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Abstract

Commutative semifields are constructed by using their relationship with symplectic spread
number of pairwise nonisomorphic commutative semifield planes of even orderN obtained in this
manner is not bounded above by any polynomial inN . The number previously known for anyN was
less than logN .
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Semifields are algebras satisfying all of the axioms for a skew field except (poss
associativity. Their importance in the theory of projective planes is standard
Section 5.3]. Finite ones are not terribly plentiful [CW,KW]; finite commutative ones
painfully lacking.

The study of finite commutative semifields was begun by Dickson almost a ce
ago; he found the first nonassociative ones [Di1,Di2,Di3]. Since then the only exa
found have been some of Albert’sgeneralized twisted fields [Al4,Al5] and Knuth’sbinary
semifields [Kn2]; then, after about 16 years, Cohen–Ganley semifields [CG] and G
semifields [Ga]; then, after another 15 years, Coulter–Matthews semifields [CM];
most recently, one sporadic example due to Penttila and Williams [PW]. It is a bit surp
that so few examples are known (up to isotopism).

✩ This research was supported in part by the National Science Foundation.
E-mail address: kantor@math.uoregon.edu.
0021-8693/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0021-8693(03)00411-3
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In this paper additional finite commutative semifields are defined by means o
awkward formula (4.2). Whereas the number of previously known commutative sem
planes of any given orderN is less than logN , the number obtained here isnot bounded
above by any polynomial in N .

Our construction is a simple combination of Knuth’scubical arrays [Kn1], their
interpretation in [BB], and constructions in [Ka1,KW] for (noncommutative!) semifie
arising fromsymplectic spreads. The manner in which these planes were discovere
perhaps as interesting as the planes themselves, since coding theory played a k
in the discovery.1 The study of symplectic spreads in large-dimensional vector sp
of characteristic 2 was motivated by coding-theory and later also by extremal
sets in Euclidean spaces [Ka1,CCKS]. In [Ka3] a method was described for obt
apparently large numbers of symplectic spreads from desarguesian affine pla
natural modifications involving orthogonal geometries and sequences of field change
semifield planes among the many types of resulting planes were studied at length in
This produced the present paper via the following remarkably elementary fact:Knuth’s
arrays provide a bijection between commutative semifield planes and symplectic semifield
planes (Proposition 3.8).

In order to state our main result, letρ(m) denote the number of prime factors of
integerm, counting multiplicities; logarithms are always to the base 2.

Theorem 1.1.Suppose that q > 1 is a power of 2 and m > 1 is an odd integer. If m is
not a power of 3 or if q > 2, then there are more than qm(ρ(m)−1)/(m logq)2 pairwise
nonisomorphic affine planes of order qm coordinatized by commutative semifields.

If m � 33 is a power of 3 andq = 2 then the corresponding number is greater t
2m(ρ(m)−2)/m2. See Theorem 4.4 for a more precise statement, and Theorem 4
information concerning the full collineation groups of the planes. We have no idea
to prove these theorems while staying within the framework of the standard theo
translation planes: symplectic and orthogonal spreads provide additional structu
the needed results in [Ka1,KW] concerning different but intimately related sympl
semifield planes.

In Section 5 we briefly survey the small number of known finite commutative semifi
and symplectic semifield planes. For some of them slightly more general resul
discussed at length in [BB]. Finally, in Section 6 we conclude with a number of rem
concerning commutative semifields and symplectic spreads.

2. Background

We refer to [De] for the standard background concerning translation planes and
kernels and duals, as well as spreads, semifields and isotopisms. Nevertheless, w
that a presemifield is a semifield if there is an element acting as an identity element.

1 Compare [Kn2, p. 541].
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presemifield is isotopic to many different semifields, all of which produce the same
plane (up to isomorphism), and the kernel of that plane is isomorphic to the kernel (i.e
nucleus) of any of these semifields. Moreover, two such presemifield planes are isom
if and only if their coordinatizing presemifields are isotopic [Al2].

3. Duals and duals

Let P = (Kn,+,◦) be a presemifield, with associated translation planeA(P). We
assume thatx→ x ◦ y andx→ y ◦ x areK-linear maps for eachy ∈Kn. This is certainly
the case ifK is a prime field.

If v1, . . . , vn is the standard basis ofKn, then

vi ◦ vj =
∑
k

aijkvk (3.1)

for aijk ∈K. Thecubical array (aijk) was introduced and studied by Knuth [Kn1]. Sin
it determinesP, we will sometimes writeP(aijk) instead ofP.

We are interested in two other cubical arrays and presemifields related to the o
one. First, the array(ajik) corresponds to the semifieldP(ajik) = (Kn,+,◦∗), where
x ◦∗ y = y ◦ x coordinatizes the projective planedual to the one determined byA(P),
and hence also coordinatizes one of the associated affine planesA(P)∗ of that dual plane
Thus, we write

P(ajik)= P(aijk)∗, (3.2)

with corresponding planeA(ajik)= A(aijk)
∗.

More significantly, Knuth [Kn1] observed that, if(aijk) determines a presemifield, the
so does each such array obtained by applying any permutation inS3 to the subscripts o
the array. Thus, each presemifield produces as many as six presemifields.

A simple geometric explanation for this appears first to have been observed onl
recently in [BB]. Consider the spreadΣ determined byP(aijk). This consists of the
following subspaces ofKn ⊕Kn: Kn ⊕ 0 and

Σ[s] = {
(x, x ◦ s) ∣∣ x ∈Kn}={(x, xMs) ∣∣ x ∈Kn}, s ∈Kn. (3.3)

HereMs is the matrix of right multiplication bys; the nonsingularity of the matrice
Ms, s �= 0, is exactly the condition that(Kn,+,◦) is a presemifield. In terms of (3.1
if s =∑

j sj vj thenvi ◦ s =∑
k(
∑
j sj aijk)vk , so thatMs = (∑j sj aijk)ik .

