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Abstract. Given a black-box group G isomorphic to some finite simple group of Lie type and
the characteristic of G, we compute the standard name of G by a Monte Carlo algorithm. The
running time is polynomial in the input length and in the time requirement for the group op-
erations in G.

The algorithm chooses a relatively small number of (nearly) uniformly distributed random
elements of G, and examines the divisibility of the orders of these elements by certain primitive
prime divisors. We show that the divisibility statistics determine G, except that we cannot dis-
tinguish the groups PWð2mþ 1; qÞ and PSpð2m; qÞ in this manner when q is odd and md 3.
These two groups can, however, be distinguished by using an algorithm of Altseimer and
Borovik.

1 Introduction

There have been a number of recent algorithms for recognizing finite groups of Lie
type. Some of these [13, 25, 26] take a matrix group G ¼ hSic GLðd; qÞ as input,
and decide by a polynomial-time one-sided Monte Carlo algorithm whether G is a
classical group defined on the d-dimensional vector space over GFðqÞ. (We refer to
Section 2 for the definition of Monte Carlo algorithms.) Other approaches [8, 12, 14]
go further. They recognize G constructively, which means that they provide proce-
dures that express any given element of G in terms of S. However, these algorithms
do not run in polynomial time if the field size q is not polynomial in the input length.

Still other approaches [17, 7, 9, 19, 20, 21] consider constructive recognition in the
more general situation when a simple group G ¼ hSi is given as a black-box group,
where ‘constructive’ means that they construct an isomorphism with a ‘concrete’
copy of the group; but again the running time is not polynomial for large q. Recall
that the elements of a black-box group G are assumed to be coded by 0-1 strings of
uniform length N. A group element may be encoded by di¤erent strings and there
may be strings which are not the coding of any group element. Oracles are provided
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for multiplying or inverting elements and for deciding whether or not two given ele-
ments are equal. In black-box groups, we automatically have the upper bound 2N for
jGj, and so N d logjGj. For example, if G is a classical group of dimension d over
GFðqÞ then d 2 log q is OðNÞ.

In this paper we also consider simple groups of Lie type given as black-box groups.
Our goal is less ambitious than constructive recognition, but our algorithm runs in
polynomial time (meaning OðmjSjNcÞ time, where m is an upper bound for the time
requirement of group operations in G and c is an absolute constant).

Theorem 1.1. There is a polynomial-time Monte Carlo algorithm which, when given a

black-box group G ¼ hSi known to be isomorphic to a finite simple group of Lie type

in given characteristic p, finds the standard name of G.

The proof involves information concerning the proportions of elements of G of
certain carefully chosen orders. This is similar in spirit to statistical ideas used in the
aforementioned references or in [5]. We construct a sample of (nearly) uniformly dis-
tributed random elements of G, and determine whether the orders of these elements
are divisible by certain primitive prime divisors (cf. Section 2). In Sections 3–4 we
describe which primitive prime divisors enable us to distinguish the di¤erent groups
of Lie type. Section 5 contains probability estimates that are used in Section 6 to
deduce that sampling OðNÞ elements provides the correct divisibility statistics with
high probability. We note that if an upper bound M < 2N is known in advance for
jGj then a sample of size OðlogMÞ su‰ces, but we formulate our results using only
the bound M ¼ 2N .

Our method determines the standard name of G required in Theorem 1.1, except
that a di¤erent and more delicate argument is required to distinguish the groups
PWð2mþ 1; qÞ and PSpð2m; qÞ when q is odd and md 3; see [1].

In contrast to other recent Monte Carlo recognition algorithms for classical groups
[13, 25, 26] mentioned above, we do not even start with knowledge of the correct di-
mension or field, thereby enhancing the possibilities for applications of our results
(e.g., in [5, 24]). As with other algorithmic investigations into groups of Lie type, not
having linear algebra available has required entirely di¤erent types of methodologies
to be developed. We have assumed that the characteristic of our group G is known in
advance. That assumption can be avoided in various settings (cf. [5, 21]).

Theorem 1.1 proves Conjecture 9.2 in [5]. Portions of that theorem, proved by the
first and third authors in [6], were first announced in [5]. After producing all of Table 1
except for the last column, they discovered that its entries v1; v2 had been used long
ago by Artin [2] to help distinguish simple groups by their orders (note, however, that
we do not know jGj in Theorem 1.1). The invariants v1; v2 were also introduced by the
remaining two authors in [20]. Upon receipt of [5], they realized that its Conjecture
9.2 could be proved using the methods of [21], which led to the present merged paper.

2 Background

A randomized algorithm is called Monte Carlo if it may return an incorrect output,
but the probability of error is controlled by the user (see [4] for a discussion of
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randomized algorithms). A ‘one-sided’ Monte Carlo algorithm for a decision prob-
lem means that one of the possible two outputs is guaranteed to be correct. In the
context of recognition algorithms for classical groups of Lie type in their natural
representation, this means that if the algorithm outputs that G is a classical group
then the output is correct.

We refer the reader to [3, 4, 5, 20, 21] for discussions of black-box groups and pre-
vious algorithms for recognizing these groups. We emphasize again that, while the
algorithms in [20, 19] constructively recognize the black-box groups in Theorem 1.1
(and hence provide more information than that theorem), those algorithms do not
run in time polynomial in N when the size of the underlying field is not bounded.

The above references also discuss the role of black-box groups in the study of groups
of matrices over finite fields; this is the most important case of black-box groups.
Here we only note that it is possible that the oracles for a black-box group perform
the group operations in an overgroup G of G (the example we have in mind is
G cG ¼ GLðVÞ). In this case, we assume that the oracles can test whether a string
represents an element of G (and so the group operations can be performed), but we
do not assume that the oracles can decide whether a string represents an element of
GnG or G.

We will need random elements of black-box groups. We say that an algorithm
outputs an e-uniformly distributed element x in a group G if

ð1 � eÞ=jGj < Probðx ¼ gÞ < ð1 þ eÞ=jGj for all g A G:

‘Nearly uniform’ means e-uniform for some ec 1
2.

Theorem 2.1 ([3]). Let c and C be given positive constants. Then there is a Monte Carlo

algorithm which, when given a black-box group G ¼ hSi of order at most M, sets up a

data structure for the construction of e-uniformly distributed elements for e ¼ M�c, at a

cost of Oðlog5 M þ jSj log logMÞ group operations. The probability that the algorithm

fails is at most M�C .
If the algorithm succeeds, it permits the construction of e-uniformly distributed, in-

dependent random elements of G at a cost of OðlogMÞ group operations per element.

