
PERMUTATION GROUP ALGORITHMS VIA BLACK BOX
RECOGNITION ALGORITHMS

WILLIAM M. KANTOR' and AKOS SERESS'

*"Cniversity of Oregon, Eugene, OR 97403, "C,S.A.
tThe Ohio State University, Columbus, OR .,13210, U.s.A.

Abstract

If a black box simple group is known to be isomorphic to a classical group over a
field of known characteristic, a Las Vegas algorithm is used to produce an explicit
isomorphism. This is used to upgrade all nearly linear time Monte Carlo permuta­
tion group algorithms to Las Vegas algorithms when the input group has no com­
position factor isomorphic to an exceptional group of Lie type or a 3-dimensional

unitary group.

Key words and phrases: computational group theory, black box groups, classical

groups, matrix group recognition
1991 Mathematics Subject Classification: Primary 20B40, 20G40; Secondary:

20P05, 68Q25, 68Q40

1 Introduction

There is a large library of nearly linear time permutation group algorithms [BCFS,
BS, CF, LS, Mo, Ra, SchS, Ser1. Most of these are Monte Carlo (which means that
the algorithm can return an incorrect answer, although the probability of that can
be made as small as desired). The main result of this note is that Monte Carlo can
be upgraded to Las Vegas (which means that the output is always correct, hut the
algorithm ffifly also report failure, although the probability of that can be made as
small as desired), whenever there are suitable recognition algorithms for the simple
groups occurring as composition factors.

There is a growing literature of recognition algorithms for quasisimple groups of
Lie type. The first of these, due to Neumann and Praeger [NPl, solved the follow~
ing problem: given a group G ::; GL(d, q) by a set of generating matrices, decide
whether G contains SL(d,q). Subsequently, this result was generalized to the other
classical groups [NiPl, NiP2, CLGl, CLG2, ee, Prj, also assuming that matrices
were given of the desired size over the desired field. A much more general setting
is where a quasisimple matrix group is given only as a black box group. Recently,
Cooperman, Finkelstein and Linton [CFL) studied the case G ~ PSL(d, 2), provid~
ing a methodology for handling many such questions simultaneously. We extended
their result in [KSI to all classical groups over all finite fields. In [BCFL] black
box groups isomorphic to PSL(d, q) will also be dealt with for any q in a manner

similar to [CFL I·
A black box group G is a group whose elements are encoded as O~l strings of

uniform length N, and the group operations are performed by an oracle (the "black ,

KANTOR. SERESS: PER:-'lt:TATIO)l GROlip .\LGORITH:-'!S 437

box"). Given strings representing g. h E G. the black box can compute strin<Ts
representing gh and f)-I. and decide \vhether or not g = h. Note that IGI s:; 2g:
we have an upper bound all IGI. Algorit.hms llsually try to.exploit the specific
features of the representation of the group they work with. By contrast, a black
boX group. algorithm does not rely on specific features of the group representation
or on partIculars of how the group operations a.rc performed. It turns out that this
is a critical a.spect of our uses for these algorithms (cf. Section 2.3).

w.e s:ate our results a?out classical groups in a more general setting so their
applicatJOns fo: .permutatlOn groups ca.n be extended easily when recognition algo­
rithms for addItIOnal groups become available.

Definition 1.1 Let :F be a family of simple groups and f::F -----+ R a function
taking positive values. vVe say that :F is black box J-recognizable if. 'whenever a
group G = (S) isomorphic to a member of:F is given as a black box group encoded
by strings of length N and, in the case of Lie-type G, the characteristic of G is
given, there are Las Vegas algorithms for the following:

(i) Find the isomorphism type of G.

(ii) Find a new set S* of size GOV) generating G, and a presentation of length
OOV2) in terms of S*. (This presentation proves that G has the isomorphism
type determined in (i).)

(iii) Given 9 E G, find a straight-line program oflength O(N) from S* to g.

Moreover,

(iv) The algorithms for (i)-(iii) run in time 0((< + ll)f(G)IVe), where < is an
upper bound on the time requirement per element for the construction of
independent, (nearly) uniformly distributed random elements of G, fJ is an
upper bound on the time required for each group operation in G, and c is
an absolute constant.

A stmight~line progmm of length m reaching some .Q E G can be thought of as a
sequence of group elements (.9}, ... , gm) such that 9m = g and for each i one of the
following holds: gj E S*, or gi = g;l for some j < i, or gj = gjgk for some j, k < i.
More precisely, since we do not want to store the group elements themselves the
straight-line program reaching g is a sequence of expressions (w}, . .. , wm) such ~hat
f?r e~ch i, either Wi is a symbol for some element of S*, or Wi = (Wj, -1) for som~
J < t, or Wi = (Wj, Wk) for some j, k < i, such that if the expressions are evaluated
the ~bvious way then the value of Wm is g. This more abstract definition not only
requues less memory, but also enables us to construct a straight-line program in
one representation of G and evaluate it in another, which is an important feature
of the algorithms.
. We shall prove the following two theorems. Let 9 denote the family of all finite

Simple groups, and let m: 9 -----+ R be the function such that m(G) is the degree of
the smallest faithful permutation representation of G.

Theorem 1.2 Given a permutation group G = (S) s:; Sn such that all nonabelian
composition factors of G are from a black box m~recognizable family :F, a base and

ii

Ii
"I Ii

'I .,
I
'l

PERMUTATION GROUP ALGORITHMS VIA BLACK BOX
RECOGNITION ALGORITHMS

WILLIAM M. KANTOR' and AKOS SERESS'

*"Cniversity of Oregon, Eugene, OR 97403, "C,S.A.
tThe Ohio State University, Columbus, OR .,13210, U.s.A.

Abstract

If a black box simple group is known to be isomorphic to a classical group over a
field of known characteristic, a Las Vegas algorithm is used to produce an explicit
isomorphism. This is used to upgrade all nearly linear time Monte Carlo permuta­
tion group algorithms to Las Vegas algorithms when the input group has no com­
position factor isomorphic to an exceptional group of Lie type or a 3-dimensional

unitary group.

Key words and phrases: computational group theory, black box groups, classical

groups, matrix group recognition
1991 Mathematics Subject Classification: Primary 20B40, 20G40; Secondary:

20P05, 68Q25, 68Q40

1 Introduction

There is a large library of nearly linear time permutation group algorithms [BCFS,
BS, CF, LS, Mo, Ra, SchS, Ser1. Most of these are Monte Carlo (which means that
the algorithm can return an incorrect answer, although the probability of that can
be made as small as desired). The main result of this note is that Monte Carlo can
be upgraded to Las Vegas (which means that the output is always correct, hut the
algorithm ffifly also report failure, although the probability of that can be made as
small as desired), whenever there are suitable recognition algorithms for the simple
groups occurring as composition factors.

There is a growing literature of recognition algorithms for quasisimple groups of
Lie type. The first of these, due to Neumann and Praeger [NPl, solved the follow~
ing problem: given a group G ::; GL(d, q) by a set of generating matrices, decide
whether G contains SL(d,q). Subsequently, this result was generalized to the other
classical groups [NiPl, NiP2, CLGl, CLG2, ee, Prj, also assuming that matrices
were given of the desired size over the desired field. A much more general setting
is where a quasisimple matrix group is given only as a black box group. Recently,
Cooperman, Finkelstein and Linton [CFL) studied the case G ~ PSL(d, 2), provid~
ing a methodology for handling many such questions simultaneously. We extended
their result in [KSI to all classical groups over all finite fields. In [BCFL] black
box groups isomorphic to PSL(d, q) will also be dealt with for any q in a manner

similar to [CFL I·
A black box group G is a group whose elements are encoded as O~l strings of

uniform length N, and the group operations are performed by an oracle (the "black ,

KANTOR. SERESS: PER:-'lt:TATIO)l GROlip .\LGORITH:-'!S 437

box"). Given strings representing g. h E G. the black box can compute strin<Ts
representing gh and f)-I. and decide \vhether or not g = h. Note that IGI s:; 2g:
we have an upper bound all IGI. Algorit.hms llsually try to.exploit the specific
features of the representation of the group they work with. By contrast, a black
boX group. algorithm does not rely on specific features of the group representation
or on partIculars of how the group operations a.rc performed. It turns out that this
is a critical a.spect of our uses for these algorithms (cf. Section 2.3).

w.e s:ate our results a?out classical groups in a more general setting so their
applicatJOns fo: .permutatlOn groups ca.n be extended easily when recognition algo­
rithms for addItIOnal groups become available.

