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1. INTRODUCTION 

Let G be a primitive rank 3 permutation group on a set X in which r(x) 
is a nontrivial G,-orbit, with II = I X 1, u = I I’(X)]. Tsuzuku [27] showed 
that, if G, acts as the symmetric group on r(x), then (v, n) = (2, 5), (3, lo), 
(5, 16), or (7, 50); he determined the possible groups in each case. Bannai [2] 
obtained essentially the same result under the assumption G, is 4-transitive 
on F(x). (Of course the cases (2, 5) and (3, 10) do not then arise.) Cameron 
[6, 71 showed that, if G, is 3-transitive on F(x), and if (u, n) # (3, 10) or 
(7, 50), then either 

(a) n = +(u” + u + 2), or 
(b) v = (s + 1)(9 + 5s + 5), n = (s $ 1)2(s + 4)2, for some non- 

negative integer s. 

In case (b), the known examples have s = 0, u = 5, n = 16 (G = V,, . S, 
or VI6 * A6) and s = 1, t’ = 22, n = 100 (G = KS or HS . Z,). Non- 
existence has been shown for a variety of values of s, including 2 < s < 103, 
but the question is not yet settled. In this paper we will determine all groups 
that occur under case (a). 

THEOREM 1. Let G be a primitive rank 3 permutation group of degree 
n = ~(v’J + v + 2) with subdegrees 1, v, $- u(u - 1). Suppose that the constituent 
of G, of degree v is 3-transitive. Then either 

(i) Y = 5, n = 16, G = I’,, * S, , or V,, * A, ; or 
(ii) v = 10, n = 56, G = PSL(3,4) * V, , or either of two of its three 

subgroups of index 2. 

* The research of the second author was supported in part by NSF Grant GP-37982X. 
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2 CAMERON AND KANTOR 

The proof of Theorem 1 depends upon results of Cameron [7] on biplanes 
(symmetric designs with h = 2) and Kantor [17, 181 on Steiner systems. If, 
however, one applies a very deep group theoretic classification theorem 
(concerning 3’-groups), the 3-transitivity assumption in Theorem 1 can be 
removed for many values of k: 

THEOREM 2. Let G be a primitive rank 3 group of degree n = $(I?” + v f 2) 
with subdegrees 1, v, i-t)(v - 1). Zf v qiz 1 {mod 3), fhen v = 5, n = 16, and 
G = If,, * S5, V16 . A,, or V,, . (2, * 2,). 

As remarked in Cameron [7], these theorems are equivalent to results about 
biplanes: 

COROLLARY 1. Let (X, S) be a biplane on n points, with v f 1 points in 
any block, admitting a null polarity i. Suppose that G is a group of automor- 
phisms commuting with I_ such that G is transitive on S9. For BE a’, assume 
that GB is 2-transitive on B - (BL>, and even 3-transitive if v = 1 (mod 3). 
Then v = 5 or 10, and in each case the biplane is unique. 

The designs are described in [7]. 
This corollary and the corollary to [8, Theorem 41 both solve special cases 

of the following problem. Which biplanes admit a group G fixing a block B 
and a point x E B, and acting 3-transitively on B - (x} ? Our methods give 
some additional information on this problem: in Section 6 we show that, 
in such a biplane with 1 B 1 > 11, the stabilizer of three points of B - {x} 
fixes exactly one further point. 

From Theorem 1 we obtain the following contribution to a problem of 
D. G. Higman [14]: 

COROLLARY 2. Let G be a primitive rank 3 group of degree n with a prime 
subdegree p, and suppose that an element of order p in G is conjugate to its 
inverse. Then one of the following occurs: 

(i) p = 2, n = 5, G = Z, - Z, ; 

(ii) p = 3, n = 10, G = S, , or A, ; 
(iii) p = 5, n = 16, G = VI6 . S5 , VI6 * A5 , or VI, . (Z, - Z,); 

(iv) p = 7, n = 50, G = PZU(3, 5). 

Proof. We may assume p > 2. Since an element of order p fixes a unique 
point, it is conjugate to its inverse in the stabilizer of that point. Also, n is 
even (since otherwise G has odd degree and odd subdegrees, and hence 
odd order). 

Suppose G, is soluble. By Higman [14], if (ii) does not occur, then G has 
a regular normal subgroup N, an elementary abelian 2-group. An involution 
in G, then fixes at least n1/2 points; but it fixes at most one point in each 
orbit of a Sylow p-subgroup, so p < n 1/2 + 1. (Note that G, acts faithfully 
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on each orbit.) Also, since G is primitive, n < p2 f 1; so n = 22d, and G 
has subdegrees 1, 2d + 1, and (2d + 1)(2d - 2). Then / G, / = / N,(P)\ 
divides (2d + 1) 2d, and (2 d + 1)(2d - 2) divides / G, I. So d = 2, p = 5, 
n = 16. 

If G, is insoluble, then it acts 3-transitively on its orbit of length p [21]. 
Case (b) above cannot occur with s 1 0, since then z! is composite. So 
Theorem 1 applies. 

Notation. If G is a permutation group on a set X, then Fix(G) denotes the 
set of fixed points of G in X. If Y C X, then GY and G(Y) are the setwise and 
pointwise stabilizers of Y; G(,} = G, . If Y is a fixed set of G, then GY denotes 
the permutation group induced on Y by G. 

2, and V, are the cyclic and elementary Abelian groups of order 11; 
S, and A, the symmetric and alternating groups of degree n. Notation for 
the classical projective groups is standard. HS is the Higman-Sims simple 
group. A * B is a split extension of A by B. 

2. PRELIMINARIES 

Suppose G is a group satisfying the hypotheses of the theorem. Then the 
graph I’ associated with the suborbit of length u is regular of valency v, 
contains no triangles, and has the property that if two vertices are not 
adjacent then exactly two vertices are adjacent to both. We will call a graph 
with these properties a B-graph. Given a biplane with a null polarity, we can 
construct a B-graph by calling two points adjacent whenever they are distinct 
and conjugate under the polarity; conversely, any B-graph arises in this way 
(see [7]). (We will be primarily dealing with B-graphs, instead of the equivalent 
biplanes with null polarities, partly so as to reserve the term “block” for a 
different use later.) 

In any B-graph r, select a vertex co (fixed throughout the discussion). 
Let r(cc) be the set of vertices adjacent to co. Any vertex not adjacent to co 
is adjacent to two members of r(co); and, given x, y E Z’(a), there is one 
vertex other than cc adjacent to both. So we can label the set d( co) of vertices 
not adjacent to cc by the 2-subsets of Z’(a). 

If G is a group of automorphisms of r, and H is a subgroup of G, , then 
r, will denote the connected component containing co of the restriction of r 
to Fix(H) (or the vertex set of this graph), and M,(H) denotes the setwise 
stabilizer of r, in N&Z). Thus N,(H), & M&Z) < N,(H). 

LEMMA 2.1. (i) I$ is regular. 

(ii) Zf H has no subgroup of index 2 then r, is a B-graph and coincides 
with Fix(H). 
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(iii) Zf N,(H), is transitive on r,(x) for all x E I’, , then either M,(H) 
is transitive on r’, , or I’, is bipartite and the M,(H)-orbits are the bipartite 
blocks. 