A fundamental and standard notion used throughout this paper is that of a primi-

tive prime divisor. Let q be a prime power. An odd prime r is called a primitive prime
divisor of qk � 1, and called a ppdðq; kÞ-prime, if r j qk � 1 but ra qi � 1 for 1 c

i < k. Note that we do not allow 2 to be a primitive prime divisor. By a theorem of
Zsigmondy [28], if p is prime then ppdðp; kÞ-primes exist except when either p ¼ 2,
k ¼ 6, or p ¼ 2, k ¼ 1, or k ¼ 2 and p is a Mersenne prime, or k ¼ 1 and p is a
Fermat prime. These exceptions will require some extra work that will occur mainly
in Section 4.

We will call an integer j a ppdaðq; kÞ-number if j is divisible by a primitive prime
divisor of qk � 1. Furthermore, j is called a ppdaðq; k1Þ � ppdaðq; k2Þ-number if it
is both ppdaðq; k1Þ and ppdaðq; k2Þ. We say that a group element is a ppdaðq; kÞ-
element if its order is a ppdaðq; kÞ-number. We also say that such elements have
ppdaðq; kÞ-order.
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For an integer a and prime r, we denote by ðaÞr the largest power of r dividing a,
and write ðaÞr 0 ¼ a=ðaÞr.

Proposition 2.2. Let G be a simple group of Lie type of characteristic p, and let bd 6
be the smallest integer such that all prime divisors of jGj di¤erent from p divide some

p j � 1 with j c b. Let 10 g A G and S ¼
Q

1cicbðpi � 1Þ. Then

(a) bc dlogjGje.

(b) The order of the Sylow p-subgroups of G is less than pb2

.

(c) If t0 p is a prime and G contains an element of order ta for some ad 1, then

ta j p j � 1 for some j c b.

(d) g is semisimple if and only if gS ¼ 1.

(e) Let k d b=6. Then the order of g is divisible by a ppdðp; kÞ-prime r > 5 if and only

if gK 0 1, where

K ¼ pb2ðSÞ2ðSÞ3ðSÞ5

Y
1cicb;kai

ðpi � 1Þ
Y

1cicb;kji

pi � 1

pk � 1
:

(f ) If r A f2; 3; 5g and r0 p then the order of g is divisible by r if and only if

gpb2 ðSÞr 0 0 1.

Proof. Statements (a) and (b) follow easily from the order formulas for simple groups
of Lie type.

(c) Any element of order ta is in a maximal torus of G. The structure of maximal
tori is known for all groups of Lie type. The maximal tori for classical groups are
described in [11], while the maximal tori of all exceptional groups are collected in [21]
from the literature. Using these lists, it is straightforward to check that the assertion
holds.

(d) This follows directly from (c).
(e) Let r > 5 be a ppdðp; kÞ-prime. Then r j pi � 1 if and only if kji. In this case

pi � 1

pk � 1
¼ pi�k þ � � � þ pk þ 11

i

k
ðmod rÞ:

Since 1 c i=k c b=k c 6, ðpi � 1Þ=ðpk � 1Þ is not divisible by r. Hence raK , and
so if the order of g is divisible by r then we have gK 0 1. Conversely, assume that
the order of g is not divisible by any ppdðp; kÞ-prime r > 5. Let the prime facto-
rization of the order of g be pa0 ta1

1 . . . tann . Clearly pa0 jpb2

by (b). For each t ¼ ti
(i ¼ 1; . . . ; n) we have to show that ta ¼ tai

i divides K. This obviously holds for t A
f2; 3; 5g, so assume t > 5. Let j be the smallest integer such that ta j p j � 1. By (c),
such j c b exists. If ka j then p j � 1 is a factor of K. If kj j then let d be the in-
teger such that t is a ppdðp; dÞ-prime. If dak then ta pk � 1 and so ta divides the
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factor ðp j � 1Þ=ðpk � 1Þ of K. Finally, if djk then d < k since t is not a ppdðp; kÞ-
prime, and k ¼ j since ðpk � 1Þt ¼ ðp j � 1Þt because j=k c 6 and t > 6, and j is
the smallest integer such that ta j p j � 1. Since ðpk � 1Þt > ðpd � 1Þt, we must have
tjk and ðpk � 1Þt ¼ ðpk=t � 1Þt � t. Therefore, ðpk � 1Þt c ðpk=t � 1Þt � ðp2k=t � 1Þt,
and ðpk=t � 1Þðp2k=t � 1Þ is a factor of K.

(f ) This is trivial.

We note that the same type of result can be proved without the restriction k d b=6,
but this would involve handling all primes up to b separately.

In Section 3 we shall define the invariant v1. With a few exceptions, this is the
largest k such that the group contains elements of ppdaðp; kÞ-order. The crude bound
given in Proposition 2.2(a) says that v1 cN (where N is the black-box group pa-
rameter in Theorem 1.1). In our algorithm we shall make use of ppdðp; kÞ-primes
only for values of k in the range v1 d k d v1=6. Note that, for any positive integer
K, we can compute gK using OðlogKÞ group multiplications by repeated squaring.
Hence, after the value of v1 is known, checking whether a given g A G has ppdaðp; kÞ-
order for some k with v1 d k d v1=6 can be done in polynomial time.

3 Numerical invariants

If we use the generic notation G ¼ LðqÞ for a finite simple group of Lie type (including
the twisted types) over the finite field of size q ¼ pe, then, as in [22, p. 96], jGj can be
expressed in the form

jGj ¼ 1

d
PLðqÞ;

here d ¼ ðn; q� 1Þ for G ¼ PSLðn; qÞ, d ¼ ðn; qþ 1Þ for G ¼ PSUðn; qÞ, and d c 4
in all other cases, and PL is a polynomial. Moreover, PL can be expressed as a product
of factors of the form q, qi � 1, qi þ 1 (for twisted types), and q8 þ q4 þ 1 (for 3D4ðqÞ).
If FkðxÞ denotes the kth cyclotomic polynomial, then we obtain a factorization of the
form

jGj ¼ 1

d
peh
Y
k

FkðpÞrk ð3:1Þ

for positive integers h, k, and rk (cf. [22, p. 101]).

Notation. We denote the largest, second largest, and third largest k such that FkðpÞ
occurs in this factorization of the order of G by v1 > v2 > v3, respectively, and call
them and w ¼ v1=ðv1 � v2Þ the ‘invariants’ of G.

