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1. IT\TRODUCTIO~~; 

An unpublished result of Perin [20] states that a subgroup of FL(n, q), n 23, 
which induces a primitive rank 3 group of even order on the set of points of 
PG(n - 1, q), necessarily preset-es a symplectic polarity. (Such groups are 
known, if q # 2, by another theorem of Perin [19].) The present paper extends 
both Pcrin’s result and his method, in order to deal with some familiar problems 
concerning collineation groups of finite projective spaces; among these, 2- 
transitive collineation groups [25], and the case q = 2 of Perin’s theorem [19]. 

An antifq is an ordered pair consisting of a hypcrplane and a point not on it; 
if the underlying s-ector space is endowed with a symplectic, unitary or orthogonal 
geometry, both the point and the pole of the hyperplane are assumed to be 
isotropic or singular. Our main results are the following four theorems. 

THEOREM I. If G < lYL(n, q), tl > 3, and G is Ztransitiwe on the set of 
points of PG(n - 1, q), then either G > S’L(n, q), or G is A, inside SL(4, 2). 

THEOREM II. If G < r(n, q) and G is trarzsitize on atattj%gs and primitive 
but not 2-transitke on points, then G presenes a s)vnplectic polo&~, and one of the 
following holds: 

* The research of the second author was supported in part by the Science Research 
Council and the Sational Science Foundation. 

384 
0021-8693/79/100384-39$02.00;0 
copyright 0 1979 by .%cadmdc Press, Inc. 
AR rights of reproduction in my form reser-ced. 



COLLISEATIOK GROWS 385 

(i) G 2 SP(n, 4); 

(ii) G is A, inside Sp(4, 2); or 

(iii) G 2 G,(q), q even, and G acts on the generalized hexagon associated 
with G?(q), which is itserf embedded naturally in PG(5. q). 

TKKJ-REM III. If G < lYL(n, q) arad G is transitice 011 atat$lags azd imprimitize 
on points, then q = 2, G < TL($z, 4), and G 2 SL($m, 4j, Sp(i~~-n, 4): 07 G,(4) 
(with 71, = :2). ITI each case, G is embedded natmrak’y iz GL(n, 2). 

TFZOXEII IT‘. If G < TSp(n, q), FO=(n, q) or iI@, q), jar a classical 
geometry o~rank at least 3, and G is transitive on ant$ags, the?: ow of the folhxiq 
holds (atrd the embedding of G is the naturul one): 

(i) G 2 Sp(n. q), Q=(n, q), resp. SC@, q); 

(ii) G > G,(q) inside TO(7, q) (or XSp(6, q). q even); 

(iii) Q(7, q) 4 G/Z(G) < Pro-(8, q), with G:Z(G) coizjugate h Xx 
(PQ--(8, q)) to a group jixing a nonsilrgular l-space; 

(iv) S&a, 4) < G < &$2n, 2) (‘Jr -Q(n + 1: 4) < G < 0(212 - !> 2; fw 
n ecenj; 

$7) G*(4) 5~ G < Sp(12, 2) z Q(13, 2); 

(I-:) SC-(m, 2) < G Q Q(2m, 2), where E = (--)“‘. 

Theorem I solves a problem posed by Hall and Wagner [25], wcic5 has bee> 
studied by Higman [8, lG], Perin [19], Kantor [13] and Komya [lfl. AZ inde- 
pendent and alternative approach to this theorem is given by Orchel [ ic; we are 
grateful to Orchel for sending 1;s a copy of his thesis. 

If G is 2-transitive: then G is antiflag transitive; and also GSX is antitlag 
rransitive for each hyperplane H. This elementary fact Alows us :o use induction. 
(Indeed, Theorems I-III are proved simultaneousi>* bp induction_ in Part 1 of 
this paper.) Another problem, solved in Theorem TI and IT-, is t& of prinAive 
rank 3 subgroups of classical groups. This was posed by Higman and 
McLailghlin [ill, and solved by Perin [19] and Kantor aad Liebler [!4: escept 
in the case of Sp(2n, 2) 2 Q(2n + 1, 2). H ere, irxixtion is made possib!e bv 
t!x fact that rhe stabilizer of a point K is antiflag transitive CE s’-/s. 

The striking occurrence of G,(q) in these theorems is related to a cxcial 
e1emer.t of ox approach. This case is obtained from a geceral embedding 
theorem for metrically regular graphs (3.!), in w&t t::e Feit-Higman theorem 
[7] on generalized polygons arises unexpectedly but zaturdly. Other familirr 
geometric objec:s and theorems come into play later on: .L t’le characterizetions _ 
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of projective spaces due to Yeblen and Young [24] and Ostrom and Wagner [18], 
as well as translation planes, arise in Theorem III, while Tits’ classification of 
polar spaces [23] and the triality automorphism of PJJ’(8, ~7) are used for 
Theorem IT’. 

All the proofs require familiarity with the geometry of the classical groups. 
On the other hand, group-theoretic classification theorems have been entirely 
avoided. Moreover, knowledge of G,(p) is not assumed for Theorem I, and what 
is required for Theorems II-IV is contained in the Appendix, where we have 
given a new and elementary proof of the existence of the generalized hexagons 
of type G,(p). 

This paper began as an attempt to extend Per-in’s result [20] to rank 4 
subgroups of classical groups. As in Perin [19], one case with q = 2 is left 
open: 

THEOREM T-. Suppose G < G’p(n, q)(n 2 6), I’O*(n, q)(n 2 7), or rL’(n, q) 
(n > 5). If G induces a primitive rank 4 group on the set of isotropic or singular 
points, then one of the following holds: 

(i) G 2 G,(q) is embedded naturah’y in rO(7, q) (or ESp(6, q), q ewn); 

(ii) G k Q(7, q), q ewn, m 2.52(7, q), q odd, each embedded irreducibly in 
TO’(8, q); or 

(iii) G < 0+(2m, 2), and G is transitire on the pairs (x, L) with L a totally 
singular line and x a point of L. 

The examples (ii) (and (iii) in Theorem 11) are obtained by applying the 
triality automorphism to the more natural Q(7, q) inside PQ+(8, q). As for (iii), 
examples are A, and S, inside 0:(6, 2). 

Other results in a similar spirit are given in Section 8, as corollaries to 
Theorem I. 

Some further results are of interest independent of their application to the 
above Theorems. A general result on embedding metrically regular graphs in 
projective spaces is proved in Section 3; this is crucial for all the theorems. 
Theorem 10.3 characterizes nonsingular quad&s of dimension 2n - 1 contained 
in an 0+(2n, q) quadric for n > 3. In Section 12, parameter restrictions are 
obtained for rank 4 subgroups of rank 3 groups (and their combinatorial analo- 
gous). Finally, the Appendix gives an elementary construction and characteriza- 
tion of the G,(q) hexagon. 

The paper falls into two parts. The first (Sections 2-8) deals with antiflag 
transitive collineation groups of projective spaces (Theorems I-III); we note 
that Sections 3 and 5, on the primitive, not Ztransitive case, are virtually self- 
contained. The second part (Sections 9-14) contains the proofs of Theorems IT- 
and I--, concerning polar spaces. 
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I. THEOREMS I-III 

1 point (~vp~pla.ne) of a vector space F is a subspace of dimersion 1 (ccdimea- 
SIOG 1). If I’ is +dimensional over GF(q), the set of points (equipped with the 
structure of projective geometry) is denoted by PG(z - 1: p); but in this paper, 
its dimension will always be R. The notation SL( I‘) = SL(n, 4): GL(n, 4). an6 
JYL(n, G) is standard. 

If, in addition, I’ is equipped w-ith a symplectic, unitary or orthogonai gec- 
metry, then rSp(n, q), rc(n, 4) and rO*(n, 9) denote the groups of semilinea; 
maps preserving the geomet? projectively. For example. I’%*(n, 4) consists of 

all invertibie semilinear maps g such that Q(+) = cQ(cG) for all F E I-, xhere 
Q is the quadratic form defining the geometry, c is a scalar. and a a field autc- 
,morphism. The groups Sp(n, q), SL7(a, p) and g+(a, 4) are de%ed as usuai. We 
mill occaaionaily require the fact that Sp(2n, 4) y ~3(2n - 1: 4) when 4 is even. 
(Explicitly, if V is the natural S&?rz, q)-module. then there is a 2n - l-dimer- 
sional orthogonal space r such that p;rad IF = V, with the natural map r-+ I7 
inducing a bijection between singular and isotropic points.) The reader ts 
referred to Dieudonne [q for further information corxerning these groups. 

Points xii1 be denoted x, y, .a, lines L, L’, and l-yperpianes -W, H’. 11-e ~~31 
general!? identify a subspaced of Vwith its set of points; 4 denctes the number 
of points. and s E 3 will be used instead of .r C 4, Similar!y, for subspaces $ 
and Z’, 4 - C denotes the set of points in A but not .Z. The dimension dim 4 of a 
subspace 4 denotes its vector space dimension. 

If A is any subset of p-, then GA and C,(4) are respectively the set&e an& 
vector-wise stabilizers of A in the semilinea: group G: Gx = G, ? Gz . 
Moreorer, GJz = G,.‘&(A) is the semiiinear group induced on 4 if 6 is s 
subspace. Similarly, if x E H, then G:$ is the group induced b>- GsH on the 
space I;i .r-. 

The xwk cf a transitive permutation group is the total nxnbtr of crbirs of 
the stabilizer of a point. 

The remainder of this section lists further deli- Ltiona and resulrs required in 
the proofs of Theorems I-Y. 

ThT0Rz.J: 2.1 (Ostrom-I\‘agner [18], Oetrom [17]). Ij cc p?gjectk? plaaP?e % 
S$ prim poaer order q admits a collineatiox group G 6?ansitizle on ?zorz-insider?: 
poixt-he pairs, then P is desarguesian and G > PSL(3: qj. 

Of course. (2.1) is true without the prime power assumption, but we v-iZ 
only need the stated case, which is much easier to prove. The nest resuit is 
needed for (2.1) and is also used elsewhere in our argument. 
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THEOREM 2.2 [4, pp. 122, 130-1341. Let t7l be an afirze translation plane of 
order q, L a line, x EL, and E the group of elations with axis L. T7’ze~ 

(i) E is semiregular on the set of lines daserent from L on x; and 

(ii) q ! E 1 = q for each L, then Ol is desarguesian. 

.?ldditional, more elementarr results concerning translation planes will also be 
required; the reader is referred to Dembowski [4, Chap. 41 for further informa- 
tion concerning perspectkities and Baer im-olutions. 

Consider next a geometry 9’ of points, with certain subsets called “lines”, 
such that any two points are on at most one line, each line has at least three 
points, and each point is on at least three lines. Call 9 and 9 the sets of points 
and lines. If a, b E .P u 9, the distance Z(a, b) between them is the smallest 
number k for which there is a sequence a = a,, , a, ,..., ay = 6, with each 
ai E 3 v 9 and ai incident with al-, for i = O,..., k - 1. Such a sequence is 
called a “path” from a to 6. Sow 9f is a generalized n-gon (rz > 3) if 

(i) whenever s(a, b) < 11, there is a unique shortest path from a to b; 

(ii) for all a and b, Z(a, b) < n; and 

(iii) there exist a and b with Z(a, 6) = n. 