Proof. (i) If H fixes x 1 ,..., sk E I, then the vertices of r,(.x,) are co 
and the vertices of d(co) adjacent to -yl and xi , 2 < i :6 k. So two adjacent 
vertices of r, have the same valency. The result follows by connectedness. 

(ii) Clearly I’, contains no triangle. If y and z are nonadjacent vertices 
in Fix(H), then by hypothesis H fixes pointwise the two vertices adjacent 
to both. 

(iii) M,(H) is transitive on the edges of r, . 

Next, we require a technique first used by Graham Higman to show that a 
Moore graph of valency 57 admits no even involutions (see also [23, 241). 
Let r be a strongly regular graph, and d its complement. Let C, D be the 
intersection matrices of r and A (see [13]). Then I, C, D span a three- 
dimensional commutative algebra over @, so they are simultaneously 
diagonalizable. Let (I, W, n) be an eigenvector, with eigenvalues c and d at 
C and D, respectively. For any automorphism g of r, let 

Then the function g + x(g) is a character of the automorphism group of r 
(not necessarily irreducible), so x(g) is an algebraic integer. Note that r has 
fix(g) + 4s) + p(g) points. 

LEMMA 2.2. Let r be a B-graph of ualency r. Then 

(i) c = u3 + 1 for some integer u not divisible bJ* 4; 

(ii) an automorphism of order 3 fixes at least two points; if co is one 
of these, and exactly w points of r( co) arefixed, then u divides $(w - l)(w + 2); 
if w = 1 then u is odcc and 

(iii) if E is an automorphism group of odd order with I F(E)/ > 2, then 
F(E) is a B-graph of valency w with w < II. 

ProoJ (i) In this case we find 
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(I, m, n) = (u(u2 + l), u(u - l), -2) (where u = u2 + l), and 

x(g) = ((u + 1) fix(g) + or(g) - (u2 + 2.4 + WPU. 

Put g = 1; then fix(l) = $(u3 + v + 2), al(l) = 0, and so 

x(1) = $(u” + l)(u2 + II + 2). 

Since x(1) is an integer, u is an integer not divisible by 4. 
(ii) Now let g be an element of order 3. Then a(g) = 0, since if x 

and xg are adjacent then {x, -Yg, x”‘} is a triangle in r. Thus u divides fix(g) - 2 
If fix(g) < 1 then u = 1 or 2, and v = 2 or 5. Thus, fix(g) > 2. By 
Lemma 2.l(ii), fix(g) - 2 = $(w - l)(w 5 2); while if w = 1 then 2u 
divides (u + 1)2 - (u” + II + 2) = -u(u - 1). 

(iii) This follows from Lemma 2.l(ii) and Kantor [15, Lemma 9.51. 

Next we need some information on the way PSL(2, q) can act on a 
B-graph. 

PROPOSITION 2.3 [l]. Let 9 be a biplane, B a block of 9, and x E B. 
Suppose a subgroup G of Aut(g) fi, *es x and B, and acts as PSL(2, k - 2) 
(in its usual 2-transitive representation) on B - {xi, where 1 B ( = k. Then 9 
is uniquely determined by k, and k = 4,5,6, or 11. 

This was proved by Aschbacher by a detailed calculation within 
PSL(2, k - 2). For a description of the designs that occur, see [7]. The result 
should be useful in attacking the problem mentioned in the Introduction; 
but to prove Theorem 1 we require only a simple corollary, which we prove 
directly. 

COROLLARY 2.4. Let G be a rank 3 group on X with subdegrees 1, v, 
+V(U - 1) (c > 2). Suppose that, for x E X, G, acts on its orbit of length v as 
a subgroup of PrL(2, v - 1) containing PSL(2, v - 1). Then D = 5 or 10. 

ProoJ G acts on a B-graph (and hence G, acts on a biplane in the 
manner of Proposition 2.3). Let t E G, be an involution fixing w points of 
r(x). Then t fixes 1 + w t&v(w-l)++(v-w)=&(w2+v+2)points 
of X. Since the function w -+ $(w2 + v + 2) is one-to-one, t fixes exactly 
w points adjacent to any one of its fixed points. We can choose t so that 
w = 0, 1 or 2. Then Tc n G, is a conjugacy class in G, ; so CG(t) is transitive 
on the +(w” + v + 2) = $(v + 2), +(v + 3), or $(v + 6) fixed points of 2. 
Now I C,(l)\ = 1 Fix(t)\ 1 C,,(t)\ divides 1 G 1 = $(n2 + v + 2) 1 G, (. Using 
Lemma 2.2(i) and the fact that u - 1 is a prime power, we find that v = 5,10, 
26, or 50. If v = 26 or 50, then an element of order 3 in G, fixes exactly 
two points adjacent to x, contradicting Lemma 2.2(ii). 
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LEMMA 2.5. Let (X, a) be a biplane, X’ C A’, 9 C 97, and B E .a’. Then 
(A”, 9) is a subbiplane if the following hold: / B n X’ / 2 3; if x E B n X’ 
and x f y E X’ then both blocks containing (x, yj are in g’; and if C, 
C’ E g” - {B} satisfy 1 B n C n C’ 1 = 1, then C n C’ C X’. 

Proof. If I= 1 B n X’ 1 then each point of X’ is on I blocks of &?‘, and 
dually. Also / X’ / = / 9 j = 1 + +Z(Z - I). Now count the triples (,y, C, C’) 
with x E X’ n C n C’ and C, C’ E 8, and find that C n C’ C X’ for any 
such C, C’. 

3. INITIAL REDUCTION 

Let G, acting on X, be a counterexample to Theorem 1. Let co be a point 
of X, H = G, , and I = {x1 ,..., x,). Suppose Hzlz2$, fixes f points of 
I altogether. Then NH(Hz1z25a ) is sharply 3-transitive on these f points. 
By Zassenhaus [30] and Corollary 2.4, His not sharply 3-transitive on f(a); 
so f < 2’. In [7, Theorem 61, Cameron obtained some restrictions on f, 
and structural information about the graph I’ when f is small. In this section 
we will strengthen these restrictions. 

A Steiner system S(3, K, u), where K is a set of integers greater than 2, 
is a collection of subsets (called blocks) of a set of zi points, such that the 
cardinality of any block lies in K, and any three points lie in a unique block. 
If K = {k], we write S(3, k, v). A subsystem of an S(3, K, v) is a set Y of 
points such that the block through any three points of Y lies entirely in Y; 
if Y contains a block, it evidently determines an S(3, K, 1 Y I). 

We will require the following consequence of a theorem of Kantor [17]. 

PROPOSITION 3.1. Let Y = S(3, k, v), k :b 3, admit a group G of 
automorphisms with the property that the stabilizer of any three points has 
order 2, fixes pointwise the block B containing the three points, and acts 
semiregularly outside B. Then v = (k - 1)2 + 1, Y is an inversive plane of 
order k - 1, and G = PGL(2, (k - 1)2) . Zz . 

THEOREM 3.2. Let G, r, H, f be as in the$rst paragraph, If f > 4, then 
f = 5 or 10, and the graph r, , K = Hz,,,,, , is a B-graph. 

