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Some consequences of the classification 

of ("mite simple groups 

William M. Kantor' 

This paper surveys some recent results obtained by assuming 

CSG: Every ("mite nonabelian simple group is either an alternating 

group, a Chevalley group, or one of the 26 sporadic groups. 

My aim IS to avoid well-known consequences of CSG, such as the 

Schreier conjecture. I will also avoid some of the topics mentioned by Feit 

or Fried at the 1979 Santa Cruz group theory conference [17,20). Many of 

the applications of CSG mentioned here involve permutation groups; in part, 

this reflects my own bias. 

described. 

Somewhat technical consequences are not 

Many of the examples given are not stated precisely. The flavor and 

potential of applications seem more important in the present context than do 

comprehensive lists. Of course, there is no theory of applications of CSG; 

there is only a growing collection of techniques available for the solution of 

both old and new problems. 

I hope that some of the following results will eventually be proved 

without the use of CSG. Many of them certainly do not look as if CSG 

should be involved at all. 
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EX&mpie 1. Probably the deepest and most potentially important of the 

examples described here are taken from a series of papers by Seitz 143-46J. 

All that can be described in a brief, non-technical manner amounts to the 

tip of the iceberg of at least two major projects. 

(A) Let G be a classical group over GF(q), where q > 11 and (6,q) ~ 

1. Let T be a mazimal torus (not necessarily split). Then there is a precISe 

description of all Bubgroups of G containing T but contained in no 

parabolic Bub group ! 44}. This description is in terms of the underlying vector 

space. There is also a good description in the case of all the remaining 

Chevalley groups, in terms of the corresponding algebraic group 143J. 

The proof requires CSG, and involves a remarkable interplay between 

CSG and algebraic groups. The next two results involve a similar interplay, 

but require only a few of the results obtained in the proof of CSG, rather 

than the full force of CSG itself. 

(B) If G is a Chevalley group over GF(q), where q is odd and q > 3, 

and if X is any p-group, then any proper subgroup of G containing 

N G(X) iB contained in a proper parabolic Bubgroup. 

(C) Let G be a full classical subgroup of GL(V), where V is a vector 

space over GF(q) and q is odd and q > 3. Let G be the appropriate 

clasBical group defined on the correBponding vector Bpace V over the 

algebraic cloBure of GF(q). If S eGis any Bet of p-elements, then the 

following are equivalent: 

G' ::; (CG(B) I s E S) 

SL(V) ::; (CGL(V/s) 1 s E S) 

G' ::; (CC(s) 1 B E S) 

SL(V) ::; (C GL(V/B) 1 s E S). 

Moreover, if all of these fail then there is a proper subspace W of V 
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such that each of the above centralizers leaves W or W invariant [46/. A 

similar result for sets of p' -elements is proved in [43) using (A). 

Example 2 [18). Let T be the Brauer tree associated to a p-block 

with a nontrivial cyclic defect group of a group algebra R[G/, where R is 

the ring of integers in a finite extension of the p-adics. Then T is 

isomorphic to the unioll of several copies of a tree TO that are disJ'oint 

except that they have a certain vertex of TO identified. Moreover, either TO 

has at most 248 edges, or TO is a chain. This implies that most trees do 

not arise as Brauer trees. In [18) it is noted that, without the help of 

CSG, no tree has yet been shown not to arise in thls manner. 

Example 3. A recent issue of the Journal of Algebra (Vol. 77, No. 

1) contains very clear indications that there will be a rapidly expanding 

collection of "purely" group theoretic applications of CSG. In [2) it is 

shown that, for any finite group G, there is a solvable subgroup S and an 

element g of G such that G = (S,sg). In [1) it is shown that, if G is a 

group of order 2a3bm, (6,m) = 1, then G ill solvable if and only if it has 

subgroups of order 2
a
m and 3

b
m (compare Example 5 below). Finally, [23) 

contains results concerning the centralizer in Aut G of a Sylow p-subgroup of 

a group G, where 0 ,(G) = 1 and p > 2. It does not seem feasible to 
p 

survey (at thls point in time) the growing literature in thls direction. 

Example 4. Let Land K be fields with L J K. The relative 

Brauer group B(L/K) consists of all Brauer classes of finite-dimensional 

central simple K-algebras split by L. 

