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Abstract

Commutative semifields are constructed by using their relationship with symplectic spreads. The
number of pairwise nonisomorphic commutative semifield planes of even fradtained in this
manner is not bounded above by any polynomiaVinrhe number previously known for aly was
less than logv.
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1. Introduction

Semifields are algebras satisfying all of the axioms for a skew field except (possibly)
associativity. Their importance in the theory of projective planes is standard [De,
Section 5.3]. Finite ones are not terribly plentiful [CW,KW]; finite commutative ones are
painfully lacking.

The study of finite commutative semifields was begun by Dickson almost a century
ago; he found the first nonassociative ones [Dil,Di2,Di3]. Since then the only examples
found have been some of Albertieneralized twisted fields [Al4,Al5] and Knuth’sbinary
semifields [Kn2]; then, after about 16 years, Cohen—Ganley semifields [CG] and Ganley
semifields [Ga]; then, after another 15 years, Coulter—Matthews semifields [CM]; and,
most recently, one sporadic example due to Penttila and Williams [PW]. Itis a bit surprising
that so few examples are known (up to isotopism).
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In this paper additional finite commutative semifields are defined by means of the
awkward formula (4.2). Whereas the number of previously known commutative semifield
planes of any given ordey is less than log/, the number obtained hererist bounded
above by any polynomial in N.

Our construction is a simple combination of Knutitabical arrays [Knl], their
interpretation in [BB], and constructions in [Kal,KW] for (noncommutative!) semifields
arising fromsymplectic spreads. The manner in which these planes were discovered is
perhaps as interesting as the planes themselves, since coding theory played a key role
in the discovery. The study of symplectic spreads in large-dimensional vector spaces
of characteristic 2 was motivated by coding-theory and later also by extremal line-
sets in Euclidean spaces [Kal,CCKS]. In [Ka3] a method was described for obtaining
apparently large numbers of symplectic spreads from desarguesian affine planes by
natural modifications involving orthogonal geometries and sequences of field changes. The
semifield planes among the many types of resulting planes were studied at length in [KW].
This produced the present paper via the following remarkably elementaryKiaatih's
arrays provide a bijection between commutative semifield planes and symplectic semifield
planes (Proposition 3.8).

In order to state our main result, let(/m) denote the number of prime factors of an
integerm, counting multiplicities; logarithms are always to the base 2.

Theorem 1.1.Suppose that ¢ > 1 is a power of 2 and m > 1 is an odd integer. If m is
not a power of 3 or if ¢ > 2, then there are more than ¢™*™ =1 /(m logq)? pairwise
nonisomor phic affine planes of order ¢™ coordinatized by commutative semifields.

If m > 3% is a power of 3 and; = 2 then the corresponding number is greater than
2mp(m=2) /2 See Theorem 4.4 for a more precise statement, and Theorem 4.5 for
information concerning the full collineation groups of the planes. We have no idea how
to prove these theorems while staying within the framework of the standard theory of
translation planes: symplectic and orthogonal spreads provide additional structure for
the needed results in [Kal,KW] concerning different but intimately related symplectic
semifield planes.

In Section 5 we briefly survey the small number of known finite commutative semifields
and symplectic semifield planes. For some of them slightly more general results are
discussed at length in [BB]. Finally, in Section 6 we conclude with a number of remarks
concerning commutative semifields and symplectic spreads.

2. Background
We refer to [De] for the standard background concerning translation planes and their

kernels and duals, as well as spreads, semifields and isotopisms. Nevertheless, we recall
that a presemifield is a semifield if there is an element acting as an identity element. Every

1 Compare [Kn2, p. 541].
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presemifield is isotopic to many different semifields, all of which produce the same affine
plane (up to isomorphism), and the kernel of that plane is isomorphic to the kernel (i.e., left
nucleus) of any of these semifields. Moreover, two such presemifield planes are isomorphic
if and only if their coordinatizing presemifields are isotopic [Al2].

3. Duals and duals

Let P = (K", +,0) be a presemifield, with associated translation plaie). We
assume that — x o y andx — y o x areK-linear maps for each € K”. This is certainly
the case ifK is a prime field.

If v1,..., v, is the standard basis &f”, then

v 0V =Zaijkvk (3.2)
k

for a;jx € K. Thecubical array (a;;x) was introduced and studied by Knuth [Kn1]. Since
it determined?, we will sometimes writé(g; ) instead ofP.

We are interested in two other cubical arrays and presemifields related to the original
one. First, the arraya;;x) corresponds to the semifiel(a;;x) = (K", +, o*), where
x o* y = y o x coordinatizes the projective plamial to the one determined b (P),
and hence also coordinatizes one of the associated affine @RS of that dual plane.
Thus, we write

Pajir) = Plaiji)*, (3.2)

with corresponding plan®(a;ix) = A(a;jr)*.

More significantly, Knuth [Kn1] observed that,(;;;) determines a presemifield, then
so does each such array obtained by applying any permutati§ntim the subscripts of
the array. Thus, each presemifield produces as many as six presemifields.