A generalized n-gon has parameters s, t if each line has exact117 s + 1 points and 
each point is on exactly t + 1 lines. 

THEOREM 2.3 (Feit-Higman [7]). GetzeraZized a-gotzs can exist oaZy for 
n = 3, 4, 6 or 8; those with n = 8 cannot have parameters s, s. 

Generalized quadrangles enter our considerations as the geometries of points 
and lines in low-dimensional s!-mplectic, unitav, and orthogonal geometries. 
Generalized hexagons are much less familiar; the ones we need are discussed in 
the Appendix (see also Sections 3, 5 below). 

Generalized ri-gons are special cases of metrically regular graphs. Let r be a 
connected graph defined on a set X of I-ertices. If x, y E X, let d(x, y) denote the 
distance between them. Let d be the diameter, and r,(x) the set of points at 
distance i from x, for 0 < i < d. Then I’ is metricall>- regular if 

(i) ’ r,(x): depends onl>- on i, not on x; and 

(ii) if d(x, y) = i, the numbers of points at distance 1 from .r and distance 
i - 1 (resp. i, i + 1) from y depend only on 5, and not on x and y. 

(Condition (i) follows from (ii) here). 
If Y is a geometry: as preyiously defined, its poirzt graph r is obtained by 

joining two points of g by an edge precisely when the!- are distinct and collinear. 
This graph may be metricall>- regular; for example, it is so when 99 is a generalized 



In this section we will prove a general result concerting certain embeddings 
ic projective spaces. Let 3 be a geometry? with point set A9 ar_d point graph -!, 
For -7 E ,q let H<(x) be the set of points distant at mos-: i from x. me assume :he 
following axioms (for a!1 .x E 9): 

(a) 2 is a set of points spanning PG(n - ‘i ? q); 

[b) each line L of 3 for Y-line) is a Iine of “G(n - i ) q>; 

(cf Q is the union of the set of 9’-iines; 

($ -7 is metrically regular \Cth diameter d ,> 2; 

(e) J%~(x) is a subspace of PG(rz - i: 4); 
(f) Z~7i(.k;) = R Cl LTi(x) for some subspace c.mi.x) ; an& 

(g) TV2(x), = (4” - l)/(q - I) for some inreger k. 
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Proof. Set m = dim W,(x) (recalling from Section 2 that “dim” means 
vector space dimension). If d(x, y) = i > 1, let 

ed = dim W,(X) n ?Vi-l(y), 

fi = dim W,(X) n W,(y). 

(Kate that both IV&c) n W+.,(y) and W,(X) n lITi are subspaces. For, if 
W,(y) = Q n U,(y), then W,(X) n lVj(y) = W&x) n 8 n Uj(y) = W,(x) n 
Uj(y).) These dimensions depend only on i, not x or y. For, if r,(x) = IV&c) - 
Wi,(x) is the set of p oints at distance i from X, then 

I G(X) n Lo = W - 1):(4~ - 1) 

1 T,(X) n Ti(y)i = (61 - l),‘(p - 1) - (a” - l)i(q - 1) - 1, 

and 

1 F,(X) n riT1(y)I = (4” - I)& - 1) - (6( - l):(p - 1) 

(provided also that i < d). By (g), ’ I’&)’ = ($ - qn’)‘)l(p - 1). 
Counting pairs (y, z) with d(r, y) = 1 = d(y, a) and d(~, x) = 2 yields 

1 F,(x) j / F,(x) n I+,(y) = I F,(x) 1 i F.,(x) n F,(z));, 

whence (p” - q)(qrn - $1) = (4” - ~“)(Q’z - 1). Equating powers of 4 yields 
1 - fi = m. There are then two possibilities: 

(9 m- 1 =e,, 1 =m-ff,=h-m;or 

(ii) m- 1 =h-m, 1 =m-f,=e,. 

Suppose (i) holds. Each point is on exactly (qrn-l - l),!(p - 1) = (@ - l)/ 
(4 - 1) ‘&lines. Thus, if d(x, z) = 2, each of the Y-lines on a contains a point of 
the ea-space W,(X) n W,(a). Consequently, the graph has diameter d = 2. 
Moreover, Q is a subspace. (For if x and y are distinct points of G but <x, y} 
is not a %line, then there is a point x E W,(X) n W,(y); then x and y are in the 
subspace W,(z), all of whose points are in -Ca.) Sow (a) yields h = n, so m = n - 1 
and W,(x) is a hyperplane. Since y E W,(X) implies that x E W,(y), it follows 
that x t) W,(x) is a symplectic polarity, so (3.1.i) holds. 

From now on, assume that case (ii) occurs. Since e, = 1 there is a unique point 
joined to two given points at distance 2. The restriction of the relation “joined or 
equal” to r,(x) is thus an equivalence relation, so r,(x) is a disjoint union of 
complete graphs, each of size (@I - qel)/(q - 1) = &r+* - l)/(q - 1). Since 
I r,(x): = &+l - l),‘(p - 1), this implies that m - 2 m - 1, whence m = 3. 
Then fi = m - 1 = 2 (and of course es = 1). 

We next determine the sequences {ei}, {f$ Both are nondecreasing: if 
d(x, y) = i, d(y, z) = 1 and d(x, a) = i + 1 < d, then W,(X) n Wi,(y) C 
W,(x) n W,(z) and W,(X) n lVi(y) C W&V) n JV+l(Z)m Also, ei <f; since 
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1 r,!x) n Ti(y): > 0. Iff* = 3 for some i, then r,(x) ,Z Sri(y), and so i = & and 
conversely fd = dim(W,(x) n W,(y)) = dim l%i(.u) = 3. Thus. ej = 1 and 
fj = 2 for i < d, while fd = 3 and ed = 1 or 2. 

11-e will show that B is generalized (2d -/ I)-gon or 2d-gon (with parameters 
4, 4) according as ed = 1 or ed = 2. Thus, we must reri& axioms (i)-(iiij given 
in Section 2, v-here P was defined. For con\-enience, u-e separate the two cases, 

Case ed = 1. Since ei = 1 for all i > 1, there is a unique shortest path 
joining any two points. Also, a 9%line L contains a unique point nearest x: unless 
L 2 F,(X). (For, ify EL with d(x, y) = i < d minimal, and u E W,(y) InI IVi-r(~~), 
then <y, u) = W,(y) n W,(x) + L.) Thus, there is a unique shortest path 
between N and L if 6(.z, L) < 2d 1 1. 

Let L and L’ be two B-lines. Then there is a unique shortest path bet:\-een L. 
and L’, except possibly if L’ c T,(X) for some x EL. ( Two shortest paths could 
not start at the same point of L; but this w-ouid yield points of L acd L’ kth 
more than one shortest path between them.) Suppose L’ C -r;(x). Then there is i: 
unique shortest path fro&m x to each of the a 1 1 points of L’, no two such paths 
using the same iine through s (since this would produce a pointy x-ith E(y, L’) < 
2i and tire shortest paths from y to L’). Then these paths use ail 0 T 1 94ines 
through X, and hence L must occur among them. Thus, Z(L, L’) = 2d and a 
uciqde shortest path again exists. Consequentl>T, axioms (i) and (ii) hold. Since 
,f$ = 3 and ed = 1: so does axiom (iii). 

5we ed = 2. This time, there is a unique shortest path from A to X’ unless 
x’ c r,(s). As above, anI- g-line L contains a uniq-ue point cioses: to x. and 
there is a unique shortest Fath from x to L. Fina&, let L and L’ 5e g-lines with 
E[Lz L’) < 2d. Then only one shortest path can exist bet\\-een L and L’: twc 
such Faths would produce either two shortest paths from a point of L to L’: 
or two shortest paths between points of L and L’. Thus, axioms ($-(iiij again 
hold. 

Since ~a = 1, we have d > 3. The Feit-Higmac Theorem (2.3) 110:~ sbov~ 
that d = 3 viol e, = 2. 

It remzirs to prore the parenthical remark in (3.l.ii). Here 9 = IYa(x) is a 
subspace, and dim W’&) = dim I’,(X) - 1, so x’c-) Wa(.x) is a spm$ectic 
polari?. Since ’ R = ($ - l)/(q - 1), we have n = 6, as required. 

%iEOREM 3.2. Suppose the hypotheses and cmulrrsion (ii) of (3.1.j hold. TApn 

(i) Ifn=6,thenqisewn;and 

(ii) otherecise n = 7 and B is the set of si~&ar points 01~ a geometiy of 
type O(7, q). 

In either case the tmbeddkg of 59 is unique. 

1-m t - defer the proof to the Appendix. 
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4. A RRF~R~LA-~ION OF ,%~~IFLAG TMSITIVITY 

Sometimes the following criterion for antiflag transitivity is convenient. 

LEMIVL~ 4.1. A subgroup G of I’L(n, q) is antij-lag transitive if and only if 
GLL is 2-transitive for every line L. 

Proof. Suppose G, has s orbits of hyperplanes on x, t orbits of hyperplanes 
not on x, and s’ f 1 point-orbits in all. Then s 7 t = s‘ + 1, and G, has s 
orbits of lines through x. Each such line-orbit defines at least one point-orbit 
other than {x}. Thus t - 1 = s’ - s > 0, with equality if and only if Gz is 
transitive for every line L through x, as required. 

From Dickson’s list of subgroups of SL(2, q) [5, chap. 121, it is seen that only 
when 4 = 4 is there a 2-transitive subgroup H of FL(2, q) for which H n GL(2, q) 
is not 2-transitive. We deduce the following. 

COROLLARY 4.2. If q f 4 and G < FL@, q) is ant&g transitive then so is 
G n GL(n, p). 

Remark. Subgroups of JZ(n, q) not in GL(n, q) will arise in the inductive 
part of our proof, as the examples occurring in Theorem III indicate. 

5. THE HEART OF THEOREM II 

Suppose G < lYL(n, q) is antiflag transitive but not 2-transitive on the points 
of V. The following lemma incorporates Perin’s main idea [ZO]. 

LJMMA 5.1. If x is a point, then there is a subspace W(x) (different from x and 
V) containing x, such that GzJixes W(x) and is transitive on V - W(x). 

Proof. A Sylowp-subgroup of G fixes a hyperplane Hand a point x E H, and 
is transitive on V - H. Then 

is a G,-invariant subspace; G, is transitive on the pairs (Hg, y) for g E G, , 
y 6 Ho, and hence is transitive on V - W(x). 

THEOREM 5.2. Suppose G < F.L(n, q) is primitive but not 2-transitive on 
points, and is antiflag transitive. Then G preserves a symplectic polarity, and either 

(i) G has va.nk 3 on points; OT 

(ii) G has rank 4 on points, G < lXp(6, q), and G acts on a generalized 
hexagon with parameters q, q. 
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The proof involves an iteration of (5.1) follcwed bp (3.1 j. Let d - i denote 
the rank of G in its action on points. 

LEMJIA 5.3. There are subspaces 

x = W&) c W,(x) c n7&r; c . . ’ c ivd&r) c w&r) = 5- 

f&h the properties 

(aj G, @es W&r) and is transitice on Wi(x) - W;,(x) $or 1 < i .< ri; 

(b) <fy E W’(x) and 0 Q i < d - 1, then Wi(y) 2 JV;-l(.t); 

{c) Wj(rg) = W,(x)gfbr allg E G; azd 

(d) d> 1. 

