplies the running time only
by a loglog || factor. a

:
-
4
3
|
1
1
i
1
4

- Proof of Theorem 1.3 The following result is contained in [BGKLP, Sec. 8].
i If each composition factor H; of the finite group G has a presentation of length
O(log® [H;|} for some C > 2, then G has a presentation of length O(logt+t|G]).
The proof in [BGKLP] proceeds by the following steps; we need to show that these
can be handled in nearly linear time.
{i) Let L be a lifting of the generators of the composition factors to G. Let M
be a subset of L of size O(log [G|) which also generates G.

(i) Let S be a subset of ¢ such that any element of ¢ can be reached from §
by a straight-line program of length O(log |G|). Write straight-line programs
from M to §.

KANTOR, SERFss: PERMUTATION GROUP ALGORITHMS 444

(i1} Write a presentation for (7, and simultaneously write straight-line prograns ‘
from 5 to O(leg® |G|) elements of . Roughly, these elements are those whose
membership in ¥;4, was tested in {i)-(iii) in the proof of Theorem 1.2. Now
the presentation in [BGKLP] is obtained in O(log” ™" |G1) deterministic time.

We saw in the proof of Theorem 1.2 that presentations of the composition factors
H, of a black box group satisfying the restriction of Theorem 1.2 can be obtained
having length O(log” |H.}), using a nearly linear time algorithm. Hence, we shall
apply the result of [BGKLP] with the value ¢’ = 2. Moreover, the generating sets
S* of the composition factors constructed in the proof of Theorem 1.2 are such
that |, S7o; ! has O(log|G}) elements. Tn Proposition 2.4 we shall show that any
given g € G can be reached from |J; 577! by a straight-line program of length
O(log |G), and such a straight-line program can be computed in nearly linear time.
This means that we can choose S := L = M in (i) and (i), so that a presentation
of G of length O(log® |G|) can indeed be written in nearly linear time, as indicated
in {iii) and as required in the theorem.

Proposition 2.4 Let G < 5, be a permutation group, and suppose that the fol-
lowing have already been computed by Las Vegas algorithms, as in the proof of
Theorem 1.2: a composilion series G = Ny BN -+ Ny = 1, homomorphisms
i: Ni — 8§, with ker ; = Niy1, and presentations using generating sets 5 C Nigy.
Then any g € & can be reached from | ; 517! by a straight-line program of length
O(log |G|}, and such a straight-line program can be computed in nearly linear time.

Proof By induction on i = 1,2,...,m, we will construct a straight-line pregram
of length O(log{|G|/1N:])) to some g; € G such that gg7' € Nio Let gy = L
If g; has already been obtained for some i, then write a straight-line program
of tength O(log|N;/N;1]) from 57 to (gg7¢i. In the case when Ni/Nip is
cyclic or speradic, this can be done by brute force. In the other cases, we use the
isomorphism 1; between N; and a black box group, as in the proof of Theorem 1.2,
and the fact that N;p:y is black box m-recognizable. Evaluate this straight-line
program starting from Srp; !, producing an element h; € N;. Here, gg; ATt €
N1, and we can define g;41 := higi. Finally, we notice that the procedure runs

in nearly linear time, since m(N;/N;pp) < n. G

References

[Ba] L. Babai, Local expansion of vertex-transitive graphs and random generation
in finite groups, pp. 164-174 in: Proc. ACM Symp. on Theory of Computing
1991.

[BB] L. Babai and R. Beals, A polynomial-time theory of mattix groups and black

box groups, in these Proceedings.

[BCFL] S Bratus, G. Cooperman, L. Finkelstein and S. Linton (in preparation).

[BCFS] L. Babai, G. Cooperman, L. Finkelstein and A Seress, Nearly linear time algo-
rithms for permutation groups with a small base, pp. 200-209 in: Proc. Int.
Symp. Symbolic and Algebraic Computation, ACM 1991.

[BGKLP] L. Babai, A. 1. Goodman, W. M. Kantor, E. M. Luks and P. P. Piliy, Short
presentations for finite groups, J. Algebra 194 (1947}, 79-112.

