
J. London Math. Soc. (2) 66 (2002) 325–333 Cf2002 London Mathematical Society
DOI: 10.1112/S0024610702003484

TRANSITIVE PERMUTATION GROUPS WITHOUT
SEMIREGULAR SUBGROUPS

PETER J. CAMERON, MICHAEL GIUDICI, GARETH A. JONES,
WILLIAM M. KANTOR, MIKHAIL H. KLIN, DRAGAN MARUŠIČ
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Abstract

A transitive finite permutation group is called elusive if it contains no nontrivial semiregular subgroup.
The purpose of the paper is to collect known information about elusive groups. The main results are
recursive constructions of elusive permutation groups, using various product operations and affine group
constructions. A brief historical introduction and a survey of known elusive groups are also included. In
a sequel, Giudici has determined all the quasiprimitive elusive groups.

Part of the motivation for studying this class of groups was a conjecture due to Marušič, Jordan and
Klin asserting that there is no elusive 2-closed permutation group. It is shown that the constructions
given will not build counterexamples to this conjecture.

1. Introduction

A permutation group (G,Ω), assumed throughout this paper to be finite, is called
elusive if G is transitive and contains no nontrivial semiregular subgroup (equiva-
lently, no fixed-point-free element of prime order). The name is intended to suggest
that such groups are not easy to find. It also suggests that, given such a group G, we
lack one of the standard tools for studying the G-invariant graphs, namely taking
quotients by semiregular subgroups (cf. [2, 23]).

While every transitive permutation group contains an element of prime power
order without fixed points (see [10, Theorem 1], which was motivated by an appli-
cation to Brauer groups of local fields), the result is no longer true if ‘prime power’
is replaced by ‘prime’ in the above statement.

A permutation group (G,Ω) is called 2-closed if every permutation of Ω that
preserves the G-orbits on Ω2 belongs to G [9, 25]. Note that the full automorphism
group of any graph or digraph is 2-closed; conversely, every 2-closed group is the
automorphism group of an edge-coloured digraph. (Not every transitive 2-closed
group is the automorphism group of a graph or digraph. For example, consider the
Klein group V4 acting regularly. The V4-invariant digraphs are all undirected and
have automorphism group either D8 or S4.)

A permutation group contains nonidentity semiregular elements, that is, with
all orbits of the same length, if and only if it contains elements of prime order
with no fixed points. The problem of the existence of such elements in a 2-closed
transitive permutation group was originally proposed in graph-theoretic language.
See, for example, Biggs [2] for the use of semiregular automorphisms to give concise
descriptions of interesting graphs.
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In 1981, Marušič asked whether there exists a vertex-transitive graph without a
nonidentity semiregular automorphism [19, Problem 2.4]. It was also proved there
that, given a prime p, every vertex-transitive graph of order pk or of order mp, where
m 6 p, has an automorphism of order p with no fixed vertices. The proof of both
of these results (the first being really just an observation) works in a more general
setting for transitive permutation groups as well. Marušič and Scapellato [22] proved
that every cubic vertex-transitive graph and every vertex-transitive graph of order
2p2 has an automorphism of prime order without fixed vertices; their proof applies
to any 2-closed group of degree 2p2.

In 1988, the above problem was again proposed by Jordan [13]. The more general
form, due to Klin [4, Problem BCC15.12], asks whether every transitive 2-closed
permutation group contains a fixed-point-free element of prime order. A graph
admitting such an automorphism is called a polycirculant graph, so we refer to the
conjecture that no 2-closed transitive group is elusive as the polycirculant conjecture.
Papers in the references give results on the conjecture (see, for example, [20, 21]).

2. Examples

The first construction of elusive groups was given by Fein, Kantor and Schacher
[10], and was as follows. Let p be a Mersenne prime 2q − 1, let G be the group

AGL(1, p2) = {x 7−→ ax+ b | a ∈ GF(p2)\{0}, b ∈ GF(p2)}
of affine transformations of GF(p2), and let H be the subgroup AGL(1, p) consisting
of these transformations where a, b ∈ GF(p). Then the left action of G on the set of
left cosets of H gives rise to a transitive permutation group of degree p(p + 1), all
of whose elements of prime order fix some point, for a fixed-point-free element of
prime order must have order dividing the degree, and here the only such primes are
2 and p. All elements of order 2 or p are conjugate in G, so all such elements lie in
conjugates of H . Jones and Klin [12, 15] showed that this group is not 2-closed (cf.
the end of Section 5), so it is not a counterexample to the polycirculant conjecture.