The invariants vi can be determined easily by inspecting the order formulas, and
are given in Table 1. (Artin [2] computed the values of v1 and v2, together with other
numerical invariants, for the simple groups known at the time. His work was com-
pleted in [22, p. 114].) The blank entries in rows PSLð2; qÞ and 2B2ðqÞ of the table
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either do not exist (in the case PSLð2; pÞ for prime p) or depend on the arithmetic
structure of e in a more complicated fashion, and these entries are not used by our
algorithm. In cases 2G2ð3Þ, G2ð2Þ, 2F4ð2Þ; Spð4; 2Þ, we will assume that the input
group is isomorphic to the simple group 2G2ð3Þ0, G2ð2Þ0, 2F4ð2Þ0; Spð4; 2Þ0, respec-
tively, which has the same vi values as the corresponding group listed in the table.

The following lemma connects the factors FkðpÞ occurring in the factorization of
jGj to the ppdðp; kÞ-primes dividing the orders of group elements.

Table 1
The invariants vi

G v1 v2 v3

PSLðd; qÞ, d d 4 ed eðd � 1Þ eðd � 2Þ
PSLð2; qÞ 2e e

PSLð3; qÞ 3e 2e
e if 2ae
3e=2 if 2je

�
PSpð2m; qÞ
PWð2mþ 1; qÞ

�
md 4 2em eð2m� 2Þ eð2m� 4Þ

PSpð4; qÞ 4e 2e
e if 3ae
4e=3 if 3je

�
PSpð6; qÞ
PWð7; qÞ

�
6e 4e 3e

PWþð2m; qÞ, md 6 eð2m� 2Þ eð2m� 4Þ eð2m� 6Þ
PWþð8; qÞ 6e 4e 3e
PWþð10; qÞ 8e 6e 5e
PW�ð2m; qÞ, md 3 2em eð2m� 2Þ eð2m� 4Þ
PSUð2mþ 1; qÞ, md 3 2eð2mþ 1Þ 2eð2m� 1Þ 2eð2m� 3Þ

PSUð3; qÞ 6e 2e
e if 5ae
6e=5 if 5je

�
PSUð5; qÞ 10e 6e 4e
PSUð2m; qÞ, md 5 2eð2m� 1Þ 2eð2m� 3Þ 2eð2m� 5Þ
PSUð6; qÞ 10e 6e 4e
PSUð8; qÞ 14e 10e 8e

2B2ðqÞ 4e
e if 3ae
4e=3 if 3je

�

2G2ðqÞ 6e 2e
e if 5ae
6e=5 if 5je

�
G2ðqÞ 6e 3e 2e
3D4ðqÞ 12e 6e 3e
2F4ðqÞ 12e 6e 4e
F4ðqÞ 12e 8e 6e
E6ðqÞ 12e 9e 8e
2E6ðqÞ 18e 12e 10e
E7ðqÞ 18e 14e 12e
E8ðqÞ 30e 24e 20e
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Lemma 3.2. Let p be a prime, G a simple group of Lie type of characteristic p of order

given by (3.1), and k d 2.

(a) Assume that k0 6 if p ¼ 2, and k0 2 if p is a Mersenne prime. Then FkðpÞ is a

factor in (3.1) if and only if jGj has elements of ppdaðp; kÞ-order.

(b) Assume that p > 2. Then F2ðpÞ is a factor in (3.1).

(c) F1ðpÞ is always a factor in (3.1).

Proof. (a) Suppose that FkðpÞ is a factor in (3.1), and let r be a ppdðp; kÞ-prime. Then
r jFkðpÞ. We claim that r

��jGj. This is clear if rad, so suppose that rjd. Since, by def-
inition, r > 2, we have to deal with the following cases: PSLðn; qÞ with r j ðn; q� 1Þ
and nd 3; PSUðn; qÞ with r j ðn; qþ 1Þ and nd 3; E6ðqÞ with r ¼ 3 j q� 1; and 2E6ðqÞ
with r ¼ 3 j qþ 1. In all of these cases the polynomial PLðqÞ is divisible by ðq� 1Þ2,
respectively by ðqþ 1Þ2, and so r jPLðqÞ=d.

Conversely, assume that a ppdðp; kÞ-prime r (with k d 2) divides jGj. Suppose first
that we are not in the case G ¼ 3D4ðqÞ, r j q8 þ q4 þ 1. Then r j qi � 1 or r j qi þ 1 for
an appropriate factor of PLðqÞ. Here k j ei, and k j 2ei but ka ei (as r > 2), respec-
tively, hence FkðpÞ is a factor of pei � 1 and pei þ 1, respectively. Suppose now that
G ¼ 3D4ðqÞ and r j q8 þ q4 þ 1. If r ¼ 3 then k ¼ 2 and F2ðpÞ is a factor in (3.1). If
r > 3 then k j 12e but k a 4e, since otherwise we would have q4 1 1 ðmod rÞ and hence
q8 þ q4 þ 11 3 ðmod rÞ, a contradiction. So FkðpÞ is a factor in (3.1) in this case as
well.

Statements (b) and (c) can be checked by straightforward inspection of the order
formulas.

Remark 3.3. One may try to extend the equivalence in Lemma 3.2(a) to all values of
p, k by defining ppdaðp; 2Þ-numbers for Mersenne primes and ppdaðp; 1Þ-numbers
for Fermat primes as the numbers divisible by 4. However, in the groups PSLð2; 5Þ
and 2G2ð3eÞ there are no elements of order 4; among the simple groups with elemen-
tary abelian Sylow 2-subgroups these are the only exceptions concerning Fermat and
Mersenne primes.

The situation is much worse in the case p ¼ 2, k ¼ 6. The natural definition is that
ppdað2; 6Þ-numbers are the numbers divisible by 9 and we have F6ð2Þ ¼ 3. However,
the following groups of characteristic 2 have order divisible by 3 but do not contain
an element of order 9: PSLð5; 2eÞ and PSLð4; 2eÞ with ð6; eÞ ¼ 1; PSLð3; 2eÞ and
PSLð2; 2eÞ with ð3; eÞ ¼ 1; PSUð5; 2eÞ and PSUð4; 2eÞ with ð6; eÞ ¼ 2; PSUð3; 2eÞ
with ð3; eÞ ¼ 1; PSpð4; 2eÞ with ð3; eÞ ¼ 1; 2F4ð2eÞ with ð6; eÞ ¼ 1; and G2ð2eÞ with
ð3; eÞ ¼ 1. It is straightforward to compile this list (e.g., from [21] by examining the
tables given in Section 2 of that paper for the exceptional groups, and using Propo-
sitions 3.2, 3.18, 3.28, 3.39 for the classical groups).

These di‰culties make it somewhat awkward to extend the definition of ppdaðp; kÞ-
numbers to consider the aforementioned situations (cf. [20, Section 2.4]), but we will
employ such an extension in Subsection 4.3.