A simple geometric explanation for this appears first to have been observed only very
recently in [BB]. Consider the spreall determined byP(a;jx). This consists of the
following subspaces &k & K": K" & 0 and

Xs]l= {(x,xos) |x € K”}:{(x,st) |x € K”}, seK". (3.3)

Here M; is the matrix of right multiplication bw; the nonsingularity of the matrices
My, s # 0, is exactly the condition thatK™”, +, o) is a presemifield. In terms of (3.1),
if s = Zj Sjv; thenv; os = Zk(zl/’ Sjajk)Vk, SO thatM, = (Z/ Sjaijk)ik-

Thedual spread X9 is a spread of the dual spacefof & K. We can identify that dual
space withK” @ K" by using the nondegenerate alternating bilinear form defined by

in terms of the usual dot product. Thespaces{(x,xM;) | x € K"} and {(x,xM}) |
x € K"} are perpendicular, sina@x, x My), (x', x'M?!)) = x(x’M!)" — (xM,)x" =0 for
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all x, x’ € K". It follows thatwe can view X9 as consisting of the subspacks @ 0 and
Ss1={(x, xM!) |x e K"}, sek".

Write x o s = xM!, whereM! = (Zj sjaxji)ik- Then the plan@((P)d corresponding to
>4 is coordinatized by the presemifield

P(akji) = P(K", +, o%) = P(aij)". (3.5)

Note that (3.2) and (3.5) are equalities involving presemifields, with no isotopisms of
presemifields or isomorphisms of planes entering at all. These equations arise by applying
the transpositions (1,2) or (1,3) to the subscripts of the cubical &fay.

Commutativity. Clearly
P(aijx) is commutative if and only if P(a;jx)* = P(aiji). (3.6)

Symplectic spreads. A spread is calledsymplectic with respect to a nondegenerate
alternating bilinear form( , ) if (X, X) = 0 for each membeX of the spread. Using
the alternating bilinear form (3.4) we note that

The spreads in (3.3) is symplectic  if and only if P(a;j1)® = P(a;ji).  (3.7)

Namely, ((x, xMy), (y, yMy)) =0 for all x,y <= x(yM,)' —xM,;y' =0 for all x,y
< x(M! — My)y' =0forallx,y <= M, = (Zj sjaijk)ik IS symmetric. Now use
(3.5).

Symplectic spreads have been studied at length in [Kal,Ka4,CCKS,KW,Ma]. The
following simple way to obtain them led to this paper:

Proposition 3.8. For a presemifield plane 2, some presemifield for 2 is commutative if
and only if some spread for 2% is symplectic.

Proof. If the presemifieldP(a;;x) is commutative thenP(a;;x)* = P(a;jr), So that
(P(aijr) ™) = P(aijr) ¥ = P(a;ji)® since (1,2)(1, 3)(1, 2)(1,3) = (1,3)(1, 2). Now
use (3.7).

Conversely, if some spread fét%* is symplectic, then by [Ta, p. 69] we may assume
that the alternating form is (3.4). Th&¥ia;jx) %9 = P(a;;1)** by (3.7). As above, it follows
thatP(a;jx)* = P(aijn) 9 = P(ajjr). O

Remarks.

1. There is a very simple “coincidence” underlying the preceding proposition: (3.3) is
symplectic if and only if the matrice® are symmetric; and multiplication in a presemi-
field is commutative if and only if the multiplication constants form symmetric matrices.

2. All of the above discussion involved choices, including a choice of basis and a choice
of alternating bilinear form. Even the field was implicitly chosen: everything could have
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taken place over the prime field without affecting any of the results. With this in mind we
will usually find it convenient to view our vector spaces as being over the prime field, ap-
plying the trace map from a more obvious field down to the prime field in order to handle
field automorphisms.

3. In [BB], the plane2 is obtained using theymmetric bilinear form

(xa)’)'(x/’y/)zx'x/+)"y/

instead of the alternating one (3.4).

4. Desarguesian scions and a generalization of Knuth’s semifields

Assume that we are given fields = Fp D F1 D --- D F, of characteristic 2 with
[F : F,] odd and corresponding trace mafis F — F;. Choose any elements € F*,
1<i<n.DefineD(F, +, ) = D((F)y, (¢i)7]) by

xoy:xyz-l-ZTi@ix)y-i-ZCiTi(x)’) (4.1)
1 1

andB(F, +, %) = B((F)§. (¢)}) by
2

4.2)

Xxy=xy+ (xZTi(iiy)erZTi({ix))
1 1

The presemifield®((F;)g, (¢;)7) were studied in [KW]; there they produced what were
called semifield scions of desarguesian planes (hence the D”). In Theorem 4.3 will see
thatB((Fi)g. (¢)7) is a commutative presemifield. This produces a commutative semifield
that generalizes Knuth’binary semifields [Kn2] (hence the B"); the latter semifields
correspond to the presemifielBg(F,-)é, (D).