There is another way to view this example. The group G is a subgroup of
AGL(2, p), and its action is on the set of lines of the affine plane. Clearly, any
involution or any translation fixes a line. Thus any subgroup of AGL(2, p) that is
line-transitive and whose Sylow p-subgroup is the translation group of AGL(2, p) is
elusive.

In particular, if p is a Mersenne prime, then any 2-transitive subgroup of AGL(2, p)
whose order is not divisible by p3 is elusive in its action on the lines of the affine
plane. Among these groups, we find all the sharply 2-transitive groups of degree p2.
These are the 1-dimensional affine groups over nearfields of order p2. The nearfields
were all determined by Zassenhaus [26]. In addition to the finite field GF(p2), we
can use a Dickson nearfield, or the exceptional nearfield of order 72. The affine
groups over the Galois field and over the Dickson nearfield of order p2 are normal
subgroups of index 2 in the group AΓL(1, p2), which is also elusive.

For p = 3, all these examples are contained in the group M11, in its 3-transitive
action of degree 12 with point stabilizer PSL(2, 11). (The fact that this group is
elusive follows from the fact that M11 has just one conjugacy class of elements
of order 2 or 3; cf. [7].) The group M11 contains a further nonsolvable elusive
subgroup, namely the transitive subgroup M10 (the two-point stabilizer in M12 in
its usual 5-transitive action), with point stabilizer A5. All elusive groups of degree
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Figure 1.

12 are conjugate to subgroups of M11, and together with their inclusions they are
shown in Figure 1.

We note here that the group in [22, Example 2.3] of degree 12 is in fact not
elusive, since it contains a Sylow 3-subgroup of AGL(2, 3).

Jones and Klin [12, 15] showed that some of these examples of degree 12 can be
used to build examples of degree 2a · 3 for any a > 2. We generalise this, replacing 3
with any Mersenne prime p in Theorem 3.3, and also replacing the normal subgroup
Cp × Cp by Cpm × Cpm in Theorem 3.2.

Finally, here are four more elusive groups that do not obviously belong to infinite
families:

(a) M11 and M10 acting on 12 points;
(b) a group with structure

73 : (31+2 : Q8) or 73 : (31+2 : SL(2, 3))

(a subgroup of AGL(3, 7) whose linear group has a normal extraspecial sub-
group, this group belongs to the Aschbacher class C6, see [1]), with point stabilizer
72 : (32 : 2) or 72 : (32 : 6), respectively, acting on 84 points.

The elusiveness of (b) was verified by a computer calculation using Magma [3] to
check the conditions of Theorem 3.1.

We note that Giudici [11] has determined all the quasiprimitive elusive permu-
tation groups, and shown that none of them is 2-closed. (A permutation group is
quasiprimitive if every nontrivial normal subgroup is transitive.) In fact, his result
is more general; it is only necessary to assume that one minimal normal subgroup
is transitive.

3. Affine constructions

The basic construction of elusive affine groups can be stated as follows.

Theorem 3.1. Let G be a subgroup of GL(V ) for some finite vector space V , and
suppose that G has order prime to the characteristic of V . Let H be a subgroup of
G, and W be an H-invariant proper subspace of V . Then the action of V : G on the
cosets of W : H is elusive if and only if the following hold:

(a) The translates of W by G cover V .

(b) Every conjugacy class of elements of prime order in G meets H .
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Proof. This is clear from the fact that elements of prime order in V : G lie either
in V or in a conjugate of G. q

Note that the degree of this elusive group is |V : W | · |G : H |.
The next two results build new examples from old ones. The first is quite general.

Theorem 3.2. Suppose that V , G, W and H satisfy the hypotheses of Theorem 3.1,
where V is a vector space over GF(q), q = pe, and dim(V ) = n. Then, for any m > 1,
there is an elusive group Gm = (Cpm)en : G having degree |V : W |m · |G : H |.