Thedual spread Σd is a spread of the dual space ofKn⊕Kn. We can identify that dua
space withKn ⊕Kn by using the nondegenerate alternating bilinear form defined by(

(x, y), (x ′, y ′)
)= x · y ′ − y · x ′ (3.4)

in terms of the usual dot product. Then-spaces{(x, xMs) | x ∈ Kn} and {(x, xMt
s) |

x ∈ Kn} are perpendicular, since((x, xMs), (x ′, x ′Mt
s)) = x(x ′Mt

s)
t − (xMs)x ′t = 0 for
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all x, x ′ ∈Kn. It follows thatwe can view Σd as consisting of the subspacesKn ⊕ 0 and

Σd[s] = {(
x, xMt

s

) ∣∣ x ∈Kn}, s ∈Kn.

Write x ◦d s = xMt
s , whereMt

s = (∑j sj akji)ik . Then the planeA(P)d corresponding to

Σd is coordinatized by the presemifield

P(akji)= P
(
Kn,+,◦d

)= P(aijk)d. (3.5)

Note that (3.2) and (3.5) are equalities involving presemifields, with no isotopism
presemifields or isomorphisms of planes entering at all. These equations arise by a
the transpositions (1,2) or (1,3) to the subscripts of the cubical array(aijk).

Commutativity. Clearly

P(aijk) is commutative if and only if P(aijk)∗ = P(aijk). (3.6)

Symplectic spreads. A spread is calledsymplectic with respect to a nondegenera
alternating bilinear form( , ) if (X,X) = 0 for each memberX of the spread. Using
the alternating bilinear form (3.4) we note that

The spreadΣ in (3.3) is symplectic if and only if P(aijk)d = P(aijk). (3.7)

Namely,((x, xMs), (y, yMs)) = 0 for all x, y ⇐⇒ x(yMs)
t − xMsyt = 0 for all x, y

⇐⇒ x(Mt
s −Ms)yt = 0 for all x, y ⇐⇒ Ms = (∑j sj aijk)ik is symmetric. Now use

(3.5).
Symplectic spreads have been studied at length in [Ka1,Ka4,CCKS,KW,Ma]

following simple way to obtain them led to this paper:

Proposition 3.8.For a presemifield plane A, some presemifield for A is commutative if
and only if some spread for Ad∗ is symplectic.

Proof. If the presemifieldP(ajik) is commutative thenP(aijk)∗ = P(aijk), so that
(P(aijk)d∗)d = P(aijk)∗d∗d = P(aijk)d∗ since(1,2)(1,3)(1,2)(1,3)= (1,3)(1,2). Now
use (3.7).

Conversely, if some spread forAd∗ is symplectic, then by [Ta, p. 69] we may assu
that the alternating form is (3.4). ThenP(aijk)d∗d = P(aijk)d∗ by (3.7). As above, it follows
thatP(aijk)∗ = P(aijk)d∗d∗d = P(aijk). ✷
Remarks.

1. There is a very simple “coincidence” underlying the preceding proposition: (3
symplectic if and only if the matricesMs are symmetric; and multiplication in a presem
field is commutative if and only if the multiplication constants form symmetric matric

2. All of the above discussion involved choices, including a choice of basis and a c
of alternating bilinear form. Even the field was implicitly chosen: everything could
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taken place over the prime field without affecting any of the results. With this in min
will usually find it convenient to view our vector spaces as being over the prime field
plying the trace map from a more obvious field down to the prime field in order to ha
field automorphisms.

3. In [BB], the planeAd is obtained using thesymmetric bilinear form

(x, y) · (x ′, y ′)= x · x ′ + y · y ′

instead of the alternating one (3.4).

4. Desarguesian scions and a generalization of Knuth’s semifields

Assume that we are given fieldsF = F0 ⊃ F1 ⊃ · · · ⊃ Fn of characteristic 2 with
[F : Fn] odd and corresponding trace mapsTi :F → Fi . Choose any elementsζi ∈ F ∗,
1 � i � n. DefineD(F,+,•)= D((Fi)n0, (ζi)

n
1) by

x • y = xy2 +
n∑
1

Ti(ζix)y +
n∑
1

ζiTi(xy) (4.1)

andB(F,+,∗)= B((Fi)n0, (ζi)
n
1) by

x ∗ y = xy +
(
x

n∑
1

Ti(ζiy)+ y
n∑
1

Ti(ζix)

)2

. (4.2)

The presemifieldsD((Fi)n0, (ζi)
n
1) were studied in [KW]; there they produced what we

calledsemifield scions of desarguesian planes (hence the “D”). In Theorem 4.3 will see
thatB((Fi)n0, (ζi)

n
1) is a commutative presemifield. This produces a commutative sem

that generalizes Knuth’sbinary semifields [Kn2] (hence the “B”); the latter semifields
correspond to the presemifieldsB((Fi )10, (1)).

4.1. Source of the presemifields B((Fi )n0, (ζi)
n
1)

Theorem 4.3.A(D((Fi)n0, (ζi)
n
1))

∗d ∼= A(B((Fi)n0, (ζi)
n
1)).