* (A) If K is a finitely generated eztenaion of a global field and L is 

• An algebraic number field or an algebraic function field in one variable over 

a finite field. 
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a nontrivial e",tension of K, then B(L/K) is infinite. This is proved in 

[16); the case in which K is itself a global field was obtained earlier in [15) . 

Since B{L/K) is an abelian group, it is surprising that (A) is a consequence 

of 

(B) If G is a transitive permutation group on X, where IXI > 1, then 

there is a prime p such that some p-element fizes no point of X (see 

(15]). It seems ridiculous to have proved this using CSG. There should be 

a character-theoretic proof. On the other hand, the special case of (A) in 

which K is a global field is actually "equivalent" to (B) [15,39). 

The group G in (B) IS a suitable Galois group. (If L is separable over 

K and N is the normal closure of L/K, then G = GaJ{N /K) and G = 
x 

Gal{N/L).) The p-element in (B) is used to construct infinitely many 

K-algebras. 

Almost all subsequent examples also concern a permutation group G on 

a set X. If x e X then G is the stabilizer of x. 
x 

Frequently, G will be 

primitive on X; that is, G will be transitive on X and G will be a maximal 
x 

subgroup of G. In this situation, it is sometimes possi ble to reduce to the 

case of more or less simple groups, using the following result. 

O'Nan-Scott Theorem {40,8,3j. Assume that G is primitive on X, and 

that the subgroup N generated by all the minimal normal subgroups of G 

i8 not a regular normal elementary abelian subgroup. Then N = T 1 X 

X T , with the T. isomorphic nonabelian simple groups. Moreover, one m , 
of the following holds. 

(i) T 1 ::; G 1 for a primitive group G 1 of degree n l' n 

G ::; G
1
wrS

m
. 

m 
n

1
, and 
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(ii) N
z 

= Dl X ... X D
t
, where m = kl, D. is a diagonal subgroup 

t 

f T T d ITll
(k-l)l. 

o (i-l)k+l X ..• X ik' an n = 

(iii) N
z 

= 1 and n = ITllm. 

The original statement of the above theorem omitted possibility (iii); see 

[3J. 

The first application of this result is a fairly simply one. 

Ex&mple 5. All primitive groups G can 6e essentially classified for 

which IXI is a power of a prime p and such that G has no regular 

normal Bubgroup. The word "essentially" refers to the use of the 

O'N an-Scott Theorem: (i) holds there, m is arbitrary, and an arbitrary 

transitive group of degree m can be permuting the 

m = 1 is due to myself (see [34]); when G is simple, 

factors T.. The case 
I 

the result was recently 

rediscovered independently by Arad and Fisman and by Guralnick. Our 

methods are the same, and very straightforward. The idea is as follows. 

After reducing to the case m = I, one reduces to the situation in 

which G has a normal Chevalley subgroup T of characteristic r. If p "" r 

then T contains a Sylow r-subgroup U of T, and a lemma of Tits applies. 
x 

If p = r then U is transitive on X, so that T 

flag-transitive theorem [41J applies if T has rank ~ 2. 

UT 
x 

and Seitz's 

Of course, Example 5 trivializes the many difficult results on 

permutation groups of prime degree (as does the next example). Another 

type of application is found in [34J. 

Ex&mple 6. All 2-tranBitive groups have been determined. This 

determination falls into several parts, depending upon the nature of a 

minimal normal subgroup N of G: N = A, handled in 1895 [37J; N 
n 

Chevalley [14J; N sporadic is simply folklore; and N elementary abelian 

[29,25,26,28J. 
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When N is a Chevalley group, the proof is based on the following 

simple idea. Assume for simplicity that G ~ N. If Ig is not contained in 
x 

1; (where B is a Borel subgroup of G), then Seitz's flag-transitive theorem 

[41J applies. Since Ig - IG is irreducible, the only other possibility is that 
x 

I
G 
G 

x 
In general, the characteristic p of G divides the degree of any 

irreducible constituent of Ii - I
G

· Thus, IG:G I == 1 (mod p), G x x 
contains 

a Sylow p-subgroup of G, and a lemma of Tits can then be applied. 