Proof. By the idempotent-lifting results in [8, Section 77], there is an integral
representation of G on Fn, where F is a p-adic number field whose residue field
is GF(q). Taking this representation modulo pm (that is, modulo the mth power
of the maximal ideal), we find a representation of G on a homocyclic abelian
group A = Am of exponent pm and rank en. Now multiplication by pm−1 induces a
G-homomorphism from A to pm−1A (the socle of A) with kernel pA, so pm−1A is
isomorphic to A/pA as G-module. Note that the socle contains all elements of prime
order in A. Finally, we can choose a subgroup B of A that projects onto W and
intersects the socle of A in the image of W . Now A : G acting on the cosets of B : H
is elusive. q

This construction produces elusive groups of degree pm(p + 1) for all Mersenne
primes p and integers m > 1. Also, from examples (b) at the end of Section 2, we
obtain elusive groups of degree 7m · 12 for all m > 1.

The next construction is more specific. Let G be an affine group E : A, where E
is the additive group of GF(pn) and A is a subgroup of order a in its multiplicative
group. Let H be a subgroup F : B of G, where F is a maximal subgroup of E,
and B is a subgroup of order b in the multiplicative group of GF(p). Assume the
following:

(a) G acting on the cosets of H is elusive (equivalently, the images of F under A
cover E, and every prime divisor of a divides b).

(b) pn ≡ 1 mod 4, and the 2-part of pn − 1 divides a (so b is even).

Now let A† be the unique subgroup of order 2a in the multiplicative group
of GF(p2n). By (b), the additive group E† of GF(p2n) is the direct sum E ⊕ E∗
of two A-invariant subspaces E, E∗ interchanged by A†. Let G† = E† : A† and
H† = (F ⊕ E∗) : B. Then we have the following.

Theorem 3.3. Conditions (a) and (b) of the above construction hold for G† and
H†, with 2n and 2a replacing n and a.

Proof. Note that the 2-part of p2n − 1 = (pn − 1)(pn + 1) is twice the 2-part of
pn − 1, by (b). Now the assertions are clear. q

In particular, G† acting on the cosets of H† is elusive, and its degree is twice
that of G on the cosets of H . Since the same conditions hold, the construction can
be continued idefinitely. Now, starting with the affine examples of degree p(p + 1),
where p is a Mersenne prime, we obtain elusive groups of degree p · 2n for any n

such that 2n > p. Finally, we can then apply the construction of Theorem 3.2 to
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these examples, to obtain elusive groups of degree pm · 2n for all m > 1 (with p and
n as before).

A similar recursive construction can be developed with an arbitrary prime in place
of 2. However, we do not know of any starting groups for such a construction!

Further affine examples have recently been found by Giudici; details appear in
his thesis. No new degrees are given by these constructions.

4. Product constructions

We first show that certain standard group-theoretic constructions preserve the
property of being elusive. If (G1,Ω1) and (G2,Ω2) are permutation groups, then
the direct product G1 × G2 has natural actions on the disjoint union Ω1 ∪ Ω2 (the
intransitive action) and on Ω1 × Ω2 (the product action). Also, the permutational
wreath product G1 o G2 has natural actions on Ω1 × Ω2 (the imprimitive action) and
on ΩΩ2

1 (the product action).

Theorem 4.1. (a) If (G,Ω) is elusive and B is a system of blocks of imprimitivity
such that G acts faithfully on B, then (G,B) is elusive.

(b) If (G,Ω) is elusive and H is a transitive subgroup of G, then (H,Ω) is elusive.

(c) If (G1,Ω1) and (G2,Ω2) are elusive, then (G1 oG2, Ω1×Ω2) and (G1×G2, Ω1×Ω2)
are elusive.

(d) If (G,Ω) is elusive, |G| is odd, and |Ω| = n, then (2n−1 : G, 2× Ω) is elusive.

(e) If (G,Ω) is elusive, then (G o Sn, Ωn) is elusive for any n > 2.

(f) If (H,H : K) is elusive and G is a non-split extension of H of prime index, then
(G,G : K) is elusive.

Proof. (a) An element of prime order that fixes a point fixes the block containing
it.

(b) This is obvious.

(c) An element of prime order in G1 oG2 induces either the identity or an element
of prime order in G2, and hence fixes an element of Ω2. Then it induces an element
of prime order in the corresponding copy of G1, and so fixes a point of Ω1 × Ω2.
Since G1×G2 is a transitive subgroup of G1 oG2, the second part of (c) now follows
from (b).