Proof. We will use the nondegenerate alternating bilinear form((x, y), (u, v))= T (xv −
yu) on F 2, whereT :F → GF(2) is the trace map. Form ∈ F we need to find all(u, v)
such that

0 = (
(x,m • x), (u, v))= T

(
xv+

[
mx2 +

∑
Ti(ζim)x +

∑
ζiTi(mx)

]
u
)

for all x. Note thatT (Ti(x)) = T (x) for all x, which depends upon the assumption t
[F : Fn] is odd; this implies thatT (aTi(b))= T (Ti(aTi(b)))= T (Ti(a)Ti(b))= T (bTi(a))
for all a, b [KW, Lemma 2.14]. Thus,
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T
(
xuTi(ζim)

)+
∑
T
(
xmTi(ζiu)

)
for all x ∈ F , so that

0 = v + √
m

√
u+

∑
uTi(ζim)+

∑
mTi(ζiu).

It follows that the dual spread consists ofF ⊕ 0 and all

{(
u,

√
u
√
m+

∑
uTi(ζim)+

∑
mTi(ζiu)

) ∣∣∣ u ∈ F
}
, m ∈ F,

and hence arises from an isotope of the presemifieldB((Fi)n0, (ζi)
n
1). ✷

Remarks. The above theorem implies that there are at most three planes obtain
repeated use of the operations∗ and d: A(D((Fi)n0, (ζi)

n
1)), A(D((Fi)n0, (ζi)

n
1))

∗ and
A(B((Fi)n0, (ζi)

n
1)).

The theorem essentially answers a question in [CW, p. 130] concerning the prev
known semifields for whichn = 1: “It remains an open question: When is a Kan
semifield a Knuth binary semifield?” Interpreting the question as asking whether
semifields are somehow related, the answer is now that they are, in fact, intimately r
On the other hand, by Corollary 4.15(ii) these planes are not isomorphic, at le
[F : F1]> 3.

Source of the presemifields D((Fi)n0, (ζi)
n
1). These were constructed by starting with

desarguesian plane and using an algorithm that produces a sequence of modificat
volving orthogonal geometries and field changes. This led precisely to these presem
and to no others. (There were, however, many other types of planes obtained by th
process, but those are not coordinatizable using semifields.) In this sense these p
fields arose “naturally” from desarguesian planes, and hence the same is true of t
semifieldsB((Fi)n0, (ζi)

n
1). This contrasts with the first occurrence of the presemifi

B((Fi)10, (1)) in [Kn2], where they had a more magical appearance.

4.2. Direct proof that (4.2) defines a presemifield

Write f (x)=∑
Ti(ζix). Assume thatx �= 0 and

xy + f (x)2y2 + f (y)2x2 = 0.

Write a = y/x. Thenf (x)ax + f (ax)x = √
xax, so that

√
a = f (x)a + f (ax)= a

n∑
Ti(ζix)+

n∑
Ti(ζiax).
1 1
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We claim that, forj = 1, . . . , n,

√
a = a

n∑
j

Ti(ζix)+
n∑
j

Ti(ζiax).

We have seen that this is true forj = 1. If it is true for somej < n then it is a quadratic
equation satisfied by

√
a with coefficients inFj . Since[F : Fj ] is odd,

√
a ∈ Fj . Then

a

n∑
j

Ti(ζix)+
n∑
j

Ti(ζiax)= aTj(ζix)+ Tj (ζiax)+ a
n∑
j+1

Ti(ζix)+
n∑
j+1

Ti(ζiax)

= a
n∑
j+1

Ti(ζix)+
n∑
j+1

Ti(ζiax),

as claimed.
Consequently,

√
a = Tn(ax)+ aTn(x). Once again we have a quadratic equation

shows that
√
a ∈ Fn. The same equation now yields

√
a = 0, and hencey = 0. ✷

Remarks.
1. The preceding proof was significantly simpler and shorter than the direct pro

[KW] that (4.1) defines a presemifield. In fact, except for an inductive argument, the
proofs have nothing in common. This seems a bit unexpected.

The fact that the presemifields in (4.2) are easier to work with than those in (4.1
again be apparent in Section 4.4. On the other hand, in Section 4.3 we will see th
presemifields in (4.1) have advantages as well.

2. The field elementsζi appear both “inside” and “outside” the trace mapTi in (4.1), but
only “inside” in (4.2). In fact,traces are not needed at all in (4.2): for eachi, the functions
Ti(ζix), ζi ∈ F ∗, run throughall nonzeroFi -linear functionalsF → Fi . Nevertheless, we
have retained theζi in view of the results, needed later, proved about the presemifi
(4.1) in [KW].

Knuth [Kn2] also used an arbitrary nonzero linear functionalF → F1 in his
construction. He observed that different linear functionals produce isotopic presem
which is not the case whenn > 1 (cf. Theorem 4.4).

4.3. Isotopisms and autotopisms

There are tolerable but incomplete results concerning both isomorphisms amon
semifield planes and their collineation groups:

Theorem 4.4. Consider the presemifields B((Fi)n0, (ζi)
n
1) and B((F ′

i )
n′
0 , (ζ

′
i )
n′
1 ), where

n � 1, n′ � 1, F = F0 = F ′
0, and either [F : F1] > 3 and [F : F ′

1] > 3, or Fn and F ′
n′

have a common subfield of size > 2. Then the following are equivalent:
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(i) A(B((Fi)n0, (ζi)
n
1)) and A(B((F ′

i )
n′
0 , (ζ

′
i )
n′
1 )) are isomorphic semifield planes; and

(ii) n′ = n, F ′
i = Fi and there exist λ ∈ F ∗ and σ ∈ Aut(F ) such that ζ ′

i = λζ σi for all
1 � i � n.

Each of these planes has an obvious groupA of collineations arising from the
autotopisms obtained from the equation

(kx) ∗ (k−1y
)= x ∗ y, k ∈ F ∗

n .