4.1. Source of the presemifields B((F; g, (£i)7)
Theorem 4.3.2(D((F;)j, ({i)ﬁ))*d =AB((Fi)g» (€)])-
Proof. We will use the nondegenerate alternating bilinear fotm y), (u, v)) = T (xv —
yu) on F2, whereT : F — GF(2) is the trace map. Forn € F we need to find allx, v)
such that
0= ((x,mex), (u,v) = T(xv + [m)c2 + Z T;(gim)x + Z{iTi(mx)]u)
for all x. Note thatT (T;(x)) = T'(x) for all x, which depends upon the assumption that

[F : F,]is odd; this implies thal (aT; (b)) = T (T; (aT; (b)) = T (Ti (@) T; (b)) = T (bT; (a))
forall a, b [KW, Lemma 2.14]. Thus,
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0="T(xv) + T(x/mvu) + ) T(xuTi(Gm)) + Y T (xmTi(Giw))
forall x € F, so that
O=v+vmvu+ ) uli(Gim)+ Y mT;(Giu).

It follows that the dual spread consistsiofp 0 and all

{ (. Vam + 3 uTicimy + Y mTicin) )

uEF}, meF,

and hence arises from an isotope of the presemiBeld’ )5, (¢:)7). O

Remarks. The above theorem implies that there are at most three planes obtained by
repeated use of the operatiorsand d: 2A(D((F)g, (¢)7)), AD(F)g, (¢)1)* and
AB((Fi)gs (£)1))-

The theorem essentially answers a question in [CW, p. 130] concerning the previously
known semifields for whichh = 1: “It remains an open question: When is a Kantor
semifield a Knuth binary semifield?” Interpreting the question as asking whether these
semifields are somehow related, the answer is now that they are, in fact, intimately related.
On the other hand, by Corollary 4.15(ii) these planes are not isomorphic, at least if
[F: F1]>3.

Source of the presemifields D((F;)g, (¢)]). These were constructed by starting with a
desarguesian plane and using an algorithm that produces a sequence of modifications in-
volving orthogonal geometries and field changes. This led precisely to these presemifields
and to no others. (There were, however, many other types of planes obtained by the same
process, but those are not coordinatizable using semifields.) In this sense these presemi-
fields arose “naturally” from desarguesian planes, and hence the same is true of the pre-
semifieldsB((F;)g. (¢i)7). This contrasts with the first occurrence of the presemifields
B((F,»)é, (1)) in [Kn2], where they had a more magical appearance.

4.2. Direct proof that (4.2) defines a presemifield
Write f(x) = > T;(¢ix). Assume that 0 and
xy+ 2+ f(»*x*=0.

Writea = y/x. Then f(x)ax + f(ax)x = \/xax, so that

Va=f@a+ flax)=ay T@x) + ) TiGax).
1 1
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We claim that, forj =1, ..., n,
n n
Va=a) TiGx)+ Y Ti(gax).
J J

We have seen that this is true fpe= 1. If it is true for somej < n then it is a quadratic
equation satisfied by/a with coefficients inF;. Since[F : F;] is odd,\/a € F;. Then

a Z T;(Gix) + Z T;(Giax) =aT;(&ix) + Tj(Gax) +a Yy Ti(@ix) + »_ Ti(giax)
J J

j+1 Jj+1

=a) TG+ Y Tigax),

j+1 Jj+1

as claimed.
Consequently,/a = T, (ax) + aT,(x). Once again we have a quadratic equation that
shows that/a € F,,. The same equation now yieldéz = 0, and hence =0. O

Remarks.

1. The preceding proof was significantly simpler and shorter than the direct proof in
[KW] that (4.1) defines a presemifield. In fact, except for an inductive argument, the two
proofs have nothing in common. This seems a bit unexpected.

The fact that the presemifields in (4.2) are easier to work with than those in (4.1) will
again be apparent in Section 4.4. On the other hand, in Section 4.3 we will see that the
presemifields in (4.1) have advantages as well.

2. The field elementg appear both “inside” and “outside” the trace nigpn (4.1), but
only “inside” in (4.2). In facttraces are not needed at all in (4.2): for each, the functions
T;(¢ix), ¢ € F*, run throughall nonzeroF;-linear functionalsF — F;. Nevertheless, we
have retained th¢; in view of the results, needed later, proved about the presemifields
(4.1) in [KW].

Knuth [Kn2] also used an arbitrary nonzero linear functiofal— F; in his
construction. He observed that different linear functionals produce isotopic presemifields,
which is not the case when> 1 (cf. Theorem 4.4).

4.3. |sotopisms and autotopisms

There are tolerable but incomplete results concerning both isomorphisms among these
semifield planes and their collineation groups:

Theorem 4.4. Consider the presemifields B((F)p, (&)%) and B((F))8, (¢)4), where
n>1n">1 F=Fy=Fy and either [F : F1] >3 and [F : Fj] > 3, or F, and F,,
have a common subfield of size > 2. Then the following are equivalent:
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(i) ABF)E, (c)D) and AB(F)E . (&)%) areisomorphic semifield planes; and
(i) »'=n, F/ = F; and there exist » € F* and o € Aut(F) such that ¢/ = A¢? for all
1<i<n.

Each of these planes has an obvious groupof collineations arising from the
autotopisms obtained from the equation

(kx)* (k™ty) =x %y, ke F}.