Proqf. Set W,(X) = V and W,,(X) = IV(.rj (cf. (5.1)). Then C > 1 by 
(5.1). Since Wd(.~) - lVd..&) is the largest orbit of G, , certainly Ii,-l(~‘jj = 
i+,-,(X)“. 

Sow proceed b>- “backwu-ds induction”. Suppose W+,(X),..., W&j have 
been defined. Set mj = dim W,(X) for j = i - I,...: d. d S$X~ p-su5grouF P 
of G, fixes a line L on X; necessariiy L C H7i,(x). Let y EL - x. Since all 
P-orbits on I’ - IV,& have length at least r1”+1, all P,-orbits on WfAl(y) - 
W+,(X) have length at least qmf+l-l. (By primitivitp, ‘Wj,,(yj + W&j.) It 
follorvs zhat Wj-z(~) n Wi+l(y) is a h>-perplzne of T?~-l(xj. and that G,, is 
trznaitive on W+(y) - W,&). Tlnen 

W<(Y) = n {wj&)g I g E G,j 

ia a subspace of IViml(y), and G, is transitive on W&y) - Wi(yj. Then (cj 
holds, since G, has only one orbit of size 1 Wi+r(~j - ~i7j(.rji. 

Tnis process terminates u-hen W,,(x) = x. Then T”J,(x) - s consists cf 21: 

points y for which (x, y) is fixed bv some Sylow $-subgroup of G. Sow $j 
:ollows from the construction. Thus, all parts of (5.3) are proved. 

Let B be the geometry with line set ((x, y) j y E Wl(xj}, and F its point 
graph. Bq’ (5.3b) and induction on i, s-e see that F17i(~j is the set of points at 
distance at most i from x (relative to the metric d in 1-j. Consequentiv. i is 
metricallv regular, and (3.1) applies. Since W.&j and rN,(xj are subspaces. %e 
theorem follows. 

I+: (3.2), the generalized hexagon in (5.2ii) must be the one associated with 
G,(q). However, as stated in Section 1, we will make the proof of Theorem I, 
and most of Theorems II and III, independent of the existence and uniqueness of 
the G,(q) hexagon. The required information is easiiy proved (frequently in t1he 
spirit cf other of our arguments), and is collected in the following lemma. 
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LEMMA 5.4. If G is as in (5.2ii), then the following statements hold: 

(a) G has exactly two orbits of totally isotropic lines; 

(b) G has exactly two orbits of totally isotropic plarres; 

(c) there is a totally isotropic plane E such that GEE > SL(3, q); 

(d) there is an element t E G with tp = 1 and dim C,(t) = 4; 

le): / G n GL(6, q)j = q’j($ - I)(q’ - I)& where d ! q - 1 ;f q # 4, d j 6 
ifq ; 

(f) if r is a prime divisor of q C 1 and R a Sylow r-subgroup of G, , then 
dim C,(R) = 2 and Xo(R) is 2-transitive on C,(R); and 

(g) G, has no element of prime order greater than q + 1. 

Proof. Since G, has three point-orbits other than {x}, (a) is clear (cf. (4.1)). 
Clearly, Wr(x)o is an orbit of (4” - l)/(q - 1) totally isotropic planes. Let E 
be any of the remaining 

(4” + l)(P’ -i lh + 1) - ($ - wz - 1) = qY!f + 1) 

totally isotropic planes. If L is any Wine, the q + 1 totally isotropic planes on L 
are all of the form W,(x) for x EL. It follows that E contains no Wines, and for 
y, 2 E E, d(y, z) = 0 or 2. Let &l = <y, s) and x = W,(y) n W,(x). If 
P E Sylp(Gz), then there are q choices for E on M (any totally isotropic plane 
except (x, y, z)), while inside W,(x), there are q* choices for M. Thus 
! P: Peue 1 < q*, so each orbit of PmWE on V - xA has length at least qs. Since 
E - M is fixed by P-WE, we have 1 P: P,,.sE i = qa, and P,WE is transitive on 
E - M. This proves (b). Moreover, since M is any line of E, (c) follows from 
(2.2). 

Let X G GE induce all (x, <w, z))-elations (transvections) of E, where 
w E E - M. Then X&es .M, and hence also the unique point x joined to all of 
M by 9-lines, as well as the unique point x’ joined to all of (w, 2) by Wines. 
Since we may assume that X is a p-group, C,(X) > (z, x’)‘; then C,(t) = 
(2, x’)l for all t E X - {I}. (Kate that G cannot contain nontrivial transvections 
of Sp(6, q), since W,(x) n W,(u) # W,(x) n F&(d) for U, U’ E r.(x), u # u’.) 

Clearly, 1 Gj =(qs+ 1)q81GE:. But I Sp(6, q)E I = 4” I GL(3, dl. If g E 
C,(E) is a p-element then, proceeding as above, we fkd that g fixes a basis for V. 
Thus, / GE n GL(6, q)I divides I GL(3, q):, and (e) holds. 

Since Gti is transitive on the q + 1 Wines through x, the group R in (f) 
eannot fix any point of XI - x. Recall that R < GL(6, q). Since R fixes a point of 
V-xl, dim C,(R) > 2. But C,(R) n xl =x, so dim C,(R) = 2. The 
last part of (f) follows from antiflag transitivity. 

Finally, (g) follows from (e), or more simply thus. If there were such an 
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element g E G, , then g would Lx all q + 1 Wines through s and al! their points, 
and hence all points of 9, by connectedness. 

-RernarIzs. 1. Only (5.4 d,e,f,g) are needed for Theorem 1. 

7 -. G r? Sp(6, q) is generated by the conjugates of the grout S acpeari:g 
in the above procf. 

3. If G < I’L(n, q) is antiflag transitive and primitive on points, then ir is 
primitive cn hyperplanes. For, if G preserves a symplectic polarity, then its 
actions on points and hyperplanes are isomorpihic; otherwise, by (5.2): G is 
2-transitive on points, and so also on hyperplanes. iYe ~xili see later (7.1) that z 
stronger result can be obtained by elementary arguments independent of (3.1). 

6. THE PRIMITIVE CASE 

We now begin the inductive part of the proof of Theorems I-III. In order tc 
avoid identifying G,(q) during the proof of Theorem I (cf. Section 1): x-e 
restrate the theorems in slightly weaker form. 

THSOREM 6.1. Let G < I’L(n, q), a > 2, be antijag transitive. Then one q; 
the follomiq holds: 

(ij G 2 SL(n, q); 

(ii) G is A, inside SL(4, 2); 

(iii) G e S”(n, q); 

(iv) G is A, itaside SL(4, 2); 

(v) ; G / = 20, G < FL(2, 4); 

(k+;-) G < ~Sp(6, q) -c rL(6, q), q is ecen, and G acts as a rmk 4 gmp on. 
the points of a generalized hexagon wzlh parameters q, q, whose p~i?~ts mad he: 

cm& of all points and certain totally isotropic lines for rSp(6, qj; 

(vii) G e SL&n, 4), embedded naturally iuz SL(z, 2); 

(viii) G 2 Sp(&a, 4), embedded natwaliy in SL(?z, Sj; 01 

(ix) G is a subgroup of lXp(6, 4), itself embedded natwah’y in SL(12, 2). 
such that G acts on a genera?ized hexagon in PG(5, 4) az in (Y!). 

Note that 2-transitive subgroups of rL(w, q) are automaticahy anti9ag 
transitive (Wagner [25], or (4.1 j). 

The theorem w-ill be proved by induction on n in Sections 6, 7. The case 
IZ = 2 is omitted, while (2.2) handles n = 3. Ke therefore assume 1; > 4. E>- 
(4.2), if q # 4 we may assume that G < GL(n, qj. 
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In this section we will consider only primiri~ groups G. Then either (5.2) 
applies, or G is 2-transitive. In either case, induction or known results almost 
abvays produce sufficientlp large groups of transvections for G to be identified. 

PROPOSITION 6.2. If (52i) holds then either G r> Sp(n, q) or G is A, inside 
SP(492). 

Proof. Let x and y be distinct points of the (totally isotropic) line L. There 
is a Sylow p-subgroup P of G fixing x and L, and transitive on Y - XI. Then all 
orbits of P,, on V - XL have length at least q”-l/q, so P, is transitive on yl - x’. 
Since GV is already transitive on y’/y, it is thus antiflag transitive there. 

By our inductive hypothesis concerning (6.1), K = GzLlr satisfies one of the 
following conditions: 

(4 K P SP(n - 2, 4); 
(/3) K = A,, n - 2 = 4, q = 2; 

(y) K acts on a generalized hexagon as in (6.1v), n - 2 = 6; 

(6) Sp(&rz- 1,4)CK,(ESp(&z- 1,4);or 

(E) K < I’Sp(6, 4) acts on a generalized hexagon over GF(4) as in (6.1 z), 
q = 2, n - 2 = 12. 

At this stage it is easiest to quote Perin [19] when q > 2. In fact, we will use 
his method to handle all these cases when q = 2. Since S&z, 2) is generated by 
transvections, it suffices to show that G contains a nontrivial transvection. 

Set S = Sp(n, 2) and P = O,(S,) = C,(y’/y). Then I P I = 2+l, and P is 
S,-isomorphic to the natural representation space of S,,!P E Sp(n - 2,2) g 
Q(z-1,2)ofdg e ree 1z - 1; the radical of the orthogonal space corresponds to 
the group T of all transvections in P. (Explicitly, view S as Q(n + 1, 2), acting 
on an n + 1 - space 8. Let e andf be non-perpendicular singular vectors, with 
(e)+radp=y. Th en P consists of all transformations e + e, f--f + c, 
u + u + (u, c)e for some c E <e, f )’ and all u E (e, f):.) Xow suppose that 
G n P # 1 and G n T = 1. Since G, is a transitive on y’/y, it is transitive on 
P/T - (1). Thus j G n P ] = 2*-e, and Gy fixes a nondegenerate hyperplane 
of p, so K G Ok(n - 2, 2). But no subgroup of the latter group can be transitive 
on y’ly. 

Consequently, if we can show that G n P + 1 we will have G n T # 1, 
and hence G = S. 

First, suppose II = 6, so K G Sp(4, 2). Certainly, 25 1 ] G 1, and 25f ] K ], 
soGnP#l. 

Sow let YZ > 8, and consider (a), (y), (8) and (c). For these cases, set i = 
(n - 2) - 4, 2, (n - 2) - 4, resp. 4. 

Let r be a primitive divisor of 2” - 1 (see (2.4); use T = 7 if i = 6), and 
R E Syl,(G,,) for x EL. By (54f), d rm,+(R) = 2 resp. 4 in cases (6) resp. (c), 
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and hence dim C,(R) = 4 resp. 6. Similarly, in cases (aj and (8) dim C,(Rj = 6: 
except that dim C,(R) = 4 when R = 8 (and r = 3) in (a). 

Since R is completel>- reducible by Naschke’s theorem. TF’ = C,,(R) is B 
nonsingular subspace. 