Theorem 4.5.Consider a presemifield B = B((Fi)n0, (ζi)
n
1) where n� 1. Let Λ� Aut(F0)

denote the largest subgroup that fixes each ζ−1
1 ζi,2� i � n. If [F0 : F1]> 3 then AutA(B)

is the product of AΛ with the group of order |F |3 generated by all elations.

Proof of Theorems 4.4, 4.5 and 1.1.If the planes are isomorphic then there is a se
linear transformationg of F 2 sending the spread for the first plane to that for the sec
one. Theng acts on the dual space and sends the first dual spread to the secon
Hence, any isomorphismA(B((Fi)n0, (ζi)

n
1))→ A(B((F ′

i )
n′
0 , (ζ

′
i )
n′
1 )) that fixes 0 induces

an isomorphismA(D((Fi)n0, (ζi)
n
1))

∗ ∼= A(B((Fi)n0, (ζi)
n
1))

d → A(B((F ′
i )
n′
0 , (ζ

′
i )
n′
1 ))

d ∼=
A(D((F ′

i )
n′
0 , (ζ

′
i )
n′
1 ))

∗ (Theorem 4.3) and hence also an isomorphismA(D((Fi)n0, (ζi)
n
1))→

A(D((F ′
i )
n′
0 , (ζ

′
i )
n′
1 )). Consequently, Theorem 4.4 follows from [KW, Theorem 4.12].

For Theorem 4.5, first note thatFn is (isomorphic to) the kernel of AutA(D), since
[F0 : F1] > 3 [KW, Theorem 3.4]. By [KW, Theorem 4.11], AutA(D) is the product
of F ∗

nΛ with the group of order|F |3 generated by all elations. Hence,|AutA(B)| =
|AutA(D)| = |F |3|F ∗

nΛ|, which is exactly the order of the group stated in the theorem
Finally, Theorem 1.1 and the remark after it follow from Theorem 4.4 as in [K

Theorem 4.15(iii′)]; alternatively, in [KW, Theorem 4.15(iii′)] useq = 2 if [F :F1] > 3
and GF(q)= Fn ∩ F ′

n′ otherwise. ✷
Remark. Despite the first remark in Section 4.2, the presemifields (4.1) are super
those in (4.2) for the study of isotopisms and autotopisms: as indicated in the introdu
we have no idea how to prove the preceding theorems while staying entirely with
theory of projective planes and their spreads. This is, in fact, possibly the most inter
aspect of this paper. On the other hand, a proof that does not wander off into orth
geometries would be desirable, since it might provide a route to the removal o
unfortunate numerical assumptions in the preceding theorems.

Corollary 4.6. If [F0 : F1]> 3 then the kernel of A(B((Fi)n0, (ζi)
n
1)) is GF(2).

Proof. If K is the kernel thenK∗ can be viewed as a group of collineations. It must
conjugate to a subgroup ofAΛ. In view of the actions ofAΛ andK∗ on the plane, this is
only possible if|K∗| = 1. ✷
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4.4. Kernel

We next compute the kernel of essentiallyall of the semifields and their planes. T
computation is somewhat messy, though not as disgusting as for the correspondin
in [KW, Theorem 3.4] (which was crucial for the proof of the above Theorem 4.5 an
corollary).

Theorem 4.7.If n � 1 and |F | > 8, then the kernel of the plane A(B((Fi)n0, (ζi)
n
1)) is

GF(2).

Note that the hypothesis|F | > 8 is essential here since any semifield of order 8
field.

Proof. As in the proof of [KW, Theorem 3.4], we begin with a slight modification
B((Fi)n0, (ζi)

n
1): we may assume that

∑
Ti(ζi)= 0. (4.8)

For, if λ ∈ F ∗ then B∗((Fi)n0, (ζi)
n
1) and B◦((Fi)n0, (λζi)

n
1) are isotopic: by (4.2),

λ2(x ∗ y)= (λx) ◦ (λy) for all x, y ∈ F. Now chooseλ �= 0 in the kernel of the additiv
mapλ→∑

Ti(λζi) fromF toF1, and replaceB((Fi)n0, (ζi)
n
1) by B((Fi )n0, (λζi)

n
1) in order

to have (4.8).
We now have the presemifield we need. The kernel of the planeA(B((Fi)n0, (ζi)

n
1)) is

isomorphic to the kernel of any associated semifield. The semifield(F,+,◦) we will use
is defined as follows (for allx, y ∈ F ):

x = x̄ +
∑
Ti(ζi x̄)

2 (4.9)

fx =
∑
Ti(ζi x̄)

2 (4.10)

x ◦ y = x̄ ∗ ȳ = x̄ ȳ + x̄2fy + ȳ2fx. (4.11)

By (4.2) and (4.8),x → x̄ is the inverse of the mapx → x ∗ 1, so that(F,+,◦) is a
semifieldS with identity element 1.

The kernel (or left nucleus) ofS is {k ∈ F | (k ◦ x) ◦ y = k ◦ (x ◦ y) for all x, y ∈ F }.
We will assume that there is somek in this kernel such that̄k �= 0,1, and eventually deduc
a contradiction.

Lemma 4.12. If fk◦x = fx◦y = 0, then

k̄
(
x̄ȳ + x̄2fy + ȳ2fx

)+ (
x̄ ȳ + x̄2fy + ȳ2fx

)2
fk

= ȳ(k̄x̄ + k̄2fx + x̄2fk
)+ (

k̄x̄ + k̄2fx + x̄2fk
)2
fy.
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Proof. By (4.9),k ◦ x = k ◦ x andx ◦ y = x ◦ y. By (4.11),

k ◦ (x ◦ y)= k ◦ (x̄ ∗ ȳ)= k̄(x̄ ∗ ȳ)+ (x̄ ∗ ȳ)2fk,
(k ◦ x) ◦ y = (k ◦ x) ∗ ȳ = (k̄ ∗ x̄)ȳ + (k̄ ∗ x̄)2fy.