Theorem 4.5.Consider a presemifield B = B((F;)g, (¢;)]) wheren > 1. Let A < Aut(Fp)
denotethe largest subgroup that fixes each gl‘lgi, 2<i<n. lf[Fy: F1] > 3then Aut(B)
isthe product of A A with the group of order | F|2 generated by all elations.

Proof of Theorems 4.4, 4.5 and 1.1If the planes are isomorphic then there is a semi-
linear transformatiorg of F2 sending the spread for the first plane to that for the second
one. Theng acts on the dual space and sends the first dual spread to the second one.
Hence, any isomorphis®(B((F,)p, (&)%) — AB(FNY , (¢))%)) that fixes 0 induces
an isomorphismA(D((F)), (¢)5)* = AB(F)E, ()N — ABWFNE, (¢4 N% =
AD(F)Y, (cH))* (Theorem 4.3) and hence also an isomorpHIER((F;)3, (¢:)4)) —
AD(EDY, (¢HY)). Consequently, Theorem 4.4 follows from [KW, Theorem 4.12].
For Theorem 4.5, first note thd, is (isomorphic to) the kernel of Agf(D), since
[Fo: F1] > 3 [KW, Theorem 3.4]. By [KW, Theorem 4.11], ARt(D) is the product
of F;A with the group of ordef F|® generated by all elations. HendeAutA(B)| =
|AutA(D)| = |F|3|F;‘A|, which is exactly the order of the group stated in the theorem.
Finally, Theorem 1.1 and the remark after it follow from Theorem 4.4 as in [KW,
Theorem 4.15(il)]; alternatively, in [KW, Theorem 4.15(i)i] useq =2 if [F: F1] > 3
and GKq) = F, N F,, otherwise. O

Remark. Despite the first remark in Section 4.2, the presemifields (4.1) are superior to

those in (4.2) for the study of isotopisms and autotopisms: as indicated in the introduction,
we have no idea how to prove the preceding theorems while staying entirely within the

theory of projective planes and their spreads. This is, in fact, possibly the most interesting
aspect of this paper. On the other hand, a proof that does not wander off into orthogonal
geometries would be desirable, since it might provide a route to the removal of the

unfortunate numerical assumptions in the preceding theorems.

Corollary 4.6. If [Fo : F1] > 3 then the kernel of A(B((F;)§. (6:)7)) is GH?2).

Proof. If K is the kernel therK* can be viewed as a group of collineations. It must be
conjugate to a subgroup d@fA. In view of the actions oA A andK* on the plane, this is
only possible iff K*|=1. O
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4.4. Kernel

We next compute the kernel of essentialy of the semifields and their planes. The
computation is somewhat messy, though not as disgusting as for the corresponding result
in [KW, Theorem 3.4] (which was crucial for the proof of the above Theorem 4.5 and its
corollary).

Theorem 4.7.1f n > 1 and |F| > 8, then the kernel of the plane 2A(B((F;)g, (¢)])) is
GF2).

Note that the hypothesig’| > 8 is essential here since any semifield of order 8 is a
field.

Proof. As in the proof of [KW, Theorem 3.4], we begin with a slight modification of
B((Fi)p. (¢)7): we may assume that

> Tig) =0, (4.8)

For, if A € F* then B.((Fi)g. (¢)]) and Bo((Fi)g, (A¢;)]) are isotopic by (4.2),
A2(x % y) = (Ax) o (ry) forall x, y € F. Now choose. # 0 in the kernel of the additive
mapi — ) T;(A¢;) from F to Fy, and replac®8((F;)g, (¢i)1) by B((F;)g, (A¢)7) in order
to have (4.8).

We now have the presemifield we need. The kernel of the (B (F;)q. (¢i)7)) is
isomorphic to the kernel of any associated semifield. The semifield-, o) we will use
is defined as follows (for alt, y € F):

x =%+ TiGi)? (4.9)
fo=) Ti(Gi%)? (4.10)
Xoy=X*y=Xy+x2fy + 72 fx. (4.11)

By (4.2) and (4.8)x — x is the inverse of the map — x * 1, so that(F, +,0) is a
semifieldS with identity element 1.

The kernel (or left nucleus) @is{k e F | (kox)oy=ko(xoy) forallx,y e F}.
We will assume that there is sorhén this kernel such that + 0, 1, and eventually deduce
a contradiction.

Lemma 4.12.If fiox = froy =0, then

K(E5+ 52 f, + 520) + (£5 + 526 + 320) 2 f
= §(kE + B2 f + F210) + (KE + B2 fc + F20)2 £y
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Proof. By (4.9),kox =kox andX¥oy =x o y. By (4.11),

ko(xoy)=ko(X*7)=k(X*7)+ (& *)fi,
(kox)oy=(kox)*y=(kxX)y+ (k«X)%f,.

Now use (4.11) two more times.O
Lemma 4.13. f; =0.

Proof. First chooser satisfying fiox = fx = O; there are at leas$¥|/| F1|2 > 1 choices,
since[F: F1] > 3 andx — f is an additive map fronF to F1. Thus, we may assume
also thatx # 0. Now choose so that both hypotheses of Lemma 4.12 hold, together with
fy =0. For theser, y, Lemma 4.12 reduces &5 f = yx2 fi.