Definition 1.1 Let :F be a family of simple groups and f::F -----+ R a function
taking positive values. vVe say that :F is black box J-recognizable if. 'whenever a
group G = (S) isomorphic to a member of:F is given as a black box group encoded
by strings of length N and, in the case of Lie-type G, the characteristic of G is
given, there are Las Vegas algorithms for the following:

(i) Find the isomorphism type of G.

(ii) Find a new set S* of size GOV) generating G, and a presentation of length
OOV2) in terms of S*. (This presentation proves that G has the isomorphism
type determined in (i).)

(iii) Given 9 E G, find a straight-line program oflength O(N) from S* to g.

Moreover,

(iv) The algorithms for (i)-(iii) run in time 0((< + ll)f(G)IVe), where < is an
upper bound on the time requirement per element for the construction of
independent, (nearly) uniformly distributed random elements of G, fJ is an
upper bound on the time required for each group operation in G, and c is
an absolute constant.

A stmight~line progmm of length m reaching some .Q E G can be thought of as a
sequence of group elements (.9}, ... , gm) such that 9m = g and for each i one of the
following holds: gj E S*, or gi = g;l for some j < i, or gj = gjgk for some j, k < i.
More precisely, since we do not want to store the group elements themselves the
straight-line program reaching g is a sequence of expressions (w}, . .. , wm) such ~hat
f?r e~ch i, either Wi is a symbol for some element of S*, or Wi = (Wj, -1) for som~
J < t, or Wi = (Wj, Wk) for some j, k < i, such that if the expressions are evaluated
the ~bvious way then the value of Wm is g. This more abstract definition not only
requues less memory, but also enables us to construct a straight-line program in
one representation of G and evaluate it in another, which is an important feature
of the algorithms.
. We shall prove the following two theorems. Let 9 denote the family of all finite

Simple groups, and let m: 9 -----+ R be the function such that m(G) is the degree of
the smallest faithful permutation representation of G.

Theorem 1.2 Given a permutation group G = (S) s:; Sn such that all nonabelian
composition factors of G are from a black box m~recognizable family :F, a base and

ii

Ii
"I Ii

'I .,
I
'l

KA;\"TOR, SFRE"S PER~IPL\T10,! GROllP ALGORITHMS 438

strong generating set for G can be computed in nr:ariy linear Las Fegas time.

Bases and strong generating sets (SGS) are the basic data structures in algo­
rithms for permutation groups; we shall define them in Section 2.1. We call an
algorithm nearly linear if its running time is of the form O(nlSllogk IGI) for some
constant k. We shall justify the name and elaborate more on this notion in Sec­
tion 2.2.

The novelty in Theorem 1.2 is that the base and SGS construction is Las Vegas.
Earlier nearly linear time algorithms used the Monte Carlo construction of [BCFS].
All currently known nearly linear Monte Carlo algorithms can be modified so that
after an initial base and SGS computation l all further steps of the algorithm are
deterministic or Las Vegas. Thus, for the groups described in Theorem 1.2, we can
upgrade the entire nearly linear time library to Las Vegas.

The algorithm in Theorem 1.2 differs significantly from the traditional SGS con­
structions [Sil, Si2]; by the time we have found IGI we have also constructed a
composition series for G. In this respect, the algorithm resembles the parallel han­
dling of permutation groups [BLS1] and the current fastest deterministic algorithms
for computing strong generating sets [BLS2, BLS3].

The second theorem is a constructive version of a result from [BGKLP] about
short presentations of groups.

Theorem 1.3 There is a nearly linear Las Vegas algorithm which, when given a
permutation group G satisfying the composition factor restriction of Theorem 1.2,
computes a presentation of length 0(10g3IGI) for G.

Using the terminology of this paper, the main result of [KS) can be stated as:

Theorem 1.4 [KS] The classica.l simple groups, with the possible exception of the
3~dimensional unitary groups, comprise a black box m-recognizable family.

We shall also use a similar result for the alternating groups.

Theorem 1.5 [BLNPS] The alternating groups comprise a I-recognizable family
(i.e., one can take fCG) = 1 for all alternating groups G).

It is easy to check that cyclic groups of prime order are m-recognizable and, ob­
viously, sporadic simple groups are I-recognizable. Hence, combining the previous
two theorems with Theorem 1.2 we obtain the

Corollary 1.6 Given a permutation group G ~ Sn with no exceptional Lie type or
3-dimensional unitary composition factors, all known nearly linear time algorithms
dealing with G can be upgraded to Las Vegas algorithms.

We note that in [KS] a new generating set S* satisfying Definition 1.1(iii)
found within the required time bound in 3-dimensional unitary groups as well,
it is an open problem whether these groups have a presentation oflength o (log2I
as needed in 1.1(ii).

KANTOR, SERESS; PERMUTATlO.'< GROL'P AL<;ORlTHMS
13~

Actually, in. [KS) we prove more than Theorem 1.4: an isomorphism). with a
group of matrIces 1Il the Correct dimension is constructed. defllled by the images
of generators, together with procedures to compute the image of any element of
G under A or of any element of GA under A-I The analogous I·SO h· , '. . morp Ism lor
alternatmg groups IS constructed in [BLNPS]. These procedures are very usef I
for further computations with G, such as the construcflon of SIb u

]
. .. yow su groups

[Ka, Mo. For pOSSible applicatIOns of [KS] in matrix recognition algorithms see
[BB] and [Prj in these Proceedings. . .

In [KS] there are also more precise timings of algorithms than required in The­
ore~ 1.4. For. example: we ~how that the family of classical groups, with the
pOSSIble exceptIOn of 3-dImenslOnal unitary groups is black box f . bl -t'

the function ,-recogmza e lor

if G 0' PSL(d. q) for some d

for all other G defined on a vector space over GF(q).

It seems very likely that the set of all groups of Lie type is bl k b f
'blf']' aacox-

recoglllza : amI y WIth f(G) '5 m(G). Research is presently under wayan the
groups of LIe rank ~ 2 other than 2 F4(q). Possibly the biggest obstacle is condition
(il) of Definition 1.1 in the case of rank 1 groups: finding 0(1 'IGI)-l th
t f f PSU(3) 2 (2 og eng presen­
a Ions or ,q, B2 q) and G2(q) has been a very annoying open problem

for several years (c!. [BGKLP]).

2 The proofs

2.1 Bases, strong generating sets, and Schreier trees

Fundamental data structures for computing with permutatl·on g . d db' . . . roups were mtro-
~ce y Sims m [SIl, SI2]. A base for a permutation group G ::; Sym(Q) of de r

n IS a sequence B = ((3 (3) f . t f ~ h . g ee . 1,.' : ., M ? pam s rom H suc that the pomtwise stabilizer
GB = 1. The pomt-stablltzer cham of G relative to B is the chain of subgroups

G = G(!) ? G(2) ? ... ? G(M+I) = 1,

where G(i) = G Th b B .
. . i Uh, ... ·,)l,-tl· ease IS called nonredundant if there is strict
mcluslOn G() > G(,+I) for all 1 <:: i <:: M; then (log IGIl/(logn) <:: IBI < log IGI. A
strong genemtmg set (SGS) for G relative to B is a set S of generato~ of G with
the property that

(S n G(i)1 = G(i) for 1 <:: i <:: M + 1.

Let B = ((3" ... , (3M) be a base of the group G, let G = G(!) > G(2) >
. .. > G(M+l) - 1 b th d··

- - e e correspon mg pomt·stabilizer chain and let R· denot
a. transversal for G(i+l) in G(iJ 1 < i < M Such t '1 b' e

, - -' a ransversa can e computed
the SGS .by a standard ~rbit computation of fiF(') , keeping track of the group

·.eiemenl:s sendIng fii to the POInts of the orbit. Each g E G can be written uniquely
the form

(2.1)

KA;\"TOR, SFRE"S PER~IPL\T10,! GROllP ALGORITHMS 438

strong generating set for G can be computed in nr:ariy linear Las Fegas time.