Proof. The translates under H of the set of fixed points of K in I’(a) 
form a Steiner system S(3,f, u), and the set of fixed points of any subgroup 
of K is a subsystem. Assume f > 4. Let y be a vertex of r, at distance 2 
from co (in F,). Suppose there is a vertex z of r, adjacent to y but not at 
distance 1 or 2 from co. Then, if a and b are the vertices adjacent to co and z 
in I’, L = K, is a subgroup of index 2 in K. So K < N,(L), and K acts on 
the set I’,(m) of fixed points of L in I as a group of order 2 fixing 
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pointwise the f points of the block containing X~ , x2 , and x8 (and fixing no 
further point). Since L has index 2 in the stabilizer of any three points of 
FL( cc), Proposition 3.1 shows that NH(L) acts on I’J cc) as PGL(2, (f - 1)2) . 
Z2 , in particular, 3-transitively. Then NH(L)v is transitive on rL( y) - {x, ~‘1, 
where x and x’ are adjacent to cc and y. Since one point in this set (namely, z) 
is at distance 2 from a in I’L , the same is true of every point. Moreover, if 
a’ E rL, then &IG(L)m, acts on FL(a’) as PGL(2, (j- 1)2) * Z2. So MG(L) 
has rank 3 on rL, and rL is a B-graph. Now Corollary 2.4 implies 
(f- l)z = 4 or 9, contradicting the assumptionf > 4. 

Thus any point of FK is at distance at most 2 from cc in rK ; and NH(K) 
acts on FK(a) as a sharply 3-transitive subgroup of PrL(2,f - 1). Exactly 
the same argument shows f = 5 or 10 and rK is a B-graph. 

In the cases f = 3 and f = 4, the argument also proves parts (ii)- of 
[7, Theorem 61 (that is, any 3-claw in Flies in a unique B-graph with valency 5 
or 10, respectively). We will require this information later. 

4. THE CASEY= 3 OR 5 

Given a Steiner system S(3, 5, v), a regular graph r of valency v can be 
constructed as follows. The vertices are the subsets of the point set of 
cardinality 0, 1, or 2; vertices PI and P2 are adjacent whenever either 

(i) PICP~,lP~l=lP~l+l;or 

(ii) \PI\=\P21=2,PInPz= @,PIuP2CCforsomeblockC. 

F is a B-graph if and only if the Steiner system has the properties 

(a) there do not exist three blocks BI , B2 , BS with 1 Bi n Bj 1 = 2 for 
i#jandBInBznBz= D; 

(b) given four points x1 , x2 , x3 , x4 not contained in a block, there are 
just two point-pairs {y, z} such that {x1 , x2 , y, ~1 and {x3, x4, ~1, ~1 are 
subsets of blocks. 

We shall call an S(3, 5, 0) a B-system if (a) and (b) hold. (A B-system is a 
point-pair-schematic system with k = 5, in the sense of Cameron [9].) 

LEMMA 4.1. A subsystem of a B-system is a B-system. 

ProoJ Let 9 be a B-system and Y’ a subsystem. Clearly condition (a) 
holds in Y’, since it holds in Y’. Regarding (b), an easy calculation using (a) 
shows that the average number of pairs {y, z} in 9’ (over all x1 ,..., .x& 
is equal to 2; but there are at most two pairs for any x1 ,..., x4 , since there are 
exactly two in Y. 
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LEMMA 4.2. Let S(3, 5, v) be u Steiner system (with v > 5) admitting an 
automorphism group G such that any biock is the$xedpoint set of an element 
of order 3, and the fixed point set of any efement of order 3 is a block. Then 
v = 5 (mod 18). 

ProojI Let t be an element of order 3, and B = Fix((t j) (so B is a block). 
If C is a (tl -orbit outside B, then ! C 1 = 3 and C is contained in a unique 
block B’, with 1 B n B’ 1 = 2. Thus there is a map 0 from <t;>-orbits outside B 
to 2-subsets of B. Now t normalizes G(B’), and so centralizes an element .Y 
of order 3 in G(B’). Then ,‘s, t, is a group of order 9, with two fixed points, 
and four orbits of length 3 (corresponding to blocks fixed pointwise by 
subgroups of order 3); all other orbits have length 9. So v ~7: 5 (mod 9). 

Note also that <X~;b acts transitively on B -~ 0(C). So any 2-subset of B 
which belongs to the image of 0 is fixed by an element of order 3 in &(r). 
There are three possibilities for the image of 0: a single pair; all four pairs 
containing some point; or all 10 2-subsets of B. Note that CJ,t) acts tran- 
sitively on Im(@, so each pair occurs equally often (namely, (27 - 5)/3, 
(v - 5)/12, or (~1 ~ 5)/30 times) as the image of a hit ,-orbit. 

Assume u is even. Then the first possibility must always occur; that is, 
an element of order 3 fixes every block containing some point-pair. With s 
and t as before, ,rs, t,) has no orbits of length 9; so v F= 14. Then the number 
of blocks of S is 14 * 13 * 12/5 . 4 * 3, which is not an integer. We conclude 
that r is odd, that is, L; -z~ 5 (mod 18). 

Remark. It is not hard to show that GB induces A5 or Ss on B for each B. 

THEOREM 4.3. No B-system with 1 :p 5 admits a 3-transitire automorphism 
group. 

ProoJ Let S be a B-system with a 3-transitive group G. Since 3 divides 
v - 2, and an element of order 3 in G cannot fix just two points 
(Lemma 2.2(ii)), there are two possibilities: 

(i) some element of order 3 fixes four points not contained in a block; 
(ii) every element of order 3 fixes a block pointwise, and any block 

is the fixed point set of such an element. 

If (i) holds, let P be a 3-group maximal with respect to fixing four points 
not contained in a block, and X’ = Fix(P). Then X’ varries a B-system 
(Lemma 4.1). Tf P is a Sylow 3-subgroup of the stabilizer of three points, 
then NJP) is 3-transitive on X’, and an element of order 3 in N&P)X’ fixes 
just two points, contradicting Lemma 2.2(ii). So, given any block B con- 
tained in X’, P is properly contained in a 3-group fixing B pointwise, and SO 
NG@‘)~’ contains an element of order 3 whose fixed point set is B. By the 
maximality of P, no element of order 3 in NG(P)X’ fixes four points not 
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contained in a block. So by restricting attention to X’ if necessary, we may 
assume that (ii) holds. 

Then, Theorem 4.2 implies v = 5 (mod 18), but Lemma 2.2(ii) shows that 
v = u2 + 1 where u divides &(5 - 1)(5 + 2), so u = 7 or 14, ~7 = 50 or 197, 
a contradiction. 

THEOREM 4.4. With the hypotheses of Theorem 3.2, f + 3 or 5. 

ProoJ By Theorem 3.2 in the case f = 5, and by [7, Theorem 6(ii), (iii)] 
in the case f = 3, there is a Steiner system S(3, 5, v) on r(cc), which is a 
B-system whose associated &graph is r. By Theorem 4.3, this is not possible. 

Another consequence of Theorem 4.3 is the following. 

COROLLARY 4.5. There is no Steiner system S(3, 5, v) with v > 5 admitting 
an automorphism group transitive on ordered quadruples of points not contained 
in a block. 

ProoJ Easy counting arguments (see [9]) show that a Steiner system 
admitting such a group must be a B-system. (This result was first proved in 
Cameron [31], using a different method.) 