Black-box recognition of finite simple groups 389



Now we begin collecting the data for each group which enables us to distinguish it
from the other groups. The first two items we consider are the values of v1 and v2. We
classify the groups according to the invariant w in Table 2. As in [20, Section 7.2.1], it
is easy to use Table 2 to check the following crucial fact:

Proposition 3.4. There are at most seven groups with the same pair of invariants

ðv1; v2Þ.

Note that PSUð4; qÞGPW�ð6; qÞ and, contrary the usual convention, we prefer to
use the latter group in Tables 1 and 2 since it better fits our general pattern.

4 Distinguishing groups with the same (v1, v2)

In this section we will describe additional information for each group which dis-
tinguishes the various groups with the same pair of invariants ðv1; v2Þ. We use three
di¤erent types of data items:

(a) for appropriately chosen y1 and y2 (and in one case y3 as well) the information
whether the group contains elements of ppdaðp; y1Þ � ppdaðp; y2Þ-order;

(b) the value of v3; and
(c) the information that the proportion of elements of a certain order is less than a

specific bound c (or greater than a bound c) in the group.
We will show that such data distinguishes all pairs of groups with the same pa-

rameter pair ðv1; v2Þ, except PSpð2m; qÞ and Wð2mþ 1; qÞ with q odd and md 3. In
the latter groups the order statistics are very similar, hence only a completely di¤er-
ent method can distinguish these groups; see [1].

We begin by noting that the only case with odd v1 occurs when GGPSLðm; peÞ
with v1 ¼ me odd. Here e ¼ v1 � v2 and m ¼ v1=e, so ðv1; v2Þ uniquely determines the
isomorphism type of G. So henceforth we may assume that v1 is even.

In the following three subsections, we describe the data which distinguishes classi-
cal groups from exceptional ones, exceptional groups among themselves, and classi-
cal groups among themselves, respectively. In each subsection, we organize our

Table 2
The invariant w ¼ v1=ðv1 � v2Þ

w G

2 PSLð2; qÞ, PSpð4; qÞ, G2ðqÞ, 2F4ðqÞ, 3D4ðqÞ
md 3, integer PSLðm; qÞ, PSpð2m; qÞ, Wð2mþ 1; qÞ, PW�ð2m; qÞ, PWþð2mþ 2; qÞ
3 F4ðqÞ, 2E6ðqÞ and those listed for md 3, using m ¼ 3
4 E6ðqÞ and those listed for md 3, using m ¼ 4
5 E8ðqÞ and those listed for md 3, using m ¼ 5
3=2 PSUð3; qÞ, 2G2ðqÞ, 2B2ð2eÞ with 3je
m=2 d 5=2; m odd PSUðm; qÞ, PSUðmþ 1; qÞ
9=2 E7ðqÞ;PSUð9; qÞ, PSUð10; qÞ
4=3 2B2ð2eÞ with 3ae
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argument according to the w values defined in Table 2. In all cases we assume that
the groups under consideration have the same invariants v1 and v2.

The information about tori in classical groups used in the argument can be found
in [11], while the information about tori and orders of elements in exceptional groups
is in the tables in [21, Section 2], where the original references are also provided.

4.1 Distinguishing classical groups from exceptional ones.

Case 1. w ¼ 2.
If 6av1 then the exceptional groups do not occur, so we may assume that 6jv1.

Consider first the case 12jv1. Then both PSLð2; pv1=2Þ and PSpð4; pv1=4Þ contain
elements of ppdaðp; v1Þ � ppdaðp; v1=3Þ-order. On the other hand, 3D4ðpv1=12Þ,
2F4ðpv1=12Þ, and G2ðpv1=6Þ contain no such elements, since in these groups the
maximal tori of ppdðp; v1Þ-order have order dividing pv1=3 � pv1=6 þ 1, where
ðpv1=3 � pv1=6 þ 1; pv1=3 � 1Þ ¼ ð3; pv1=6 þ 1Þ. So the only possibility is that 3 is a
ppdðp; v1=3Þ-prime, but this case is excluded since we assumed that v1 d 12.

If v1=6 is odd then we have to distinguish only PSLð2; pv1=2Þ and G2ðpv1=6Þ. In
the case p ¼ 2, v1 ¼ 18, the group PSLð2; 29Þ contains elements of 9 � ppdað2; 18Þ-
order, whereas G2ð23Þ does not. In every other situation in which v1 d 18, observe
that PSLð2; pv1=2Þ contains elements of ppdaðp; v1Þ � ppdaðp; v1=3Þ-order whereas
G2ðpv1=6Þ does not.

Finally, suppose that v1 ¼ 6. If p ¼ 2 note that PSLð2; 8Þ contains elements of
order 9 while G2ð2Þ0 has none. Suppose that pd 3. Then PSLð2; p3Þ contains cy-
clic tori of order 1

2 ðp3 þ 1Þ, while in G2ðpÞ all ppdaðp; 6Þ-orders of elements divide
p2 � pþ 1. If p1 2 ðmod 3Þ, then 9 does not divide p2 � pþ 1, but 1

2 ðp3 þ 1Þ is
divisible by 9, so that we can distinguish the two groups by checking whether they
contain elements of 9 � ppdaðp; 6Þ-order. If p is a Mersenne prime, then PSLð2; p3Þ
has elements of 2 � ppdaðp; 6Þ-order, while G2ðpÞ does not. In all other cases, there
exists a primitive prime divisor of p2 � 1; moreover p2 � pþ 1 and 1

2 ðpþ 1Þ are co-
prime, and hence we can distinguish the two groups by checking if they contain ele-
ments of ppdaðp; 6Þ � ppdaðp; 2Þ-order.

Case 2. w ¼ 3.
The exceptional groups do not occur unless 12jv1 or 18jv1. If 18jv1 then the value

of v3 distinguishes 2E6ðpv1=18Þ from the other groups. (Note that in the case p ¼ 2,
v1 ¼ 18, the third largest value of k for which elements of ppdað2; kÞ-order occur in
PW�ð6; 8Þ is 4, so that we do not detect v3 ¼ 6 using Lemma 3.2, but this does not
influence the distinction of 2E6ð2Þ from the other groups.)

In the next two paragraphs we will use the fact that the only maximal torus of
ppdaðp; v1Þ-order in F4ðpv1=12Þ has order pv1=3 � pv1=6 þ 1.

