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1 Introduction 

There is a large library of nearly linear time permutation group algorithms [BCFS, 
BS, CF, LS, Mo, Ra, SchS, Ser1. Most of these are Monte Carlo (which means that 
the algorithm can return an incorrect answer, although the probability of that can 
be made as small as desired). The main result of this note is that Monte Carlo can 
be upgraded to Las Vegas (which means that the output is always correct, hut the 
algorithm ffifly also report failure, although the probability of that can be made as 
small as desired), whenever there are suitable recognition algorithms for the simple 
groups occurring as composition factors. 

There is a growing literature of recognition algorithms for quasisimple groups of 
Lie type. The first of these, due to Neumann and Praeger [NPl, solved the follow~ 
ing problem: given a group G ::; GL(d, q) by a set of generating matrices, decide 
whether G contains SL(d,q). Subsequently, this result was generalized to the other 
classical groups [NiPl, NiP2, CLGl, CLG2, ee, Prj, also assuming that matrices 
were given of the desired size over the desired field. A much more general setting 
is where a quasisimple matrix group is given only as a black box group. Recently, 
Cooperman, Finkelstein and Linton [CFL) studied the case G ~ PSL(d, 2), provid~ 
ing a methodology for handling many such questions simultaneously. We extended 
their result in [KSI to all classical groups over all finite fields. In [BCFL] black 
box groups isomorphic to PSL(d, q) will also be dealt with for any q in a manner 

similar to [CFL I· 
A black box group G is a group whose elements are encoded as O~l strings of 

uniform length N, and the group operations are performed by an oracle (the "black , 
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box"). Given strings representing g. h E G. the black box can compute strin<Ts 
representing gh and f)-I. and decide \vhether or not g = h. Note that IGI s:; 2g: 
we have an upper bound all IGI. Algorit.hms llsually try to.exploit the specific 
features of the representation of the group they work with. By contrast, a black 
boX group. algorithm does not rely on specific features of the group representation 
or on partIculars of how the group operations a.rc performed. It turns out that this 
is a critical a.spect of our uses for these algorithms (cf. Section 2.3). 

w.e s:ate our results a?out classical groups in a more general setting so their 
applicatJOns fo: .permutatlOn groups ca.n be extended easily when recognition algo­
rithms for addItIOnal groups become available. 

Definition 1.1 Let :F be a family of simple groups and f::F -----+ R a function 
taking positive values. vVe say that :F is black box J-recognizable if. 'whenever a 
group G = (S) isomorphic to a member of:F is given as a black box group encoded 
by strings of length N and, in the case of Lie-type G, the characteristic of G is 
given, there are Las Vegas algorithms for the following: 

(i) Find the isomorphism type of G. 

(ii) Find a new set S* of size GOV) generating G, and a presentation of length 
OOV2) in terms of S*. (This presentation proves that G has the isomorphism 
type determined in (i).) 

(iii) Given 9 E G, find a straight-line program oflength O(N) from S* to g. 

Moreover, 

(iv) The algorithms for (i)-(iii) run in time 0((< + ll)f(G)IVe), where < is an 
upper bound on the time requirement per element for the construction of 
independent, (nearly) uniformly distributed random elements of G, fJ is an 
upper bound on the time required for each group operation in G, and c is 
an absolute constant. 

A stmight~line progmm of length m reaching some .Q E G can be thought of as a 
sequence of group elements (.9}, ... , gm) such that 9m = g and for each i one of the 
following holds: gj E S*, or gi = g;l for some j < i, or gj = gjgk for some j, k < i. 
More precisely, since we do not want to store the group elements themselves the 
straight-line program reaching g is a sequence of expressions (w}, . .. , wm ) such ~hat 
f?r e~ch i, either Wi is a symbol for some element of S*, or Wi = (Wj, -1) for som~ 
J < t, or Wi = (Wj, Wk) for some j, k < i, such that if the expressions are evaluated 
the ~bvious way then the value of Wm is g. This more abstract definition not only 
requues less memory, but also enables us to construct a straight-line program in 
one representation of G and evaluate it in another, which is an important feature 
of the algorithms. 
. We shall prove the following two theorems. Let 9 denote the family of all finite 

Simple groups, and let m: 9 -----+ R be the function such that m( G) is the degree of 
the smallest faithful permutation representation of G. 