If £ # 0 theny € {0, 1}. However, there are at least|/|F1|? choices fory, so that
|F1| < |F|/|F1|? < 2, whereas we have assumed thét> 8. O

Lemma 4.14. If fio, =0then f, =0.

Proof. Suppose thatfi., = 0 but f, # 0. Choose anyy as in Lemma 4.12. By
Lemmas 4.12 and 4.13,
kK(F2fy + 72 1) = 5 (R2 ) + (K% + K2 £)° £y
or
[ G2+ 5k) = f ¥ + k32 + 5 f2).

Thus, for eachy chosen in Lemma 4.13?2 + jk € F1{x? + kx? + k3 f2}. Consequently,
the number ofy is at most 2F1|, while there are at lea$f'|/| F1| choices fory satisfying
the hypotheses of Lemma 4.12. ThiB|/|F1|? < 2, which is a contradiction as in the
preceding lemma. O

Conclusion of the proof. This time choose any, and choose any such thatfi.x = 0.
By Lemmas 4.13 and 4.14 together with (4.9) and (4.11),
k(X5 + X2 fy + froy) + K froy =k(x 0y + froy) + K froy

=k(x0y) +k° froy
=kx(xoy)=ko(xoy)
=(kox)oy=(kox)*y
= (kox)y + (kox)?fy
= (k)7 + (kD)2 fy
= (kx)7 + (kX)2 fy.
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Thus, (k + k22 f, = (ki% + (kX)) fy = (k + k?) froy, Where fy, froy € F1. We are
assuming thak + k2 # 0. Consequently, if we can choosesuch thatf, # O then there
are at mostFi| choices forx such thatf., = 0, which is not the case.

Thus, f, =0 for all y € F. However, by (4.10) this is impossible sin€e({1F) = F1
while, if n > 2, then) "5 T;(¢;) € F>. This is a final contradiction. O

Remark. A similar proof shows that the middle nuclefg € F | (x ok) oy =x o
(koy)forall x,y e F}is also GK2).

Corollary 4.15.

(i) Ifn>1and|F| > 8, thenthekernel of A(D((F;)g, (¢)7)* isGF(2).
(i) If [F:F1] > 3 then A(D((F)g, (£)7)) is not self-dual. Hence, A(D((F;)g, (6)1))
ZAB(Fi)g, (£)1)-

Proof.

(i) The kernel ofA(B((F;)g. (¢i)7)) is isomorphic to the field of linear transformations
of F2 that fix each member of the spread. This field of linear transformations is the same
for the dual space of 2, and hence is isomorphic to the kernelMB ((F;)g. (i ’1))" =
AD((F)g, €)iN* (Theorem 4.3).

(ii) Since [F : F1] > 3, the kernel oRU(D((F;)g, (£i)])) is F, by [KW, Theorem 3.4].
By (i), this handles the casé#, | > 2. If | F,,| = 2 see [KW, Theorem 3.31(ii)]. O

Presumably (ii) is true without any hypotheses other than 1 and|F| > 8. The
above special case is somewhat stronger than a previous one in [KW, Theorem 3.31] when
|F,| > 2; (i) is stronger than [KW, Proposition 3.27].

Theorem 1.1 gives a lower bound that is useful only wielmas several prime factors.
We can now provide a small amount of information in the opposite situation:

Corollary 4.16. There are at least three pairwise nonisomor phic semifield planes of order
2P for any prime p > 3: 20(D((F, GF(2)), (1)), A(D((F, GF(2)), (1))* and Knuth’'s plane
AD((F, GF(2)), (1))*d = AB((F, GF(2)), (1)).

Proof. By the preceding corollar®@l(D((F, GF(2)), (1)) and((D((F, GF(2)), (1))* are
not isomorphic, whereg8(B((F, GF(2)), (1)) is self-dual. O

4.5. Boring planes

A semifield plane of ordeg™ is calledboring if its full collineation group is as small
as possible: ordey®”|K*|, whereK is the kernel of the plane. By Theorem 4.7, in the
present setting this means that the ordegd&, which is as small as possible for any
semifield plane of ordey™.

Proposition 4.17.1f m is composite and not a power of 3 then there are at least
(2™ — 1)Pm=22m 12, pairwise nonisomorphic boring commutative semifield planes of
order 2. If m > 3* isa power of 3, then this number is at least (2" — 3)P™=32" /2.
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Proof. By Theorem 4.5, we merely need to guarantee that= 1. Use|F,| = 2 so that
A = 1. In order to deal witht and the count, we will assume thatis not a power of 3,
leaving the excluded case to the reader.

