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The study of asymptotics of random permutations was initiated by Erdos and Tunto. in a 
series of papers from 1965 to 1968, and has been much studied since. Recent developments 
in permutation group theory make it reasonable to ask questions with a more group­
theoretic flavour. Two examples considered here are membership in a proper transitive 
subgroup, and the intersection of a subgroup with a random conjugate. These both arise 
from other topics (quasigroups, bases for permutation groups, and design constructions). 

1. Permutations lying in a transitive subgroup 

Sn and An denote the symmetric and alternating groups on the set X = {I, .... n}. A 
subgroup G of S" is transitive if, for all i, j E X, there exists g E G with ig ~ j. In a 
preliminary version of this paper, we asked the following question: 

Question 1.1. Is it true that,/or almost all permutations g E Sn. the only transitive subgroups 
containing g are Sn and (possihly) An? 

Here, of course, 'almost all g E S" have property P' means 'the proportion of elements of 
S" not having property P tends to 0 as n --> ex'. 

An affirmative answer to this question was given by Luczak and Pyber, in [15]. We will 
discuss the motivation for this question, and speculate on the rate of convergence. 

To analyse the question, we make the customary division of transitive subgroups into 
imprimitive and primitive ones. A subgroup G is irnprimitive if it leaves invariant some 
non-trivial partition of X, and primitive otherwise. Imprimitive subgroups may be large, 
but the maximal ones are relatively few in number: just d (n) - 2 conjugacy classes, where 
d(n) is the number of divisors of n. (If the permutation g lies in an imprimitive subgroup, 
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then it lies in a maximal one, which is precisely the stabiliser of a partition of X into s 

parts of size r, where rs = nand r, S > 1.) On the othe.f ha.nd, primitive groups are more 
mysterious; but it follows from the classification of fimte sImple groups that 

_. they are scarce (for almost all n, the only primitive groups are S" and A" see [3]); 

_ they are small (order at most ndoglog" with 'known' exceptions, see [1]). 

In addition, many special classes of primitive groups (for example, the doubly transitive 

groups), have been completely classified. 
The number of permutations that lie in some primitive subgroup other than Sn or An can 

be bounded, since such permutations have quite restricted cycle structure (a consequence 
of minimal degree bounds, see [14] .. note that these bounds are a consequence of the 
classification of finite simple groups - or by more elementary means, as Luczak and Pyber 
[15] do). So we will concentrate on imprimitive subgroups, and, in particular, the largest 
imprimitive subgroups: those preserving a partition of X into two sets of SIze n/2, for n 

even. 
A permutation fixing such a partition must either fix some (n/2)-set, or interchange 

some (n/2)-set with its complement. Now a permutation interchanges some (n/2)-set 
with its complement if and only if all its cycles have even length. The number of such 

permutations is 
((n_l)I!)2 = ((n-l)(n-3) ... 3.1)2, 

which is easily seen to be n 'O(I/ft). (This formula is easily proved using generating 
function methods. A 'counting' proof is given in [2]. Curiously, it is equal to the number 
of permutations with all cycles of odd length, see [7, 8, 9, 10]. We are not aware of a 

'counting' proof of this coincidence!) . . 
On the other hand, a permutation fixes an (n/2)-set if and only if some subfamIly of Its 

cycle lengths has sum n/2. There seems to be no simple formula for the numbe~,of such 
permutations; but Luczak and Pyber show that their proportlOn IS at most An , where 
A and c are positive constants. Indeed, more generally, the proportion of permutatIons 

fixing some k-set tends to 0 as k --+ eN (as long as n :2: 2k). .' 
We turn now to the motivation for this question. A quasigroup is a set wIth a bmary 

multiplication in which left and right division are uniquely defined (equivalently, the 
multiplication table is a Latin square). In a quasigroup Q, left and nght translatlOns are 
permutations, represented by the rows and columns of the mulllplrcatlOntable of Q. The 
multiplication group Mlt(Q) of Q is the group generated by these permutatlOns. ThIS group 
'controls' the character theory of Q [16]. In particular, if Mlt(Q) is 2-transll1ve, then the 
character theory of Q is trivial. Smith conjectured that this happens most of the time, and 

this is indeed true. 