Theorem 1.2 Given a permutation group G = (S) s:; Sn such that all nonabelian 
composition factors of G are from a black box m~recognizable family :F, a base and 
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strong generating set for G can be computed in nr:ariy linear Las Fegas time. 

Bases and strong generating sets (SGS) are the basic data structures in algo­
rithms for permutation groups; we shall define them in Section 2.1. We call an 
algorithm nearly linear if its running time is of the form O(nlSllogk IGI) for some 
constant k. We shall justify the name and elaborate more on this notion in Sec­
tion 2.2. 

The novelty in Theorem 1.2 is that the base and SGS construction is Las Vegas. 
Earlier nearly linear time algorithms used the Monte Carlo construction of [BCFS]. 
All currently known nearly linear Monte Carlo algorithms can be modified so that 
after an initial base and SGS computation l all further steps of the algorithm are 
deterministic or Las Vegas. Thus, for the groups described in Theorem 1.2, we can 
upgrade the entire nearly linear time library to Las Vegas. 

The algorithm in Theorem 1.2 differs significantly from the traditional SGS con­
structions [Sil, Si2]; by the time we have found IGI we have also constructed a 
composition series for G. In this respect, the algorithm resembles the parallel han­
dling of permutation groups [BLS1] and the current fastest deterministic algorithms 
for computing strong generating sets [BLS2, BLS3]. 

The second theorem is a constructive version of a result from [BGKLP] about 
short presentations of groups. 

Theorem 1.3 There is a nearly linear Las Vegas algorithm which, when given a 
permutation group G satisfying the composition factor restriction of Theorem 1.2, 
computes a presentation of length 0(10g3IGI) for G. 

Using the terminology of this paper, the main result of [KS) can be stated as: 

Theorem 1.4 [KS] The classica.l simple groups, with the possible exception of the 
3~dimensional unitary groups, comprise a black box m-recognizable family. 

We shall also use a similar result for the alternating groups. 

Theorem 1.5 [BLNPS] The alternating groups comprise a I-recognizable family 
(i.e., one can take fCG) = 1 for all alternating groups G). 

It is easy to check that cyclic groups of prime order are m-recognizable and, ob­
viously, sporadic simple groups are I-recognizable. Hence, combining the previous 
two theorems with Theorem 1.2 we obtain the 

Corollary 1.6 Given a permutation group G ~ Sn with no exceptional Lie type or 
3-dimensional unitary composition factors, all known nearly linear time algorithms 
dealing with G can be upgraded to Las Vegas algorithms. 

We note that in [KS] a new generating set S* satisfying Definition 1.1(iii) 
found within the required time bound in 3-dimensional unitary groups as well, 
it is an open problem whether these groups have a presentation oflength o (log2I 
as needed in 1.1(ii). 
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Actually, in. [KS) we prove more than Theorem 1.4: an isomorphism). with a 
group of matrIces 1Il the Correct dimension is constructed. defllled by the images 
of generators, together with procedures to compute the image of any element of 
G under A or of any element of GA under A-I The analogous I·SO h· , '. . morp Ism lor 
alternatmg groups IS constructed in [BLNPS]. These procedures are very usef I 
for further computations with G, such as the construcflon of SIb u 

] 
. .. yow su groups 

[Ka, Mo. For pOSSible applicatIOns of [KS] in matrix recognition algorithms see 
[BB] and [Prj in these Proceedings. . . 

In [KS] there are also more precise timings of algorithms than required in The­
ore~ 1.4. For. example: we ~how that the family of classical groups, with the 
pOSSIble exceptIOn of 3-dImenslOnal unitary groups is black box f . bl -t' 

the function ,-recogmza e lor 

if G 0' PSL(d. q) for some d 

for all other G defined on a vector space over GF(q). 

It seems very likely that the set of all groups of Lie type is bl k b f 
'blf']' aacox-

recoglllza : amI y WIth f( G) '5 m( G). Research is presently under wayan the 
groups of LIe rank ~ 2 other than 2 F4(q). Possibly the biggest obstacle is condition 
(il) of Definition 1.1 in the case of rank 1 groups: finding 0(1 'IGI)-l th 
t f f PSU(3 ) 2 (2 og eng presen­
a Ions or ,q, B2 q) and G2( q) has been a very annoying open problem 

for several years (c!. [BGKLP]). 