Now use (4.11) two more times.✷
Lemma 4.13. fk = 0.

Proof. First choosex satisfyingfx◦k = fx = 0; there are at least|F |/|F1|2 > 1 choices,
since[F :F1] � 3 andx → fx is an additive map fromF to F1. Thus, we may assum
also thatx �= 0. Now choosey so that both hypotheses of Lemma 4.12 hold, together
fy = 0. For thesex, y, Lemma 4.12 reduces tōx2ȳ2fk = ȳx̄2fk.

If fk �= 0 thenȳ ∈ {0,1}. However, there are at least|F |/|F1|2 choices fory, so that
|F1| � |F |/|F1|2 � 2, whereas we have assumed that|F |> 8. ✷
Lemma 4.14. If fk◦x = 0 then fx = 0.

Proof. Suppose thatfk◦x = 0 but fx �= 0. Choose anyy as in Lemma 4.12. By
Lemmas 4.12 and 4.13,

k̄
(
x̄2fy + ȳ2fx

)= ȳ(k̄2fx
)+ (

k̄x̄ + k̄2fx
)2
fy,

or

fx(ȳ
2 + ȳk̄)= fy

{
x̄2 + k̄x̄2 + k̄3f 2

x

}
.

Thus, for eachy chosen in Lemma 4.12,̄y2 + ȳk̄ ∈ F1{x̄2 + k̄x̄2 + k̄3f 2
x }. Consequently

the number ofy is at most 2|F1|, while there are at least|F |/|F1| choices fory satisfying
the hypotheses of Lemma 4.12. Thus,|F |/|F1|2 � 2, which is a contradiction as in th
preceding lemma. ✷
Conclusion of the proof. This time choose anyy, and choose anyx such thatfk◦x = 0.
By Lemmas 4.13 and 4.14 together with (4.9) and (4.11),

k̄
(
x̄ȳ + x̄2fy + fx◦y

)+ k̄2fx◦y = k̄(x ◦ y + fx◦y)+ k̄2fx◦y
= k̄(x ◦ y)+ k̄2fx◦y
= k̄ ∗ (x ◦ y)= k ◦ (x ◦ y)
= (k ◦ x) ◦ y = (k ◦ x) ∗ ȳ
= (k ◦ x)ȳ + (k ◦ x)2fy
= (k̄ ∗ x̄)ȳ + (k̄ ∗ x̄)2fy
= (k̄x̄)ȳ + (k̄x̄)2fy.
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Thus, (k̄ + k̄2)x̄2fy = (k̄x̄2 + (k̄x̄)2)fy = (k̄ + k̄2)fx◦y , wherefy,fx◦y ∈ F1. We are
assuming that̄k + k̄2 �= 0. Consequently, if we can choosey such thatfy �= 0 then there
are at most|F1| choices forx̄ such thatfk◦x = 0, which is not the case.

Thus,fy = 0 for all y ∈ F . However, by (4.10) this is impossible sinceT1(ζ1F)= F1
while, if n� 2, then

∑n
2 Ti(ζi) ∈ F2. This is a final contradiction. ✷

Remark. A similar proof shows that the middle nucleus{k ∈ F | (x ◦ k) ◦ y = x ◦
(k ◦ y) for all x, y ∈ F } is also GF(2).

Corollary 4.15.

(i) If n� 1 and |F |> 8, then the kernel of A(D((Fi)n0, (ζi)
n
1))

∗ is GF(2).
(ii) If [F :F1] > 3 then A(D((Fi)n0, (ζi)

n
1)) is not self-dual. Hence, A(D((Fi)n0, (ζi)

n
1))�∼= A(B((Fi)n0, (ζi)

n
1)).

Proof.
(i) The kernel ofA(B((Fi)n0, (ζi)

n
1)) is isomorphic to the field of linear transformatio

of F 2 that fix each member of the spread. This field of linear transformations is the
for the dual space ofF 2, and hence is isomorphic to the kernel ofA(B((Fi)n0, (ζi)

n
1))

d ∼=
A(D((Fi)n0, (ζi)

n
1))

∗ (Theorem 4.3).
(ii) Since [F : F1]> 3, the kernel ofA(D((Fi)n0, (ζi)

n
1)) is Fn by [KW, Theorem 3.4].

By (i), this handles the case|Fn|> 2. If |Fn| = 2 see [KW, Theorem 3.31(ii)]. ✷
Presumably (ii) is true without any hypotheses other thann � 1 and |F | > 8. The

above special case is somewhat stronger than a previous one in [KW, Theorem 3.31
|Fn|> 2; (i) is stronger than [KW, Proposition 3.27].

Theorem 1.1 gives a lower bound that is useful only whenm has several prime factor
We can now provide a small amount of information in the opposite situation:

Corollary 4.16. There are at least three pairwise nonisomorphic semifield planes of order
2p for any prime p > 3: A(D((F,GF(2)), (1)), A(D((F,GF(2)), (1))∗ and Knuth’s plane
A(D((F,GF(2)), (1))∗d = A(B((F,GF(2)), (1)).

Proof. By the preceding corollary,A(D((F,GF(2)), (1)) andA(D((F,GF(2)), (1))∗ are
not isomorphic, whereasA(B((F,GF(2)), (1)) is self-dual. ✷
4.5. Boring planes

A semifield plane of orderqm is calledboring if its full collineation group is as sma
as possible: orderq3m|K∗|, whereK is the kernel of the plane. By Theorem 4.7, in t
present setting this means that the order isq3m, which is as small as possible for a
semifield plane of orderqm.