Sow R is a Sylow subgroup of the stabilizer cf two distinct perpendicular 
points, and also of two non-perpendicular points unless n = 8 and ;’ := 3. 
Thus, -l,(R) induces a rank 3 group on Fl’. (If r = 3. P = 8 end dim TF = 4, 
then :\rG(R)pv is a subgroup of Sp(4, 2) g S, transitive on ordered ?airs 0; 
distinct perpendicular points.) Then A7G(R)w is Sp(6, 2), S9(4, 2) w A, . 

Also, ,VG(R)w- is a subgroup of EL(1. 29, L!J2, 2”j (if i = 2), JX(2. 1”) 
(when 71 = 12 and t = 6 in (x)) or E(2, 2”) (when i = 4 in (6)). 

It follo~~s that XG(R) has a subgroup -1: inducing the identity on W- 2nd 
Sp(6, 2) or A, on W. In either case, -YU has an involution centralizing (J- ? TT’):?. 
Thus, G ,? P A 1, so G = Sp(n, 2), as required. 

PROP~SITIOX 6.3. If G $ .ZYL(n, q) (n >, 3) is I-trumiti~e cm pokts, :heE 
either G >, SL(n, q) or G is A, inside SL(4, 2). 

Proof. In view of Wagner [25], we may assume that n 2 6. We recaJ the 
following additional facts from Wagner [25] : G is i-transiti\-e on hyerplanes. and 
if H is a hyperplane, then GHH is antiflag transitive. 

Once again. we will run through the possibilities provided ‘s>- induc:ioa for 
GHH and, dually, G,” ‘Z. If either is 2-transitive, then G is flag-transitive. and the 
result follows from Higman [S]; so suppose not. 

Suppose G,” ” is contained in FSp(n - 1, Q). If X’ is a second point, then 
G,; fixes a hyperplane H on x and B’. So there is a G-orbit of length z(z - 1) oi 
ordered triples (x, x’, H) with s, .v’ E H, s f x’. (Here 2’ = (ai2 - l):(q - 1); 
K will denote (~“-1 - l)f(n - l).) Then GZ$ has an orbi: of length T(ZJ - 1:: 
vk = c; where x E H. By (4.1), this orbit, together with X, fcrms a line A. 
Clearly GZzI < G,, , so GHH is imprimitive. (Conversely, if G,, fixes a line LI 
i\ith s E d ,’ H, then A/X t-) H/.x is a symp!ectic polarity et TV,‘.< preserved b! 
G ? 3’ a, 

Thus we may assume that q = 2 and K = GIsX is &primitive. Then a - ‘, 
is e\-en, E > 7. and K < TL(+(a - 1), 4) behaves in one of the following ways: 

(cc) K 2 SL($(n - I), 4); 

(8 K 2 Sp(B(n - 1), 4); or 

(y) K < ES’p(6, 4) ct a s on a generalized hexagon over GF(4) as in (6. I t-), 
n- 1 = 12. 

Let i be (12 - 1) - 2 in (LX), (n - 1) - 4 in ($?) and 4 in (:J). Let r be a nrimi- 
tire dix-isor of 2’ - 1 (use r = 7 if i = 6), and R E SylI,(GX,) for x E H.‘Tktc 
dir C,(R) is 1 2 2 in (LX) and 1 - 4 in (/3) and (y) (using (5.4f) in case (7)). 
Moreover, lwG(R) is 2-transitive on C,(R), while -\-G(R)li is impromitive on 



398 CklrIERON -4ND KAXTOR 

C,(R). Since ,\‘c(R) induces SL(3, 2) or SL(5, 2) on C,(R) by induction, we 
have the contradiction which implies the proposition. 

..Yow (5.2), (3.2), (6.2) and (6.3) complete the inductive step in (6.1) when G is 
primitive on points. 

Hal-ing dealt with the primitive case, u-e record an elementary corollary for 
use in the next section. 

LEM~L~ 6.4. Suppose G is as in (6.1) and is primitive on points. If F < G 
with F antifag transitive and G: F ; a power of p, then F is also primitive on 
points. 

Proof. Let P E Syl,(G,). Then P fix es a unique line on x. (In case (6.114). 
apply (4.1) to a line L of WI(x) not on x.) Clearly G = PF and P n FE SvI,(F,). 

In each instance of (6.1), P n F also fixes a unique line on X. (For (6.lvii-ix) 
this just says that P II F fixes a unique point o\-er GF(4).) If F were imprimitive, 
then F# , P ,q F, and jence G, = PF, would fix L, contradicting (4.1) and the 
prim&i+ of G. 

7. THE IHPRIMITIVE CASE; COMPLETION OF THE PROOF 

Continuing our proof of (6.1), we now turn to the case of an ant&g transitive 
subgroup G of IYL(n, q) which is imprimitive on points. The method here is 
entirely different from that of Sections 5, 6; we build a new projective space on 
u-hich G continues to act antiflag transitisyely. 

If A is a nontrivial imprimitivity block for the action of G on points, then d 
is the set of points of a subspace. (For, G, is transitive on the hyperplanes of 
(A j, hence on its points, and thus A must contain all points of (A}.) We usually 
identify A with (A). Let 8 = dim A. By Remark 3 at the end of Section 5, G is 
also imprimitive on hyperplanes, and a block of imprimitivity consists of all 
hyperplanes containing a subspace Z. The next result (independent of the afore- 
mentioned Remark) shows that there is a close connection between blocks of 
points and hpperplanes. It is due to Orchel [16], and simplifies and improl-es a 
result in an earlier version of this paper. 

LEMMA 7.1 (Orchel). Let A be a block of imprimitivity for G acting on points, 
and S = dim A. For any hypeplane H, let X be the union of the members of AC 
contaimd in H. Then .Z is a subspace of dimension n - S, and the set of hyperplanes 
containljlg .Z is a block of imprimitivity for G acting on hyperplanes. 

Proof. We have AC 1 = (qn - I);($ - 1). Set H n dG = (A’ E AC ; d’ C H}. 
If A’ E AC, A’ $ H, then ! A’ - H = $-l; so there are qn-8 such subspaces. 
Thus j H n AC ! = (qn-6 - l)/(qb - 1). The union .Z of the members of 
H n dc has cardinalit? (qn-s - l)/(q - 1). 
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Let P be a S~+lou- p-subgroup of G, . Then P is transitive on T’ -- E: and 
hence on dG - (Hn do). Let x’ be a subspace of H of dimension n - S 
fixed bg P. If Z’ r\ A’ + 0 for one (and hence zlij A’ E AC - jlr’ n dG). then 

.Z’ : > p-i-8. which is false; so .Z’ C E, and comparing cerdinaiities shows that 
r’ = 2. 

Sow, if R’ is any hyperplane containing Z, then .Z is the union of the members 
of do r! II’; and G, is transitive on the set of such hyperpianes H’. This proves 
the lemme. 

.Yotutio?. Let d be a minimal proper block of impriaitkiry, and define z’ 
as in (7.1). Set R’ndG={d’Ed _ G j A’ C IV} for am: subspace W. Ke ha\-e 
shown rhat Z n do partitions B. Let 9 be the !attice of ail intersections of 
members of .Zc. 

iEM:.L% 7.2. If n > 26 then 9 is the lattice of nrbs$aces of a projectire :pace 
PG(n/S - ! . q6) on which G acts as an antijbg transitiw collizeation group. 

11;oof. If TBE 8, TVC Z; E EC, and TV n A, g 0 for L, E AC, then AI c Z, t 
by (7.:). Thus, Wn do partitions W. If W = :<A, ,..., &.] ws-ith di C dG and 
.k minirral, then dim W = k6 and ; JV n dG = (428 - :):‘(q” - 1). Call W 8 
Point, Line, or Plane if k = 1, 2 or 3, respective$. Then two Points are on a 
unique Line (containing q8 - I Points), and three Pcints net on a Line are in a 
unique Plane (containing qza C q6 - 1 Points). The Veblen and Ycung arioms 
[24] imclv that 8 is a projective space. 

By (ilj, H r\ 4G = 2 n do, and GH is transitixe on the or+3 Points not in Z. 
Thus. G acts antiflag transitively on Y, a..& -9 the lemma fol!ows from (2.i j. 

3EFIxTror. Let fl denote the set of al! cosets cf me-mbers of 9. (Sine: 
0 E 2, ail vecors of fi- are in a) 

LEXSiA i.3. If n > 26 then fl is the lattice of subspazes of E!G(z%, qE). 

Prsof. From 52 u Y by attaching 9 “at infinity” 2s fooilows: adjoin CT E 9 
to JP 1 c if L- c WE 9. Thus, fi u 9’ wil! have two types of “points” (vectors 
and members of AC), and two types of “lines” (cosets of me-mbers of AC), and 
two types of “hnes” (cosets of members of do, and Lines of 9). If ,<.d. A’; is a 
Line of Y, then it and any \-ector determine a translation plane of order 0” 
in a standard manner [4, p. 1331; (d, -?I’> plays the role cf line at infinity. 3!- 
j7.2), CT \;’ Y satisfies the \-eblen and Young axioms, and hence is PG(n!b, q”). 
This prw-es the lemma. 

LEIIK\ 7.4. If n = 28 then LZ is AG(2, q”). 

P~ooj. As above, fl is an affine translation piane. Eut here JG is mere!>- its 
iine at infinity, so proving that fl is desarguesian will be more difficult. 



Let x E A and P E Syl,(G.J. The group E = C,(A) consists of all elations of fl 
with axis A ; it is semiregular on the set A o - {A) of linest # A of a through the 
point 0 of @, and c?I is desarguesian if ! E ; = q6, by (2.2). We ma>- thus assume 
that 1 E i < q”. 

Since i H n AC / = 1, G, is transitive on AC - {A}. Thus, GA is transitive 
on the pairs (x, A’) with x E A and A’ E AC - {A}, so GA:, is transitive. But PA, 
is transitive on A’ - H if P fixes H 3 A. Thus, GA:, is even antiflag transitive. 
Moreover, G,, = P . Gddr since P is transitive on AC - (A}. Then GAA = 
PGAi. ; since GAA is primitive by the minimality of A, GA:, is primitive by 
(6.4). We claim that C,(A),* = 1. F or, C,(A) d GA , where GA is transitive on 
AC - (A), while CG(A)Ac consists of homologies of fl with axis A. Thus, if 
CG(A)An f 1, then this holds for every A’ E AC - {A}. Then in the action of 
C,(A) on AC - {A}, the stabilizer of two points is trivial, but the stabilizer of any 
point is nontrivial. This implies that C,(A) acts as a transitive Frobenius group 
on AC - {A}, with kernel E of order qa, contrary to assumption. 

It follows that C,(A) = E, and GA’: GA,:. = q*/ I E !. 
Suppose q is odd. By (4.2) we may assume that G < GL(n, q). By induction, 

both GA,;. and G,A have normal subgroups SL(6, q) or Sp(S, q) or a group as 
in (5.4). It follows that GAA = GAP,. (cf. (5.4)) and 1 E j = qa, a contradiction. 

Consequently, q is even. If t E GA,Ad is an involution, then dim CA(t) = +S and 
i c&(t)’ < q’“h (since CE(t) acts on the Baer subplane for t). Induction for 
GA,:. , together with this restriction on involutions and (5.4), imply that either 
(a)S = 2, or @)S = 4, q = 2. 