If 12jv1 and v1 > 12, or v1 ¼ 12 and p > 2, then PW�ð6; pv1=6Þ is distinguished
from F4ðpv1=12Þ by the value of v3. The group PSLð3; pv1=3Þ is distinguished from
F4ðpv1=12Þ because it contains elements of ppdaðp; v1Þ � ppdaðp; v1=2Þ-order; and
PSpð6; pv1=6Þ, Wð7; pv1=6Þ, PWþð8; pv1=6Þ are distinguished from F4ðpv1=12Þ because
they contain elements of ppdaðp; v1Þ � ppdaðp; v1=3Þ-order.
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Finally, in the case v1 ¼ 12, p ¼ 2 the groups PW�ð6; 4Þ and PSLð3; 16Þ are dis-
tinguished from F4ð2Þ because they do not contain elements of order divisible by 9
whereas F4ð2Þ does; and PSpð6; 4ÞGWð7; 4Þ, PWþð8; 4Þ are distinguished from F4ð2Þ
because they contain elements of order 65 (which is a ppdaðp; v1Þ � ppdaðp; v1=3Þ-
number) whereas F4ð2Þ does not.

Case 3. w A f4; 5; 9=2g.
The value of v3 distinguishes the exceptional groups from the classical ones.

Case 4. w ¼ 3=2.
If p ¼ 2 then PSUð3; pv1=6Þ contains elements of order 3 whereas 2B2ð2v1=4Þ does

not. If p ¼ 3 then PSUð3; pv1=6Þ has elements of order 4 whereas 2G2ð3v1=6Þ does
not.

4.2 Distinguishing exceptional groups. The value of w determines the group uniquely
in the cases w A f4; 5; 9=2; 4=3g. In the case w ¼ 3=2, the exceptional groups are
defined in di¤erent characteristics. In the case w ¼ 3, the value of v3 distinguishes
2E6ðpv1=18Þ from F4ðpv1=12Þ.

The case w ¼ 2 requires slightly more work. Exceptional groups occur only when
6jv1; moreover, if v1=6 is odd then only G2ðpv1=6Þ occurs. It remains to consider the
case 12jv1. Here the value of v3 distinguishes 3D4ðpv1=12Þ from the other two groups.
(Note that in the case p ¼ 2, v1 ¼ 24, the third largest value of k for which ele-
ments of ppdað2; kÞ-order occur in 3D4ð4Þ is 4, so that we do not detect v3 ¼ 6
using Lemma 3.2, but this does not influence the distinction from G2ð16Þ; and
there is no group 2F4ðqÞ with v1 ¼ 24.) Finally, G2ð2v1=6Þ and 2F4ð2v1=12Þ are dis-
tinguished because G2ð2v1=6Þ has elements of ppdað2; v1=4Þ-order whereas 2F4ð2v1=12Þ
does not.

4.3 Distinguishing classical groups. In this subsection only, we define ppdað2; 6Þ-
numbers as the numbers divisible by 9; for Mersenne primes p, we define ppdaðp; 2Þ-
numbers as the numbers divisible by 4; and for Fermat primes p > 3, we define
ppdaðp; 1Þ-numbers as the numbers divisible by 4. This terminology helps us state the
results of the subsection more uniformly.

If w > 3=2 is not an integer then w ¼ m=2 for an odd integer md 5, and we have
to distinguish PSUðmþ 1; peÞ from PSUðm; peÞ.

Lemma 4.1. Let md 5 be odd.

(a) If 4 jmþ 1 then PSUðmþ 1; peÞ contains elements of ppdaðp; ðmþ 1ÞeÞ-order
whereas PSUðm; peÞ does not.

(b) If 4amþ 1 then PSUðmþ 1; peÞ contains elements of ppdaðp; 1
2 ðmþ 1ÞeÞ-order

whereas PSUðm; peÞ does not.

Proof. (a) The factorization (3.1) for jPSUðmþ 1; peÞj contains the term Fðmþ1ÞeðpÞ
and so, by Lemma 3.2, PSUðmþ 1; peÞ contains elements of ppdaðp; ðmþ 1ÞeÞ-
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order. (Since 4 j ðmþ 1Þe, the case p ¼ 2, ðmþ 1Þe ¼ 6 cannot occur.) On the other
hand, the factorization (3.1) for jPSUðm; peÞj does not contain the term Fðmþ1ÞeðpÞ
and hence PSUðm; peÞ has no elements of ppdaðp; ðmþ 1ÞeÞ-order.

(b) Similarly, if 1
2 ðmþ 1Þ is odd then the factorization (3.1) for jPSUðmþ 1; peÞj

contains the term Fðmþ1Þe=2ðpÞ, and the group PSUðmþ 1; peÞ contains elements of
ppdaðp; 1

2 ðmþ 1ÞeÞ-order either by Lemma 3.2 or, in the case p ¼ 2, 1
2 ðmþ 1Þe ¼ 6,

by inspection of the group PSUð6; 4Þ. On the other hand, the factorization (3.1)
for jPSUðm; peÞj does not contain the term Fðmþ1Þe=2ðpÞ and hence PSUðm; peÞ has
no elements of ppdaðp; 1

2 ðmþ 1ÞeÞ-order by Lemma 3.2 or by the inspection of
PSUð5; 4Þ.

For integer values of w, most cases are covered by the following lemma.

Lemma 4.2. In Table 3, ‘þ’ indicates that an element of ppdaðp; y1Þ � ppdaðp; y2Þ-
order occurs in the group in column 1, and ‘�’ that it does not.

There are three exceptions: (a) p ¼ 2, m ¼ 3, e ¼ 2; (b) p ¼ 2, m ¼ 3, e ¼ 1; and (c)
p ¼ 2, m ¼ 6, e ¼ 1, in which cases PSLðm; p2eÞ has no elements of ppdaðp; 2meÞ �
ppdaðp;meÞ-order. In case (b), PSLðm; p2eÞ is distinguished from the other groups by

the fact that it does not have elements of order 9 while the other groups do; in cases (a)
and (c), PSLðm; p2eÞ has elements of order 7 � 13, while the other groups do not.

Proof. See Propositions 3.3, 3.19, 3.29, 3.40 of [21].

Because of the restrictions on m we had to make in Lemma 4.2, we will need to use
other methods to distinguish

(a) PSLð2; p2eÞ from PSpð4; peÞ,
(b) PWþð8; peÞ from PSpð6; peÞ, Wð7; peÞ, and PW�ð6; peÞ, and
(c) PSpð8; peÞ and Wð9; peÞ from PW�ð8; peÞ.

Case (a). For distinguishing PSLð2; pv1=2Þ and PSpð4; pv1=4Þ, we use the probability of
an element having ppdaðpv1=4; 4Þ-order. (Note that we use here pv1=4 instead of p.)