Proposition 4.17. If m is composite and not a power of 3 then there are at least
(2m − 1)ρ(m)−22m/2m pairwise nonisomorphic boring commutative semifield planes of
order 2m. If m� 34 is a power of 3, then this number is at least (2m − 3)ρ(m)−32m/2m.
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Proof. By Theorem 4.5, we merely need to guarantee thatAΛ= 1. Use|Fn| = 2 so that
A= 1. In order to deal withΛ and the count, we will assume thatm is not a power of 3
leaving the excluded case to the reader.

Consider a chain(Fi)
ρ(m)
0 of subfields ofF in which each has prime degree over t

next and[F : F1]> 3. Let(ζi)
ρ(m)
1 be a sequence of elements ofF ∗ such thatζ1 = 1 andζ2

is any generator ofF over GF(2); there are at least(2m − 1)ρ(m)−2|F |/2 such sequence
Since the stabilizer ofζ−1

1 ζ2 in Aut(F ) is trivial, Theorem 4.5 implies that the number
planes obtained is at least(2m − 1)ρ(m)−2|F |/2|Aut(F )|. ✷

5. Other commutative semifields

In this section we survey the previously known finite commutative semifields in
of Proposition 3.8. In each case we will have planes of orderpn for an odd primep.
The numbers of pairwise nonisomorphic commutative semifield planes of that order
various sections is as follows:

[(n− 1)/2] in Section 5.1: Albert’s generalized twisted fields
1 in Section 5.2: Coulter–Matthews semifield
[n/4] in Section 5.3: Dickson semifields
1 in Section 5.4: Cohen–Ganley semifield
1 in Section 5.5: Ganley semifield
1 in Section 5.6: Penttila–Williams semifield

Thus, the total numberknown of orderpn is less than logpn. Each member of the last fou
families has square order, which is the case for some members of the first family bu
in the second one.

5.1. Twisted fields

Albert [Al4,Al5] definedgeneralized twisted fields as follows: LetF = GF(q), whereq
can be odd or even. Letα,β ∈ Aut(F ) andj ∈ F ∗ be such that the equationj = xα−1yβ−1

has no solutions. Then

x ∗ y = xy − jxαyβ (5.1)

defines a presemifield(F,+,∗); a corresponding semifield is called ageneralized twisted
field T(q,α,β, j) if α �= β,α �= 1, β �= 1, with corresponding affine planeA(q,α,β, j).

Proposition 5.2.

(i) A(q,α,β, j)∗ ∼= A(q,β,α, j).
(ii) A(q,α,β, j)∗d ∼= A(q,β−1, αβ−1, j−β−1

).

Proof.
(i) This is obvious.
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(ii) The spread corresponding toA(q,α,β, j)∗ has membersx = 0 and{(x,m ∗ x) |
x ∈ F },m ∈ F . We will use the alternating bilinear form((x, y), (u, v))= T (xv − yv) on
F ⊕ F , whereT is the trace map to the prime field.

For eachm ∈ F we need to find all(u, v) such that 0= ((x,m ∗ x), (u, v))= T (xv −
[mx − jmαxβ]u) for all x ∈ F . Since 0= T (xv − xum) + T (xj−β−1

m−αβ−1
uβ

−1
) we

havev − um+ j−β−1
m−αβ−1

uβ
−1 = 0. Consequently, we obtain the subspace{(u,um−

j−β−1
vβ

−1
m−αβ−1

) | u ∈ F }, which proves (ii). ✷
In [BKL] the generalized twisted field planesA(q,α2, α,−1) were shown to be

symplectic. In view of Propositions 3.8 and 5.2, we should look atT(q,α,α−1,−1). Here
multiplication is given byx ◦ y = xy + xαyα−1

, and is clearly not commutative; but th
isotopex ◦′ y := x ◦ yα = xyα + xαy is commutative. The result in [BKL] can now b
slightly strengthened:

Proposition 5.3.

(i) A generalized twisted field plane is coordinatized by a commutative semifield if and
only if it has the form A(q,α−1, α,−1) with q odd.

(ii) A generalized twisted field plane has a symplectic spread if and only if it has the form
A(q,α2, α,−1) with q odd.

(iii) The generalized twisted field planes A(q,α−1, α,−1) with q odd and α of order 3 are
precisely the ones for which all planes obtained using the six permutations of Knuth’s
cubical array are isomorphic.

Proof.
(i) Albert [Al4,Al5] proved that every semifield coordinatizing a generalized twis

field plane is a generalized twisted field, and that the only commutative ones among
are as stated.

(ii) This follows from (i) and Propositions 3.8 and 5.2.
(iii) This is clear from (i) and (ii). ✷

Remark. There are self-dual planesA(q,α,β, j) that do not arise from commutativ
semifields [BJJ, pp. 120, 121]. Correspondingly, there are planesA(q,α,β, j) whose
spreadsΣ are equivalent to their dualsΣd but are not symplectic.

Corollary 5.4. No generalized twisted field plane is isomorphic to any of the planes
A(B((Fi)n0, (ζi)

n
1)), A(B((Fi)

n
0, (ζi)

n
1))

∗ or A(B((Fi)n0, (ζi)
n
1))

∗d.