Bases and strong generating sets (SGS) are the basic data structures in algo­
rithms for permutation groups; we shall define them in Section 2.1. We call an
algorithm nearly linear if its running time is of the form O(nlSllogk IGI) for some
constant k. We shall justify the name and elaborate more on this notion in Sec­
tion 2.2.

The novelty in Theorem 1.2 is that the base and SGS construction is Las Vegas.
Earlier nearly linear time algorithms used the Monte Carlo construction of [BCFS].
All currently known nearly linear Monte Carlo algorithms can be modified so that
after an initial base and SGS computation l all further steps of the algorithm are
deterministic or Las Vegas. Thus, for the groups described in Theorem 1.2, we can
upgrade the entire nearly linear time library to Las Vegas.

The algorithm in Theorem 1.2 differs significantly from the traditional SGS con­
structions [Sil, Si2]; by the time we have found IGI we have also constructed a
composition series for G. In this respect, the algorithm resembles the parallel han­
dling of permutation groups [BLS1] and the current fastest deterministic algorithms
for computing strong generating sets [BLS2, BLS3].

The second theorem is a constructive version of a result from [BGKLP] about
short presentations of groups.

Theorem 1.3 There is a nearly linear Las Vegas algorithm which, when given a
permutation group G satisfying the composition factor restriction of Theorem 1.2,
computes a presentation of length 0(10g3IGI) for G.

Using the terminology of this paper, the main result of [KS) can be stated as:

Theorem 1.4 [KS] The classica.l simple groups, with the possible exception of the
3~dimensional unitary groups, comprise a black box m-recognizable family.

We shall also use a similar result for the alternating groups.

Theorem 1.5 [BLNPS] The alternating groups comprise a I-recognizable family
(i.e., one can take fCG) = 1 for all alternating groups G).

It is easy to check that cyclic groups of prime order are m-recognizable and, ob­
viously, sporadic simple groups are I-recognizable. Hence, combining the previous
two theorems with Theorem 1.2 we obtain the

Corollary 1.6 Given a permutation group G ~ Sn with no exceptional Lie type or
3-dimensional unitary composition factors, all known nearly linear time algorithms
dealing with G can be upgraded to Las Vegas algorithms.

We note that in [KS] a new generating set S* satisfying Definition 1.1(iii)
found within the required time bound in 3-dimensional unitary groups as well,
it is an open problem whether these groups have a presentation oflength o (log2I
as needed in 1.1(ii).

KANTOR, SERESS; PERMUTATlO.'< GROL'P AL<;ORlTHMS
13~

Actually, in. [KS) we prove more than Theorem 1.4: an isomorphism). with a
group of matrIces 1Il the Correct dimension is constructed. defllled by the images
of generators, together with procedures to compute the image of any element of
G under A or of any element of GA under A-I The analogous I·SO h· , '. . morp Ism lor
alternatmg groups IS constructed in [BLNPS]. These procedures are very usef I
for further computations with G, such as the construcflon of SIb u

]
. .. yow su groups

[Ka, Mo. For pOSSible applicatIOns of [KS] in matrix recognition algorithms see
[BB] and [Prj in these Proceedings. . .

In [KS] there are also more precise timings of algorithms than required in The­
ore~ 1.4. For. example: we ~how that the family of classical groups, with the
pOSSIble exceptIOn of 3-dImenslOnal unitary groups is black box f . bl -t'

the function ,-recogmza e lor

if G 0' PSL(d. q) for some d

for all other G defined on a vector space over GF(q).

It seems very likely that the set of all groups of Lie type is bl k b f
'blf']' aacox-

recoglllza : amI y WIth f(G) '5 m(G). Research is presently under wayan the
groups of LIe rank ~ 2 other than 2 F4(q). Possibly the biggest obstacle is condition
(il) of Definition 1.1 in the case of rank 1 groups: finding 0(1 'IGI)-l th
t f f PSU(3) 2 (2 og eng presen­
a Ions or ,q, B2 q) and G2(q) has been a very annoying open problem

for several years (c!. [BGKLP]).

2 The proofs

2.1 Bases, strong generating sets, and Schreier trees

Fundamental data structures for computing with permutatl·on g . d db' . . . roups were mtro-
~ce y Sims m [SIl, SI2]. A base for a permutation group G ::; Sym(Q) of de r

n IS a sequence B = ((3 (3) f . t f ~ h . g ee . 1,.' : ., M ? pam s rom H suc that the pomtwise stabilizer
GB = 1. The pomt-stablltzer cham of G relative to B is the chain of subgroups

G = G(!) ? G(2) ? ... ? G(M+I) = 1,

where G(i) = G Th b B .
. . i Uh, ... ·,)l,-tl· ease IS called nonredundant if there is strict
mcluslOn G() > G(,+I) for all 1 <:: i <:: M; then (log IGIl/(logn) <:: IBI < log IGI. A
strong genemtmg set (SGS) for G relative to B is a set S of generato~ of G with
the property that

(S n G(i)1 = G(i) for 1 <:: i <:: M + 1.

Let B = ((3" ... , (3M) be a base of the group G, let G = G(!) > G(2) >
. .. > G(M+l) - 1 b th d··

- - e e correspon mg pomt·stabilizer chain and let R· denot
a. transversal for G(i+l) in G(iJ 1 < i < M Such t '1 b' e

, - -' a ransversa can e computed
the SGS .by a standard ~rbit computation of fiF(') , keeping track of the group

·.eiemenl:s sendIng fii to the POInts of the orbit. Each g E G can be written uniquely
the form

(2.1)

KA:->TOR, SERESS: Pr,ID.!l; rXllO;\ GROt:1' ALGORlTlI\15
440

The procesCi of factoring g ill this form is called sifting or .~Iripping. :\ote that the

order of G can be obtained easily as IGI :::: 11i\~1 !Rd·
In practical computation, the transversals Ri usually are not computed and

stored explicitly; rather, they are encoded in a Schreier-tree data structure. Sup­
pose that a base B and an SGS S for G relative to B are given. A Schrtier-tree
data structure for G is a sequence of pairs (SilT,) called Schreier trees, one for each
base point ,3j, 1 :; i :; AI, where Ti is a directed labeled tree with all edges directed
toward the root ;3" and with edge-labels selected from the set 5i := S n G(i) ~ G(i).
The nodes of Ti are the points of the orbit ,;3P(I). The labels satisfy the condition

that, for each directed edge from l' to b \\.'ith label Il, "h = h. 1£ J' is a node of Ti,
then the sequence of the edge-labels along the path from I to (Ji in Ti is a word
in the elements of Si such that the product. of thes€' permutations moves I to ih
Thus each Schreier tree (Si .1',) defines invcrse8 of the elements of the transversal

Ri for G(i+1) in C(i).
Given an arbitrary SGS S relative to fl, an algorithm in [BCFS] constructs a

new SGS Tin O(nMI51Iog'IGI) deterministic time such that the depth of each
Schreier tree defined by T is at most 2log ICi. We call a Schreier- tree data structure
shallow if the depth of each t.ree is at most 2 log IGI· A shallow Schreier-tree data
structure supports membership testing in O(nlJlog ICI) time. We will assume that
all bases computed in our algorithms are nonredundant and that all Schreier-tree

data structures we consider are shallow.

2.2 Nearly linear time algorithms

In groups of current interest for implementations, it frequently happens that the de­
gree of G = (S) is in the tens of thousands or even higher, so even a 0(n

2
) algorithm

may not be practical. On the other haml, log IGI is often small. Therefore, a recent
trend is to search for algorithms with running time of the form O(niSI logk IG\),
More precisely, given a constant c, a family 9 of permutation groups is called a.
family of small-base gro'upS if all G E 9 of degree n admit bases of size 0 (logC n); or,
equivalently, if there is a constant c' such that log; IGI = o(logC' n) for each G E 9
of degree n. For example, all classical simple groups, in all of their permutation

representations, comprise a small-base family (\vith c = 2).
We call a permutation group algorithm a nea1'ly linear time algorithm if its

running time for any G = (S) <: 5" is O(nlSllogk IGI)· The name is justified by
the fact that, if G is a member of a small-base family then the running time is a
nea.rly linear. O(nISllog'''(nISI)), function of the input length. We will require

following algorithms of this sort:

Theorem 2.2 There are Monte Carlo nearly linear time algorithms which,

given G :; Sn, find the following:

(i) [BeFS1 A base, strong generating set, and a shallow Schreier-tree data

ture for G;
(ii) As a consequence of (i): given a homomorphism r,p: G -+ Sn specified by

images of generators, data structures which enable the nearly linear

KAKTOR. SERESS: PER\n- L-\ rIOJ\' GROUP ALGORITID.ts 441

com, putation of <.p(r;) fo'r any y E G and u preimage of any g E dG):

(iii) [BSj A composition Baies G :::: Xl [> _f\,T2 C> ... "'- \' ~ 1 'A 1 < . < 1 v - m - anr, for each
_ 1 _ m - ,(1 homomorphism ,.pi: Xi - Sn with ker!.pi = N'H:

A large part of the permutation group librarv in GAP [S 'h+1 . .
t t

· f' .r C consists of lffiple-
men a IOns a nearly linear algorithms.