Consider a chaimFi)S(’”) of subfields of F in which each has prime degree over the
nextand F : F1] > 3. Let(;,»)f(’”) be a sequence of elementsff such that; = 1 ands
is any generator of’ over GK2); there are at leagp™ — 1)*™~2| F|/2 such sequences.
Since the stabilizer oJflgz in Aut(F) is trivial, Theorem 4.5 implies that the number of
planes obtained is at lea@” — 1)?"™~2|F|/2| Aut(F)|. O

5. Other commutative semifields

In this section we survey the previously known finite commutative semifields in light
of Proposition 3.8. In each case we will have planes of opgdiefor an odd primep.
The numbers of pairwise nonisomorphic commutative semifield planes of that order in the
various sections is as follows:

[(n —1)/2] in Section 5.1: Albert’s generalized twisted fields

1 in Section 5.2: Coulter—Matthews semifield
[n/4] in Section 5.3: Dickson semifields

1 in Section 5.4: Cohen—Ganley semifield

1 in Section 5.5: Ganley semifield

1 in Section 5.6: Penttila—Williams semifield

Thus, the total numbemown of orderp” is less than log”. Each member of the last four
families has square order, which is the case for some members of the first family but none
in the second one.

5.1. Twisted fields

Albert [Al4,Al5] definedgeneralized twisted fields as follows: LetF = GF(g), whereg
can be odd or even. Let 8 € Aut(F) and; € F* be such that the equatign= x¢~1yf-1
has no solutions. Then

xky=uxy— jx%yP (5.1)

defines a presemifield, +, x); a corresponding semifield is calledyeneralized twisted
field T(q, o, B, j) if « # 8,0 #1, 8 #1, with corresponding affine plaf&(q, «, 8, j).

Proposition 5.2.

(i) A(g,a, B, H*=AQq, B, a, j). B
(i) Ag o B, N 9=Aq, p~Lap™L j7F7).

Proof.
() This is obvious.
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(i) The spread corresponding @(q, «, 8, j)* has members = 0 and{(x,m * x) |
x € F}, m € F. We will use the alternating bilinear foritx, y), (u, v)) = T (xv — yv) on
F & F, whereT is the trace map to the prime field.

For eachm € F we need to find allu, v) such that = ((x, m * x), (u,v)) =T (xv —
[mx — jm®xPlu) forallx € F. Since O= T (xv — xum) + T(xj_ﬁ_lm_“ﬁ_luﬁ_l) we
havev — um + j=F 'm=2# "4~ = 0. Consequently, we obtain the subspége um —
PP meF ™) | u e F}, which proves (ii). O

In [BKL] the generalized twisted field plane¥(q,a?, «, —1) were shown to be
symplectic. In view of Propositions 3.8 and 5.2, we should lodk@t, «, 1, —1). Here
multiplication is given byx o y = xy + x“y"‘fl, and is clearly not commutative; but the
isotopex o' y :=x o y* = xy% + x%y is commutative. The result in [BKL] can now be
slightly strengthened:

Proposition 5.3.

(i) A generalized twisted field plane is coordinatized by a commutative semifield if and
only if it hasthe form (¢, a1, &, —1) with ¢ odd.

(ii) A generalized twisted field plane has a symplectic spread if and only if it hasthe form
A(g, o?, a, —1) with g odd.

(iif) The generalized twisted field planes2l(q, a1 a, —1) with ¢ odd and « of order 3 are
precisaly the ones for which all planes obtained using the six permutations of Knuth’'s
cubical array areisomorphic.

Proof.

(i) Albert [Al4,AlI5] proved that every semifield coordinatizing a generalized twisted
field plane is a generalized twisted field, and that the only commutative ones among these
are as stated.

(ii) This follows from (i) and Propositions 3.8 and 5.2.

(iii) This is clear from (i) and (ii). O

Remark. There are self-dual plane¥(q, «, 8, j) that do not arise from commutative
semifields [BJJ, pp. 120, 121]. Correspondingly, there are plangsc, 8, j) whose
spreadsy are equivalent to their duals9 but are not symplectic.

Corollary 5.4. No generalized twisted field plane is isomorphic to any of the planes
AB(F) (€)D). ABFNY, (€)3)* or AB((F)g, (G)')*.

Proof. There are no commutative generalized twisted fields in characteristic 2, Andl if
a generalized twisted field plane then, by Proposition 5.2, seaend2%. O

The number of generalized twisted field planes. By [AI5] (cf. [BJJ, Theorem 6.1]),
(g, B, j) =Aq, o, B/, j)ifandonlyife’ = oFL, g’ = pFlandj’ = (ja* pF-1)*?
for somea, b € F*,0 € Aut(F) and signt. Let ¢ = p" with p prime. Then it follows
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that the number of pairwise nonisomorphic nondesarguesian generalized twisted field
planes of order ¢ = p” islessthan (n — 1)(n — 2){(p" — 1)/(p"/2 — D)}/n < np"/? <
Jalogq.

However, we are especially concerned witthmmutative semifield planes. As noted
above, by [AI5] any semifield coordinatizing a generalized twisted field plane is a
generalized twisted field. The commutative ones2itg, o1, o, —1) = A(g, o, ¢~ L, —1)
with o # o~ 1, so that the number of nonisomorphic nondesarguesian opg@s-is1)/2].