Table 3
The integers yi

md 3 md 4 md 5 md 6 md 3
parity of m even odd even odd
y1 2me ðmþ 2Þe ðmþ 3Þe ðmþ 2Þe ðmþ 1Þe
y2 me me ðm� 1Þe ðm� 2Þe ðm� 1Þe
PSLðm; p2eÞ þ
PWþð2mþ 2; peÞ � þ þ
PSpð2m; peÞ
Wð2mþ 1; peÞ

�
� � � þ þ

PW�ð2m; peÞ � � � � �
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Namely, Theorem 5.7 of Niemeyer and Praeger [26] yields that this probability lies in
the interval ½ 1

3 ;
1
2 Þ for PSLð2; pv1=2Þ, and in ½ 1

5 ;
1
4 Þ for PSpð4; pv1=4Þ.

Case (b). The value of v3 distinguishes PWþð8; pv1=6Þ from PW�ð6; pv1=6Þ. Note that
this is true even in the case p ¼ 2, v1 ¼ 12, when v3 ¼ 6 in PWþð8; 4Þ, since PWþð8; 4Þ
contains elements of order 9.

In order to distinguish PWþð8; pv1=6Þ from PSpð6; pv1=6Þ and Wð7; pv1=6Þ, let e ¼
v1=6, q ¼ pe, and observe that if q > 3 then the first group contains elements of
ppdaðp; 4eÞ � ppdaðp; 2eÞ � ppdaðp; eÞ-order, while the other groups do not. (This is
the only place where we need the product of three ppdaðp; yiÞ-numbers.) Indeed,
PWþð8; qÞ contains a torus of order ðq4 � 1Þ=ð4; q4 � 1Þ; note that this number is di-
visible by 4 if q is odd, so that our argument is valid in the cases when q is a Mersenne
or Fermat prime as well. On the other hand, in PSpð6; qÞ and in Wð7; qÞ an element of
ppdaðp; 4eÞ � ppdaðp; 2eÞ-order has two irreducible non-degenerate subspaces of di-
mensions 4 and 2, its order divides lcmðq2 þ 1; qþ 1Þ ¼ ðq2 þ 1Þðqþ 1Þ=ð2; q� 1Þ,
and hence its order has no ppdðp; eÞ-prime divisor. (Note that if q > 3 is a Fermat
prime then ðq2 þ 1Þðqþ 1Þ=ð2; q� 1Þ is not divisible by 4.)

The only remaining cases are q ¼ 2 and q ¼ 3, where we use probability infor-
mation contained in [16]. For q ¼ 2, observe that the probability that an element has
order 15 is 1=5 in PWþð8; 2Þ, while it is only 1=15 in PSpð6; 2ÞGWð7; 2Þ. For q ¼ 3,
the probability that an element has order 20 is 3=20 in PWþð8; 3Þ, while it is only 1=20
in PSpð6; 3Þ and Wð7; 3Þ.

Case (c). By [26, Theorem 5.7], the probability that a random element has
ppdaðpv1=8; 8Þ-order lies in the interval ½ 1

5 ;
1
4 Þ for PW�ð8; pv1=8Þ, but in ½ 1

9 ;
1
8 Þ for

PSpð8; pv1=8Þ and Wð9; pv1=8Þ.

5 Probability estimates

In Section 4, we described an assortment of integers y such that the existence or
non-existence of elements of ppdaðp; yÞ-order, 2 � ppdaðp; yÞ-order, 4 � ppdaðp; yÞ-
order, 9 � ppdaðp; yÞ-order, ppdaðp; y1Þ � ppdaðp; y2Þ-order and ppdaðp; y1Þ �
ppdaðp; y2Þ � ppdaðp; y3Þ-order in the input group G determines the isomorphism
type of G. Some additional numbers of the same kind will be added to this list
in Section 6, where we will also describe how to compute the values of v1 and v2.
Algorithmically, we will decide whether G has elements of the required order by
checking whether such orders occur in a random sample of elements. In this section,
we give lower estimates for the proportion of the required element orders in G, which
enable us to compute how many elements need to be sampled.

With one exception, the proportions of required elements in classical groups are
covered by the following result (cf. Tables 1 and 3):

Theorem 5.1 ([21, Theorem 5.6]). Let G be one of the simple classical groups defined on

a vector space of dimension d, over the field GFðpeÞ.
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(1) If ra is a power of a prime r0 p such that jGj has elements of order ra, then there

are at least jGj=6d 2 elements of G of order divisible by ra.

(2) Assume that ra and sb are powers of distinct primes r; s such that G has an element

of order rasb and, for some positive integers I ; J, ra j peI � 1 but ra a pek � 1 for

1 c k < I and sb j peJ � 1 but sb a pek � 1 for 1 c k < J. If I þ J d d � 1 then

there are at least jGj=12d 2 elements of S of order divisible by rasb.

The only case we will require that is not covered by Theorem 5.1 is the proportion
of elements of ppdaðp; 4eÞ � ppdaðp; 2eÞ � ppdaðp; eÞ-order in PWþð8; peÞ (cf. Sub-
section 4.3, Case (b)). In Lemma 5.2 only, similarly to Subsection 4.3, we define
ppdað2; 6Þ-numbers as the numbers divisible by 9; for Mersenne primes p, we define
ppdaðp; 2Þ-numbers as the numbers divisible by 4; and for Fermat primes p > 3, we
define ppdaðp; 1Þ-numbers as the numbers divisible by 4.

Lemma 5.2. For pe > 3 the proportion of elements of ppdaðp; 4eÞ � ppdaðp; 2eÞ �
ppdaðp; eÞ-order in PWþð8; peÞ is at least 1=60.

Proof. (See [21] for similar arguments used to prove Theorem 5.1.) It su‰ces to
prove the same estimate for G ¼ Wþð8; qÞ ¼ WþðVÞ. Decompose V ¼ Wþ

2 ?
W�

2 ? W�
4 with W e

k a non-singular subspace of dimension k and type e. There
is an isometry group X ¼ A� B� C of V such that A;B;C induce cyclic groups
of orders q� 1, qþ 1, q2 þ 1 on Wþ

2 ;W�
2 ;W�

4 , respectively, and the identity on
the remaining two summands. Note that X VG contains elements of the desired
order, each of which uniquely determines the subspaces Wþ

2 ;W�
2 ;W�

4 . Then
CGðX VGÞ ¼ X VG, jNGðX VGÞ :CGðX VGÞj ¼ 2 � 2 � 4, and the number of ele-
ments of the desired order in the union of all G-conjugates of X VG is at least
jG :NGðX VGÞj jX VGjð1 � 1

2Þð1 � 1
3Þð1 � 1

5Þ ¼ jGj=60.