2 The proofs 

2.1 Bases, strong generating sets, and Schreier trees 

Fundamental data structures for computing with permutatl·on g . d db' . . . roups were mtro-
~ce y Sims m [SIl, SI2]. A base for a permutation group G ::; Sym(Q) of de r 

n IS a sequence B = ((3 (3) f . t f ~ h . g ee . 1,.' : ., M ? pam s rom H suc that the pomtwise stabilizer 
GB = 1. The pomt-stablltzer cham of G relative to B is the chain of subgroups 

G = G(!) ? G(2) ? ... ? G(M+I) = 1, 

where G(i) = G Th b B . 
. . i Uh, ... ·,)l,-tl· ease IS called nonredundant if there is strict 
mcluslOn G() > G(,+I) for all 1 <:: i <:: M; then (log IGIl/(logn) <:: IBI < log IGI. A 
strong genemtmg set (SGS) for G relative to B is a set S of generato~ of G with 
the property that 

(S n G(i)1 = G(i) for 1 <:: i <:: M + 1. 

Let B = ((3" ... , (3M) be a base of the group G, let G = G(!) > G(2) > 
. .. > G(M+l) - 1 b th d·· 

- - e e correspon mg pomt·stabilizer chain and let R· denot 
a. transversal for G(i+l) in G(iJ 1 < i < M Such t '1 b' e 

, - -' a ransversa can e computed 
the SGS .by a standard ~rbit computation of fiF(') , keeping track of the group 

·.eiemenl:s sendIng fii to the POInts of the orbit. Each g E G can be written uniquely 
the form 

(2.1 ) 
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The procesCi of factoring g ill this form is called sifting or .~Iripping. :\ote that the 

order of G can be obtained easily as IGI :::: 11i\~1 !Rd· 
In practical computation, the transversals Ri usually are not computed and 

stored explicitly; rather, they are encoded in a Schreier-tree data structure. Sup­
pose that a base B and an SGS S for G relative to B are given. A Schrtier-tree 
data structure for G is a sequence of pairs (SilT,) called Schreier trees, one for each 
base point ,3j, 1 :; i :; AI, where Ti is a directed labeled tree with all edges directed 
toward the root ;3" and with edge-labels selected from the set 5i := S n G(i) ~ G(i). 
The nodes of Ti are the points of the orbit ,;3P(I). The labels satisfy the condition 

that, for each directed edge from l' to b \\.'ith label Il, "h = h. 1£ J' is a node of Ti, 
then the sequence of the edge-labels along the path from I to (Ji in Ti is a word 
in the elements of Si such that the product. of thes€' permutations moves I to ih 
Thus each Schreier tree (Si .1',) defines invcrse8 of the elements of the transversal 

Ri for G(i+1) in C(i). 
Given an arbitrary SGS S relative to fl, an algorithm in [BCFS] constructs a 

new SGS Tin O(nMI51Iog'IGI) deterministic time such that the depth of each 
Schreier tree defined by T is at most 2log ICi. We call a Schreier- tree data structure 
shallow if the depth of each t.ree is at most 2 log IGI· A shallow Schreier-tree data 
structure supports membership testing in O( nlJlog ICI) time. We will assume that 
all bases computed in our algorithms are nonredundant and that all Schreier-tree 

data structures we consider are shallow. 

2.2 Nearly linear time algorithms 

In groups of current interest for implementations, it frequently happens that the de­
gree of G = (S) is in the tens of thousands or even higher, so even a 0( n

2
) algorithm 

may not be practical. On the other haml, log IGI is often small. Therefore, a recent 
trend is to search for algorithms with running time of the form O( niSI logk IG\), 
More precisely, given a constant c, a family 9 of permutation groups is called a. 
family of small-base gro'upS if all G E 9 of degree n admit bases of size 0 (logC n); or, 
equivalently, if there is a constant c' such that log; IGI = o(logC' n) for each G E 9 
of degree n. For example, all classical simple groups, in all of their permutation 

representations, comprise a small-base family (\vith c = 2). 
We call a permutation group algorithm a nea1'ly linear time algorithm if its 

running time for any G = (S) <: 5" is O(nlSllogk IGI)· The name is justified by 
the fact that, if G is a member of a small-base family then the running time is a 
nea.rly linear. O(nISllog'''(nISI)), function of the input length. We will require 

following algorithms of this sort: 