Theorem 1.2. For almost all Latin squares A. the group generated by the rows oj A is the 

symmetric or alternating group. 

This is proved in [2], but follows more directly from the affirmative answer to Question 
1.1, since the rows of a Latin square obviously generate a transitive permutation group, and 
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the first row of a random Latin square is a random permutation (that is. all permutations 
occur equally often as first rows of Latin squares). 

This suggests several related questions: 

Is it true that, for almost all Latin squares, the first two rows generate the symmetric 
or alternating group? (By a theorem of Dixon [4], almost all pairs of permutations 
generate S" or A,,; and a positive proportion of these (l/e, in the limit) have the 
property that the second is a derangement of the first, and hence occur as the first 
two rows of a Latin square. But not all derangements occur equally often.) More 
generally, study further the probability distribution on derangements induced by their 
frequency of occurrence in Latin squares. What is the ratio of the greatest to the 
smallest number of completions? 

2 Is it true that the multiplication groups of almost all loops are symmetric or alternat­
ing? (A loop is a quasigroup with identity. Thus we are requiring that the first row and 
column of the Latin square correspond to the identity permutation, and the deduction 
of the analogue of Theorem 1.2 from Question 1.1 fails.) 

3 What proportion of Latin squares have the property that all the rows are even 
permutations? (If the limit is zero, the alternating group can be struck out from the 
conclusion to Theorem 1.2.) 

4 Is the proportion of permutations that do lie in a proper transitive subgroup 0(n-1/2)? 
(By our remarks above, this would be best possible.) 

2. Bases and intersections of conjugates 

Introducing the next topic requires a fairly long detour. Let G be a permutation group on 
a set X. A base for G is a sequence (x I, ... , x,) of points of X whose pointwise stabiliser 
is the identity. It is irredundant if no point is fixed by the pointwise stabiliser of its 
predecessors. Bases are of interest in several fields, including computational group theory. 

If G has an irredundant base of size r, then 2' ,; IGI ,; n(n - 1) ... (n - r + 1), whence 
10g,IGI ,; r ,; 10g,IGI. It is easy to construct examples at or near either side of this 
inequality. Nevertheless, it is thought that, for many interesting groups, the base size 
is closer to the lower bound. In particular, certain primitive groups whose order is 
polynomially bounded should have bases of constant size. 

To elucidate this, we look more closely at primitive groups. The O'Nan-Scott theorem 

(see [I]) divides these into several classes. All but one of these classes consist of groups 
that can be 'reduced' in some way to smaller ones or studied by other means. The one 
class left over consists of groups G that are almost simple (that is, that have a non-abelian 
simple normal subgroup N such that G is contained in Aut(N)). Using the classification of 
finite simple groups, it is possible to make some general statements about almost simple 
primitive groups. For example, the following result holds (see [I, 12]; the latter paper 
gives c = 8). 

Theorem 2.1. There is a constant c with the Jollowing property. Let G be an almost simple 

primitive permutation group of degree n. Then either 
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I · S )1' A acting 011 the 
(a) G is known (specifically. G is (/ symmetric or a tt},:n.atll1 g ~~OlIP III ~. m.. . S () . size 

f'k ' b 'r )f'l ", 1 01' 0/1 the set 0/ parlltlo/lS qj (1 ..... 111) [/!to.li palt. j set () -su Sf s ( (' ... , J d I 
r or G is Q' classical group, acting on an orhir of subspaces (~( its natural /110 u e or 011 

(j'n orbit of' pairs of suhspaces ql complementary dimension): or 

(b)IGI~Il'· 

The methodological point raised by this and similar theoremsis that in the study of finite 
( . . 'fter the classical divisions mto mtransltIve and transltne groups, 
permutatIOn groups, a . . .. h Id I' divide 
and of transitive groups into primitive and impnmltlve groups, on,e S ,ou a ,s~ 
primitive groups into 'large' and 'small' groups. the large o~es bem: ~~own III some 
sense. This principle applies to both theoretical and com~utatlOnal analysIs.) '. . 