KAKTOR. SERESS: PERMUTATION GROUP ALGORITHMS 145

[BLNPS]

[BLS1]
[BLS2]
[BLS3]

[BS]

[Cel
(CF)
[CF1]
(CLG1]
[CLGZ]

[CLMNO]
[FK]

[Kal

[KS]
[LS]

[Me]
[NiP1]
[NiP2]
(NP]
[Pr]
[Ra]
[Sch+]

[SchS]

[Ser]

R. Beals. C. R. Leedham-Green, A. C. Niemeyer. . E. Pracger and A. Seress, A
méiange ol black box algorithms for recognising finite svmmnetric and alternating
groups (in preparation}.

L. Babai, E. M. Luks and A. Seress, Permutation groups in NC, pp. 409-420
in: Proc. ACM Symp. on Theory of Computing 1987.

L. Babai, E. M. Luks and A. Seress, Fast management of permutation groups
L. SIAM J. Cornputing 26 (1997).

L. Babai, E. M. Luks and A. Seress, Fast managemeni of permutatlion groups
1I (in preparation).

R. Beals and A. Seress, Structure forest and composition factors for small base
groups in nearly linear time, pp. 116-125 in: Proc. ACM Symp. on Theory of
Computing 1992.

F. Celler, Matrixgruppenalgorithmen in GAP. Ph. 1). thesis, RWTH Aachen
1997.

G. Cooperman and L. Finkelstein, A random base change algorithm for permu-
tation groups, J. Symb. Comp. 17 {1994), 513-528.

G. Cooperman, L. Finkelstein and S. Linton, Recognizing GL,(2) in non-
standard representation, pp. 85-100 in [FK].

F. Celler and C. R. Leedham-Green, A non-construclive recognition algorithm
for the special linear and other classical groups, pp. §1-67 in [FK].

F. Celler and C. R. Leedham-Green, A constructive recognition algerithm for
the special linear group (to appear in Proc. ATLAS Conlference).

F. Celler, C. R. Leedham-Green, 5. . Murray, A. C. Niecmeyer and E. A.
(¥'Brien, Generating random clements of a finite group. Comm. Alg. 23 (1995)
4931-40948.

L.. Finkelstein and W. M. Kantor, editors, Groups and Computation [I, DI-
MACS Series in Discrete Math. and Theoretical Computer Science, vol. 28,
AMS 1997,

W. M. Kauator, Sylow’s theorem in polynomniial time. J. Comp. Syst. Sci. 30
{1985) 359-394.

W. M. Kantor and A. Sercss, Black hox classical groups {submitted).

E. M. Luks and A. Seress, Computing the Fitting subgroup and solvable radical
of small-base permutation groups in nearly linear time, pp. 169-181 in [FK].
P. Morje, A nearly linear algorithmn for Sylow subgroups of permutation groups.
Ph.D. thesis, The OGhio State University 1995.

A, C. Niemeyer and C. E. Praeger, Implementing a recognition algorithm for
classical groups, pp. 273-296 in {FK].

A, C. Niemeyer and C. E. Pracger, A recognition algorithm for classical groups
over finite fields (to appear in Proc. London Math. Soc.).

P. M. Neumann and C. E. Praeger, A recognition algorithm for special linear
groups. Proc. London Math. Soc. (3) 65 (1992), 555-603.

C. E. Praeger, Primitive prime divisor elements in finite classical groups, in
these Proceedings.

F. Rdkdczi, Fast recognition of nilpotency of permutation groups, pp. 265-269
in: Proc. Int. Symp. Symbolic and Algebraic Computation, ACM 1995.

M. Schénert et. al., GAP: Groups, Algorithms, and Programming, Lehrstuhl D
fir Mathematik, RWTH Aachen, 1984,

M. Schénert and A. Seress, Finding blocks of imprimitivity in small-base groups
in nearly linear time, pp. 144-147 in: Proc. Int. Symp. Symbolic and Algebraic
Computation, ACM 1694,

A. Seress, Nearly linear time algorithms for permutation groups: an interplay

	000
	437
	438
	439
	440
	441
	442
	443
	444
	445