5. THE CASE f= 4 OR 10 

In this section we need another theorem of Kantor [18]: 

PROPOSITION 5.1. Let 9’ = S(3, K, v), where K is the set of even integers. 
Suppose that 9 admits an automorphism group G with the properties: 

(i) if an involutionjxes more than two points, then itsjxedpoint set is a 
block: 

(ii) for any block B, there is an involutionjxitzg B pointwise. 

Then all blocks have the same size k, and one of the following occurs: 

(a) r = (k - 1)2 + 1, .9 is an inversive plane, G > PGL(2, v - 1) . Z2 ; 
(b) k = 4, v = 8, F is AG(3, 2), G contains the setwise stabilizer of a 

plane in V8 . GL(3, 2); 
(c) k z 4, v = 16, F is AG(4, 2), G = VI6 . A, . 

Let G, acting on X, be a counterexample to Theorem 1, with f = 4 or 10. 
by Theorem 3.2 in the casef = 10, and [17, Theorem 6(iv)] in the case,f = 4, 
there are Steiner systems S(3,4, D) and S(3, 10, v) on r(co) (whose blocks 
we will call 4-blocks and lo-blocks, respectively) such that any lo-block, 
together with the 4-blocks it contains, forms an inversive plane admitting a 
3-transitive subgroup of PrL(2,9). Moreover, if S is a subsystem of the 
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system S(3, IO, u), and S’ is the set of points of d(co) indexed by 2-subsets 
of S, then {co] u S u S is a B-graph. 

Let H = Cm, and let T be a 2-subgroup of H of maximal order with 
respect to fixing four points of r(a) not contained in a IO-block: note that T 
may be 1. Set A = r*(co), the set of hxed points of T in r(a). (rr was 
defined in Section 2.) 

Suppose$rst that T is not a Sylow 2-subgroup of the stabilizer of three points 
of r(a). Then, given any three points of A, NH(T)4 contains an involution 
fixing those three points, whose set of fixed points in A is a 4-block or a 
lo-block. Call any such block a T-block. 

LEMMA 5.2. No T-block properly contains another. 

ProoJ Suppose t and u are involutions in K = NH(T).4 such that 
Fix(t) = F is a 4-block, Fix(u) = B is a lo-block, and F !Z B. Then B is the 
unique IO-block containing F. Choose x G F, ~2 E A - B. Then t normalizes 
K ZUVt , and so it centralizes an involution s E Kxuvt . Let S = Fix(s); 1 S 1 = 4 
or 10. Then t fixes S, so i S n F 1 < 2; we must have 1 S n F 1 = 2, since 
S $ B. Now {s, t> fixes F, and so it fixes B and centralizes an involution in 
K(B); without loss of generality we can suppose this involution is z(. Now 
<t, ZI> acts on S, fixing the two points of S n F. Also tzz is an involution fixing 
F pointwise, so Fix(&) LB, and (t, ~1) is semiregular on S - (S n F). This 
implies that 1 S ~ = 10 and Kss c Pl?L(2, 9). But pFQ2,9) contains no 
Klein group fixing two points and semiregular on the remaining points. 

It follows that the T-blocks form a Steiner system Y = (3, {4, lo;, u*) 
on A, satisfying the hypotheses of Proposition 5.1. We conclude that S is 
AG(3, 2), ~tG(4,2), or the Miquelian inversive plane of order 3 or 9. ln the 
last case, rr is a B-graph (since A contains a lo-block), and IY contains 
PSL(2, 81) contradicting Corollary 2.4: so this case cannot occur. In any 
case, I’T is regular by Lemma 2.1(i). Also, T has maximal order among the 
2-subgroups of G(, (a 6 rT) lixing four points of r(a) not contained in a 
lo-block of the S(3, 10, 21) induced on T’(a); thus, all pT(a) carry isomorphic 
Steiner systems. 

In the other three cases, we must examine in detail the structure of the 
graph rr. We take the three possibilities in turn. First note that in the 
graph r, any 3-claw generates a unique graph on 14 points, which can be 
drawn thus: 
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Here, {u, b, c, dj is a 4-block, and the symbols on the right denote the 
three possible 4-gons on the set {a, b, c, d}; this graph is, in fact, the 
incidence graph of the complement of the 7-point projective plane (see 
[7, p. 881). Any 3-claw of this graph (in r(u), say) determines this graph, 
and hence also a 4-block (in r(a)). In the future, we will omit the edges of 
such a graph. Note that if a vertex of rT at distance 3 from cc receives 
two different labels, then these labels are disjoint since r is a B-graph; 
similarly, if two such vertices are adjacent then their labels must be disjoint. 

Case I. 9 = ,4G(3, 2). Let A = {G, b, c, d, e,J g, A]. The list of blocks 
of 9 follows. 

abed aceg bceh 
abef acfh kfg 
abgh adeh bdeg 
cdef 4' bdfh 
cdgh 

&h 
Now {CD, eh eg, ehj is a 4-block in r(e); so {ae, be, ce, de} is another, and 
we have the graph 

hbf J x 
ae kwd 

be 
e 

(aedh) 
ce (bech) J 

de &&I 
k&f 1 

Z 

Now z is uniquely determined as the second vertex adjacent to (czecg) and 
(bech), and is also adjacent to (uedh) and (bedg). Repeating the argument 
with other vertices in place of e, we find that z is also adjacent to (bfdh), (bfcg), 
Gfd.1, ad kfc@. 

It cannot occur that two symbols such as (uecg) and (bfdh) index the same 
vertex u; for if so, then (applying a suitable elation in K) another pair such as 
(aegc) and (bfhd) would index the same vertex u’, and the four vertices ue, cg, 
bf, dh would be adjacent to v and v’. Thus any vertex at distance 3 from co 
is uniquely represented by its label, and there are 42 such vertices, each 
adjacent to four vertices at distance 2 from ao. Each vertex such as (aebf) 
is adjacent to four vertices at distance 4 from co. Any vertex at distance 4 
from co (such as z) is adjacent to 8 vertices at distance 3 from co; so there 
are 21 such vertices, and the F= terminates and is bipartite. 

Let I” be the graph on a bipartite block of rT , in which two vertices are 
adjacent whenever they lie at distance 2 in rT. Then r’ has 50 vertices and 
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has valency 28. Vertices of r’ adjacent to co are indexed by lines of AG(3, 2), 
two of them being adjacent if the corresponding lines are coplanar (inter- 
secting or parallel). Similar arguments show that I” is strongly regular, with 
intersection matrix 

In the notation of Section 2, c = --4, d = 3, (i, VT, n) = (7, - 1, 1), 

Let f be an element of K acting on ,4G(3,2) as a translation. It is readily 
checked that t permutes the eight vertices adjacent to z (in rT), so t fixes z. 
Also, t fixes four lines of ,4G(3,2), and maps any other line to a parallel line. 
So fix(f) = 26, a(t) = 24, /3(f) = 0. But (7 * 26 - 24)/14 is not an integer. 

Case 2. S = ,4G(4,2). Take a point e c ,4. The 4-blocks containing e, 
together with the sets {a, b, c, d] for which {ea, eb, ec, ed} is a 4-block in P(e), 
form a system ,Y(3,4, 16) isomorphic to AG(4,2). Since AG(4,2) is uniquely 
determined by its contraction PG(3, 2), this system is identical with the 
original system on ,4; that is, {ea, eb, K, ed] is a 4-block in F(e) if and only 
if {a, b, c, d] is a 4-block in F(m). 