2.3 Permutation groups as black box groups

Suppose that a base B - (8 d) , ~,h' . ", AI , a strong generating set S \vith respect to
B\ and a shallow SchreIer-tree data structure ST = irS· T) I 1 < . }
O'iven for some G < S r (n) I I J) I - 1 < ~H arc
0-' 7 _)ill H ,wleretlesumofthedepthsofthese MS h-'
is t ~ O(log2 IGI). \Ve may assume that the SGS S is cl . d I.' k~ re.ler trees An E G b . . ose nn(e1 ta mg Inverses

y g can e wntten uniquelv in the form (2 1) r I . .
I I

. ".. lor e ernents r' of the
transversa s w lose III verses were coded by' ST E I h . ' , d' h . ac 1 sue lllverse can be written as
a war In t e strong generators S, following the ath' h . .
J- T k' th" P III t e appropnate Schreler
~ree. a mg e lOverse of thiS word and using the fact tl . t 5 - 5-1 b' h d la ~ we 0 tam
t e Ti., an so g, as a word in S in a well-defined way Th I tl 'f h f . . e eng lOt e word
represen mg 9 IS at most tj this word is called the stand d d .
We note the following: ar 1L'or representmg g.

Le~:::a 2'fi3 In deterministic OUIB!) time, given an injection f: B -+ n, it is
poSSt e. to nd a standard word representing some 9 E G with Bg ~
determme that no such element of G exists. ~ f(B) 01' to

Thi~ algorithm relies on a base, SGS and Schreier-tree data structure However
those mputs are computed by Monte Carlo algorithms d h . ,
correct Th f '1 . ,an ence may not be

. ere ore, 1 IS possible that the preceding algorl'th t . .
th h

. m re urns an mcorrect
answer - aug Wlth small probability.

Now we show how to consider G as" a black box group H· tl·, '11 b . I
for Thea 1 2 d ' us WI e crUCla

rems . an 1.3. The elements of If are defined to be .
words representing the elements of G' these at' h the standard 1 th 1. ,re s nngs over t e alphabet S of
e~g a most t. Of course, we can write the elements of II s ."
uruform length N: 5 can be coded by rIog(151 + l)l-long 0 1 a. 0-1 strflngs of
numbers 1 2 151 - sequences or the

, , ... , ; every standard word can be padded b 0' I .
I~I and tare O(log'IGI). N is O(log'IGlioglog IGI) As cu~o~a:~ i~~~~: !~~n~:
o per~utatlOn group algorithms: we assume that small numbers can be rear in

1
0(1) time, and therefore we shall Ignore the factor log log IGI abov . th" t
og n and he' .' e, IS IS a worst

, nee IS appropnate WIthin the nearly linear time context
Formally, we have an isomorphism 1/;: G -+ If with tl !' II .' . Each 9 E G d fi . te 10 owmg propertIes

e nes an mjection f: B ~ il by f(3) .- ~g a d th L .
be used to comput 0/" O(tIBI) O(3 1'- I' n en emma 2.3 can
h.

I
.-

1
b e g~. m = log IGI) time. Conversely given h E H

0/ can e computed m O(nlog'IGI) t" b I" ' , e1em t f h . lme, y mu tJplymg out the product of the
en s a as a permutatIOn.

ca:~:h p:r~o:~~dr~:r~s(~:gt;dl~IY) ;. uniq~e stdring , so comparison of group elements
Ime. n or er to take the product of h1' h2 E H,

'I·.I~ · 1 ~
, ,.

,
.. 'r

" it

II
! ~

"

KA:->TOR, SERESS: Pr,ID.!l; rXllO;\ GROt:1' ALGORlTlI\15
440

The procesCi of factoring g ill this form is called sifting or .~Iripping. :\ote that the

order of G can be obtained easily as IGI :::: 11i\~1 !Rd·
In practical computation, the transversals Ri usually are not computed and

stored explicitly; rather, they are encoded in a Schreier-tree data structure. Sup­
pose that a base B and an SGS S for G relative to B are given. A Schrtier-tree
data structure for G is a sequence of pairs (SilT,) called Schreier trees, one for each
base point ,3j, 1 :; i :; AI, where Ti is a directed labeled tree with all edges directed
toward the root ;3" and with edge-labels selected from the set 5i := S n G(i) ~ G(i).
The nodes of Ti are the points of the orbit ,;3P(I). The labels satisfy the condition

that, for each directed edge from l' to b \\.'ith label Il, "h = h. 1£ J' is a node of Ti,
then the sequence of the edge-labels along the path from I to (Ji in Ti is a word
in the elements of Si such that the product. of thes€' permutations moves I to ih
Thus each Schreier tree (Si .1',) defines invcrse8 of the elements of the transversal

Ri for G(i+1) in C(i).
Given an arbitrary SGS S relative to fl, an algorithm in [BCFS] constructs a

new SGS Tin O(nMI51Iog'IGI) deterministic time such that the depth of each
Schreier tree defined by T is at most 2log ICi. We call a Schreier- tree data structure
shallow if the depth of each t.ree is at most 2 log IGI· A shallow Schreier-tree data
structure supports membership testing in O(nlJlog ICI) time. We will assume that
all bases computed in our algorithms are nonredundant and that all Schreier-tree

data structures we consider are shallow.

2.2 Nearly linear time algorithms

In groups of current interest for implementations, it frequently happens that the de­
gree of G = (S) is in the tens of thousands or even higher, so even a 0(n

2
) algorithm

may not be practical. On the other haml, log IGI is often small. Therefore, a recent
trend is to search for algorithms with running time of the form O(niSI logk IG\),
More precisely, given a constant c, a family 9 of permutation groups is called a.
family of small-base gro'upS if all G E 9 of degree n admit bases of size 0 (logC n); or,
equivalently, if there is a constant c' such that log; IGI = o(logC' n) for each G E 9
of degree n. For example, all classical simple groups, in all of their permutation

representations, comprise a small-base family (\vith c = 2).
We call a permutation group algorithm a nea1'ly linear time algorithm if its

running time for any G = (S) <: 5" is O(nlSllogk IGI)· The name is justified by
the fact that, if G is a member of a small-base family then the running time is a
nea.rly linear. O(nISllog'''(nISI)), function of the input length. We will require

following algorithms of this sort:

Theorem 2.2 There are Monte Carlo nearly linear time algorithms which,

given G :; Sn, find the following:

(i) [BeFS1 A base, strong generating set, and a shallow Schreier-tree data

ture for G;
(ii) As a consequence of (i): given a homomorphism r,p: G -+ Sn specified by

images of generators, data structures which enable the nearly linear

KAKTOR. SERESS: PER\n- L-\ rIOJ\' GROUP ALGORITID.ts 441

com, putation of <.p(r;) fo'r any y E G and u preimage of any g E dG):

(iii) [BSj A composition Baies G :::: Xl [> _f\,T2 C> ... "'- \' ~ 1 'A 1 < . < 1 v - m - anr, for each
_ 1 _ m - ,(1 homomorphism ,.pi: Xi - Sn with ker!.pi = N'H:

A large part of the permutation group librarv in GAP [S 'h+1 . .
t t

· f' .r C consists of lffiple-
men a IOns a nearly linear algorithms.