5.2. Coulter—-Matthews presemifields

Coulter and Matthews [CM] introduced presemifiel@$/1(3°) = (F, +, x), where
F = GF(3%) with e > 1 odd, somewhat resembling those of the preceding section:

xxy=xdy+xy9+x3% —xy (5.5)
(cf. Remark 4 in Section 6). R. Coulter has informed me that i3, then these planes
are nondesarguesian, and moreover they are not twisted field planes (concerning the latter
he notes “that is more of a sketch than a proof at this stage”). Since the order is not a
square, these are the only possibilities for known commutative semifield planes to which
anyCM (3¢) plane might be isomorphic.
As in Section 5.1, using the alternating bilinear fo¢t, y), (1, v)) = T (xv — yv) on
F & F produces the presemifie{d, +, o) given by
xoy=xy+ )Y+ xy¥3 — xy. (5.6)
The corresponding spread is symplectic with respect to that form.
5.3. Dickson semifields
Assume thatg is odd, let j be a nonsquare irKk = GF(g), and let 1#£ o €
Aut(K). Following [De, p. 241] define the commutative Dickson semifiBl@;, o) =
(K2,+, %) [Di3] by
(a,b)* (c,d) = (ac +jb°d? ,ad + bc), (5.7)
and the Knuth semifielé (¢, o) = (K2, +, o) [Kn1] by
(@,b) e (c,d)=(ac+ j~*bd°,ad + bc). (5.8)

In both cases, different choices fgrproduce isotopic semifields and hence isomorphic
planes.

Theorem 5.9.2(D(g, 0))®* Z A(K (¢, 0~ 1)).
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Proof. This time we use the alternating bilinear form
((a,b, c,d),(s,t,u,v)):T(av—i—bu—ct—ds) (5.10)

on K4, whereT denotes the trace froi to the prime field.
Consider the membef(a, b, an + bm,bn + ja°m°) | a,b € K} of the spread for
D(q, o). We need to find als, ¢, u, v) € K* such that

0= T(av + bu — [am + jb”n”]t + [an +bm]s) foralla,be K.

Whena = 0 this says thal (b[u — j° nt®  —ms]) = 0forall b, sothaw = j© nt®  +
ms. Whenb = 0 we haver (a[v — mt — ns]) =0, so thatv = mr + ns. Thus, we obtain
the 2-spacé(s, t, ms + j"flnt”fl, mt +ns) | s,t € K}. This is a member of the spread
obtained usingk?, +, ¢*). O

It is straightforward to check directly that the spread iy, o) is symplectic with
respect to the form (5.10). See [Bu,Sa] for complete solutions to the isotopism and
autotopism questions for Dickson semifields. In particularg &= p¢ for a prime p,
then these semifields produge/2] pairwise nonisomorphic nondesarguesian planes of
orderg?. Note that these planes are not isomorphic to twisted field planes because their
collineation groups behave differently [Al4,Bu].

The above argument also shows that, for the semiféld o, 8,6, j) = (K2, +, o)
defined by

(a,b)o (c,d) = (ac+ jb*d?, ad + bc?)
whereq, 8,6 € Aut(K) andj € K* (cf. [Kn1, pp. 213-214], [De, p. 241]),
\d ~ - 1 - o1
A(S(g.a, B,6, j)) =A(S(q. « Lot o7t —j ))- (5.11)

We note that the semifields discovered by Prince [Pr] are isotopic to the Dickson ones,
according to [BB,BL].

5.4. Cohen—Ganley semifields

Letg > 9 be a power of 3 and lgte K = G F(g) be a nonsquare. The Cohen—GaRley
commutative semifiel€G(q) = (K2, +, ) [CG] is defined by

(@,b) * (c,d) = (ac + jbd + j3(bd)°, ad + be + j(bd)?),
and the Thas—Payne semifidi@(¢) = (K2, +, o) is defined by

(a,b) e (c,d) = (ac+ jbd + j*3bcY® + jY3pd/3 ad + be).

2 This is sometimes called a “Ganley semifield”, but Ganley [Ga] is clear about its origin.
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In [TP] the focus is on ovoids of the generalized quadran@lé, ¢); those ovoids

are equivalent to the required symplectic spreads by the Klein correspondence. Up to
isomorphism there is exactly one of each of these planes for each pessitdabove, the
following is straightforward using (5.10):

Theorem 5.12.2(CG(¢))* = A(TP(g)).
5.5. Ganley semifields

Let K = GF(g), ¢ = 3", withr > 3 odd. Ganley [Ga] constructed another commutative
semifieldG(q) = (K2, +, ), defined by

(@,b) * (c,d) = (ac — b°d — bd®, ad + be + b3d®). (5.13)

In fact, he defined a number of semifields of sizé each of which is isotopic to a
commutative semifield, but it is easy to check that they are all isotopic to (5.13).
This time another straightforward calculation shows tBa;)d = (K2, +, ¢*), Where

(a.b) e (c,d) = (ac +bc'/® — b1°%aY° — b9, ad + bc) (5.14)

determines a spread that is symplectic with respect to the form (5.10). Note that this is
not a spread ofK4, since the kernel ofK?2, +, ) is GH3); it is symplectic only as a
spread of GE3)*". These, and the spreads arising from Proposition 5.3(ii) or (5.6)hare
only symplectic spreads presently known in vector spaces of odd characteristic and having
dimension greater than 4 over their kernels.