Consider the following “closure” operation on subgraphs of a B-graph: 
a subgraph is “closed” if, whenever it contains the vertices and edges of a path 
(x, y, z) of length 2, it also contains the vertices and edges of the other path 
of length 2 from x to z. Let r* be the closure of the graph consisting of co 
and the vertices of an affine 3-space in ,4 together with the edges joining them. 
Since r= is closed, I’* c rT ; since the 14-graph is closed, the arguments 
used in Case 1 apply here to F* (in place of rT). Thus we obtain the same 
graph P, and the same contradiction, as before. 

Case 3. 9 = I(3), the inversive plane of order 3, and K = PFL(2,9). 
The blocks of I(3) are: 

abed 

abef 

abgh 

abij 

wj 
acfi 
aceh 

adhi 

adej 

@Yi 
aegi 

af% 

bchi 

bceg 

W-7 
b&j 
bdfh 
bdei 

behj 

W.i+ 

cdef degh 

cdgi dfij 

cdhj efhi 

ceij efgj 
dkh ghij 
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Now Z(3) is determined by its contraction ,4G(2, 3), given a group isomorphic 
to the stabilizer of a point x in Z’SZ.(2,9): the blocks not containing x are all 
orbits of length 4 of subgroups of Z’SZ(2, 9)X. Thus {ae, be, ce, de) is a 
4-block in r(e), and we have the 14-graph: 

kbf 1 .Y 
ea (aech) 

eb 
e Caedjj 

ec (bed ? 

ed (bedi) 
Ccdf 1 

z 

Assume first that any point at distance 3 from cc has a unique label. There 
are 90 such labels, permuted transitively by K. Then z is adjacent to (aech), 
(uedj), (becg), and (bedi). Using the fact that Z’ is a B-graph, it is straight- 
forward to check that Kz has index 2 in Kr, and z is adjacent to the five 
additional vertices (abgh), (u&J, (cdig), (&$I), and (gZzg). Similarly, x is 
adjacent to (uebf), (aedj), (becg), (cedf), (agdf), (ujcg), (bfij), and (bgdj), and 
Kz = Kth,~) . Thus, 1 zK 1 = 20 and 1 xK 1 = 45. Since Z’GZ(2,9) is transitive 
on nonincident point-block pairs of 9, and has an element fixing z while 
interchanging x and JJ, it follows that zK U xK consists of all points of r= at 
distance 4 from ao. Moreover, all edges from points at distance 3 from cc are 
now accounted for, so rr contains no circuits of length 7; hence no two 
points of zK u xK can be adjacent, as they are at distance 3 from some point 
of A. Note that KS is transitive on the set {!I, i} of points of r=( cc) at distance 5 
from x, and hence also on the points of Fr(x) at distance 5 from a. Conse- 
quently, the 20 + 90 further edges leaving zK u xK terminate at a set of 
2 + 10 points at distance 5 from a, the 10 corresponding to edges leaving 
.x~ and the 2 each sending 10 edges back to zK. Let S E SY&ZV&?)~~ , so 
1 SA 1 = 16 1 T 1 and S fixes XI’ and some point q E rr at distance 4 from co. 
Let {s, t} = F(cQ) n r(q) and {u, I$ = Qcc) n F(co’). (a 6 l”(a) as 
CO’ 6 rd~l.1 ‘rh &wv is a 2-group strictly larger than T, so its fixed points 
lie in a lo-block I3 in r(cc). B is the unique lo-block containing u, II, and u. 
Repeating the argument with any point of A - {u, b} replacing b, we see 
that A c B, a contradiction. 

Since two labels for a point at distance 3 from cc must be disjoint, we see 
that any such point has exactly two labels, and there are 45 such points, 
each joined to 8 points at distance 2 from cc. Now we find easily (proceeding 
as above) that there are IO points at distance 4 from cc, and a unique point co’ 
at distance 5; the graph Fr is a “double cover” of the 56~graph occurring 
in Theorem l(iii). Now let S be as above, let q E FT be a fixed point of S at 
distance 3 from cc, and obtain the same contradiction as before. 
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Now we must deal with the case when T is a Sylow 2-subgroup of the 
stabibker of three points of r( a). Then, with A = rr.( co) and K = NH( TjA, 
K is a 3-transitive group in which the stabilizer of three points has odd order. 
From theorems of Bender [3,4] and Hering [12], we conclude that 
K k PSL(2, q) for some q, or K = A6 . 

If A contains a lo-block, then the 3-transitivity of K ensures that rr is a 
B-graph, and Corollary 2.4 is contradicted. So A contains no lo-block. 
Note that A carries a Steiner system S(3, 4, a’); so K contains PSL(2, 39 
for some d. (Clearly K # A6 ; if the stabilizer of a 3-set in a 3-transitive group 
containing PSL(2, q) has a fixed point, then q is divisible by 3.) 

If d is even, then there is a subsystem S(3,4, 10) -= P” admitting a 3- 
transitive subgroup of PI’L(2,9). By the argument used previously in Case 3, 
we construct a subgraph which is a double covering of the 56-graph and is 
fixed pointwise by T. (This graph P is not r’r, but the “closure” of the 
lo-claw on {co} u y’.) Let cc’ be the vertex “opposite” cc. Take a, b E 9” 
and let P E SylzLub , for L = NH(T)Y, (so ~ PA 1 = 8 1 T 1). As before, 
cc’ $ r(a), Let {u, U} = r(a) n FW). Then Pa fixes a, b, and x, where 
1 Pu 1 > 4 1 T 1, and this contradicts the fact that T is the stabilizer of three 
points of r(g. 

So d is odd, and K > PGL(2, 3a). Let B be a IO-block meeting A in four 
points (so A n B is a 4-block). The T-orbits in B - (A n B) are the pairs 
indexing (as in Section 2) the three points at distance 3 from co in the 
14-graph generated by A n B. Let {x, y} be one such orbit, and S = TX. 
Then S is normal in T, so T induces an involution t on Y = Fix(S) n r(a). 
Moreover, given any three points of Y, S is normal in a Sylow 2-subgroup 
of their pointwise stabilizer, so there is an involution in L = NH(S)” fixing 
those three points. 

Thus, for any a G A, t fixes {x, y, a}, and so centralizes an involution 
A- e L” * Then s fixes A and fixes exactly two points a, b of A, where {a, b, x, y} 
is a 4-block. Thus (LzvA)A is a subgroup of PFL(2, 3d) with the property that 
the stabilizer of any point fixes another point and has even order. Also, 
(&,A)A n PGL(2, 3d) contains a dihedral group of order 8 (fixing A n B). 
From Dickson’s list of subgroups of PSL(2, q) [lo, Chap. 121 we deduce 
that (LzvA)A contains a dihedral group of order 2(3d + l), transitive 
on A. The images of A n B under this group are pairwise disjoint and 
cover A. 

In the graph r*, the vertex indexed by {x, y} is joined to 3d + 1 vertices 
at distance 2 from co (four indexed by pairs in each image of A n B under 
Lz.A). So this graph has diameter 3, and is the incidence graph of a biplane. 
This biplane admits a group A4H(T) of automorphisms and correlations 
transitive on points and blocks; the stabilizer of a block acts on it as a sub- 
group of PI’L(2, 3d) containing PGL(2, 39. But this cannot occur [7, proof of 
Theorem 31. 
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Thus we have proved 
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THEOREM 5.3. With the hypotheses of Theorem 3.2, f # 4 or 10. 