Theorem 2.2 There are Monte Carlo nearly linear time algorithms which, 

given G :; Sn, find the following: 

(i) [BeFS1 A base, strong generating set, and a shallow Schreier-tree data 

ture for G; 
(ii) As a consequence of (i): given a homomorphism r,p: G -+ Sn specified by 

images of generators, data structures which enable the nearly linear 
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com, putation of <.p(r;) fo'r any y E G and u preimage of any g E dG): 

(iii) [BSj A composition Baies G :::: Xl [> _f\,T2 C> ... "'- \' ~ 1 'A 1 < . < 1 v - m - anr, for each 
_ 1 _ m - ,(1 homomorphism ,.pi: Xi - Sn with ker!.pi = N'H: 

A large part of the permutation group librarv in GAP [S 'h+1 . . 
t t

· f' .r C consists of lffiple-
men a IOns a nearly linear algorithms. 

2.3 Permutation groups as black box groups 

Suppose that a base B - (8 d) , ~,h' . ", AI , a strong generating set S \vith respect to 
B\ and a shallow SchreIer-tree data structure ST = irS· T) I 1 < . } 
O'iven for some G < S r (n) I I J) I - 1 < ~H arc 
0-' 7 _ )ill H ,wleretlesumofthedepthsofthese MS h-' 
is t ~ O(log2 IGI). \Ve may assume that the SGS S is cl . d I.' k~ re.ler trees An E G b . . ose nn( e1 ta mg Inverses 

y g can e wntten uniquelv in the form (2 1) r I . . 
I I 

. ".. lor e ernents r' of the 
transversa s w lose III verses were coded by' ST E I h . ' , d' h . ac 1 sue lllverse can be written as 
a war In t e strong generators S, following the ath' h . . 
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Thi~ algorithm relies on a base, SGS and Schreier-tree data structure However 
those mputs are computed by Monte Carlo algorithms d h . , 
correct Th f '1 . ,an ence may not be 

. ere ore, 1 IS possible that the preceding algorl'th t . . 
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. m re urns an mcorrect 
answer - aug Wlth small probability. 

Now we show how to consider G as" a black box group H· tl·, '11 b . I 
for Thea 1 2 d ' us WI e crUCla 

rems . an 1.3. The elements of If are defined to be . 
words representing the elements of G' these at' h the standard 1 th 1. ,re s nngs over t e alphabet S of 
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The procesCi of factoring g ill this form is called sifting or .~Iripping. :\ote that the 
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2
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ddfi f . LB Ilb·f(3)·-3 h
,h, 

we concatenate these two words. an (' ne a unctIOn J. -..., ~ 1 ,-' / • 

Then the standard word representiug hIh2 can be ohtained by Lemma 2.a, This 
procedure runs in O(log3 IGl) time. SimilarlYl to take the inverse of some h ,E H, we 
take the inverse of t.he word h. This defines an injection f: B -+ Q, and agalll we use 
Lemma 2.3 in O(log3 IGI) time. Hence, we have a black box omcle which performs 
the black box grOllp operations in O(log3IGI) time, which is potentially faster than 
the ordinarv permutat.ion multiplicat.ion. Tn particular, if G ::; Sn is a member of 
a small-bas~ family, then, in the notation of Definition l.1, J1 = o (logC ~) for some 
constant c. RecalL however. tha.t this oracle can give incorrect answers If our base, 

SGS or Schreier-tree data structure was incorrect, 
(~early) random elements of G'0 and of subgroups of G~ can be constructed, 

by a remarkable algorithm of Babai [Ba], in o(ttlog5IGI) tmle. (An apparently 
practical heuristic algorithm for this purpose is given in [CLMNOj.) , 

Summarizing, we cau construct an isomorphism between a permutatIon group 
G < Sn and a black box group H such that the word length IV of the encodin~ of 
H -as well as the time requirement for the group operations in Hand constructmg 
ra~dom elements in H are bounded from above by a polylogarithmic functi~n of 
log IGI. Therefore, we can perform O( n) group operations in II. within ne.a~IY hnear 
time. Note that if we considered G as a black box group, With the ongillal ~er­
mutation multiplication as black box group operation, then O(n) group operatIons 

would result in an O( n2
) algorithm. 