(d) This needs a little explaining. In Atlas [7] notation, 2 denotes the cyclic group
of order 2 acting regularly, and 2n−1 : G denotes the subgroup of 2 o G that is the
semidirect product of the subgroup of the base group 2n consisting of elements with
an even number of nontrivial coordinates by the top group. Now an element of odd
prime order fixes a block (since G is elusive), and hence a point. An element of order
2 is in the base group, and is trivial in some coordinate since n is odd. (It must be
said that this part is somewhat speculative, since there are no known elusive groups
of odd order.)

(e) Take an element g of prime order p in G o Sn. Then g induces an element
ḡ ∈ Sn, with, say, a cycles of length p and b fixed points, where ap + b = n. Then
g ∈ (G oCp)a ×Gb. By (c) and induction, it suffices to prove the result for G oCp. We
can assume that ḡ = (1 2 . . . p). In the imprimitive action of the wreath product, let
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((α1, 1) (α2, 2) . . . (αp, p)) be a cycle of g. Then the element (α1, α2, . . . , αp) ∈ Ωp is fixed
by g.

(f) Since the extension does not split, G\H contains no elements of prime order.
q

By (b) and (c), if G is a direct product of Fein–Kantor–Schacher examples (using
the same or different Mersenne primes), then any subgroup that contains both the
socle and a Sylow 2-subgroup of G is also elusive.

5. 2-closure

We now show that we do not get any counterexamples to the polycirculant
conjecture from any of these constructions. We denote the 2-closure of G by G(2);
this is the group of all permutations preserving the G-orbits on Ω2. We refer to
Wielandt [25] for a discussion of 2-closure, and for some of the results used here. A
2-orbit of a permutation group G on Ω is an orbit of G on Ω2.

Theorem 5.1. Let (G1,Ω1) and (G2,Ω2) be transitive permutation groups. Then, in
their action on Ω1 × Ω2, we have

(G1 × G2)(2) = G
(2)
1 × G(2)

2 and (G1 o G2)(2) = G
(2)
1 o G(2)

2 .

Hence the following are equivalent:
(a) (G1,Ω1) and (G2,Ω2) are 2-closed.
(b) (G1 × G2, Ω1 × Ω2) is 2-closed.
(c) (G1 o G2, Ω1 × Ω2) is 2-closed.

Proof. The 2-orbits of G1 × G2 are of four types:
(i) {((α1, α2), (α1, α2)) : α1 ∈ Ω1, α2 ∈ Ω2}.
(ii) {((α1, α2), (β1, α2)) : (α1, β1) ∈ O1, α2 ∈ Ω2} for each 2-orbit O1 of G1.
(iii) {((α1, α2), (α1, β2)) : α1 ∈ Ω1, (α2, β2) ∈ O2} for each 2-orbit O2 of G2.
(iv) {((α1, α2), (β1, β2)) : (α1, β1) ∈ O1, (α2, β2) ∈ O2} for any 2-orbits O1 of G1 and

O2 of G2.

From this description, it is clear that, if g1 ∈ G(2)
1 and g2 ∈ G(2)

2 , then (g1, g2) ∈
(G1×G2)(2). For the converse, note that any permutation in (G1×G2)(2) fixes the two
natural block systems (the transitive closures of the sets of orbits of the second and
third types above), so it is of the form (g1, g2), where g1 and g2 are permutations of
Ω1 and Ω2, respectively; and then it follows that g1 ∈ G(2)

1 and g2 ∈ G(2)
2 .

The orbits of G1 o G2 on pairs are of three types:
(1) {((α1, α2), (α1, α2)) : α1 ∈ Ω1, α2 ∈ Ω2}.
(2) {((α1, α2), (β1, α2)) : (α1, β1) ∈ O1, α2 ∈ Ω2} for each 2-orbit O1 of G1.
(3) {((α1, α2), (β1, β2)) : α1, β1 ∈ Ω1, (α2, β2) ∈ O2} for each 2-orbit O2 of G2.

Now the proof proceeds as before. q

Theorem 5.2. In the product action on ΩΩ1

2 , we have

(G1 o G2)(2) > G(2)
1 o G2.