(a) The argument used for q odd applies, unless q = 4, GA’ >, SL(2,4).2 
and GA,!. > SL(2, 4). Here 42,/ ; E ; = q8”f ’ E 1 = 2, so an SL(2, 4) inside 
G ’ will centralize E. Choosing t in this SL(2, 4) yields a contradiction to 
; c!& < 4. 

(p) In this case, I GA+ GA,:. ! = 8 or 2, corresponding to (6.lii, iv), so 
1 E ! = 2 or 8. Since G A,j, > -4,) the arguments in (a) yield j E 1 = 2. Then 
G/z As acts on the q*/ i E j = 8 nontrivial E-orbits on AG. If A’ E AC - {A}, 
then GA,,* fixes the unique A” for which A’e = {A’, A”}. It follows that G 
preserves a Steiner triple system on AC, which is impossible since ’ AG ) = 17. 

This completes the proof of (7.4). 

Proof of 6.1. We may temporarily assume that G contains the group S of 
all scalar transformations of V. Then VS = V >a S is a collineation group of a, 
with V its translation subgroup. Each minimal imprimitivity block of VS in its 
action on the vectors of V is a coset of a l-space of K Thus, the structure of 
V as a GE(q)-space is deducible from @ in a unique manner. The group G+ of all 
collineations of GZ induced by elements of lTL(n, q) must then be lYL(njS, qa). 

In particular, (GA+)” is the semidirect product of GF(qa)* with Aut(GF(qa)), 
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and i G2 = jq8 - 1)8e/(q - l), where q =pe. Since this group is a&lag 
transitive: qs-l di\-ides 8e, whence q = 8 = 2. 

Finaliy, G acts primitively on the set AG of points of 9. For orher:r-ise. rhere 
must be an imprimitivity block r3 A of dimensicn 4: corresponding to an 
imprimitivity block for the action of G on AC. This contradicts the pm\-ious 
paragraph, since 9 is a projective space over GF(4): not GF(2). This compietes 
the proof of (6.1). 

Remnrks. 1. The argument used for q odd app!ies in aimos: a!1 cases provided 
that the groups in (6.1x-i) have been identified. The or&- obstacles occur when 
q = 4, or q = 2,8 = 4. 

2. Examples of (6.1 vii-is) actually occur. Consider G = _rsP($z, 4; < 
G&z, 2). for example. Clearly, G is transitive on I’ - {Oj. Let P E Sl;f,(Gj. Then 
P fixes a hyperplane F over GF(4), and is transitive on the GF(4)-points I- 
outside F. Over GF(2) we ha\-e dim F = n - 2, a~nd. P 5xes a hyperplane 
H3 F. Clearly E- - H 1 = 2. Let t E P acts as zn im-ollrrorp fieid automar- 
phism. Then C,(t): = 2n:P, and m-e may assume that t fises I-. Thus <t’* is 
transitive on I- - H, and G is antiflag transitive. 

By (6.1), the proof of Theorem I is complete. Moreover, for Theorems iI zcd 
III, we haye oniy to identify the groups occurring in (6.1 vii)-the hexagon is 
already known, bp (5.2) and (3.2). It is known thzt the group of auto.mor?:P.isms 
of the hexagon B induced by elements of Sp(6, q) is Gz{q); this is implicit 
in Tits [22] and explicit in Tits [23]. We prove, independentb- of this, 
that G n Sp(6, q) = G,(q). Since G,(q) < AM(S), this fo!low from the 
fact &at 1 GS n GL(6, q): = G,(q)S and G,(q) n S = I (where S denotes 
the group of scalar transformations of V). But this is shown in (A.6 iii). 

8. COROLLARIES 

In this section we give some consequences of Theorems I-III. 
The @ine group -4I’L(n, q) is defined as the group 

of all collineations of the afline space AG(n, q) based on 1; an .I-space ever GF(@. 
(7’ denotes the translation group.) 

PROPO~ITIOS 8.1. Let G < -WL(n, q), n > 3, be tramiii~e on ordered non- 
collinear triples of points of ,4G(n, q). Then G = T x GO , wirere T is the trmslti- 
tion group, ad G,, e SL(n, q) or GO is 3; (with R = 4, q = 2). 
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Proof. The hypothesis implies that G, (the stabilizer of 0) is one of the 
groups of Theorem I; it remains only to show that G contains T. If not, then 
G n T = 1 (since G, is transitive on nonzero vectors), and so 1 G : < 1 rL(n, q)l. 
But then ! G: Go / = p” contradicts 1 EL@, 4): Gs ! < (q - l)e (resp. i rL(n, 4): 
G,, 1 = 8) if G,, > SL(n, q), q =p6 (resp. G, = A,). 

COROLLARS 8.2. The only 3-transitive proper subgroups of AGL(n, 2) are 
VIS x A, when n = 4. 

This corollary improves various results in the literature (for example [3, 
Theorem 11); and also Jordan’s theorem (Wielandt [26, (9.9)]): 

COROLLARY 8.3. 9 normal subgroup .X of a 3-transitive group G is 2-transitil;e, 
unless it is elementary abelian of order 2” and either G = LY >Q GL(n, 2) or n = 4 
andG=Nx A,. 

From results of Perin [19] and Kantor [12], w-e deduce the following. 

PROPOSITION 8.4. Suppose G < PL(n, q) is transitice on the j-s&paces of 
PG(n - 1, q) for some j with 2 < j < n - 2. Then G is transitiee on the i-sub- 
spaces for all i with 1 < i < n - 1, and one of the following occurs: 

(i) G 2 SW, a); 

(ii) G is A, inside GL(4, 2); 01 

(iii) G is rL(1, 27 inside GL(5, 2). 

Remark. -1 “t-(c, k, A) design in a finite vector space” is a collection of 
k-subspaces or “blocks” in a z-space, any t-space being contained in precisely 
h blocks. So nontrivial examples are known with t > 2; and (8.4) shows that 
none can be constructed by the analogue of the familiar construction of t- 
designs from t-homogeneous groups (Dembowski [4, (2.4.4)]). 

To motivate the next result, we sketch the deduction of Perin’s Theorem [20] 
(mentioned in Section 1) from Theorem II. Suppose G < PL(n, q), n > 4, and 
suppose G acts as a primitive rank 3 group of even order on the points of 
PG(n - 1, q). For a point X, G, has three orbits on points, and hence three 
orbits on hyperplanes. If G is antiflag transitive, then G < PSp(n, q) by 
Theorem II (and indeed G is known). Otherwise, G, is transitive on the hyper- 
planes through X, and so also on the lines through X, in contradiction to Kantor 

m. 

PROPOSITIOX 8.5. Suppose G < PL(n, q), n > 4, and G acts as a primitive 
rank 4 group on the points of PG(n - 1, q). Then eitker q = 2, 3, 4 or 9? or 
G 2 G,(q), q even, embedded naturally in I’Sp(6, q). 
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Proof. By Theorem II, we may assume that G is not antiflag transi:ire; 
by the ?res-ious argument and Kantor [12], v-e may assume it is net transitive 
on incident point-hyperplane pairs. Thus, of the fcur G,-orbits in hyperplanea, 
two consist of hyperplanes containing x. Then G, has rwo orbits on lines con- 
mining A-. There are thus two G-orbits on lines, with G, transitive on the iiies of 
each orbit which pass through x. Consequently, GLL is transitive for each iineL. 

Since G, has three orbits on points different from s, it follo~~s that, for suitable 
L and -11 chosen from different line-orbits, GET is transitive while Gz;,: has 
wo orbits. Thus, GLL is 2-transitive while G,,” has rank 3. But, using Dickson’s 
list of s&groups of P;SL(Z, 4) [5, chap. 121, v-e see that Pfi’L(2, c) has a rank 3 
subgroup only if 4 = 2, 3, 4 or 9. 

PROPOSTIOS 8.6. Let G be an ikreducible subgrotip of PEL@z, q)? rr < 4. 
Suppose G,, is mmsitic~e on the lines through x, for some point ::. Then G 3 2- 

tmansiti~e OII points (and Theorem I applies). 

Proof. By Kantor [12], it is enough to show that G is transitive on points. 
So let X = ,xG and assume X is not the set of a!1 points. If L is a ihe and 
Ln-Y=C!. then Z=:LnX’ is independent of 5, and 1 <l<q- 1. If 
dim;~=mandmnX~:,then: Wr\XI=l-(l- !)(I$>+~- I)‘(q-- i>n 

It fol!ows that there is an (n - 2)-space C disjoint from X (for otherwise the 
hyRerplaae sections of X would be the biocks cf 2 symmetric design). The 
hvper$anes containing C partition X into sets of cardinaiity I - (1 - i) 
(q”-2 - !‘I, (q - 1) = h; SO h divides 1 + (i - I)(@- - 1) ‘{q - 1) = -Y . 
\i+ an-0 -c Lb ,4 divides qR-?. Since k > (q”-? - l)‘(q - 1) > q -xe have C = K = I 
{mod q), whence i = q. But then the complement of X contains one or a!! 
points of each line, and so is a hyperplane fixed by G, contradicting ir:educibiiity. 

II. THEOREMS IV ASP T’ 

The proof of Theorem IT- occupies Sections 9-11. The present section contains 
rotation and the analogue of (5.3). Th e p rimitil-e case is concluded in Section 10; 
there the method is different from that of Section 0. Unlike Theorems I-III, the 
primirice case here does not depend on the imnrimiti\-e one. Finally. Section 1 i 
COiXSpOXiS to Section 7. 

The sym$ectic case is covered by Theorems II and III; so we Ecili exch.de the 

case G ,( .?3>[2n, q) for the remainder oJf the proc$ Xso, in x-ieli- of the isc- 
mcrphism between the Sp(2n, q) and O(2r: + 1: q) geometries when 2 is es-en. 
we sdi also exclude the case G < I’O(2n - 1, q), q ererr. Thus, the gecmery- ie 
associated with a nondegenerate sesquilinear form. 
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In the proof, Q denotes the set of totally isotropic or totally singular (abbre- 
viated t.i. or t.s.) points of the appropriate classical geometry, defined on a 
vector space V over GF(p). (Th is assumption involves a slight change of notation 
in the unitary case: G will be a subgroup of II’(rz, ql!a).) By convention, we 
make no reference to l-spaces outside -Q without explicit mention. Thus, if 5’ 
is a subset of 1;2, then S is the set of points of SJ collinear with (i.e. perpendicular 
to) every point of S. The subspace 0 plays the role of 0, so O1 = Q. A t.i. or t.s. 
subspace W is maximal if and only if TV’- = W. The dimension of a t.i. or t.s. 
subspace is its vector space dimension, and the rank I of the geometry is the 
maximal such dimension. 

\Ye begin with two preliminary lemmas. 

LEMIVL~ 9.1. There do not exist subspaces T, TV with T u TL = W- and 
T, T- + WL. 

Proof. IfTuT-=W:thenTnT-=(W-‘)-=W.Lett,ET-Wand 
ta E T- - W, and observe that a point of <tl , t4) - {tl , tz) is not in T u TL. 