Theorems 3.2, 4.4, and 5.3 complete the proof of Theorem I. 

6. AUTOMORPHISM GROUPS OF BIPLANES 

Throughout this section, 9 = (X, 9) is a biplane, and G is an auto- 
morphism group of 9 fixing a block B and a point x E B and 3-transitive 
on B - {x}. Let k = 1 B 1. We assume that 9 is not one of the known 
examples (these have k = 4, 6, and 11). Suppose the stabilizer of three 
points of B - {x} fixes f points of B - {x} altogether. 

THEOREM 6.1. With the above hypotheses, 

(i) f = 4; 
(ii) there is a mdlpolarity 1 of 9 commuting with G such that BL = x. 

Proox Let x = x,, , B = {x0 , .q ,..., x~-~}. Let Bij be the block (different 
from B) incident with xi and xj. Since GXjz, fixes only the points x,, , Xi, xj 
of B, there is a point Y,,~~ incident with B,,i , Bc,j , and B<j . All points and 
blocks of 9 are now labeled. 

Given three points xi , xj , X~ other than xc , the two blocks incident with 
yoij and xh meet B again in two points xz and X~ which are tied or inter- 
changed by Gixjpk = I$. (By the 3-transitivity of G, the same alternative 
holds for any three points.) lf H fixes x C, then the connected component 
containing B (in the incidence graph defined on X u &?) of the set of fixed 
points of H is a biplane (by Lemma 2.59, and NG(H) is sharply 3-transitive 
on Fix(ZI) n (B - ix}). By Zassenhaus [30] and Proposition 2.3, f = 5 or 10. 
(The cases f = 3, 4 cannot arise here, because the points xi , Xj , X~ , xl , X~ 
are fixed by H.) By Kantor [17], the resulting Steiner system S(3, 5, k - 1) 
or S(3, IO, k - 1) has a subsystem S admitting PSL(2, 4d) or PSL(2, 9d) for 
some d > 1. We claim that {x0} u S generates a subbiplane with block size 
1 + 1 S 1; and this will contradict Proposition 2.3. By the 3-transitivity of Gss. 
If xqh , xU , X~ E S (xU # xJ, then these points lie in a block of S, so yoUV and 
X~ lie in the corresponding biplane B(6) or B(l1) (see [7]). Hence, Lemma 2.5 
applies, and the claim is proved. 

So we may assume H interchanges X~ and X~ . Let IC = Hzz, 
Y = Fix(K) n (B - {x}). There is a Steiner system S(3,J u*) on Y admitting 
a group NG(IC) satisfying the hypotheses of Proposition 3.1 if f > 3. From 
that result, and Hering [12] in the case f = 3, it follows that NG(Qr is 
3-transitive (so a connected component of Fix(K) is a biplane) and contains 
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PSL(2, (f - l)*). By Proposition 2.3, f = 3 or 4, and any four points .x” , X[ , 
Xj , X~ lie in a unique biplane B(6) or B(l1). 

Let J- be the correspondence B * x,, , Boi * xi, Bij ++ yoij . We show 
1 is a null polarity. The only nontrivial step involves showing that if J+ij and 
Bkl are incident, then so are yokz and Bij . But if yoij and BkL are incident, 
then they are contained in the B(6) or B(l1) generated by {x,, , xj , Xj , .x~;, 
and the restriction of 1 to this biplane is known to be a polarity. Now 
Theorem 4.3 shows f # 3. 

COROLLARY 6.2 [8]. Let 9 be a biplane admitting an automorphism group 
fixing a block B and 4-transitive on B. Then 1 B 1 = 4 or 6. 

ProoJ If k :> 1 I, then any four points of B generate B(l1) by 
Theorem 6.1; this is also true if k = 11. But the stabilizer of a block in 
Aut(B(l1)) is not transitive on that block. 

For related results, see [15; 16 8E(lO - 13)]. 

7. 2-TRANSITIVITY 

We now turn to the proof of Theorem 2. Let G be provide a counterexample 
with minimal v. Once again, G is acting on a B-graph. Let co, r(a), d(a), 
and u be as in Section 2. Set H = Gw . 

We claim that His 2-transitive on r(co). For it is certainly transitive on the 
&(u2 + 1) uz 2-sets of r(co). H ence 1 H 1 is even, and this implies our claim. 

Now consider the possibility 3 f 1 G 1. H has a unique minimal normal 
subgroup M, and M is simple or elementary Abelian [5, p. 2021. Suppose A4 
is simple. Then M g XZ(~~) for some e > 3 [l 1,281 and it follows easily 
that 22e + 1 = v = uz + 1, whereas 4 { u (Lemma 2.2). Thus Mis elementary 
Abelian of order pe = &’ + 1 for some prime p. Then e = 1, v = p, and 
Corollary 2 provides a contradiction. 

Thus, 3 1 1 G 1. Let P < H be a 3-group maximal with respect to 
1 Fix(P)1 > 16 (possibly P = l), and Q 2 P a 3-group maximal with respect 
to 1 Fix(Q)1 > 3. By Lemma 2.2(ii), Q + 1. Both F = Fix(P) and F’ = Fix(Q) 
are B-graphs; let w and w’ denote their valencies. 

We claim that w’ = 2 or 5. For, NH(Q) is 2-transitive on J?‘(W) = 
F’ n r(a). By Lemma 2.1, jVG(Q)p’ satisfies the hypotheses of Theorem 2, 
provided w’ > 2. Thus, the claim follows from the minimality of v. 

In particular, P < Q. Set K = iVH(I’)F. We now describe several properties 
ofKand Y== Fan, 

(a) 1 Y 1 = 50 or 197. For, let P 4 QI < Q with 1 QI : P 1 = 3. Then 
Fix(QI) is a B-graph contained in F, and 1 QIF 1 = 3. Our choice of P forces 
1 Fix(QJj < 16. Then [ Fix( = 4 or 16 by Lemma 2.2(i). Now Lemma 
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2.2(ii) implies that (w - l)l/* divides i(2 - 1)(2 + 2) or -$(5 - 1)(5 + 2) so 
w = 50 or 197. 

(b) If x, y E Y, then 3 1 1 KzV 1. For P is properly contained in a Sylow 
3-subgroup of HzV. 

(c) If g E K has order 3, then g fixes exactly five points of Y. This is 
proved as in (a). 

(d) If g, g’ E K have order 3, and fix three points of Y in common, 
then they fix precisely the same five points. For, the fixed points of g corre- 
spond to a sub-B-graph of I’ of valence 5. Such a B-graph is generated by 
any 3-claw [7, p. 881. 

(e) Let E < K with 1 E 1 odd, and assume that E fixes at least three 
points of Y. Then the fixed points of E on F form a B-graph (Lemma 2.1), 
and hence E fixes precisely e2 + 1 points of Y for some integer e, where 
1 + (e2 + l)z < 1 Y \ (Lemma 2.2). Thus, if 1 Y 1 = 50 then e = 2. 

In the next section, we will show that a permutation group K on a set Y, 
satisfying (a)-(e), must be 2-transitive. Assuming this, we deduce that NH(P) 
is 2-transitive on F(co), and hence is transitive on F n A(co). It follows that 
NG(P)F has rank 3. This contradicts the minimality of P, and hence proves 
Theorem 2. 