When N is elementary abelian of order p d, G is a subgroup of GL(d,p) 
x 

transitive on the nontrivial elements of N. 
d 6 

If d > 2 and q oF 2 , there 

is an element of prime order acting irreducibly on N, and it follows that G 
x 

has at most one nonabelian composition factor [24J. If G 
x 

is solvable, see 

[291. If G i8 nonsolvable, reduce to the ease 
x 

normal Chevalley subgroup of characteristic r. 

in which G /Z(G ) has a 
x x 

If p ~ r, standard results 

concerning the representations of a Chevalley group in its own characteristic 

eliminate most cases. If p oF r, each irreducible representation of G in 
x 

characteristic r has relatively large degree [33J; this can then be played off 

against the transitivity of G , which forces d to be small. 
x 

Corollary. If n ~ lXI, all primitive groups G of degree n having an 

n-cycle can be determined. (Namely, G::>: An' G C> PSL(d,q) and 

n ~ (qd - 1)/(q - 1), n ~ 11 or 23 and G is PSL(2,11), M11 or M
23

, or n 

is prime and G has a normal Sylow n-subgroup. In fact, if we exclude the 

last possibility, then classical results of Burnside and Schur yield the 

2-transitivity of G.) 

Some number-theoretic consequences of the determination of all 

2-transitive groups are given in [19,20J and [13J. An application to logic is 

found in [121. (However, a non-group-theoretic proof of this application has 
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also been obtained [51].) 

Example '1. Assume that G is primitive on X, and has rank 3 (i.e., G 

has exactly 3 orbits on X x X). The following are the only cases left to 

classify: G has a normal exceptional Chevalley subgroup over a field of 

10
18 

moderately small site (no more than (1.8) ); or G has a regular normal 

elementary abelian subgroup. (In the latter case, the problem seems to be 

to find a suitably nice prime divisor of [G [.) 
x 

Let N be as in the O'Nan-Scott Theorem, and assume that N is 

nonabelian. Then m :5 2 [8]; and if m ~ 2 then G is contained in 

G
1
wrZ

2 
for a 2-transitive group Gr This leaves the case m ~ 1. If N is 

sporadic, the desired result is again folklore. If N is alternating, see [5] . If 

N is an exceptional Chevalley group, see [42] (or the next example). Finally, 

if N is a classical group the desired classification appears in [31]; 1~ is used 

somewhat as in the preceding example. 

As time goes on, the last two examples seem less interesting to me. 

More general types of results are needed. One possible direction is towards 

asymptotic results, as in the next five examples. 

Example 8 [5,30,42]. Given r ~ 2, there are only finitely many 

unknown primitive rank r permutation groupB G,X Buch that G haB a 

Bimple normal Bubgroup. Here, the "known" permutation representations are 

as follows: G ~ An' X consists of all k-sets; G has a normal Chevalley 

subgroup, X is class of maximal paraholic subgroups; or G has a normal 

classical subgroup, and G is reducihle. 
x 

Wben G has a normal Chevalley subgroup of characteristic p, and the 

Weyl group is fixed, the result was proved [42) by playing off 1~ against 

the permutation character 19. (Namely, when the field is large it was 
x 

shown that U must he contained in G .) This settles the case of exceptional 
x 
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Chevalley groups, among other things (compare Example 7). 

The remaining situations were dealt with in an entirely different manner. 

If 1 ;6 g E G, it is easy to show that there is a G -orbit on X - {x} of 
x 

G Gr 
size :0; Ig I, and then that IG:Gxl :0; Ig I (see [5]). In each case, g is 

chosen so that Ig G I is minimized. On the other hand, a lower bound on 

IXI ~ IG:G I can also be obtained. When G is symmetric or alternating, 
x 

such a lower bound has been known for about a century, and sufficed for 

the result [5]. When G is a classical group, new lower bounds had to be 

found [30] . 

Example 9 [8]. There i8 a con8tant C 8uch that, if G,X i8 a 

primitive permutation group of degree n having no regular normal 

8ubgroup, then either G,X .. known or elementary abelian 

IGI < nC log log n. This is proved using the O'Nan-Scott Theorem, eSG, 

and the aforementioned lower bounds on IXI. The constant c is less than 

10. 

Stronger bounds on IGI are obtained in [4], on the assumption that the 

composition factors of G are somewhat restricted. 

Example 10 [9]. For almoBt all n, if G i8 a primititJe 8ubgroup of 

S then G > A . 
n - n 

More precisely, let E be the set of all n such that there is a primitive 

subgroup G of S such that G i A. Then 
n n 

1 1 

IE n [I,xll ~ 2 .. (x) + (1 + y'2)x
2 

+ O(x
2 
flog x). 