LEMMA 9.2. Suppose T, W are t.i. or t.s. subspaces with dim T = i - 1, 
dim W = i, and T C W. Then : T” - W- 1 = qrr-I+, where c > - 1 depends 
on the type of V brat not on F = rank (v) or i, and is g&n in the follozcing table. 

Type of V 0+&z, q) O(2r~ .z- I,@ 0-(2n + 2,q) 92% @;a) Li(2n - 1, !?.‘a) 

c -1 0 1 -3 - b 

Proof. For i = I, TL - WL = 9 - W” ! is the number of points not 
perpendicular to the point W, and is easily computed. For i > 2, T’/T has 
rank tl - i A- 1 and the same tvpe as V; each of its points outside WA/T corre- 
sponds to a coset (containing qi-l points) of T outside WL. 

Throughout the rest of this section and the next, G will be assumed to act 
antryag transitie;ely on the geometry and primitively on the set P of points. Let 
d + 1 denote the rank of G. 

LEMMA 9.3. T%ere is a chain of G,-itmzriant subspaces 0 = W-,(x) C x = 
WO(x) C WI(x) C ..* C W,(x) = V with thefollowing properties: 

(i) W,(x)’ = W,-,&) (whence, in particular, W,(x) is t.i. or t.s. if and only 
if i < +(d - 1)); 

(ii) G, is trmsitie;e on Wf(x) - W&)for each i; 

(iii) y E WimI(.x) implies W,(y) _C W,(x) for i > 1; 

(iv) W&x0) = Wi(x)gfor all i, x, g; 

(3 KW n K(Y) is a hyperplane of W,(x) zyy E WI(x) - (x) and d > 4. 
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ProClf. Let L be a line on x fixed by some P E S:-I,(G,). Fcr y EL - s. Z 
P,-orb on F’ - XI have length at least ~(~r-l-~)-l b>- (9.2), so P, is transkire 32 
y- - L’ (again by (9.2)). Set W,(y) = <Ls g E G,). Ther 

n;(y)- = ,q {Ll)g j g E G,). 

and G, is rransitke on y’ - WI(y)‘. Define WJyg) = iK(yj~ fcr all g E G. 
Xf IS;(X)- = X, 13-e are finished (and d = 2j. S3 suppose WI(~)’ + s. Therm 

w-(x) s w$Y)~ # XJ-, bp (9.1). s ince G, is :ransX-.-e on .I+ - WI(s>L, it 
follows that WI(xj C WI(x)‘, that is, W,(x) is t.i. 3: t.s. Also, G, is transkk-e GE 
X<(X) - s. (For, WI(x) is naturally isomorphic to tie dual space of V/Jr71(~)i. 
Now G; has two orbits on l-spaces of V/WI(.r)-: name- rhcse in x~/%~(.x)- 
end those not in s~,W,(X)~; so it has two orbits oc the pokts of W&j, camel? .I 
and Wz(sj - .y.j Consequentl><, W,(r) = u {Ls : g E GA. 

Sow rJroceed by induction, assuming that i < )(n - 1) and that t.i. cr t.s. 
snbspaces l&(x), W,(x),..., W@) have been defined, subject :c (ii)-@. Set 
TVm~-l(.r) = W&+ for 0 < j < i, and m = dim JX7z(~). By (9.2), the P-orbits on 
T;’ - IV&~)- ha\-e length at least q2r-mAc, and hence tie PY-orbits have length at 
ieast $r-l;l-~--l. 13-e may assume that m # r, since otheern-ise we are f!nissed. 
Again & (9.2j, 2r-m+c--l>m-l. Thus, F’i(y) r TVi(xjL -SIX! 
( Wj(x), Tf’i(y)> is t.i. or t.s., where W,(X) # Wi(:;) by prin&ivi~. Since P:, 
acts on E’;(y)- - (Wi(x), W,(Y))~ with orbit lengths at least ~2r-(‘n-LL)fc, (9.21 
implies that ‘Wi(y) is a hyperplane of (W,(X), Wi{yj’> and P., is trnsitive cz 
iT/,(yjl - <TVi(x), FVj(y))‘. 

Set Wi&j = (W,(.xjg ’ g E G,). Then G, fixes Wi-i(y) acd is transirhe 011 
i!‘i(yj’ - iVj-l(y)L. If W&y) = W;(y))‘, the proof is ended. Other,&:. 
TV!‘;,(y) L’ W~,(yj’ f W<(y)‘, by (9.1). As before, +&is implies that TV+l(y) E 
Wi&;- and G, is transitis-e on W,,,(y) - Wi(-;). This ccmpletes t:le irzkc- 
%-e step. 

Finall:;, iv) was pro\-ed in our argument (letting i = I), since m + r iD_ that 
case. 

DEFISITIOS. The geometry B consists of the points of R, together with these 
lines joining s to points of W,(X) for all 3c E Q. The point grapi? gf %’ is .??. 

L~~I~Icl 9.4. (ij riS metricaIly TegUl~. 

(ii) d < 4. 

(iii) If V has type O(2n + 1, q), then the conclusions of Theorem IV ho!& 

(ix:) Ifd=2th en the conclusions of Themen! IV hold 

Proof. (i) This follows from (9.3 iii). 

(ii) If d > 5 then IV&) is t.i. or t.s., and hence (5.1) yields a contradict&. 
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(iii) Sote that W,(x) is either xl or t.s., and hence ; W.(x); = (q” - 1): 
(q - 1) for some R. If d = 2 then G has rank 3 on points, and Kantor-Liebler 
[14, (1.3)] applies, since q is odd. If d = 3 then (3.1) and (3.2) show that 9 is the 
generalized hexagon associated with G,(q), embedded naturally in Jr of type 
0(7, q). Then G r> G,(q) as in Section 7. 

(il.) Again, Perin [19] and Kantor-Liebler [14] apply. 

Xotation. es = e andfi =f are defined as in Section 3; W(x) = Wr(.v), and 
m = dii W(x). 

LEMlK4 9.5. d = 4 is impossible. 

Roof. If d = 4 then the chain in (9.3) is 

ocxc W(x)C W(x)~CxLC v, 

the differences being orbits of G, . By (9.3 v), f = m - 1. Let LV~-~ denote the 
number of points of W(x)l/W(x). Then ! W(x)” - W(x)] = 4n?N,_, , as in the 
proof of (9.2). As in Section 3, a count of pairs (y, z) with d(x, y) = d(y, FZ) = 1, 
d(x, Z) = 2, yields 

(!r - mm - FF) = !P~r-,(!I - m” - 1). 

Thus, e divides m - 1. 
Since W(x) # W(y) f or x # y, W(x) is not a clique. Let y, s E W(x) be non- 

adjacent points. Then 

e = dim W(y) n W(2) 

2 dim W(x) n W(y) n W(z) 
am-2, 

since W(x) n W(y) and W(x) n W( z are hyperplanes of W(x). Now 1Vr-,,, # I ) 
and e [ m - 1 force m < 3. Clearly m > 2, since I’is connected. Thus, m = 3, 
and .iYr+,, = (q2 - l)/(q” - 1). Thene = 1 and 1 W,(x)l = I W,(x)] + piV,.-m = 
(q5 - l)/(q - l), in contradiction to (3.1). 

10. THE C&B d=3 

In thii section we continue the proof of Theorem IV in the primitive case. 
By Section 9 a-e may assume that d = 3 and V is not of type O(2r + 1, q). The 
chain of subspaces in (9.3) is now 

ocxc w(x)cxlcv, 

with W(x) maximal t.i. or t.s. Set K = 1 xl - x j and e’i = (q” - l)/(q - 1). 
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LEMbi-1 10.i. V has type @(2~, q) z&h I = 4, 5 or 5, z&k f = I’ - 2 a& 
e = 2. 

Ptmf. As usual, count the pairs (y, z) with d(x, 4’) = d(y, z) = 1, d(x, z) = 
2, this time obtaining 

(E’r - l)(cr - Vf) = (k - (q - i))q . 

In particular, K < (or - l)(cr - of - 1) < e.,.@r - 1). However, K is easily 
computed for each type, and the types O-(2r + 2, q) and U(2r + 1; ql.“) 
faii to satisfy this inequality. Moreover, in the case L7(2r, qr!‘), lie ha>-e 
k = (q’ - l)(@-li* + l),!(q - 1), whence 

andi = T - 3!2, which is absured. 
Thus, V has type 0+(2r, q). This time, 

k-q-j- 1 = qr-l(q’” - l),/(q - 1) = qr-t(s;t - ij: 

so 

N-hence f = I - 2, e = r - f = 2. By definition: f > 2, so I >, 4. 
Let p, I be nonadjacent vertices in IV(x). Then 

2 = e > dim W(x) f3 W(rj fl IV(z) 

> 2(r - 2) - Y 

=r-4, 

whence r < 6, as required. 

LEMvLX 10.2. I = 4. 

Proof. Suppose F = 5 or 6. Call the span of three noncollinear but pairwise 
adjacent points a specialpkme; note that all lines of a special plane belong to $. 
If y E W(x) - x, then 

i W4 n WY) - <x, y)l = (qf - q*):(q - ij, 
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so (x, y> lies in exactly (qf-’ - l)/(q - 1) p s ecial planes. Iff = r - 2 = 3, this 
number is 1, so the number of special planes is 

Q(Q4 + 1) v4 * l!(q8 + q + l)(q -!- l), 

which is not an integer. So r = 6. 
In this case, we will show that the g-lines and special planes u-hich pass through 

A’ form a generalized pentagon with parameters q, q, contradicting the Feit- 
Higman Theorem (2.3). 

Any special plane through x contains q + 1 B-lines through X, and any such 
%line lies in (qf” - l)i(q - 1) = q f 1 special planes. If xy and ~z are lines 
through x not contained in a special plane, tightness in the inequalities (*) 
shows that W(X) n W(y) r\ W( .s is a line through X, the unique such line ) 
lying in special planes with both xy and x2. This yields the generalized pentagon 
and the desired contradiction. 

There are several ways to handle the case Y = 4. One is to show that B is a dual 
polar space (of type 0(7, q)) in the sense of Cameron [3]; another is to quote 
transitivity results in Kantor-Liebler [14]. The method used here involves 
triality, a concept which we now briefly discuss. (Triality is used since not just G, 
but also its embedding, must be determined for Theorem IV.) We refer to [22] 
for further discussion of triality. 

Let -9 be the set of points of the geometry of type 0+(8, q), 9 the setof lines, 
and .A$ and Aa the two families of solids (maximal t.s. subspaces); thus, any plane 
lies in a unique member of each family. More generally, two solids lie in the 
same family if and only if their intersection has even dimension. The geometry 
admits a “triality automorphism” r mapping 8 + 9 and B + A1 + As --t B 
and preserving the natural incidence between B u Ai v A$ and dip (defined 
by inclusion or reverse inclusion). Also, T preserves the “incidence” on B u 

AYE u Aa, in which a solid is incident with a point contained in it, and two 
solids are incident if they meet in a plane. This automorphism induces an 
automorphism of PW(8, q). 