2.3 Permutation groups as black box groups

Suppose that a base B - (8 d) , ~,h' . ", AI , a strong generating set S \vith respect to
B\ and a shallow SchreIer-tree data structure ST = irS· T) I 1 < . }
O'iven for some G < S r (n) I I J) I - 1 < ~H arc
0-' 7 _)ill H ,wleretlesumofthedepthsofthese MS h-'
is t ~ O(log2 IGI). \Ve may assume that the SGS S is cl . d I.' k~ re.ler trees An E G b . . ose nn(e1 ta mg Inverses

y g can e wntten uniquelv in the form (2 1) r I . .
I I

. ".. lor e ernents r' of the
transversa s w lose III verses were coded by' ST E I h . ' , d' h . ac 1 sue lllverse can be written as
a war In t e strong generators S, following the ath' h . .
J- T k' th" P III t e appropnate Schreler
~ree. a mg e lOverse of thiS word and using the fact tl . t 5 - 5-1 b' h d la ~ we 0 tam
t e Ti., an so g, as a word in S in a well-defined way Th I tl 'f h f . . e eng lOt e word
represen mg 9 IS at most tj this word is called the stand d d .
We note the following: ar 1L'or representmg g.

Le~:::a 2'fi3 In deterministic OUIB!) time, given an injection f: B -+ n, it is
poSSt e. to nd a standard word representing some 9 E G with Bg ~
determme that no such element of G exists. ~ f(B) 01' to

Thi~ algorithm relies on a base, SGS and Schreier-tree data structure However
those mputs are computed by Monte Carlo algorithms d h . ,
correct Th f '1 . ,an ence may not be

. ere ore, 1 IS possible that the preceding algorl'th t . .
th h

. m re urns an mcorrect
answer - aug Wlth small probability.

Now we show how to consider G as" a black box group H· tl·, '11 b . I
for Thea 1 2 d ' us WI e crUCla

rems . an 1.3. The elements of If are defined to be .
words representing the elements of G' these at' h the standard 1 th 1. ,re s nngs over t e alphabet S of
e~g a most t. Of course, we can write the elements of II s ."
uruform length N: 5 can be coded by rIog(151 + l)l-long 0 1 a. 0-1 strflngs of
numbers 1 2 151 - sequences or the

, , ... , ; every standard word can be padded b 0' I .
I~I and tare O(log'IGI). N is O(log'IGlioglog IGI) As cu~o~a:~ i~~~~: !~~n~:
o per~utatlOn group algorithms: we assume that small numbers can be rear in

1
0(1) time, and therefore we shall Ignore the factor log log IGI abov . th" t
og n and he' .' e, IS IS a worst

, nee IS appropnate WIthin the nearly linear time context
Formally, we have an isomorphism 1/;: G -+ If with tl !' II .' . Each 9 E G d fi . te 10 owmg propertIes

e nes an mjection f: B ~ il by f(3) .- ~g a d th L .
be used to comput 0/" O(tIBI) O(3 1'- I' n en emma 2.3 can
h.

I
.-

1
b e g~. m = log IGI) time. Conversely given h E H

0/ can e computed m O(nlog'IGI) t" b I" ' , e1em t f h . lme, y mu tJplymg out the product of the
en s a as a permutatIOn.

ca:~:h p:r~o:~~dr~:r~s(~:gt;dl~IY) ;. uniq~e stdring , so comparison of group elements
Ime. n or er to take the product of h1' h2 E H,

'I·.I~ · 1 ~
, ,.

,
.. 'r

" it

II
! ~

"

KAi'< lOR, SERb5S: PER:'1CT.\TIO:\ GROl'P ALGORJTlI\f'3
442

ddfi f . LB Ilb·f(3)·-3 h
,h,

we concatenate these two words. an (' ne a unctIOn J. -..., ~ 1 ,-' / •

Then the standard word representiug hIh2 can be ohtained by Lemma 2.a, This
procedure runs in O(log3 IGl) time. SimilarlYl to take the inverse of some h ,E H, we
take the inverse of t.he word h. This defines an injection f: B -+ Q, and agalll we use
Lemma 2.3 in O(log3 IGI) time. Hence, we have a black box omcle which performs
the black box grOllp operations in O(log3IGI) time, which is potentially faster than
the ordinarv permutat.ion multiplicat.ion. Tn particular, if G ::; Sn is a member of
a small-bas~ family, then, in the notation of Definition l.1, J1 = o (logC ~) for some
constant c. RecalL however. tha.t this oracle can give incorrect answers If our base,

SGS or Schreier-tree data structure was incorrect,
(~early) random elements of G'0 and of subgroups of G~ can be constructed,

by a remarkable algorithm of Babai [Ba], in o(ttlog5IGI) tmle. (An apparently
practical heuristic algorithm for this purpose is given in [CLMNOj.) ,

Summarizing, we cau construct an isomorphism between a permutatIon group
G < Sn and a black box group H such that the word length IV of the encodin~ of
H -as well as the time requirement for the group operations in Hand constructmg
ra~dom elements in H are bounded from above by a polylogarithmic functi~n of
log IGI. Therefore, we can perform O(n) group operations in II. within ne.a~IY hnear
time. Note that if we considered G as a black box group, With the ongillal ~er­
mutation multiplication as black box group operation, then O(n) group operatIons

would result in an O(n2
) algorithm.

2.4 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2 Let G = (7) ::; Sn be a permutation group. Compute a
base and strong generating set, and a composition series G = N1 t>N2 t>·· .t>Nm .~ I,
by the nearly linear Monte Carlo algorithms in Theorem 2?, The composItIon
series algorithm also provides homomorphisms!f(Ni -+ 8n WIth keripi = NiH, for
1 < i < m _ L We also compute strong generating sets for all Ni with respect to
th~ ba-:e of G. We will verify the correctness of the base and strong generating sets

for the subgroups Ni by induction on i = m, m - 1, ... ,l.
Suppose that we already have verified an SGS for Ni+l. Using ~heorem ~.2, we

compute a base, SGS , shallow Schreier-tree data stru:ture, and a~ Is~morphlsm 'l/Ji
with a black box group for the image Niipi (cf. SectIOll 2.3), whICh .IS a subg~ou.p
of Sn and is allegedly isomorphic to a si,mple group. Our ~rst goal IS to ob,tam. m
nearly linear Las Vegas time a presentatwn of length O(1og \Ni!fil) for Ni!ftl usmg
a generating set S; such that a straight-line prog~am oflen~th o (log I~iipi\) ~rom
S~ to any given element of Ni!fi can be obtained III nearly lmear Las vegas tIme.

I As a consequence of the classification of finite simple groups, we know that
are no three pairwise nonisomorphic simple groups of the same order. So we
at most two candidate simple groups C for the isomorphism type of Ni!fi, and
the ambiguous cases we try both possibilities. Also, if INiipi\ ~ ~!/2 then \
determines whether Ni!fi is of Lie type, and if it is, its charactenstIc.
that Ni!fi is from an m_recognizable family, we can obtain

v
Si '0i, ~ p""elltatlOn,

and straight-line programs in Niipi'I/Ji, in nearly linear Las egas time.
rem 2.2(ii), the preimage Si of S;'0i can also be obtained in nearly linear time.

KANTOR, SERESS: PER:\IUTATIO"i GHOl}P ALGORITHMS 443

Now the correctness of the SGS for Ni can be proved the following way. Let Ti
be the set of generators of Nj computed by the composition series algorithm (The­
orem 2.2(iii)). We check that (i) Ni+J <1 Ni and Ni 01 Ni+l; (ii) (S''Pil)Ni+JINi+J
satisfies the presentation computed for Niipj; and (iii) Ti c (S;ipi 1

) N i+lJ where
h!f;l denotes a lift (i.e., an arbitrary preimage) of h E S; C Niipj. Checking
(i)-(iii) shows that lNil ~ lNi+dlNi'Pil. If lNil is equal with the value for INil com­
puted from the alleged SGS of .I.Vi then the SGS construction is correct: it is known
that the alleged order of a group obtained from the Monte Carlo SGS construction
is not greater than the true order, with equality if and only if the SGS construction
is correct.