(Here, lI'{x) is the number of primes p :0; x. The first term corresponds to 

integers n of the form n ~ p or p + 1; the second term corresponds to the 
2 k 

cases n = k or (2)') The proof uses the O'Nan-Scott Theorem, eSG, and 

Example 8. 
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Example 11 [10): the Sims conjecture. There is a function fed} such 

that, if G is primitive on X and G has an orbit on X - {z} of size d, 
z 

then IG zl ~ fed}. 

It had been known [48,50) 

such that IG /0 (G )1 < g(d). x p x -

that there is a function g( d) and a prime p 
2 

(In fact, g(d) = d!{(d - I)!} works.) Thus, 

the problem was to bound 10 (G )1. 
p x 

This was first reduced to the case in 

which G has a simple normal subgroup N (using the O'Nan-Scott Theorem), 

and then to the case in which N is a Chevalley group of characteristic r 

(using CSG, of course). If p r a standard result of Borel and Tits 

applies; if p ~ r, detailed knowledge of properties of maximal tori was 

required. 

Example 12 [38). There is a constant c such that the number of 
2 

isomorphi8m claS8es of groups of order n is 
c(log n} 

les8 than n 2 . The 

proof uses the following consequence of CSG: the number of simple groups 

of order n is small (that number never exceeds 2). 

Example 13. There should be many nontrivial applications of CSG to 

combinatorial questions. For example, no fillite group is yet known not to 

be capable of acting on a finite projective plane. Nevertheless, some results 

in this diredion are obtained in [27,47). 

Technical applications of CSG in coding theory are found in [21,22). 

In [6), CSG was used to determine all graphs such that any 

isomorphism between induced subgraphs on at most 4 vertices is the 

restriction of an automorphism of the whole graph. (The corresponding 

result with 5 in place of 4 was handled in [7) using a purely combinatorial 

approach.) 

A graph is called distance-tran8itive if it is connected and if, whenever 

x, y, x', yare vertices and d(x,y) = d(x' ,y '), there is an automorphism 

sending x to x' and y to y'; its valence is the number of vertices joined to 
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a given one. In [lOJ it is shown that, for each k > 2, there are only 

finitely many distance-transitive graph. of valence k. The proof rests 

beavily on Example 11. 

Next, consider a graph whose automorphlsm group is transitive on s-arcs 

(i.e., ordered sequences (XOI xl' "', x) • of vertices such tbat x. "" 
I xi+2 and Xj 

is joined to xi+l for all i). In [49J it is shown that s ::;; 7. The proof 

depends on Example 6: if s 2: 2 then the stabilizer of a vertex x is 

z-transitive on the vertices joined to x. 

Example 14. Algorithms. Assuming that we are given permutations 

generating a subgroup G of S , we wish to find properties or subgroups of 
n 

G in time a polynomial in tbe input length. 

(A) A composition aeries for G can be found in polynomial time {3D/. 

(B) If p is a prime dividing IGI then an element of order p can be 

found in polvnomial time {32J. (A fundamental algoritbm due to Sims 

determines IGI in polynomial time.) 

For (A) and (B), the algorithms given in [36J and [32J require eSG in 

order to prove their validity. Tbe difficulty is, of course, tbe polynomial 

restriction. For example, standard proofs of Cauchy'. tbeorem require 

exponential time if p is fairly large. 

On the other hand, it is not known whether a Sylow p-subgroup of G 

can be found in polynomial time -- even if G is assumed to be solvable. 

(However, if G is simple and p is a prime dividing IGI tben a Sylow 

p-subgroup of G can be found in polynomial time [32J. The proof uses 

eSG.) \Vbether centralizers of elements of G can be found in polynomial 

time is even harder; it may be relevant to the very difficult P "" NP 

problem of theoretical computer science. 
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It must be emphasized that the above results are of a theoretical, not 

practical nature. The polynomial restriction is quite different from the 

criteria for speed used in the computer construction and study of finite 

groups. Those criteria depend on probabilistic arguments, whereas (A) and 

(B) are concerned with absolute success in all situations . The difference can 

be seen using Cannon's Santa Cruz paper [11]. He states that finding 

centralizers and finding intersections of subgroups are cheap (Le., can be done 

quickly and efficiently); finding Sylow subgroups requires medium cost; and 

testing simplicity and finding a regular normal subgroup of a primitive group 

are expensive. Yet, these expensive questions can be answered in polynomial 

time; finding Sylow subgroups is an open question; and the remaining 

questions are relevant to the P ~ NP and graph isomorphism problems [35]. 
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