Before continuing with the proof, we outline the way in which the examples of 
Theorem IY (iii) arise. Let w be a nonsingular “point”, so that o1 n B carries a 
geometry of type 0(7, q). If A& E& (i = 1, 2), then zi n A& is a plane, con- 
tained in a unique member &IF of * thus z induces bijections between 
Jr, As, and the set of planes (maximai t.s. subspaces) of WI n 9. These 
bijections are invariant under G = D(8, q)E , which acts transitively on each set. 
Xow apply triality: Gr is an irreducible subgroup of sd~(8, q), transitive on 9, 
and preserving a “geometry” on 9’ isomorphic to the dual polar space of t.s. 
planes of cl n .9. (Strictly, in place of Gr, we use the inverse image in Q+(8, q) 
of (G/Z)I, where 2 = Z(e(8, q)).) G is transitive on disjoint pairs of planes of 
o1 n 9, and hence on disjoint pairs of elements of Ma ; hence Gr is transitive on 
nonperpendicular members of 9, that is, antiflag transitive. Note that Gr and 
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Grei lie in different conjugacy classes in Q-(8, Q). ?iote aiso that G- = r?(7. a) 
oni\; if 4 is even; for 4 odd, Gr contains the element -Z E Qf(8, 4). 

The process can be continued one further time. If ZL is a nonsingAar vector, 
ther? G,? acts transitively- (and even antiHag transitivek) on ZL’~ n 8, preserving 
a geometry which is the G?(p) hexagon, naturalI!- embedded. 

We return to the proof. There are (@ - I)($ T l):‘(q - 1) = (q L !‘j 
(9’ f l)(q3 i 1) points, and equally many subspaces N(X). Since j = e = 2. 
dim I%‘(X) n W(y) = 2 or 0 for s # y, and so all subspaces W(X) belong TO -he 
same fami!y; without loss of generaliQ-, {lV($ 1 s E 9) = A1 . 

Sow take 31~ A$?~. If L is a B-line in M and s a point of M not on L: thee 
(x, Lz. is contained in a unique member W(y) of Ai , and -11 .q R’(y) = <IX, L: . 
Since B hzs GO triangles, we have J EL, and <:.x, ,:-j is 2 8-line. Tins, tke 
9-iines in M form a (possibly degenerate) generaiized quadrangle. Call A! 
spuciai if :hk quadrangle is nondegenerate. If M is special, the2 the g-lines in 
31’ are t:2e absolute lines of a spmplectic polari .V ++ Ilf n F(x); so ti?e qzaci- 
rangle is of Q-pe Sp(4, p). 

Let A be the set of special solids, and form A-. Thii is a set of points. We claim 
that, for magi solid W, W n A7 is a plane. This folkws from the assertion that, for 
any s E 9, 2 special solid contains x if and only if it meets IV@) in a plane. (If 
E = Ml r, -llr, is a plane, with M1 E A1 , .A& E .A$ , then E-l is the set of 
members of A$ containing the point Xl-’ and meeting the solid :V~-’ ir. a 
plane.) 

The foilowing result now identifies A7 (and hence A!. 

THEORZN 10.3. Let @ be a subset of .Q, the poitrt !et gf a geometry of type 
O-(2-. q), r > 3. Suppose that, for ecer-v t.s. r-space L- of $, L’n @ zs az 
\: /*. - !)-space. Then dim<@) = I’ - 1, and so 9 = B n z’- for jome nohzgdc;s 
eector f’. 

A-ooj. We treat first the case r = 3. Identify Q (the Klein qzadric) \vitb the 
set of all lines of PG(3, 4). Th en a plane of Q is ekher tie set of lines on 2 point 
or the se: of lines in 2 plane; and 2 line of Q is the set of lines in a plane E ar,S. 
on a point .V E E. Thus, under this identification, @ is a set of lines of PG(3, q) 
ha\-is-ing rhe prcperty that the members of Qi on 2 pain: x zll lie in 2 plane E. :&iie 
tiiose in 2 plane E all contain a point x. Then z ti E is a s:-mplecric Foiari$, 
2nd Q, iIS set of absolute lines. Now a symple-ctic polarit>- of PG(3, 4) can -be 
identified with 2 point v outside the Klein quadric -Q, its absolute lines corre- 
sponding to points of & n X2. 

Fcr r > 3, use induction on I’. Take two nonadjacent points H, y of @. Then 
Q r, ;s, J,\- = Q’ is of type 0+(2r - 2, Q). We claim that @ n (x, J)~ = W 
satisfies the conditions of the theorem ins’ (with i’ - i rep!ackg r). If LY is a t.s. 
(Y - !)-space in R’, then <s, c-> is a t.s. r-space, and ;r: 5’:. r\ @ ac (r -- 1) 
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space containing x; so C n @ = L-n @’ is an (r - 2)-space. By induction, 
dim<@ n (x, y}‘) = 2r - 3. 

NOW if u E @ n xl, then the line (x, u) contains a unique point of @ perpendi- 
cular to y, so @ n xl C (x, 0 n <x, y)‘), and dim<@ n x’) = 2r - 2. 

We claim that @ C (x, y, @ n (x, y)‘); from this dim(@) = 2r - 1 follows. 
Choose z E: @; we may suppose x $ xl, a 4 y-. Then (@ n (x, y)‘) n a1 spans a 
space of dimension 2r - 4. Choose w E @ n (x, y, 2):. NOT+- <@ n we> contains 
x and y and meets <@ n (x, y)‘) in a subspace of dimension at least 2r - 4; 
since dim<@ n &) = 2r - 2, we have 

2 E @ n WI C (x, y, CD n (x, JJ)~). 

Remark. The theorem fails if r = 2, q > 3: B is a ruled quadric (a (q T 1) x 
(q T 1) square lattice), and there are (q + l)! sets @ satisfying the hypothesis of 
(10.3), only (q L l)q(q - 1) of which are tonics. 

Completion of the proof of Theorem IV. It remains to identify G. Let H be 
the group induced by Gr on the 0(7, q) geometry AT. Then H is transitive and 
has rank 4 on the set of planes contained in AT. 

If E is a plane, then HE is transitive on the q6 planes disjoint from E. Since any 
point outside E lies on q5 such planes, every point-orbit outside E of a Sylow 
p-subgroup P of HE has length divisible by qa. Let L be a line of E fixed by P. 
Since L only lies in q planes E’ + E, it follows that PA* is transitive on E’ - E. 
Also, H is transitive on the pairs (E, E’) of planes for which En E’ is a line. 
Thus, HEE is antiflag transitive. By (2.1), HEE is 2-transitive. 

If x is any point of E, then C,(x), is transitive on E/x. Thus, C,(X) is transitive 
on xl/x. 

Since Hs is transitive on the q6 planes disjoint from E, we have @[ i H j . Let Q 
denote the centralizer of both x and x’/x in Sa(7, q). Then H n Q # 1 since 
4j.y: &I” . But Q is elementary abelian of order 45, and is C,(x)-isomorphic 
to xl;x. Then C,(x) acts irreducibly on Q, and hence H n Q = Q. If h E Hand 
A+ 4 x-, then H 2 (Q, Qb} = l2(7, q). 

Thii completes the primitil-e case of Theorem IV. 

11. THE IMPRIMIITIVE CASE 

Throughout this section (u-hich corresponds roughly to Section 7), G satisfies 
the hypotheses of Theorem lS and is imprimitive on points. We are assuming 
that V has rank r > 3; however, we will need the case G G rc(4, Q) in our 
proof (cf. Remark 3 in Section 14). 

Let A be a proper block of imprimitivitg for G. Then GAA is transitive, while 
G, = G,, is transitive on F’ - X~ for x E A. Thus, A c Al (since the relation of 
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non-orthogonalitp of points is connected), and G, is transitix-e on i’ - 4’. 
Then <4) is t.i. or t.s., and (by the dualitv between Cr~/,d’- and <4;:) Gi is 
transitive on (4). Thus, 4 = (4) is a t.i. or t.s. subspace. 

From now on, 4 will be a minimal proper block of imprimitivitr. Set-8 = dim 4, 
and choose .v E 4. There are j dc i (@ - l)l(q - i) points. Counting the pairs 
(dl, yi) with 4, ~4~ n yl-, we also find dG I 4’ j dG n xl to be the 
number of points. (Here, as before, dG n A- is the set of members of 4” con- 
tained in &.) Thus, : 4’ : = 4G n A-: :(q” - !).‘(q - 1). 

Prooj. Suppose 4’ E dG and 4’ n 4- + 0,4’. Picky E 4 n-:-i:h 4’ EJ.--. Then 
4’ -y?" ' =qb-1, 50 

tJ- _ 4 2 4G _ (4G ny’) = c - yi @-I. 

Howe\-er, a check of each classical geometq- (computing 4- - 4 as in (9.2j) 
shows that this inequaliv never holds. 

Thus, 4’ E Lc and 4’ n 4: + 0 imply that 4’ L 4:. Then /I- is partitioned 
b!- CG n 4-. Since : 4c n .6- = 4’ ‘(I 4 ‘, the result fo!lows. 

LEMXA 11.3. There is a suhspuce 4’ E dG n 4’, 4’ + 4. 

~Proof. Suppose not. By (11. l), 4l - 4 = z , so 4 is a maximri t.i. cr t.s. 
subspace. Sote that dG ! = 1 - 4’ where E = r - c = S L c. and c is as in 
(9.2) (so -1 < c < 1). 

Choose anp 4’ E dG - (41. Let r be a primitive divisor of ys - 1 (if one exists; 
cf. (2.4)), and I? E S$(Gdd,). Then R acts contragredientlv on 4 and A’. Since 
6 > 2, :hesc actions are not isomorphic; so R can fix nc further member of do. 
Thus r divides (4’ + 1) - 2, whence E = 6. and FP is of t>-oe O(2Z - 1~ ~1. c 
odd. If @ = 25, the same argument applies with I’ = 7. 

Since 4 is odd, Theorems I and IT impl!- that G$ contains .Q(& qj. Let 
g E GA,* be a p-element inducing a transvection on 3. Then g aiso induces a 
trans:-ection on 4’. Thus, g centralizes a 2(S - lj-space of (‘4. 4’:., as xeil as 
*:4, d’l,l. Since (26 - 1) + d > 28 + 1, each member 4” of do meets C,(g) 
nontri+.ll~-. But 4” is a block of imprimitivity. and hence must be fixed bp g. 
Let H denote the subgroup of GLd, generated by all such eiements g; thus. HA is 
Sp(S, 0) cr ,X(6,4). If 4” c (4, O’)?, then H must ac: on C”, and hence alsc on 
tk (S - 1 j-space 4” n <4, 4’>, which is absurd. 
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Digression. It is convenient to show at this point that the case 6 = 2, 
G < lT(4, pi’) cannot occur. l\rote that (11 .l) and the remarks preceeding it 
apply, and that 1 A G j = qafa + 1. Then G,,d. > SL(2, q) (if q # 4), while 
q < i E : < qslz. &-r element g of Gdd J whose order is a primitil-e divisor of 
q’ - 1 will thus centralize E. (Recall that q is a square here.) But, if X denotes 
lY?(4, 41’9, then 1 C,(A): = q2 and g acts fixed-point-freely on C,(A); so E = 1, 
a contradiction. A similar argument applies if q = 4. 