2.4 Proofs of Theorems 1.2 and 1.3 

Proof of Theorem 1.2 Let G = (7) ::; Sn be a permutation group. Compute a 
base and strong generating set, and a composition series G = N1 t>N2 t>·· .t>Nm .~ I, 
by the nearly linear Monte Carlo algorithms in Theorem 2?, The composItIon 
series algorithm also provides homomorphisms!f( Ni -+ 8n WIth keripi = NiH, for 
1 < i < m _ L We also compute strong generating sets for all Ni with respect to 
th~ ba-:e of G. We will verify the correctness of the base and strong generating sets 

for the subgroups Ni by induction on i = m, m - 1, ... ,l. 
Suppose that we already have verified an SGS for Ni+l. Using ~heorem ~.2, we 

compute a base, SGS , shallow Schreier-tree data stru:ture, and a~ Is~morphlsm 'l/Ji 
with a black box group for the image Niipi (cf. SectIOll 2.3), whICh .IS a subg~ou.p 
of Sn and is allegedly isomorphic to a si,mple group. Our ~rst goal IS to ob,tam. m 
nearly linear Las Vegas time a presentatwn of length O(1og \Ni!fil) for Ni!ftl usmg 
a generating set S; such that a straight-line prog~am oflen~th o (log I~iipi\) ~rom 
S~ to any given element of Ni!fi can be obtained III nearly lmear Las vegas tIme. 

I As a consequence of the classification of finite simple groups, we know that 
are no three pairwise nonisomorphic simple groups of the same order. So we 
at most two candidate simple groups C for the isomorphism type of Ni!fi, and 
the ambiguous cases we try both possibilities. Also, if INiipi\ ~ ~!/2 then \ 
determines whether Ni!fi is of Lie type, and if it is, its charactenstIc. 
that Ni!fi is from an m_recognizable family, we can obtain

v
Si '0i, ~ p""elltatlOn, 

and straight-line programs in Niipi'I/Ji, in nearly linear Las egas time. 
rem 2.2(ii), the preimage Si of S;'0i can also be obtained in nearly linear time. 
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Now the correctness of the SGS for Ni can be proved the following way. Let Ti 
be the set of generators of Nj computed by the composition series algorithm (The­
orem 2.2(iii)). We check that (i) Ni+J <1 Ni and Ni 01 Ni+l; (ii) (S''Pil)Ni+JINi+J 
satisfies the presentation computed for Niipj; and (iii) Ti c (S;ipi 1 

) N i+lJ where 
h!f;l denotes a lift (i.e., an arbitrary preimage) of h E S; C Niipj. Checking 
(i)-(iii) shows that lNil ~ lNi+dlNi'Pil. If lNil is equal with the value for INil com­
puted from the alleged SGS of .I.Vi then the SGS construction is correct: it is known 
that the alleged order of a group obtained from the Monte Carlo SGS construction 
is not greater than the true order, with equality if and only if the SGS construction 
is correct. 

For (i), conjugate the generators of Ni+l by the elements of~, and check that 
the resulting permutations are in NiH (since the correctness of NiH is already 
known, membership testing giving guaranteed correct results is available for that 
group), Also, check that not all elements of Ti are in Ni+l. For (ii), multiply out 
the relators that were written in terms of S~, using the permutations in S*'P:- 1 . 1 t I , 

then check that the resulting permutations are in Ni+l. Finally, for (iii) write 
straight-line programs from S; to Ti!fi' and for each t E ~ evaluate it starting 
from S;t..p-;I (this is where we use our unusually precise definition of straight-line 
programs). This produces some t* E (S;!f;l); check that t*C I E NiH' By (ii) 
and (iii), we have checked that the factor group Ni/NiH ~ C. 

At the end of the induction, we have obtained a correct SGS for the group 
Nt = (11) which was output by the composition series algorithm. After that, we 
verify that G = Nl by sifting the elements of the original generating set Tin NI . 