For (i), conjugate the generators of Ni+l by the elements of~, and check that
the resulting permutations are in NiH (since the correctness of NiH is already
known, membership testing giving guaranteed correct results is available for that
group), Also, check that not all elements of Ti are in Ni+l. For (ii), multiply out
the relators that were written in terms of S~, using the permutations in S*'P:- 1 . 1 t I ,

then check that the resulting permutations are in Ni+l. Finally, for (iii) write
straight-line programs from S; to Ti!fi' and for each t E ~ evaluate it starting
from S;t..p-;I (this is where we use our unusually precise definition of straight-line
programs). This produces some t* E (S;!f;l); check that t*C I E NiH' By (ii)
and (iii), we have checked that the factor group Ni/NiH ~ C.

At the end of the induction, we have obtained a correct SGS for the group
Nt = (11) which was output by the composition series algorithm. After that, we
verify that G = Nl by sifting the elements of the original generating set Tin NI .

To justify the nearly linear running time of the entire algorithm, note that m
is O(log IGI) so it is enough to show that the ith step of the induction runs in
nearly linear time. We have already seen that the constructions of both S~ and
the presentation of Njipi are within this time bound. Since both ITiI,IS~1 are
O(log IGI), while the length of the presentation is O(log'IGll and the Schrei:r-tree
data structure of NiH is shallow, the number of permutation multiplications in
(i)-(iii) is bounded from above by a polylogarithmic function of IGI.

We note that we have to require that calls to the algorithms in Theorems 1.4,
1.5, and 2.2 fail with probability < 1/(clog IGI), since during the induction,
O(log IGI) such calls may be made; however, this multiplies the running time only
by a log log IGI factor. 0

Proof of Theorem 1.3 The following result is contained in [BGKLP, Sec. 8j.
If each composition factor iIi of the finite group G has a presentation of length
O(logC IHill for some C 2 2, then G has a presentation of length O(logC+l IGI).
The proof in [BGKLPj proceeds by the following steps; we need to show that these
can be handled in nearly linear time.

(i) Let L be a lifting of the generators of the composition factors to G. Let M
be a subset of L of size O(log IGI) which also generates G.

(ti) Let S be a subset of G such that any element of G can be reached from S
by a straight-line program oflength O(log IGI). Write straight-line programs
from M to S.

I'
ir
:1

'II

" I

KAi'< lOR, SERb5S: PER:'1CT.\TIO:\ GROl'P ALGORJTlI\f'3
442

ddfi f . LB Ilb·f(3)·-3 h
,h,

we concatenate these two words. an (' ne a unctIOn J. -..., ~ 1 ,-' / •

Then the standard word representiug hIh2 can be ohtained by Lemma 2.a, This
procedure runs in O(log3 IGl) time. SimilarlYl to take the inverse of some h ,E H, we
take the inverse of t.he word h. This defines an injection f: B -+ Q, and agalll we use
Lemma 2.3 in O(log3 IGI) time. Hence, we have a black box omcle which performs
the black box grOllp operations in O(log3IGI) time, which is potentially faster than
the ordinarv permutat.ion multiplicat.ion. Tn particular, if G ::; Sn is a member of
a small-bas~ family, then, in the notation of Definition l.1, J1 = o (logC ~) for some
constant c. RecalL however. tha.t this oracle can give incorrect answers If our base,

SGS or Schreier-tree data structure was incorrect,
(~early) random elements of G'0 and of subgroups of G~ can be constructed,

by a remarkable algorithm of Babai [Ba], in o(ttlog5IGI) tmle. (An apparently
practical heuristic algorithm for this purpose is given in [CLMNOj.) ,

Summarizing, we cau construct an isomorphism between a permutatIon group
G < Sn and a black box group H such that the word length IV of the encodin~ of
H -as well as the time requirement for the group operations in Hand constructmg
ra~dom elements in H are bounded from above by a polylogarithmic functi~n of
log IGI. Therefore, we can perform O(n) group operations in II. within ne.a~IY hnear
time. Note that if we considered G as a black box group, With the ongillal ~er­
mutation multiplication as black box group operation, then O(n) group operatIons

would result in an O(n2
) algorithm.

2.4 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2 Let G = (7) ::; Sn be a permutation group. Compute a
base and strong generating set, and a composition series G = N1 t>N2 t>·· .t>Nm .~ I,
by the nearly linear Monte Carlo algorithms in Theorem 2?, The composItIon
series algorithm also provides homomorphisms!f(Ni -+ 8n WIth keripi = NiH, for
1 < i < m _ L We also compute strong generating sets for all Ni with respect to
th~ ba-:e of G. We will verify the correctness of the base and strong generating sets

for the subgroups Ni by induction on i = m, m - 1, ... ,l.
Suppose that we already have verified an SGS for Ni+l. Using ~heorem ~.2, we

compute a base, SGS , shallow Schreier-tree data stru:ture, and a~ Is~morphlsm 'l/Ji
with a black box group for the image Niipi (cf. SectIOll 2.3), whICh .IS a subg~ou.p
of Sn and is allegedly isomorphic to a si,mple group. Our ~rst goal IS to ob,tam. m
nearly linear Las Vegas time a presentatwn of length O(1og \Ni!fil) for Ni!ftl usmg
a generating set S; such that a straight-line prog~am oflen~th o (log I~iipi\) ~rom
S~ to any given element of Ni!fi can be obtained III nearly lmear Las vegas tIme.

I As a consequence of the classification of finite simple groups, we know that
are no three pairwise nonisomorphic simple groups of the same order. So we
at most two candidate simple groups C for the isomorphism type of Ni!fi, and
the ambiguous cases we try both possibilities. Also, if INiipi\ ~ ~!/2 then \
determines whether Ni!fi is of Lie type, and if it is, its charactenstIc.
that Ni!fi is from an m_recognizable family, we can obtain

v
Si '0i, ~ p""elltatlOn,

and straight-line programs in Niipi'I/Ji, in nearly linear Las egas time.
rem 2.2(ii), the preimage Si of S;'0i can also be obtained in nearly linear time.

KANTOR, SERESS: PER:\IUTATIO"i GHOl}P ALGORITHMS 443

Now the correctness of the SGS for Ni can be proved the following way. Let Ti
be the set of generators of Nj computed by the composition series algorithm (The­
orem 2.2(iii)). We check that (i) Ni+J <1 Ni and Ni 01 Ni+l; (ii) (S''Pil)Ni+JINi+J
satisfies the presentation computed for Niipj; and (iii) Ti c (S;ipi 1

) N i+lJ where
h!f;l denotes a lift (i.e., an arbitrary preimage) of h E S; C Niipj. Checking
(i)-(iii) shows that lNil ~ lNi+dlNi'Pil. If lNil is equal with the value for INil com­
puted from the alleged SGS of .I.Vi then the SGS construction is correct: it is known
that the alleged order of a group obtained from the Monte Carlo SGS construction
is not greater than the true order, with equality if and only if the SGS construction
is correct.

For (i), conjugate the generators of Ni+l by the elements of~, and check that
the resulting permutations are in NiH (since the correctness of NiH is already
known, membership testing giving guaranteed correct results is available for that
group), Also, check that not all elements of Ti are in Ni+l. For (ii), multiply out
the relators that were written in terms of S~, using the permutations in S*'P:- 1 . 1 t I ,

then check that the resulting permutations are in Ni+l. Finally, for (iii) write
straight-line programs from S; to Ti!fi' and for each t E ~ evaluate it starting
from S;t..p-;I (this is where we use our unusually precise definition of straight-line
programs). This produces some t* E (S;!f;l); check that t*C I E NiH' By (ii)
and (iii), we have checked that the factor group Ni/NiH ~ C.

At the end of the induction, we have obtained a correct SGS for the group
Nt = (11) which was output by the composition series algorithm. After that, we
verify that G = Nl by sifting the elements of the original generating set Tin NI .

To justify the nearly linear running time of the entire algorithm, note that m
is O(log IGI) so it is enough to show that the ith step of the induction runs in
nearly linear time. We have already seen that the constructions of both S~ and
the presentation of Njipi are within this time bound. Since both ITiI,IS~1 are
O(log IGI), while the length of the presentation is O(log'IGll and the Schrei:r-tree
data structure of NiH is shallow, the number of permutation multiplications in
(i)-(iii) is bounded from above by a polylogarithmic function of IGI.