Proof. There are no commutative generalized twisted fields in characteristic 2, andA is
a generalized twisted field plane then, by Proposition 5.2, so areA∗ andAd. ✷
The number of generalized twisted field planes. By [Al5] (cf. [BJJ, Theorem 6.1])
A(q,α,β, j)∼= A(q,α′, β ′, j ′) if and only ifα′ = α±1, β ′ = β±1 andj ′ = (jaα−1bβ−1)±θ
for somea, b ∈ F ∗, θ ∈ Aut(F ) and sign±. Let q = pn with p prime. Then it follows
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that the number of pairwise nonisomorphic nondesarguesian generalized twisted field
planes of order q = pn is less than (n − 1)(n − 2){(pn − 1)/(pn/2 − 1)}/n < npn/2 �√
q logq .
However, we are especially concerned withcommutative semifield planes. As note

above, by [Al5] any semifield coordinatizing a generalized twisted field plane
generalized twisted field. The commutative ones areA(q,α−1, α,−1)∼= A(q,α,α−1,−1)
with α �= α−1, so that the number of nonisomorphic nondesarguesian ones is[(n− 1)/2].

5.2. Coulter–Matthews presemifields

Coulter and Matthews [CM] introduced presemifieldsCM(3e) = (F,+,∗), where
F = GF(3e) with e > 1 odd, somewhat resembling those of the preceding section:

x ∗ y = x9y + xy9 + x3y3 − xy (5.5)

(cf. Remark 4 in Section 6). R. Coulter has informed me that, ife � 3, then these plane
are nondesarguesian, and moreover they are not twisted field planes (concerning th
he notes “that is more of a sketch than a proof at this stage”). Since the order is
square, these are the only possibilities for known commutative semifield planes to
anyCM(3e) plane might be isomorphic.

As in Section 5.1, using the alternating bilinear form((x, y), (u, v))= T (xv − yv) on
F ⊕ F produces the presemifield(F,+,•) given by

x • y = x9y + (xy)1/9 + xy1/3 − xy. (5.6)

The corresponding spread is symplectic with respect to that form.

5.3. Dickson semifields

Assume thatq is odd, let j be a nonsquare inK = GF(q), and let 1 �= σ ∈
Aut(K). Following [De, p. 241] define the commutative Dickson semifieldD(q, σ ) =
(K2,+,∗) [Di3] by

(a, b) ∗ (c, d)= (
ac+ jbσdσ , ad + bc), (5.7)

and the Knuth semifieldK (q, σ )= (K2,+,•) [Kn1] by

(a, b) • (c, d)= (
ac+ j−1bdσ , ad + bc). (5.8)

In both cases, different choices forj produce isotopic semifields and hence isomorp
planes.

Theorem 5.9.A(D(q, σ ))d∗ ∼= A(K (q, σ−1)).
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Proof. This time we use the alternating bilinear form(
(a, b, c, d), (s, t, u, v)

)= T (av + bu− ct − ds) (5.10)

onK4, whereT denotes the trace fromK to the prime field.
Consider the member{(a, b, an + bm,bn + jaσmσ ) | a, b ∈ K} of the spread for

D(q, σ ). We need to find all(s, t, u, v) ∈K4 such that

0 = T (av+ bu− [
am+ jbσnσ ]t + [an+ bm]s) for all a, b ∈K.

Whena = 0 this says thatT (b[u−jσ−1
ntσ

−1 −ms])= 0 for all b, so thatu= jσ−1
ntσ

−1 +
ms. Whenb = 0 we haveT (a[v −mt − ns])= 0, so thatv =mt + ns. Thus, we obtain
the 2-space{(s, t,ms + jσ−1

ntσ
−1
,mt + ns) | s, t ∈ K}. This is a member of the sprea

obtained using(K2,+,•∗). ✷
It is straightforward to check directly that the spread forD(q, σ ) is symplectic with

respect to the form (5.10). See [Bu,Sa] for complete solutions to the isotopism
autotopism questions for Dickson semifields. In particular, ifq = pe for a primep,
then these semifields produce[e/2] pairwise nonisomorphic nondesarguesian plane
orderq2. Note that these planes are not isomorphic to twisted field planes becaus
collineation groups behave differently [Al4,Bu].

The above argument also shows that, for the semifieldS(q,α,β, θ, j) = (K2,+,◦)
defined by

(a, b) ◦ (c, d)= (
ac+ jbαdβ, ad + bcθ)

whereα,β, θ ∈ Aut(K) andj ∈K∗ (cf. [Kn1, pp. 213–214], [De, p. 241]),

A
(
S(q,α,β, θ, j)

)d ∼= A
(
S
(
q,α−1, βα−1, θ−1,−jα−1))

. (5.11)

We note that the semifields discovered by Prince [Pr] are isotopic to the Dickson
according to [BB,BL].

5.4. Cohen–Ganley semifields

Let q � 9 be a power of 3 and letj ∈K =GF(q) be a nonsquare. The Cohen–Ganl2

commutative semifieldCG(q)= (K2,+,∗) [CG] is defined by

(a, b) ∗ (c, d)= (
ac+ jbd + j3(bd)9, ad + bc+ j (bd)3),

and the Thas–Payne semifieldTP(q)= (K2,+,•) is defined by

(a, b) • (c, d)= (
ac+ jbd + j1/3bc1/9 + j1/3bd1/3, ad + bc).

2 This is sometimes called a “Ganley semifield”, but Ganley [Ga] is clear about its origin.
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In [TP] the focus is on ovoids of the generalized quadrangleQ(4, q); those ovoids
are equivalent to the required symplectic spreads by the Klein correspondence.
isomorphism there is exactly one of each of these planes for each possibleq . As above, the
following is straightforward using (5.10):

Theorem 5.12.A(CG(q))d∗ ∼= A(TP(q)).

5.5. Ganley semifields

LetK = GF(q), q = 3r , with r � 3 odd. Ganley [Ga] constructed another commuta
semifieldG(q)= (K2,+,∗), defined by

(a, b) ∗ (c, d)= (
ac− b9d − bd9, ad + bc+ b3d3). (5.13)

In fact, he defined a number of semifields of sizeq2 each of which is isotopic to
commutative semifield, but it is easy to check that they are all isotopic to (5.13).