The preceding results are needed in order to handle elements of G of order divisible
by more than one prime of a suitable sort. When only one prime is involved, we can
appeal to a much more general result:

Theorem 5.3 ([18, Theorem 5.1]). Let G be a group of Lie type of characteristic p, and
let h denote the Coxeter number of the Weyl group of the corresponding algebraic

group. If r0 p is a prime divisor of jGj, then the probability is at least ð1 � 1=rÞ=h that

an element of G has order divisible by r, except possibly when r ¼ 3, G is PSLð3; qÞ or

PSUð3; qÞ, and this probability is at least 1=9.

Here the Coxeter number is the order of a Coxeter element of the group, and is
as follows for the various types of groups [10, pp. 155, 168]:

G: Al Bl Cl Dl G2 F4 E6 E7 E8

h: l þ 1 2l 2l 2l � 2 6 12 12 18 30

In particular, if G is an exceptional group of Lie type then the stated probability is at
least ð1=2Þ=30 for any prime r other than the underlying characteristic. On the other
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hand, for classical groups we see that hc d, and hence the estimate in Theorem 5.3 is
much better than the one in Theorem 5.1 for elements of order divisible by a prime,
as opposed to a prime power or a product of primes.

The probability estimates in exceptional groups not covered by Theorem 5.3 are
handled in the following lemma. These estimates will be needed in Section 6, for the
computation of v1 and v2.

Lemma 5.4. In each of the following cases, the proportion of elements with the de-

scribed order is at least 2=21: order divisible by 9 in F4ð2Þ; order divisible by 9 in
3D4ð2Þ; order 15 in G2ð4Þ; order 21 in G2ð4Þ.

Proof. See [16].

Finally, we describe an estimate which can be used to distinguish two groups by
the proportions of elements of certain orders, when both groups contain such ele-
ments (cf. Subsection 4.3, Cases (a), (b), (c)). The method is based on Cherno¤ ’s
bound [15]. Let Y1; . . . ;Yt be not necessarily independent, 0; 1 valued random vari-
ables with the property that, for some r and each i, the conditional probability
ProbðYi ¼ 1 jY1 ¼ x1; . . . ;Yi�1 ¼ xi�1Þd r for all 0-1 sequences ðx1; . . . ; xi�1Þ. Then,
whenever 0 < d < 1,

Prob
Xt

i¼1

Yi c ð1 � dÞrt
 !

c e�d2rt=2: ð5:5Þ

Lemma 5.6. Suppose that the proportion of elements satisfying a certain property P is

at most c1 in group G1 and is at least c2 in group G2, for positive constants c1 < c2.
Let e > 0. If a given group G is isomorphic to G1 or G2 then, with probability

greater than 1 � e, it can be determined to which of G1;G2 our group G is isomorphic,
by computing the proportion of elements satisfying P in a random sample of size

dlnð1=eÞ � maxf8c2=ðc2 � c1Þ2; 8ð1 � c1Þ=ðc2 � c1Þ2ge.

Proof. Take random elements g1; . . . ; gt in G and define the 0; 1 valued random vari-
ables Yi by the rule that Yi ¼ 1 if and only if gi has property P. Let Xi ¼ 1 � Yi.

If GGG2 then applying (5.5) with the parameters r ¼ c2, d ¼ ðc2 � c1Þ=2c2, we
obtain

Prob
Xt

i¼1

Yi c
c1 þ c2

2
t

 !
c e�ððc2�c1Þ2=8c2Þt:

On the other hand, if GGG1 observe that

Prob
Xt

i¼1

Yi d
1

2
tðc1 þ c2Þ

 !
¼ Prob

Xt

i¼1

Xi c t 1 � 1

2
ðc1 þ c2Þ

	 
 !
:
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Applying (5.5) with the parameters r ¼ 1 � c1, d ¼ ðc2 � c1Þ=2ð1 � c1Þ, we obtain

Prob
Xt

i¼1

Yi d
1

2
ðc1 þ c2Þt

 !
c e�ððc2�c1Þ2=8ð1�c1ÞÞt:

Therefore, choosing

t :¼ dlnð1=eÞ � maxf8c2=ðc2 � c1Þ2; 8ð1 � c1Þ=ðc2 � c1Þ2ge;

and declaring that GGG1 if
P t

i¼1 Yi c
1
2 tðc1 þ c2Þ, the probability of error is less

than e.

6 An algorithm for Theorem 1.1

Given a simple group G of Lie type and its characteristic p, in this section we describe
an algorithm that computes the standard name of G. Recall that N denotes the length
of the 0-1 strings in the black-box group encoding of G.

Our first goal will be to find the value of v1 for the input group G, based on the

following lemma. For g A G, let h :¼ gpN 2

and define jðgÞ to be the smallest non-
negative integer j such that

h
Q j

i¼1
ðpi�1Þ ¼ 1:

Note that, for any given g A G, the value of jðgÞ can be computed in polynomial
time.

Lemma 6.1. Let G be a simple group of Lie type of characteristic p, and let v�1 ¼
maxg AG jðgÞ. If GlPSLð6; 2Þ, PSLð3; 4Þ, PSLð2; 8Þ, PSpð6; 2Þ, PW�ð6; 2Þ, PWþð8; 2Þ
and G2ð2Þ0, then v1 ¼ v�1 .

Proof. By parts (a) and (b) of Proposition 2.2, the element h ¼ gpN 2

has trivial p-part
for any g A G.

The exceptions listed in the statement of the lemma are the groups in characteristic
2 with v1 ¼ 6 (cf. the first column of Table 1). Hence Lemma 3.2(a) yields that v1 is
the largest integer with the property that jGj is divisible by a ppdðp; v1Þ-prime, or
GGPSLð2; pÞ with p Mersenne. If the order of some g A G is divisible by a ppdðp; v1Þ-
prime then obviously

h
Q v1�1

i¼1
ðp i�1Þ 0 1 and so v�1 d v1:

Similarly, if GGPSLð2; pÞ with p > 3 Mersenne and the order of some g A G is di-
visible by 4 then hp�1 0 1 and so v�1 d v1. Conversely, Proposition 2.2(c) implies that
for all g A G we have

h
Q v1

i¼1
ðp i�1Þ ¼ 1 and so v�1 c v1:
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We start the algorithm by computing the value of v�1 . Given an arbitrary error
bound e, where 0 < e < 1, let S be a sample of group elements of size

dmaxf24N lnð1=eÞ; 60 lnð1=eÞge:

We claim that, with probability greater than 1 � e, if G is not PSLð2; pÞ with p Mer-
senne then S contains elements of ppdaðp; v�1 Þ-order, while if GGPSLð2; pÞ with
p > 3 Mersenne then S contains elements of order divisible by 4. Indeed, if G is a
classical group defined on a vector space of dimension d then 2N > jGj > 2d 2=4 and,
by Theorem 5.1(1), the probability that none of d24N lnð1=eÞe random elements
g A G have jðgÞ ¼ v�1 is at most

ð1 � 1=6d 2Þ24N lnð1=eÞ < e:

Similarly, if G is exceptional then, by Theorem 5.3, the probability that none of
d60 lnð1=eÞe random elements g A G have jðgÞ ¼ v�1 is less than e.

