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Cycles in Graphs and Groups

William M. Kantor

1. INTRODUCTION. If a group G of automorphisms of a graph � acts transitively
on the set of vertices, then � is d-valent for some d: each vertex is adjacent to exactly d
others. This note concerns cycles in �, by which we will mean subgraphs isomorphic
to a k-cycle for some k ≥ 3; hence there will be no “initial” vertex. If g ∈ G and C is
a cycle in �, then g(C) is another cycle in �: G acts on the set of all cycles in �.

There is another meaning of the word “cycle”: each element of G can be written
as a product of disjoint cycles of the set of vertices. If C = (1, . . . , k) is such a cycle
and g ∈ G, then an elementary calculation gives gCg−1 = (g(1), . . . , g(k)), and this
is just g(C) if C is viewed as a cyclically ordered set of vertices. In other words, the
conjugation and functional actions behave the same.

In a 1971 lecture, J. H. Conway [6] presented the following result, which merges
these two meanings of “cycle” when G can move any ordered pair of adjacent vertices
to any other such pair:

Theorem 1 (Conway). Let G be a group of automorphisms of a d-valent graph �

(d ≥ 2). Assume that G acts transitively on the set of all ordered pairs of adjacent
vertices. Let X be the set of all (ordered) cycles in � each of which is also a cycle
occurring in some element of G. Then G has exactly d − 1 orbits in its action on X.

N. Biggs described this theorem in [2], with a brief sketch of Conway’s proof; and
also in [1, p. 75] and [3, p. 137]. More complete proofs have been provided in [7, 8].
In this note we give a short proof showing that this is essentially an elementary group-
theoretic or combinatorial result. See the next section for examples.

The theorem seems remarkable for its generality, and for the precise number of
orbits it contains. Studying this theorem led to the rediscovery of a more elementary
result, due to R. Parker [5, p. 48], having a similar flavor:

Theorem 2 (Parker). Let G be any subgroup of the symmetric group of degree n. Let
X be the set of all cycles occurring in the elements of G. Then G has exactly n orbits
in its action on X by conjugation.

Of course, in general X is not a subset of G.
The next theorem allows us to relate the two previous ones: Theorem 2 can be

viewed as a special case of Theorem 3, which we will see is only superficially
more general than Theorem 1. The occurrences of the word “ordered” suggest that
Theorem 1 is really about digraphs. Therefore, let G be a group of automorphisms
of a digraph �; let X (�, G) be the set of all (directed) cycles of �, including ones of
length 2, each of which is also a cycle occurring in some element of G. Then G acts
on X (�, G).

Theorem 3. If G is a vertex-transitive group of automorphisms of a digraph � with
outdegree d ≥ 1, then G has exactly d orbits on X (�, G).

We prove Theorems 1 and 3 in Section 3 using a general preliminary result from
Section 2. In Section 4 we prove Theorem 2 and indicate how it relates to Theorem 3.
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2. CYCLES. We consider the symmetric group Sn , acting on {1, 2, . . . , n}. We have
seen that the action of Sn on cyclically ordered subsets of {1, 2, . . . , n} is the same as
the action by conjugation on cyclic permutations. We will view each cycle in Sn as a
cyclically ordered set.

Let G be a subgroup of Sn , and let G1 and G12 be the stabilizers in G of 1, and of
both 1 and 2, respectively. Let X12(G) be the set of all cycles (1, 2, . . . ) occurring in
those elements of G that move 1 to 2. Then G12 acts on X12(G).

Proposition 4. If there is an element of G moving 1 to 2, then G12 has exactly
|G1 : G12| orbits on X12(G).

Group-theoretic examples. Let G be the alternating group A5 acting on {1, 2, 3, 4, 5}.
When G12 acts on X12(G) by conjugation (via h → ghg−1, g ∈ G12), there are
|G1 : G12| = 4 orbits, with representatives (1, 2), (1, 2, 3), (1, 2, 3, 4, 5) and (1, 2, 3,

5, 4). The first of these cycles is not in G, but arises from the element (1, 2)(3, 4) of
G. On the other hand, if G is S5 then 4 orbit representatives are (1, 2), (1, 2, 3),
(1, 2, 3, 4) and (1, 2, 3, 4, 5). Yet another instance for n = 5 is the affine group
{x → ax + b | a, b ∈ Z5, a �= 0} acting on Z5 = {0, 1, 2, 3, 4}, where X12(G) con-
sists of the cycles (1, 2, 3, 4, 0), (1, 2, 4, 3), (1, 2, 0, 4) and (1, 2) (not in the group),
arising from the permutations x → ax + 2 − a with a = 1, 2, 3, 4, respectively.

In Theorem 2 we must also include a single 1-cycle as an orbit representative for
each of these examples.

Graph-theoretic examples. Each of the preceding three examples can be viewed in
the setting of Theorem 1, in which � is the complete graph K5 on 5 vertices. Each
group is 2-transitive: it is transitive on the ordered pairs of adjacent vertices. This
graph has valence d = 4. The cycle (1, 2) of a permutation must be discarded since it
is not a cycle of the graph.