To justify the nearly linear running time of the entire algorithm, note that m 
is O(log IGI) so it is enough to show that the ith step of the induction runs in 
nearly linear time. We have already seen that the constructions of both S~ and 
the presentation of Njipi are within this time bound. Since both ITiI,IS~1 are 
O(log IGI), while the length of the presentation is O(log'IGll and the Schrei:r-tree 
data structure of NiH is shallow, the number of permutation multiplications in 
(i)-(iii) is bounded from above by a polylogarithmic function of IGI. 

We note that we have to require that calls to the algorithms in Theorems 1.4, 
1.5, and 2.2 fail with probability < 1/(clog IGI), since during the induction, 
O(log IGI) such calls may be made; however, this multiplies the running time only 
by a log log IGI factor. 0 

Proof of Theorem 1.3 The following result is contained in [BGKLP, Sec. 8j. 
If each composition factor iIi of the finite group G has a presentation of length 
O(logC IHill for some C 2 2, then G has a presentation of length O(logC+l IGI). 
The proof in [BGKLPj proceeds by the following steps; we need to show that these 
can be handled in nearly linear time. 

(i) Let L be a lifting of the generators of the composition factors to G. Let M 
be a subset of L of size O(log IGI) which also generates G. 

(ti) Let S be a subset of G such that any element of G can be reached from S 
by a straight-line program oflength O(log IGI). Write straight-line programs 
from M to S. 

I' 
ir 
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(iii) Write a presentation for (7, and simllltaneolls1y write straight-line programs 
from S to O(logC iGI) elements of G. Roughly, these plements are t.hose \vhose 
membership in -NiTI was tested in (i)-(iii) in the proof of Theorem 1.2. Now 
the presentation in [BGKLP] is obtained in G(1oge+! IGI) deterministic time. 

\Ve saw in the proof of Theorem 1.2 that presentations of t.he composition factors 
Hi of a black box group satisfying the restriction of Theorem 1.2 can be obtained 
having length O(log2IHil), using a nearly linear time algorithm. Hence~ we shall 
apply the result of [BGKLPj \vith t.ll1" value C = 2. :\-!oreover, the generating sets 
S; of the composition factors constructed in the proof of Theorem 1.2 are such 
that U

1 
Si'pi l has O(log IGI) elements. In Proposition 2.4 we shall show that any 

given g E G can be reached from Ui Sitpi l by a straight-line program of length 
O(log IC]), and such a straight-line program can be computed in nearly linear time. 
This means that we can choose S := L = }.;f in (i) and (ij), so that a presentation 
of G of length O(10g3IGI) can indeed be written in nearly linear time, as indicated 

in (iii) and as required in the theorem. 

Proposition 2.4 Let G ::; Sn be a permutation group, and suppose that the fol. 
lowing have already been computed by Las 'Vegas alg01'ithms, as in the proof of 
Theorem 1.2: a composition series G = Nl t>N2 i> ... t> N m = 1, homomorphisms 
'Pi: Ni -+ Sn with keq.?j = NiH, and presentations using generating sets Si C Ni!.pj. 
Then any g E G can bt reached from Ui .')itpil by a straight-line program of length 
O(log IGI), and such a straight-line program can be computed in nearly linear time. 

Proof By induction on i = L 2, ... , nI, we \vill construct a straight-line program 
of length O(log(IGI/IN;I)) to some 9; E G such that 99t EN;. Let 91 := l. 
If gi has already been obtained for some i, then write a straight-line program 
of length O(logIN;/N;+ll) from S;' to (99;1)1';. In the case when N;/N;+1 is 
cyclic or sporadic, this can be don(' by brute force. In the other cases, we use the 
isomorphism '¢i between Njtpi and a black box group, as in the proof of Theorem 1.2, 
a.nd the fact that 1V1'-P11}Ji is black box m-recognizable. Evaluate this straight-line 
program starting from Sitpi l

, producing an element. hi E N I • Here, ggi-lhi1 E 

Ni+b and we can define gi+l := hjgj. Finally, we notice that the procedure runs 
in nearly linear time, since m(NdNiH)::; n. 0 
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isomorphism '¢i between Njtpi and a black box group, as in the proof of Theorem 1.2, 
a.nd the fact that 1V1'-P11}Ji is black box m-recognizable. Evaluate this straight-line 
program starting from Sitpi l

, producing an element. hi E N I • Here, ggi-lhi1 E 
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