Similar probability estimates hold at every further step of the algorithm: at each
step, either we apply Lemma 5.6 or we will have to decide whether G has elements of
order divisible by a prime power or a product of two or three prime powers. (The
only prime powers of exponent greater than one which occur in this context are 4 and
9.) If the answer is ‘yes’ then the estimates in Theorems 5.1 and 5.3, and Lemmas 5.2
and 5.4 imply that a sample of size dmaxf24N lnð1=eÞ; 60 lnð1=eÞge contains such
elements with probability greater than 1 � e. Therefore, in the description of further
steps we simply say ‘compute whether G has elements with a certain property’, with
the understanding that this can be done by sampling OðN logð1=eÞÞ random elements.
Since for any input group it is not hard to check that the number of steps of the
algorithm is less than 15, the total number of random elements to be sampled is
OðN logð1=eÞÞ.

Now we continue the description of the algorithm. If p ¼ 2 and v�1 < 6 then we
compute whether G has elements of order divisible by 9; if the answer is ‘yes’ then we
replace v�1 by 6. After that step v�1 ¼ v1 for all simple groups, with two exceptions: in
PSLð3; 4Þ, v1 ¼ 6 and v�1 ¼ 4 and in G2ð2Þ0, v1 ¼ 6 and v�1 ¼ 3 (cf. Remark 3.3 and
[16]).

Next, we determine the isomorphism type of G if v�1 c 4, using the information in
the first column of Table 1. If v�1 ¼ 2 then GGPSLð2; pÞ. If v�1 ¼ 3 and p > 2 then
GGPSLð3; pÞ. If v�1 ¼ 3 and p ¼ 2 then GGPSLð3; 2Þ or GGG2ð2Þ0. The first of
these has no elements of order 8, while the proportion of elements of order 8 in
G2ð2Þ0 is 1=4; see [16]. Hence we can compute which one of these groups is (iso-
morphic to) G. If v�1 ¼ 4 then we compute whether G has elements of ppdaðp; 3Þ-
order. If not, then GGPSLð2; p2Þ or PSpð4; pÞ (PSpð4; 2Þ0 in the case p ¼ 2), and we
can compute which one of these is G by the method described in Subsection 4.3, Case
(a) and Lemma 5.6. If G contains elements of ppdaðp; 3Þ-order then, for p > 2, we
have GGPSLð4; pÞ, and for p ¼ 2 we have GGPSLð4; 2Þ or PSLð3; 4Þ. We can de-
cide between the latter two groups since PSLð4; 2Þ has elements of order 15 while
PSLð3; 4Þ does not; see [16].

László Babai, William M. Kantor, Péter P. Pálfy and Ákos Seress398



Hence, from now on, we may assume that v1 ¼ v�1 d 5 and we know the correct
value of v1. Our next goal is to find v2. To this end, we compute

v�2 :¼ maxfk < v1 j there exists a ppdaðp; kÞ-element in Gg:

The only groups for which v�2 does not exist are 2G2ð3Þ0 and PSUð3; 3Þ (cf. the sec-
ond column of Table 1); we can decide between these two by the fact that PSUð3; 3Þ
contains elements of order 4 and 2G2ð3Þ0 does not; see [16]. Hence we may assume
that v�2 exists.

If p is odd then the only case when v2 0 v�2 is GGPSUð3; pÞ with p > 3 Mersenne
(cf. Table 1 and Lemma 3.2(a)), and this case can be recognized since this is the only
one with v�2 ¼ 1. Thus, for odd p, we now know the value of v2.

If p ¼ 2 and v�2 < 6 < v1 then we compute whether G has elements of order divis-
ible by 9; if the answer is ‘yes’ then we replace v�2 by 6. After that step, v�2 ¼ v2 for all
simple groups in characteristic 2 as well, with two exceptions: in both 2F4ð2Þ0 and
G2ð4Þ we have v2 ¼ 6 and v�2 ¼ 4 (cf. Table 1 and Remark 3.3). In both of these
groups, v1 ¼ 12. Hence, to finish the determination of v2, we have to distinguish the
groups with parameters v1 ¼ 12, v�2 ¼ 4; these groups are PSUð3; 4Þ, 2B2ð8Þ, 2F4ð2Þ0,
and G2ð4Þ by Table 1. We compute whether G has elements of order 3, 15, and 21.
Then 2B2ð8Þ is distinguished from the others as the only one with no elements of or-
der 3; G2ð4Þ is distinguished from the others as the only one with elements of order
21; and PSUð3; 4Þ is distinguished from 2F4ð2Þ0 because it has elements of order 15
whereas 2F4ð2Þ0 has none; see [16].

Hence, for any input group, we know the value of v1 and v2 with high probability,
and we can proceed to determine the standard name of G by computing the infor-
mation described in Section 4. This finishes the description of the algorithm, and the
proof of Theorem 1.1.

The algorithm was implemented by G. Malle and E. O’Brien, for matrix group
inputs. The implementation follows quite closely this paper, with the exception of one
subroutine. Instead of using Proposition 2.2(e) to check whether a given element
g A G has ppdaðp; kÞ-order, they compute the order of g, factorize the order, and
decide whether a ppdaðp; kÞ-prime occurs in this factorization.

If the algorithm is used for an input which is given as a factor group of a matrix
group, or in any other situation where the order of group elements is not easily com-
putable, then there is another way to avoid the time-consuming application of Prop-
osition 2.2(e). This proposition gives a necessary and su‰cient condition for a given
element to have ppdaðp; kÞ-order, hence allowing the determination of the exact
proportion of ppdaðp; kÞ-orders in any sample of group elements. However, in most
applications we do not need this exact proportion; we only have to establish that a
group has ppdaðp; kÞ-elements. In these cases, it is more e‰cient to apply a di¤erent,
faster criterion which gives only a su‰cient condition for a group element to have
ppdaðp; kÞ-order. Such criterion detects only the subsets of ppdaðp; kÞ-elements
which are used in the proofs of Theorems 5.1 and 5.3 and Lemma 5.2. Elements of
these subsets are easier to identify algorithmically, but nevertheless we have seen that
the subsets are large enough that random elements have a su‰ciently high probabil-
ity to belong to them.
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