Hence if G1 is not 2-closed, then neither is G1 o G2 in the product action.
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Proof. This is proved by Praeger and Saxl [24] under the hypothesis (which is
not required for their proof) that G2 is transitive. q

To show that Theorems 3.1–3.3 do not provide counterexamples to the polycircu-
lant conjecture, we need the following result. Recall that a half-transitive group has
all its orbits of the same length. The following result is a slight generalisation of
Wielandt [25, Lemma 8.4].

Theorem 5.3. Let E be a half-transitive permutation group with orbits Oi having
the following properties:

(a) The action of E on each Oi is regular.

(b) If αi ∈ Oi and αj ∈ Oj for i 6= j, then either Eαi = Eαj or EαiEαj = E.

Then E(2) contains a semiregular permutation.

Proof. Define an equivalence relation ∼ on the set of orbits by Oi ∼ Oj if and
only if Eαi = Eαj . Then E induces a semiregular group EC on the union C of each
equivalence class of orbits. Inequivalent orbits Oi and Oj have distinct kernels Ki

and Kj satisfying KiKj = E. Thus the kernel of E on C acts transitively on all orbits
outside C. It follows from Wielandt’s Dissection Theorem [25, Theorem 6.5] that
any orbit of E on pairs is invariant under the groups EC, so their direct product,
which contains semiregular elements, is contained in E(2). q

Note that the hypotheses hold if E is the Sylow p-subgroup of a group all of
whose orbits have length p. (This special case is particularly easy to prove.)

Theorem 5.4. Let G be one of the groups produced by Theorems 3.1, 3.2 or 3.3.
Assume that, in the case of Theorems 3.1 or 3.2, if Wg 6= W , then W +Wg = V . (In
particular, this holds if W has codimension 1 in V .) Then G(2) is not elusive.

Proof. Such a group G has an elementary abelian normal subgroup E whose
orbits satisfy the hypotheses of Theorem 5.3. q

Note that the condition that W has codimension 1 in V holds in all our
examples. Also note that sporadic examples (b), together with their lifts obtained
using Theorem 3.2, are covered by the preceding result.

The 2-closures of the Fein–Kantor–Schacher groups G = AGL(1, p2) are deter-
mined in [12]. The cosets of H = AGL(1, p) can be identified with the p(p+ 1) lines
in the affine plane GF(p2) over GF(p), so that H fixes the line GF(p) ⊂ GF(p2). The
orbits of G on pairs are the diagonal {(α, α)}, the set

{(α, β) | α ‖ β, α 6= β}
of distinct parallel pairs, and p sets of pairs satisfying α ‖ βg where a fixed g ∈
GF(p2)\GF(p) acts by multiplication, one set for each nontrivial coset of GF(p)\{0}
in GF(p2)\{0}. The binary relations of this last form are all compositions of a single
one of them, for which g is a generator of GF(p2)\{0}. Since the automorphism
group Sp o Cp+1 of this relation preserves all the other G-invariant relations, this
is G(2).
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Finally we have the following.

Theorem 5.5. The sporadic examples M11 and M10 are not 2-closed.

Proof. This is clear for the 3-transitive group M11. In the case of M10, the normal
subgroup S = A6 has two orbits of length 6. Moreover, S is the product S = SαSβ
of stabilizers of points α, β in different orbits [18]; equivalently, Sα is transitive on
βS . Thus by Wielandt’s Dissection Theorem [25, Theorem 6.5], the 2-closure of G
contains A6 × A6. q

6. Open problems

We conclude with several open problems.

Problem 6.1. Prove the polycirculant conjecture, namely that there is no elusive
2-closed permutation group.

Problem 6.2. Does the set of degrees of elusive groups have density zero?
Theorem 4.1(c) shows that this set is multiplicatively closed, and, as noted, it
contains pm · 2n for p a Mersenne prime, m > 0, and 2n > p, and also 7m · 12 for
m > 0.

Problem 6.3. As noted above, Marušič and Scapellato [22] proved that the
automorphism group of a vertex-transitive cubic graph is not elusive. Cameron and
Sheehan [5, Problem BCC17.12] conjectured that there is a function f satisfying
f(n)→ ∞ as n→ ∞ such that a vertex-transitive automorphism group of a vertex-
transitive cubic graph on n vertices has a semiregular subgroup of order at least
f(n). Prove this conjecture.
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19. D. Marušič, ‘On vertex symmetric digraphs’, Discrete Math. 36 (1981) 69–81.
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