It is conjectured that there is a constant c' (per1Japs c = 3) ,such tha:, ~~ G l:~ (/lmos~ 
simpf~ and primitire and does not sati,~lY (a), then almost erery c -tuple qf POlHtS IS a bast 

forA~~Ording to the classification of finite simple groups, the simple normal subgroup N 

of G is an alternating group, a group of Lie type, or one of the 26 SPO~,"~I~ groups. In 
the first of these three cases, we were able to prove the conjecture (WIth [ - ). 

Th 2 2 Let G be an almost simple group. not o[Currillg under Theorem 2.1 (a). If 
eorem" II' ,('t e 

the simple normal subgroup of G is an alternating group, then almost a pmrs 0 pOlI1 S ar 

hases. 

We outline the proof. . . . . . 
The first observation is that if G is transitive and H IS a pomt stablhser, the proportIOn 

of ordered pairs of points that are bases is equal to the proportion of elements g E G for 

which H n H' = 1, where H' is the conjugate g-I Hg. 'f 

S 
d primitivity of G is equivalent to maximality of the subgroup H. Moreover,. 1 

econ , SAC 'ider H (the pomt 
~ 6 then Aut(Am) = Sm, so we may assume that G = m or m.. .ons .. . 

111 T ' . ' M {I \ If H IS mtransltlve, It fixes a 
stabiliser in the unknown actIOn) actmg on = , ... , m J'. . 

k-subset of M for some k; by maximality, it is the stabiliser of thIS k-set, and the actIOn 
of G is equivalent to that on k-sets. Similarly, if H is transitIve but Impnmltlve, then It IS 

the stabiliser of a partition, and G acts on partitions of fixed shape .. Both of th~se ~a;~: 
are included under Theorem 2.1(a). So H is pnmltlve on M. (ThIS IS an ex amp eo 

"bootstrap principle': note that m is much smaller than n.) 

Thus, finally, we need a result about random permutatIOns. 

. . b ( S t S or A Theil (or almost all 
P 'I' 23 Let H be a primlttve su group 0 m, no m m' '. roposl Ion .• . 
permutations g E Sm, we have H n Hg = 1. 

This is true, and can be shown by a simple counting argu~ent, except in the case of;i~~ 
largest primitive groups (the automorphism groups of the Ime graphs of K, or Kc:'~ount 
m _ (') or r2 respectively), where some special pleadmg IS reqUlred. In outl.me .. 

. -I '(,- k ) 'th h k E H h k ~ 1 g E G and hg = k. The number of such tnples IS not 
tnp es fI, ,g WI, ,,-;-, 'd . 1 nt 
more than IHI'c, where c is the largest order of the centralizer of a non-l entity e erne 
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in H: and it is not less than thc number of elements g with H n H.'l. i=- 1. Now use the fact 
that primitive groups are smalL and their elements have relatively fev.' fixed points (and 
so relatively small centralizers). 

Remark. There is an analogy between intersections of conjugates and automorphism 
groups. (For example, if the group G is the automorphism group of a particular structure 
S, then the intersections of pairs of conjugates of G represent those groups that can be 
represented in the following way: impose two copies of the structure S on the underlying 
set, and consider all those permutations which are automorphisms of both structures 
simultaneously.) 

Thus. Proposition 2.3 should be compared with the statement 'almost all graphs have 
trivial automorphism group' [6]. As the analogue of Fruch!'s theorem [II]. we propose 
the following conjecture. 

Conjecture 2.4. Let GI. G:2, ... be primitive groups (~l degrees 111, n2, .... where ni ---+ x and 

Gi =1= 5,1, or All, for all i. Let X be an abstract group that i,~ emheddahle in Gi for infinitel.v 

many values ql i. Theil. for some i. and some permutation g E SII" we hm'e Gi n G; = X. 

This has been proved by Kantor [13] for the family of groups G, = prL(i,q), 11, 

(q' -1)/(q -1), for a fixed prime power q. (In this case, every finite group is embeddable in 
G, for all sufficiently large i.) Kantor used this result to show that. for a fixed prime power 
q, every finite group is the automorphism group of a square 2-((q' - 1 )/(q - I), (q'-I -

I)/(q - I), (q'-' - I)/(q - 1)) design for some i. 
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