We note that we have to require that calls to the algorithms in Theorems 1.4,
1.5, and 2.2 fail with probability < 1/(clog IGI), since during the induction,
O(log IGI) such calls may be made; however, this multiplies the running time only
by a log log IGI factor. 0

Proof of Theorem 1.3 The following result is contained in [BGKLP, Sec. 8j.
If each composition factor iIi of the finite group G has a presentation of length
O(logC IHill for some C 2 2, then G has a presentation of length O(logC+l IGI).
The proof in [BGKLPj proceeds by the following steps; we need to show that these
can be handled in nearly linear time.

(i) Let L be a lifting of the generators of the composition factors to G. Let M
be a subset of L of size O(log IGI) which also generates G.

(ti) Let S be a subset of G such that any element of G can be reached from S
by a straight-line program oflength O(log IGI). Write straight-line programs
from M to S.

I'
ir
:1

'II

" I

K.-\:\TOR, ~ff(F"<;· PER\!I··' ,HIO'(GRO\-P AI GORITH\lS 444

(iii) Write a presentation for (7, and simllltaneolls1y write straight-line programs
from S to O(logC iGI) elements of G. Roughly, these plements are t.hose \vhose
membership in -NiTI was tested in (i)-(iii) in the proof of Theorem 1.2. Now
the presentation in [BGKLP] is obtained in G(1oge+! IGI) deterministic time.

\Ve saw in the proof of Theorem 1.2 that presentations of t.he composition factors
Hi of a black box group satisfying the restriction of Theorem 1.2 can be obtained
having length O(log2IHil), using a nearly linear time algorithm. Hence~ we shall
apply the result of [BGKLPj \vith t.ll1" value C = 2. :\-!oreover, the generating sets
S; of the composition factors constructed in the proof of Theorem 1.2 are such
that U

1
Si'pi l has O(log IGI) elements. In Proposition 2.4 we shall show that any

given g E G can be reached from Ui Sitpi l by a straight-line program of length
O(log IC]), and such a straight-line program can be computed in nearly linear time.
This means that we can choose S := L = }.;f in (i) and (ij), so that a presentation
of G of length O(10g3IGI) can indeed be written in nearly linear time, as indicated

in (iii) and as required in the theorem.

Proposition 2.4 Let G ::; Sn be a permutation group, and suppose that the fol.
lowing have already been computed by Las 'Vegas alg01'ithms, as in the proof of
Theorem 1.2: a composition series G = Nl t>N2 i> ... t> N m = 1, homomorphisms
'Pi: Ni -+ Sn with keq.?j = NiH, and presentations using generating sets Si C Ni!.pj.
Then any g E G can bt reached from Ui .')itpil by a straight-line program of length
O(log IGI), and such a straight-line program can be computed in nearly linear time.

Proof By induction on i = L 2, ... , nI, we \vill construct a straight-line program
of length O(log(IGI/IN;I)) to some 9; E G such that 99t EN;. Let 91 := l.
If gi has already been obtained for some i, then write a straight-line program
of length O(logIN;/N;+ll) from S;' to (99;1)1';. In the case when N;/N;+1 is
cyclic or sporadic, this can be don(' by brute force. In the other cases, we use the
isomorphism '¢i between Njtpi and a black box group, as in the proof of Theorem 1.2,
a.nd the fact that 1V1'-P11}Ji is black box m-recognizable. Evaluate this straight-line
program starting from Sitpi l

, producing an element. hi E N I • Here, ggi-lhi1 E

Ni+b and we can define gi+l := hjgj. Finally, we notice that the procedure runs
in nearly linear time, since m(NdNiH)::; n. 0

References

[Bal

[BB]

[BCFL]
[BCFS]

[BGKLP]

L. Babai, Local expansion of vertex-t.ransit.ive graphs and random generation
in finite groups, pp. 164-174 in: Proc. ACM Symp. on Theory of Computing

1991.
L. Babai and R. Beals, A polynomial-time theory of matrix groups and black
box groups, in t.hese Proceedings.
S. Bratus, G. Cooperman, L. Finkelstein and S. Linton (in preparation).
1. Babai, G. Cooperman, L. Finkelstein and A Seress, Nearly linear time algo­
rithms for permutation groups with a small base, pp. 200-209 in: Proc. Int.
Symp. Symbolic and Algebraic Computation, ACM 1991.
L. Babai, A. J. Goodman, W. M. Kantor, E. M. Luks and P. P. Palfy, Short
presentations for finite groups, J. Algebra 194 (1997), 79-112.

KA!\'TOR, SERESS: PEln,lL'IArlO_" (jlWlP AI (;ORITH:\1:; -l-4G

[BL1iPS]

[BLS1]

[BL52]

[BL53]

[BS]

[Ce]

[CF]

[cn]

[CLG1]

[CLG2]

[CLMNO]

[FK]

[Ka]

[K5]
[LS]

[Mo]

[NiPl]

[NiP2]

[NP]

[P,]

[Ra]

[S,h+]

[SchS]

n. Beals. C. R L"t'dh<1I1l-GI'f'Pll. A C :\,ienwyer, C' E. Pracgcr and A. Scrcss. A
nH~;ange of black box algorithms for recognising finite ~YlIllIletric aud alternat.ing
groups (in preparation).
1. Babai, E. 1-1. Luks and k Seress, Permutation groups in NC, pp. 409-420
in: Proc. ACM Symp. on Theory of Computing 1987.
L, BabaL E. M. Luks and A. Seress, Fast management of permutation groups
l. SIAM.1. COlnput.ing 26 (1997).
1. Babai, E. \1. Luks and A. Seress, Fast man<1gement of permutation groups
II (in preparation).
R. Beals and A. Sert'ss. Structurf' forest and C'Onrposit.ion fadors for small base
groups in nearly linear time. pp, 116-125 in: Proc. AC?l-l Symp. on Theory of
Comput.ing 1902.
F Celler, l'l'Iatrixgruppenalgorit.ilmen in GAP. Ph. D. thesis, RWTH Aachen
1997.
G. Cooperman and L. Finkelstein, A random base change a.lgorithm for permu­
tation groups,.J. Symb. Compo 17 (1994). 51:3·-528.
G. Cooperman. 1. Finkelstein and S. Lint.on, Recognizing GLn(2) in non­
standard representation, pp. 85-100 in [FKJ.
F. Celler and C. R. Leedham-Green, A non-constructive recognition algorithm
for the special linear and ot.her classical groups, pp. 61-67 in [FK].
F. Celler and C, R. Leedham-Green. A const.ructive recognition algorithm for
the special linear group (to appear in Proc. ATLAS Conference).
F. Celler, C. R. Leedham-Green, S. II. Murray, A. C. Niemeyer and E. A.
O'Brien, Generating random elements of a finite group. Comm. Alg. 23 (1995)
4931-4948.
L. Finkelstein and W. M. Kantor, editors, Groups and Computation II, DI-
1--IACS Series in Discrete Math. and Theoretical Computer Science, vol. 28,
AMS 1997.
\'Y. :\-1. Kant,or, Sylow's theorem in polynomial time. J. Camp. Syst. Sci. 30
(1985) 359-394.
\'Y. :\1. Kantor al}d A. Sercss, Black box classical groups (submitted).
E. :\-1. Lub and A. Sf'ress, Compllt.illg the Fitting subgroup and solvahle radical
ofsrnall-base permutation groups in nearly linear time, pp. 169-181 in [FKJ.
p. jvlorje, A nearly linear algorithm for Sylow subgroups of permutation groups.
Ph.D. thesis, The Ohio Stat.e University 199.5.
A, C. Niemeyer and C. E. Praeger, rn;piernenLing a rec.ognit.ion algorithm for
classical groups, pp. 273-296 in [FKJ
A. C. Niemeyer and C. E. Praeger, A recognition algorithm for da-">Sical groups
over finite Helds (to appear in Proc. London :\1ath. Soc.).
r. 1\'1. Neumann and C. E. Praeger. A recognition algorit.hm for special linear
groups. Proc. London Math. Soc. (3) 6.5 (1992), 555-603.
C, E. Praeger, Primit.ive prime divisor elements in finite classical groups, in
these Proceedings.
F. Rak6czi, ~'ast recognition of nil potency of permutation groups, pp, 26.5-269
in: Proc. Int. Symp, Symbolic and Algebraic Computation, ACM 1995.
M. Schonert et. al., GAP: Groups, Algorithms, and Programming, Lehrstuhl D
fur Mathematik, RWTH Aachen, 1994.
M. Schonert and A. Seress, Finding blocks of imprimitivity in small-base groups
in nearly linear time, pp. 144-147 in: Proc. Int. Symp. Symbolic and Algebraic
Computation, ACM 1994.
A. Seress, Nearly linear time algorithms for permutat,ion groups: an interplay

K.-\:\TOR, ~ff(F"<;· PER\!I··' ,HIO'(GRO\-P AI GORITH\lS 444

(iii) Write a presentation for (7, and simllltaneolls1y write straight-line programs
from S to O(logC iGI) elements of G. Roughly, these plements are t.hose \vhose
membership in -NiTI was tested in (i)-(iii) in the proof of Theorem 1.2. Now
the presentation in [BGKLP] is obtained in G(1oge+! IGI) deterministic time.