Remarks. The case v = 1 (mod 3) seems much harder than the above, 
as the proof of Theorem 5.3 indicates. Lemma 2.2(ii) is no longer useful 
in this situation: the example B(l1) shows that all elements of order 3 can fix 
exactly two points, in which case Lemma 2.2(ii) provides no restriction at ail. 

Note also that the proof of Theorem 2 primarily used H, not G. Only when 
H was a Frobenius group of prime degree was G employed. Unfortunately, 
we have not been able to handle B-graphs admitting such a group H. 

8. A TECHNICAL RESULT 

The following grotesque result can be regarded as an unrefined refinement 
of parts of the proof of Lemma 4.2 and Theorem 4.3. 

PROPOSITION 8.1. Let G be a permutation group on a set X. Then G is 
2-transitive g the folIowing conditions all holds 

(a) 1 X 1 = 50 or 197; 

@I tfx,~~-K then 3 1 I %, I; 
(c) fg e G has order 3, then 1 Fix(g)] = 5; 
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(d) f 1 g 1 = 1 g’ 1 == 3 a& 1 Fix(g) n Fix( > 3, &II Fix(g) = 
Fix( g’): 

(e) $E < G with 1 E 1 odd and 1 Fix(E)1 > 3, then [ Fix(E)[ = eZ + I 
for some integer e; moreover, e = 2 f 1 X 1 = 50. 

Prooj Suppose G is not 2-transitive. Let Y = {g E G 1 1 g ~ L= 3}. We 
may assume G = <zYj, Let g denote any element of 7, and let T E Sy& G. 
Set n = , X 1. That the case ti = 197 is much easier than H = 50 is due to 
the following. 

LEMMA 8.2. If n = 197 t/Zen ~ T, = 3. 

ProoJ Suppose 1 T 1 > 9. Since n := 8 (mod 9), T fixes two points +Y, J’, 
and also two 3-sets ,.?Yr , & in X - {.x, y}. By (c) and (d), T is elementary 
Abelian of order 9; moreover, its four subgroups of order 3 have pairwise 
disjoint fixed point sets on X ~- {x, y]. Thus, T is semiregular on a set of size 
197 .- 2 ~ 4 . 3, which is not a multiple of 9. 

LEMMA 8.3. If G is transitive then n = 50. If G is intransitive, then its 
orbit structure is one of the following: 

(1) two orbits I’, A, with 1 F 1 + 2 EF \ A 1 5: 2 (mod 3); 
(H) two orbits Al, AZ, with 1 Ai 1 L= 1 (mod 3); 

(111) three orbits I’, A, , A2 , with 1 r 1 L 1 ~~ i Ai i = 1 (mod 3). 

ProoJ If there are two orbits rI, r2 with 1 rl 1 ti ~ r2 1 -= 0 (mod 3), 
choose .Y E rI , .V E rZ and contradict (b) and (c). Thus, at most one orbit 
has length divisible by 3. By (b), ( c , and (d), G fixes at most two points. If ) 
4, 4 > and As are orbits with 1 Ai 1 = 1 (mod 3) for i = I, 2, 3, and if 
I 4 ~ ;x 1, then choose JC, y E Al , x # y, in order to contradict (b) and (c). 
Thus, there are at most two orbits of length F= 1 (mod 3). Similarly, there is 
at most one orbit of length ==2 (mod 3). Since PZ : = 2 (mod 3), this proves the 
lemma, except for the first assertion. But if G is transitive and tz = 197, then 
G is 2-transitive by Burnside’s theorem [5, p. 3411. 

LEMMA 8.4. n = 50. 

Prooj Suppose n = 197. By (b) and Lemmas 8.2 and 8.3, G is intransitive 
and has no orbits of length divisible by 3. By Lemma 8.3, (II) must hold. If 
1 A<1 -.- I. choose ?c, ye Ai, .x # y, let gi E.Y I-I GxU, and note that 
1 Fix( gJ n Asp< 1 = I. Since 1 T 1 L== 3, it follows that we may assume 
1 A2 ~ = 1. By (b) and (c), Al inherits the structure of an s(2, 4, 196), whose 
blocks are the fixed point sets on AI of members of Y. Let g e .F. Since 
r : 19513 map: 65 2 (mod 3) g fixes a block other than Fix(g) - A2 . 
This again produces the contradiction 1 T ~ h 3. 
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LEMMA 8.5. (i) Each element of G of odd prime order jixes 0, 1, 2, or 5 
points of X. 

(ii) G is a {2, 3, 5,7}-group. 

ProoJ (i) is clear by (e), and (ii) follows immediately from (i). 

LEMMA 8.6. Suppose A is an orbit of G, and .Z is a nontrivial imprimitivity 
set of GA. Then the following hold: 

6) 3Tlzl; 
(ii) IZl #2; 

(iii) /Zj #5; 

(iv) 1 ,Z I # 10; 
69 I ,z I =# 7. 

Proof. (i) Suppose 3 1 1 ,Z 1, and let x E Z, y E A - 2. Then (b) contra- 
dicts (c). 

(ii) Suppose \ Z \ = 2. Then each g E Y fixes an even number of 
points of A, so 1 A 1 + 0 (mod 3). Assume ] A 1 = 1 (mod 3). Then 
] Fix(g) n d ] = 4 for each g E r, and hence J X - d 1 = 1. However, 
49 is odd. 

Assume 1 A ] = 2 (mod 3). Then each g E Y must fix just two points of A. 
However, if x and y are chosen as in (i), this again yields a contradiction. 

(iii) Suppose 1 Z ] = 5. Choosing x and y as above, we find first that 
J A 1 = 1 (mod 3), and then that J X - A J < 1. Thus, A = X, 1 ZG 1 = 10, 
and g E Y n GsV fixes at least 2 * 4 points. 

(iv) If 1 ,Z 1 = 10, then Gzz is primitive by (ii) and (iii). Hence, 
G,rz > Ar,, by (b) and Sims [26], and this contradicts (d). 

(v) If 1 Z 1 = 7, then Gz z > A, by (b), and this contradicts (d). , 

LEMMA 8.7. Case I does not occur. 

ProoJ Suppose it does. Recall that \ A 1 > 2 since G = (Y). By (b) 
and (c), 1 T 1 > 9. 

By Lemma 8.5, 1 P 1 = 15, 18, 30, 36, 42, or 45. 
If 1 r ] = 15 then Gr is primitive of order divisible by 7. By Sims [26], 

property (d) contradicts the known properties of the possible groups Gr. 
If 1 r 1 = 18 then Gr is primitive (Lemma 8.6) and hence 17 1 1 G 1 by [26]. 
If 1 r 1 = 30 then GA is imprimitive by (c) and [26]. Let ,ZG be a nontrivial 

imprimitivity system of GA. Then \ Z 1 = 4 and &(G)r = 1 by Lemma 8.6, 
and these yield a contradiction. 
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If 1 r 1 == 36, then GA is imprimitive by [26], and hence has a system ZG 
with 1 Z ! = 7. But clearly 9 1 1 Gr 1, whereas 9 f 1 Gzz [ and 9 f 1 G(d)!. 

lf 1 r 1 = 42, 7 1 ~ GA 1. By (d), GA = As or & . By Lemma 8.6, G(,4) = 1 
and Uz(G) = 1. Thus, G = GA is PSL(2, 7) or PGL(2, 7). Now Gr and .Yr 
yield a contradiction. 