This time another straightforward calculation shows thatG(q)d = (K2,+,•∗), where

(a, b) • (c, d)= (
ac+ bc1/3 − b1/9d1/9 − b9d, ad + bc) (5.14)

determines a spread that is symplectic with respect to the form (5.10). Note that
not a spread ofK4, since the kernel of(K2,+,•) is GF(3); it is symplectic only as a
spread of GF(3)4r . These, and the spreads arising from Proposition 5.3(ii) or (5.6), arthe
only symplectic spreads presently known in vector spaces of odd characteristic and having
dimension greater than 4 over their kernels.

5.6. The Penttila–Williams semifield

Let K = GF(35). Penttila and Williams [PW] discovered an ovoid ofQ(4,35). The
corresponding spread (under the Klein correspondence), determined by the se
(K2,+,•) given by

(a, b) • (c, d)= (
ad + bd9 + bc27, ac+ bd),

is symplectic with respect to the form (5.10). This time Proposition 3.8 produc
commutative semifield(K2,+,∗) (cf. [BLP, p. 60]) given by

(a, b) ∗ (c, d)= (
ac+ (bd)9, ad + bc+ (bd)27).

Remark. Each of the Dickson, Cohen–Ganley and Penttila–Williams semifields d
from the other commutative semifields discussed in this paper by having rank 2 o
middle nucleus.
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6. Concluding remarks

1. The main problem concerning commutative semifields is that there are to
of them known. In particular, more of them in characteristic 2 having odd dimen
over GF(2) would immediately feed into the coding-theoretic machinery in [CCKS]
produce extremalZ4-linear codes and extremal line-sets in Euclidean spaces.

Albert [Al1, p. 309] observed back in 1952 that “No central finite commutative divi
algebras of characteristic two are known and the question of their existence is a
problem of our theory.” Of course, Knuth [Kn2] settled this problem in 1965. Howe
the results of the present paper now indicate a major problem in the opposite dire
since now there are many different semifield planes known in characteristic 2 but
many in odd characteristic. To be more precise, ifS(x) denotes the number ofknown
commutative semifield planes of order at most equal to the real numberx, andS2(x)

denotes the corresponding number for planes of even order, then limx→∞ S2(x)/S(x)= 1.
On the other hand, there are moretypes of constructions of commutative semifiel

known in odd characteristic than in characteristic 2. Constructions are neede
produce significantly larger numbers of planes than appear in Section 5: the above
dependent!) limit should be 0.

2. By Proposition 5.3(i), (ii), the twisted field planesA(q,α2, α,−1) with q odd andα
of order 3 have a property in common with desarguesian planes: they aresimultaneously
commutative semifield planes and symplectic planes. No other known planes share both
these properties.

Both of the nondesarguesian semifield planes of order 16 have the following in co
with the preceding planes: they have exactly one “image” under the action of KnuthS3

[Kn1, p. 209]. However, these planes do not arise from commutative semifields, and
also not from symplectic semifields. (There is a subtle difference between a plane
self-dual and being coordinatized by a commutative semifield.)

There are many more examples of this phenomenon. For example, all sem
(K2,+,∗) with

(a, b) ∗ (c, d)= (
ac+ bdσ j, ad + bcσ ),

for an involutory automorphismσ of K andj /∈Kσ+1 (cf. [HK]), behave in this manner.
3. All known symplectic spreads in odd characteristic, having dimension greater

over their kernels, are semifield spreads. This is not, however, the case in characte
[Ka1,KW].

4. Commutative semifields in odd characteristic arose in research of Dembows
Ostrom [DO] (compare [De, p. 245]). In that paper these authors were concerne
planar functions, which they invented in order to try to construct new finite affine pla
admitting groups that are point-regular but do not consist of translations. The functio
used that arises from a commutative presemifield was justf (x) = x ∗ x; the associated
plane is the one coordinatized by the presemifield. Conversely, each planar fu
f corresponding to a commutative presemifield of odd characteristic determine
presemifield viax ∗ y = [f (x + y)− f (x)− f (y)]/2.
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Dembowski and Ostrom then discussed examples arising from fields, commu
twisted fields or Dickson semifields. At that time the examples in Sections 5.2, 5.
and 5.6 were not known.

5. The presemifield (4.2) has exactly the same appearance as in Knuth’s paper
x ∗ y = xy + (xf (y) + yf (x))2. The fundamental difference is thatf :F → F1 was
F1-linear in [Kn2], whereas we have used more general additive mapsF → F1. Are there
still more additive mapsf :F → F1 for which this formula produces presemifields?
view of Proposition 3.8 and [KW] it seems unlikely that there are other possibilities.

6. Menichetti [Me] proved a striking result concerning presemifieldsS = (F,+,∗),
F = GF(qn), for which ∗ is both left and right GF(q)-linear: for a given prime n, if q is
sufficiently large thenS is isotopic to a field or a generalized twisted field. This should
compared with Corollary 4.16.

7. In the course of the research in [Ka2] I came across symplectic semifields (5.
turned out to have been dealt with earlier by Knuth [Kn1]. The work on semifields in [
KW] now turns out also to be related to other semifields studied by Knuth [Kn2] by u
the ideas in [Kn1]. This suggests that [Kn1] has been neglected for many years. The
in [BB] further emphasize this point.

8. In 1965, at the end of my first year as a graduate student, R.H. Bruck arrang
me to spend the summer studying at the University of Chicago. A.A. Albert took off a
an hour each week from his duties as Dean in order to guide me through his paper
Al4,Al5], among others. It is quite a pleasant surprise that the results studied so lon
arose in the present paper.
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