\Ve saw in the proof of Theorem 1.2 that presentations of t.he composition factors
Hi of a black box group satisfying the restriction of Theorem 1.2 can be obtained
having length O(log2IHil), using a nearly linear time algorithm. Hence~ we shall
apply the result of [BGKLPj \vith t.ll1" value C = 2. :\-!oreover, the generating sets
S; of the composition factors constructed in the proof of Theorem 1.2 are such
that U

1
Si'pi l has O(log IGI) elements. In Proposition 2.4 we shall show that any

given g E G can be reached from Ui Sitpi l by a straight-line program of length
O(log IC]), and such a straight-line program can be computed in nearly linear time.
This means that we can choose S := L = }.;f in (i) and (ij), so that a presentation
of G of length O(10g3IGI) can indeed be written in nearly linear time, as indicated

in (iii) and as required in the theorem.

Proposition 2.4 Let G ::; Sn be a permutation group, and suppose that the fol.
lowing have already been computed by Las 'Vegas alg01'ithms, as in the proof of
Theorem 1.2: a composition series G = Nl t>N2 i> ... t> N m = 1, homomorphisms
'Pi: Ni -+ Sn with keq.?j = NiH, and presentations using generating sets Si C Ni!.pj.
Then any g E G can bt reached from Ui .')itpil by a straight-line program of length
O(log IGI), and such a straight-line program can be computed in nearly linear time.

Proof By induction on i = L 2, ... , nI, we \vill construct a straight-line program
of length O(log(IGI/IN;I)) to some 9; E G such that 99t EN;. Let 91 := l.
If gi has already been obtained for some i, then write a straight-line program
of length O(logIN;/N;+ll) from S;' to (99;1)1';. In the case when N;/N;+1 is
cyclic or sporadic, this can be don(' by brute force. In the other cases, we use the
isomorphism '¢i between Njtpi and a black box group, as in the proof of Theorem 1.2,
a.nd the fact that 1V1'-P11}Ji is black box m-recognizable. Evaluate this straight-line
program starting from Sitpi l

, producing an element. hi E N I • Here, ggi-lhi1 E

Ni+b and we can define gi+l := hjgj. Finally, we notice that the procedure runs
in nearly linear time, since m(NdNiH)::; n. 0

References

[Bal

[BB]

[BCFL]
[BCFS]

[BGKLP]

L. Babai, Local expansion of vertex-t.ransit.ive graphs and random generation
in finite groups, pp. 164-174 in: Proc. ACM Symp. on Theory of Computing

1991.
L. Babai and R. Beals, A polynomial-time theory of matrix groups and black
box groups, in t.hese Proceedings.
S. Bratus, G. Cooperman, L. Finkelstein and S. Linton (in preparation).
1. Babai, G. Cooperman, L. Finkelstein and A Seress, Nearly linear time algo­
rithms for permutation groups with a small base, pp. 200-209 in: Proc. Int.
Symp. Symbolic and Algebraic Computation, ACM 1991.
L. Babai, A. J. Goodman, W. M. Kantor, E. M. Luks and P. P. Palfy, Short
presentations for finite groups, J. Algebra 194 (1997), 79-112.

KA!\'TOR, SERESS: PEln,lL'IArlO_" (jlWlP AI (;ORITH:\1:; -l-4G

[BL1iPS]

[BLS1]

[BL52]

[BL53]

[BS]

[Ce]

[CF]

[cn]

[CLG1]

[CLG2]

[CLMNO]

[FK]

[Ka]

[K5]
[LS]

[Mo]

[NiPl]

[NiP2]

[NP]

[P,]

[Ra]

[S,h+]

[SchS]

n. Beals. C. R L"t'dh<1I1l-GI'f'Pll. A C :\,ienwyer, C' E. Pracgcr and A. Scrcss. A
nH~;ange of black box algorithms for recognising finite ~YlIllIletric aud alternat.ing
groups (in preparation).
1. Babai, E. 1-1. Luks and k Seress, Permutation groups in NC, pp. 409-420
in: Proc. ACM Symp. on Theory of Computing 1987.
L, BabaL E. M. Luks and A. Seress, Fast management of permutation groups
l. SIAM.1. COlnput.ing 26 (1997).
1. Babai, E. \1. Luks and A. Seress, Fast man<1gement of permutation groups
II (in preparation).
R. Beals and A. Sert'ss. Structurf' forest and C'Onrposit.ion fadors for small base
groups in nearly linear time. pp, 116-125 in: Proc. AC?l-l Symp. on Theory of
Comput.ing 1902.
F Celler, l'l'Iatrixgruppenalgorit.ilmen in GAP. Ph. D. thesis, RWTH Aachen
1997.
G. Cooperman and L. Finkelstein, A random base change a.lgorithm for permu­
tation groups,.J. Symb. Compo 17 (1994). 51:3·-528.
G. Cooperman. 1. Finkelstein and S. Lint.on, Recognizing GLn(2) in non­
standard representation, pp. 85-100 in [FKJ.
F. Celler and C. R. Leedham-Green, A non-constructive recognition algorithm
for the special linear and ot.her classical groups, pp. 61-67 in [FK].
F. Celler and C, R. Leedham-Green. A const.ructive recognition algorithm for
the special linear group (to appear in Proc. ATLAS Conference).
F. Celler, C. R. Leedham-Green, S. II. Murray, A. C. Niemeyer and E. A.
O'Brien, Generating random elements of a finite group. Comm. Alg. 23 (1995)
4931-4948.
L. Finkelstein and W. M. Kantor, editors, Groups and Computation II, DI-
1--IACS Series in Discrete Math. and Theoretical Computer Science, vol. 28,
AMS 1997.
\'Y. :\-1. Kant,or, Sylow's theorem in polynomial time. J. Camp. Syst. Sci. 30
(1985) 359-394.
\'Y. :\1. Kantor al}d A. Sercss, Black box classical groups (submitted).
E. :\-1. Lub and A. Sf'ress, Compllt.illg the Fitting subgroup and solvahle radical
ofsrnall-base permutation groups in nearly linear time, pp. 169-181 in [FKJ.
p. jvlorje, A nearly linear algorithm for Sylow subgroups of permutation groups.
Ph.D. thesis, The Ohio Stat.e University 199.5.
A, C. Niemeyer and C. E. Praeger, rn;piernenLing a rec.ognit.ion algorithm for
classical groups, pp. 273-296 in [FKJ
A. C. Niemeyer and C. E. Praeger, A recognition algorithm for da-">Sical groups
over finite Helds (to appear in Proc. London :\1ath. Soc.).
r. 1\'1. Neumann and C. E. Praeger. A recognition algorit.hm for special linear
groups. Proc. London Math. Soc. (3) 6.5 (1992), 555-603.
C, E. Praeger, Primit.ive prime divisor elements in finite classical groups, in
these Proceedings.
F. Rak6czi, ~'ast recognition of nil potency of permutation groups, pp, 26.5-269
in: Proc. Int. Symp, Symbolic and Algebraic Computation, ACM 1995.
M. Schonert et. al., GAP: Groups, Algorithms, and Programming, Lehrstuhl D
fur Mathematik, RWTH Aachen, 1994.
M. Schonert and A. Seress, Finding blocks of imprimitivity in small-base groups
in nearly linear time, pp. 144-147 in: Proc. Int. Symp. Symbolic and Algebraic
Computation, ACM 1994.
A. Seress, Nearly linear time algorithms for permutat,ion groups: an interplay

	000
	437
	438
	439
	440
	441
	442
	443
	444
	445