Finally, if 1 r 1 = 45 then 1 d 1 = 5. Now YA implies that GA > & . 
However, 27 1 1 Gr 1, so 1 T(d)1 :-= 9 and 1 T 1 = 27. Since iVJUd))A 2 As, 
CJT(A))A > As. Thus, T is Abelian. Now T(A) fixes Fix(g) n r for any 
g E T having ~ Fix(g) n r ~ : 3, and this implies the lemma. 

LEMMA 8.8. ZfA is un orbit with ~ A 14 1 (mod 3), theta ! A = 1, 4, 16, 
25, 28, or 40. 

Prooj By Lemma 8.5 only the cases 1 A 1 = 7, 10 need to be eliminated. 
But these are handled precisely as in Lemma 8.6. 

LEMMA 8.9. C’use (11) cunnot occur. 

Proof By Lemma 8.8, in this case we may assume 1 Al i = I or 25. 
Suppose 1 Al ~ = 25, so 1 A2 1 = 25. By Lemma 8.6 and Wielandt [29], 

either GA< has a regular normal subgroup, or else it is 2-transitive. Since g E Y 
exists fixing two points of Ai , in the former case Fix(g) C Ai, which is 
impossible. Thus, GA< is 2-transitive for i = 1, 2. Let x E Al . If GX is transitive 
on A2 then some nontrivial 5-element fixes more than five points of Al , 
contradicting Lemma 8.5. Thus, the two 2-transitive representations have the 
same character. But this is impossible as g E r fixes different numbers of 
points. 

Thus, we may assume ~ Al 1 = 1 and 1 A2 [ == 49. Then by (c), A2 inherits 
the structure of an s(2,4, 49), whose blocks are the fixed point sets on A2 
of elements of order 3. As above, GA2 is primitive and hence 2-transitive. If 
.Y E A2 , then Gz is transitive on the (49 - 1)/(4 - 1) = 16 blocks through x. 

By O’Nan [22] and Shult [25], Z(CIz(Gz)) = 1 and Z(Os(Gz)) = 1. Thus, 
Gz has a faithful transitive representation of degree 16, which must have a 
(unique) imprimitivity system {ZI , ZJ with 1 .Zi 1 = 8 (by [26]). Moreover, 
some block on x is fixed pointwise by an element of order 7, and this contra- 
dicts Lemma 8.5. 

LEMMA 8.10. Case (III) does not occur. 

Proof tit lY Al, AZ be as in (III). First note that 1 r 1 > 3. For if 
1 I’ 1 = 3 then (d) and G = (7) would imply that G fixes two points, which 
is not the case. 
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Now suppose \ A1 [ = 1. By (d), rinherits the structure of a Steiner triple 
system 9. Moreover, each u E At determines a partition of Y into J r i/3 
pairwise disjoint blocks, while each block determines a unique point of AZ 
(all by (b)-(d)). Thus, ] d2 1 = (1 p \ - 1)/2, so 1 r 1 = 33, which contra- 
dicts Lemma 8.5. 

Thus, 1 A1 1 > 1 and 1 AZ/ > 1. Also 1 Aij > 4 (i = 1,2). For if 
\ A1 1 = 4, then by (b) and (c), T(Q would be nontrivial and semiregular 
on A*. Thus, by Lemma 8.8, 1 df 1 > 16 for i = 1,2. 

If \ A1 1 = 28 then 1 r 1 > 6 forces \ A2 \ = 16 and 1 r \ = 6, whereas 
this contradicts Lemma 8.5 (applied to an element of order 7). Thus, 
l~~\~{l6,25~for~= 1,2. 

If 1 Al ~ = 1 AZ 1 = 16, then 1 r 1 = 18. By Lemma 8.6, Gr is primitive. 
Hence, by [26], 17 1 1 Gr 1, and this contradicts Lemma 8.5. 

Thus, we may assume \ Al 1 = 16, \ A2 1 = 2.5, and 1 r 1 = 9. But now Gr 
is primitive by Lemma 8.6, so (b) and [26] imply that Gr > &, . This 
contradicts (d), and proves the lemma. 

At this stage, Lemma 8.3 shows that G is frunsitioe. Since G = <Y?, 
Lemma 8.6 implies that G is primitive. Let x E X. We may assume T < G$. 

LEMMA 8.11. G$’ has precisely s + 1 orbits, s 2 I, which can be labeled 
4 l-1 ,*‘*, FS so rhat [ A 1 2 1 (mod 3), 1 A 1 B 1, 1 Ti 1 z 0 (mod 3), and 
iFi :.-3forl <i < s. Moreover, 1 T 1 2 9. 

Prooj Recall that Giwz is intransitive. Also, it has no orbits of length 1 
or 2, and hence (by (b)-(d)) none of length 3. Now, as in the proof of 
Lemma 8.3 since 49 = I (mod 3), Gz-x has at most one orbit of length ~1 
(mod 3) and none of length =2 (mod 3). This implies the first assertion. 
The second follows from (b). 

LEMMA 8.12. 1 d \ = 4 or 10. 

Proof By Lemma 8.5, the only other possibilities are 1 A 1 = 7, 25, 28, 
or 40. 

If 1 A 1 = 25 and P~syl~G~, then P fixes five points of X - A and 
cannot act semiregularly on the remaining 20. This contradicts (e). 

If 1 A 1 = 40, then s = 1 and 1 rr 1 = 9. However, no rank 3 group exists 
having these parameters. 

If 1 A / = 7, then 7 1 1 ri 1 for each i by Lemma 8.5. Thus, s = 1 and 
1 r1 1 = 42. Now G EZ PSU(3, 5) [12], and GzA k &. This contradicts (d). 

Suppose 1 A 1 = 28. As above, .Y = 1 and 1 r1 1 = 21. In the standard 
rank 3 notation, necessarily A = 8 and p = 9 for the rl-graph. 

The irreducible constituents of the permutation character have degrees 
1, 24, 25. Thus G is of 2P-type, in the terminology of Scott [23]. His results 
include the nonexistence of such a group. 
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LEMMA 8.13. \ d 1 = 10. 

ProojI Suppose 1 fl 1 = 4. By a result of Manning [19], we may assume 
] I’I 1 1 12. Then s 3 1, so T(A) + 1. Thus, 1 FI 1 = 12. 

Now T fixes 3-sets of both A and I’r , so 1 T ] == 9 and hence x < 3 by (b), 
Then s = 3 by Lemma 8.5. Also 9 { 1 I’g 1, i = 2,3. Since 1 rz 1 + 1 I’s 1 = 33 
it follows that {I I’z 1, 1 rs I} = {12,21}, and this contradicts Lemma 8.5. 

We can now complete the proof of Proposition 8.1. Some g E 9 n G 
fixes three points of rI and one of A. Thus, GzA is primitive. By [26] and (d), 
Gzd k PSL(2,9). By Manning [19], GX is faithful on A and we may assume 
1 r1 11 10.9. 

By [6], 1 rI 1 > 20. 1 FI 1 # 30, as then 1 X - ({x} u d u I’1 1 = q while 
1 Fi 1 # 3, 6, 9. This contradiction completes the proof. 
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