Proof. The misnamed “Burnside’s Lemma” (see [10, pp. 100–101], [4, p. 577] or [9])
concerns a group acting as a group of permutations of a finite set of points; it states
that the average number of points fixed by a group element is the number of orbits of
the group. In our setting the group is G12 and X12(G) is the set of “points”:

|G12|(#G12-orbits on X12(G)) =
∑

g∈G12

(#C ∈ X12(G) fixed by g)

=
∑

C∈X12(G)

(#g ∈ G12 fixing C)

=
∑

C∈X12(G)

|G(C)|,

since any g ∈ G12 fixing the cycle C must lie in the pointwise stabilizer G(C) of C .
(Thus, G(C) is the set of all elements of G fixing every member of C . The second
equality above is obtained by counting in two ways the number of pairs (g, C) with
g ∈ G12 and C ∈ X12(G) fixed by g.)

If gC is one of the elements of G having C as a cycle, then gC G(C) is the set of all
such elements of G. (If f is any such element then g−1

C f fixes every member of C .)
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Similarly, if h ∈ G moves 1 to 2, then hG1 is the set of all g ∈ G sending 1 to 2.
Each such g has a unique cycle (1, 2, . . . ) ∈ X12(G). Thus,

∑

C∈X12(G)

|G(C)| =
∑

C∈X12(G)

|gC G(C)| = |hG1| = |G1|,

so that

(#G12-orbits on X12(G)) = |G1|/|G12|.

3. GRAPHS AND DIGRAPHS.

Proof of Theorem 3. We have already observed that G acts on X (�, G). Let V =
{1, 2, . . . , n} be the set of vertices of �.

We first note that the edge-transitive version of Theorem 3 implies the general ver-
sion. For, let I denote a set of representatives of the orbits of G1 on the vertices i
adjacent from 1 (thus, (1, i) is an edge and G(1, i) is a set of edges). If i ∈ I then
�i = (V, G(1, i)) is a digraph on which G acts as a group of automorphisms transi-
tive on both the vertices and the edges. Since the edge-set of � is the disjoint union of
the edge-sets of the digraphs �i , if di is the outdegree of �i then d = ∑

i∈I di . More-
over, X (�, G) is the disjoint union of the sets X (�i , G): any cycle in X (�, G) has all
its edges in the same orbit G(1, i) for a unique i ∈ I . Thus, if the theorem holds for
each �i then it holds for �.

Hence, we may assume that I = {2} and � = �2 (thus, we are now considering the
digraph version of Theorem 1). Let G1, G12 and X12(G) be as in Proposition 4. Note
that X12(G) ⊆ X (�, G): if g ∈ G moves 1 to 2 then any successive vertices in the
cycle (1, 2, . . . ) of the permutation g are adjacent in �, so that this cycle of g is also
a cycle of �. In particular, X12(G) consists of all members of X (�, G) containing the
edge (1, 2). This observation provides the link between the purely group-theoretic set
X12(G) and the graph-theoretic set X (�, G).

Every G12-orbit on X12(G) is contained in a unique G-orbit on X (�, G).
On the other hand, since I = {2} every G-orbit on X (�, G) contains a cycle in

X12(G). Suppose that C = (1, 2, . . . ) and C ′ = (1, 2, . . . ) are two members of X12(G)

lying in the same G-orbit; we claim that they are in the same G12-orbit. For, if g(C ′) =
C for some g ∈ G, and if C occurs as a cycle of the element gC ∈ G, then some power
gk

C sends the edge g(1, 2) of g(C ′) = C to the edge (1, 2) of C , so that gk
C g ∈ G12

sends C ′ to C .
Consequently, the number of G-orbits on X (�, G) equals the number of G12-orbits

on X12(G), which is |G1 : G12| = d by Proposition 4.

Theorem 1 easily follows from Theorem 3: the digraph �′ required in Theorem 3
is obtained from the graph � in Theorem 1 by replacing each edge by two directed
edges in opposite directions. Now delete the orbit of 2-cycles from X (�′, G) in order
to deduce Theorem 1.

4. PERMUTATION GROUPS. In order to prove Theorem 2 we will restrict the
previous results to the case of the complete graph Kn. Since every cycle of length at
least 3 of any permutation of the vertices is automatically a cycle of Kn, this amounts
to dealing with an arbitrary subgroup of the symmetric group on {1, . . . , n}, and then
allowing cycles of any length; once again we will view cycles as cyclically ordered
sets of points. This is exactly the situation in Theorem 2.
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Proof of Theorem 2. As in the proof of Proposition 4, if X is as in Theorem 2 then

(#G-orbits on X)|G| =
∑

C∈X

(#g fixing C) =
∑

C∈X

|C ||G(C)|,

since the pointwise stabilizer G(C) has index |C | in the group of all elements of G
fixing the ordered cycle C . If gC is again an element in G having C as a cycle, then
gC G(C) is again the set of all such elements. Count in two ways the triples (g, i, C),
where g ∈ G and C ∈ X is the cycle of g containing i :

|G|n =
∑

g∈G

∑

C∈X is a
cycle of g

|C |

=
∑

C∈X

|C |(#g ∈ G having C as a cycle)

=
∑

C∈X

|C ||gC G(C)|.

Thus, (#G-orbits on X)|G| = n|G|.
The preceding short proof of Theorem 2 is slightly different from the one in [5,

p. 48], and is suspiciously similar to the proof of Proposition 4. In fact, Theorem 2 is es-
sentially a special case of Theorem 3 for Kn (turned into a digraph K ′

n as in the preced-
ing section). For, in Theorem 2 it suffices to restrict to each orbit of G on {1, . . . , n},
and hence to assume that G is transitive on {1, . . . , n}. Then Theorem 3 states that G
has d = n − 1 orbits on X (K ′

n, G); this is essentially the set X in Theorem 2 with the
orbit of 1-cycles deleted.
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