5.6. The Penttila—Wlliams semifield

Let K = GF(3®). Penttila and Williams [PW] discovered an ovoid 0f(4, 3°). The
corresponding spread (under the Klein correspondence), determined by the semifield
(K2, +, o) given by

(a,b) e (c,d) = (ad + bd® + bc®’ ac + bd),

is symplectic with respect to the form (5.10). This time Proposition 3.8 produces a
commutative semifieldk 2, +, %) (cf. [BLP, p. 60]) given by

(a,b)* (c,d) = (ac + (bd)®, ad + bc + (bd)?").

Remark. Each of the Dickson, Cohen—Ganley and Penttila—Williams semifields differs
from the other commutative semifields discussed in this paper by having rank 2 over its
middle nucleus.
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6. Concluding remarks

1. The main problem concerning commutative semifields is that there are too few
of them known. In particular, more of them in characteristic 2 having odd dimension
over GK2) would immediately feed into the coding-theoretic machinery in [CCKS] and
produce extremdls-linear codes and extremal line-sets in Euclidean spaces.

Albert [Al1, p. 309] observed back in 1952 that “No central finite commutative division
algebras of characteristic two are known and the question of their existence is a major
problem of our theory.” Of course, Knuth [Kn2] settled this problem in 1965. However,
the results of the present paper now indicate a major problem in the opposite direction,
since now there are many different semifield planes known in characteristic 2 but not so
many in odd characteristic. To be more precise§(t) denotes the number dhown
commutative semifield planes of order at most equal to the real numband S2(x)
denotes the corresponding number for planes of even order, thenlind>(x)/S(x) = 1.

On the other hand, there are mdypes of constructions of commutative semifields
known in odd characteristic than in characteristic 2. Constructions are needed that
produce significantly larger numbers of planes than appear in Section 5: the above (time-
dependent!) limit should be 0.

2. By Proposition 5.3(i), (i), the twisted field plan@i$g, «?, o, —1) with ¢ odd andx
of order 3 have a property in common with desarguesian planes: thajnai¢éaneously
commutative semifield planes and symplectic planes. No other known planes share both of
these properties.

Both of the nondesarguesian semifield planes of order 16 have the following in common
with the preceding planes: they have exactly one “image” under the action of Krfigth’s
[Kn1, p. 209]. However, these planes do not arise from commutative semifields, and hence
also not from symplectic semifields. (There is a subtle difference between a plane being
self-dual and being coordinatized by a commutative semifield.)

There are many more examples of this phenomenon. For example, all semifields
(K2, +, %) with

(a,b)  (c,d) = (ac + bd® j, ad + bc?),

for an involutory automorphism of K andj ¢ K°*1 (cf. [HK]), behave in this manner.

3. All known symplectic spreads in odd characteristic, having dimension greater than 4
over their kernels, are semifield spreads. This is not, however, the case in characteristic 2
[Kal,KW].

4. Commutative semifields in odd characteristic arose in research of Dembowski and
Ostrom [DO] (compare [De, p. 245]). In that paper these authors were concerned with
planar functions, which they invented in order to try to construct new finite affine planes
admitting groups that are point-regular but do not consist of translations. The function they
used that arises from a commutative presemifield was fus) = x * x; the associated
plane is the one coordinatized by the presemifield. Conversely, each planar function
f corresponding to a commutative presemifield of odd characteristic determines that
presemifield viac x y =[f(x +y) — f(x) — f(¥)]/2.
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Dembowski and Ostrom then discussed examples arising from fields, commutative
twisted fields or Dickson semifields. At that time the examples in Sections 5.2, 5.4, 5.5
and 5.6 were not known.

5. The presemifield (4.2) has exactly the same appearance as in Knuth’s paper [Kn2]:
x %y =xy+ (xf(y) + yf(x))% The fundamental difference is thgt: F — F; was
Fi-linear in [Kn2], whereas we have used more general additive rAiaps F;. Are there
still more additive maps : F — Fy for which this formula produces presemifields? In
view of Proposition 3.8 and [KW] it seems unlikely that there are other possibilities.

6. Menichetti [Me] proved a striking result concerning presemifidds (F, +, %),

F = GF(¢"), for which % is both left and right GFky)-linear:for a given prime n, if g is
sufficiently large therg is isotopic to a field or a generalized twisted field. This should be
compared with Corollary 4.16.

7. In the course of the research in [Ka2] | came across symplectic semifields (5.8) that
turned out to have been dealt with earlier by Knuth [Kn1]. The work on semifields in [Ka1l,
KW] now turns out also to be related to other semifields studied by Knuth [Kn2] by using
the ideas in [Kn1]. This suggests that [Kn1] has been neglected for many years. The results
in [BB] further emphasize this point.

8. In 1965, at the end of my first year as a graduate student, R.H. Bruck arranged for
me to spend the summer studying at the University of Chicago. A.A. Albert took off about
an hour each week from his duties as Dean in order to guide me through his papers [Al3,
Al4,AI5], among others. It is quite a pleasant surprise that the results studied so long ago
arose in the present paper.
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