Proof. By (11.2), W = A- n (A’)l is partitioned by the members of do it 
contains. Since the case where W is anisotropic (or, equivalently, A maximal 
t.i. or t.s.) has been excluded by (11.3), IV is spanned by these members of 
AC, and (11.2) applies to W--. Since the bilinear form defining the geometry is 
nondegenerate (cf. remark at the opening of Part II), Wl= IV, concluding the 
proof. (Remark. It is necessary to exclude the case G < rO(2wr +- 1, q), q even, 
here. The Lemma fails for Q(m L 1, 4) 4 G < rO(2m 1 ld 2), wz even.) 

LEMIJLZ 11.5. V is orthogonal and8 = 2. 

Proof. Choose A’ g A-, A’ E A G. Then A’ r~ AL = 0, by (11.1) so W= 
(A, A’) is nonsingular. If p1 , ya E W - x-, and yi E Ai E AC (i = 1,2), then 
an element of G, mapping yr to yz also maps A, to A, and so fixes W, since 
lV=~A,A,>(i=1,2)by(11.4).SoGW W is antiflag transitive and imprimitive; 
and so (11.3) and the subsequent degression give the result. 

Remark. The O’(4, q) geometry is a ruled quadric, and R+(4, q) has two 
natural systems of imprimitivity. 

DEFIKITIOS. Let $4 be the lattice of all t.s. subspaces which are intersections 
of members of (AL)G. 

LEMMA 11.6. 9 is the lattice of all t.i. or t.s. subspaces of a classical geometry 
of type L+.z!2, q) (over GF(q8)). 

Proof. By (11.2), each member of 9’ is partitioned by the members of AC 
it contains. If M is a maximal member of 9, then M is a maximal t.s. subspace. 
(For, if R E W - M, then the member of AC containing x would be in M’-, by 
(11 .l).) If I’ = dim M > 4, then M is a projective space with q* -I- 1 points per 
line, exactly as in (7.2). If A g M then A’ n M = <A, :M-L)I has dimension 
R - (2 T n - r) = r - 2, so A’ n M is a hyperplane of our new projective 
space M. 

l*\;ote that an (r - 2)-space -Yin 9 lies in at least two maximal members of 8, 
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since 1 ATA , > (qr - l)j(q - 1). xow, if :I1 and M’ are r-spaces in A? with 
nonzero intersection, let ,Y be an (r - 2)-space in Y *Kith -\- Z W, S fi JI C 
A!’ n M. There is a subspace L--E dp with _i- = (35 c 2~‘) s L-, J’ = 
(34 r~ .W) 6 U; and so C-i n 3p = M’ n 31. NO-A-~ if -II” is anootber r-space 
in 9 containing A-, then S n 54 c M” n AI E L- n 31 = 31’ n Xf so 
JP n 113 = S n 31 C JP r? 3% Continuing, we fnd that there e-&t dis~oinr 
r-spaces in 2. 

It follow from Tits [23] that L? is a classical pola:- space. 
?+I- if 31 and M’ are disjoint maximal subspaces of 9 and i-11, M’;: -=+ r; 

then there is a member of dG disjoint from <3f, M’). So rc = dim F = 2.r or 
21. -l- 2. If RI = 2r -- 2 then TJ has me O-(2r L 2, q); then : dG i = (4’ - 1) 
(!p + i),‘(q” - l), and dp is of type L-(r + 1, q). Similarly, ir‘ n = 2r, ther F- 
has type O-j2r, q), and the same argument shows Z has type C(r: q). 

1\Text suppose that r = 4. Then Y is the iattice of Feints and lines of a geo- 
metry 8. -Arguing as above, we find that ‘%? is a generalized quadrangle u-ith 
parameters s = qa, t = q or qs according as V has type O-+3, q) or G-[iO, q:. 

Ifd g Cl, then :(A, 0’) r\ dG ’ = q + 1 by(11.4), I. a-2 far pg-\7 &” E <A L.1 fi 

do, (A”)’ > ,A- n (d’)l. Thus a theorem of Thas [2!] identEes the &ad;&& 
with f = q3 as that of type L;(5, q). 

In the case t = q, the points and lines of the quadrangie a:e cezain lines and 
solids of the OA(g, q) geometry. Any two of the solids are disjoint cr meet in a 
line, and so they all belong to the same class. App!ying the trialiry map (Section 
lo), the dual quadrangle is embedded as a set of points and lines in O--:8, q>, 
satisfying the hypotheses of Buekenhout-Lefevre [‘l]. Thus the dud of 5? is of 
zype O-(6, q), and A? itself of type L’(4, q). 

This proves (11.6). 
Ke can now complete the proof of Theorem K as follows. By (i1.5), % is 

unique!v e,mbeddab!e in a projective space derived from a vector space T’Cn:2,q’). 
Proceeding as in Section 7, we obtain the original space V by restricting the 
scalars, and repeat the arguments of that section tc show that q = 2 and that G is 
Trimitive and antiflag transitive on the L’(n(la:‘2, q) geometry. Sow by Section ‘,3, 
G 2 SL+z~2. q): as required. 

12. RAXT 4 SUBGROCP~ OF RASR 3 SROK:PB 

In this section, G will denote a primitive rank 3 permutation grciq on a set X: 
and H a subgroup of G having rank 4 on X. 

Let k, 1, A, p be the usual parameters of G, as defined in Higman [9], and ler 
I, A, B be the adjacency matrices corresponding to tbe orbits ix}, d(xj and F(Z) 
of G,, XE X. If k, r, s are the eigenvalues of A, then h = K i r + s -L rs, 
,u = k -+ rs, k(k - h - 1) = j,. 

We assume that Hz splits I’(x) into two orbits FJ.Y) and I!z(~<)~ of lengths 
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m, 1 - m and with adjacency matrices C, B - C respectively. Set mt = 
; T,(x) n d(y)1 for y E I’s(x). Th en, with respect to the d-graph, the inter- 
section numbers for H are as in the following diagram. 

k-p-(L-m)1 

k-.a-mt 

Then AC = (K - h - l)(m/Z)A + (K - ,u - (I - m)t)C $ mt(B - C). apply- 
ing this to an eigenvector of A and C with eigenvalues Y, 0, respectively, yields 

rB = (k - h - l)(m,Q + (k - p - (I - m)t)O + mt(--7 - 1 - 6). 

(Since A L B + I is the all - 1 matrix, --I - 1 is an eigenvalue of B.) simpli- 
fying, 

(Y(S + 1) + lt)kJ = -(m/V)(r + l)(r(s + 1) + It). 

Similarly, if v is an eigenvalue of C corresponding to the eigenvalue s of A, 

(S(Y - 1) + Zt)p, = -(m/l)@ -!- l)(s(r + 1) + It). 

But the centralizer algebra of H has dimension 4, so exactly one of the eigen- 
spaces of A must split into two eigenspaces for C. If this corresponds to r, then 0 
is not unique, so 

T(S + 1) + It = 0. (12.1) 

Since + # s, it follows that 

tp = -m(s + 1)/Z (12.2) 

But p must be an integer, so 

Z;‘(Z, s + 1) divides m. (12.3) 
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-Aiso, for y E rl(xj, i d(x) n T,(y) = m(Z - m)t:k, so 

kZ divides m(1 - mjr(s + 1). (12.4) 

Remmks. (1) The results of this section can be used to give 23 aiternatire 
prOOfOf(l0.2j. 

(2) Of course, the same results hold in 2 more general situation (involving 
association schemes). 

13. THEOREM IV 

The proof of Theorem T- follows (and was inspired by) the pattern of Perin’s 
Theorem [ZO] discussed in Section 8. Suppose what G satisfies the hypotheses of 
Theorem 1’. If G, is transitive on the points outside s-, then G is e&lag 
transitive, and Theorem IV applies. So we may assume that G, is transitive on 
x- - s, end splits Y - xL into two orbits. We use the rotation of the iast 

section: 
Suppose first that G < ESp(2m, p). If G has two orbits on the nonsingular 

2-spaces containing x, then the stabilizer of any projective line (singular or nor) 
acts 2-transitively on it. By (4.1), G is antiflag trarsitive, comrary to assumption. 
So G is transitive on the nonsingular 2-spaces containing x; and if This one such, 
then G wv’ has rank 3, with subdegrees 1, h, q - R. As in (8.5), (q, hj = (2, i j, 

(3, 11, (4,2j or (9, 3). 
14-2 ha-+-e k = q(q9-m-2 - l)/(q - I), 1 = qifi-i, m = qzf’+-“-)i. -peso ;, s = 

&q”-i - 1. By (12.4), 

4Pm(qSm-P _ l)/(q - 1) divides q’+%(q - h) ql”-r(q”E-l = lj, 

whence 

q”-1 7 1 divides (4 - 1)&q - Sj. 

This is impossible if m > 4; and none of the speciSc values of q :nd iz satisfy Ir 
when m = 3. So this case cannot occur. 

The case F unitary is ruled out by Kantor and Liebler Ci4, (6.2j]. 
Suppose G < rO(2m 1. 1. q), m > 3, q odd. -,.. T -t r be a primitive d%ision of 

4 hi-2 - i (see (2.4)), and R E Syl,G, . Then IV = C,(R) is 2 nonsingular 

3-spat:, and zY~(R)~ has rank 2 or 3. If 4 > 3 then .Jw~(RjFy contains a(3, q) 
or (if q = 9) A,. Proceeding as in [12], (compare the proof of (6.2)j we obtain 
the contradiction G > Q(2m + 1, q). 

The case q = 3 is somewhat harder. Here, choose r ! 34n+r - 1 cr r I 3”-l - i 
according as m is odd or even. (The case m = 2 is not dif%.dt and is omitted.) 
Then ..‘\r,(R)‘V contains Q(3, 3) or Da, while Xo(R)wL conrains no Ds 1 {In 
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fact, LVc(R)WYI < rOA(2, 39 by Sylow’s theorem.) Thus, there is an involution 
t E C,( TV) with t W = diag(- 1, -1, 1). Now note that G has 2 orbits of pairs 
(x, b) with x a singular point and b E & a l-space of length 1 (or, alternatively# 
length - 1). If t induces - 1 on b, then tbL is a reflection while GiA has at most 
2 point-orbits. We may then assume that any two G,-conjugates of t commute. 
(For otherwise, the product of two such non-commuting conjugates has a 
product of order 3 centralizing yi/y for some point y E 6’. The argument in 
[14] or (6.2) now yields the contradiction G 2 Q(2m + 1,3).) Since GiL has at 
most 2 point-orbits, it cannot be an irreducible monomial group. It follows that 
G,, fixes an anisotropic l-space or 2-space T C b”, and is transitive on the points 
of ZJ~ n TL. Now one of the G,-orbits of nonsingular l-spaces in XI has length 
*33”(3” & 1) . +(329%-L - 1)/4(3% - 1) or +33”(3” & 1) . )(3*-l - •)(3+~ + c)/ 
4(3’” - 1) with E = 1 or - 1. Since this is not an integer, we again obtain a 
contradiction. 

Finally, consider the case G < I’Of(2m, q), m 2 3, q > 2, in which x’lx 
has (4m-l F l)(q”-8 f l)/(q - 1) points. If m = 3, use [14, Section 51. 
We therefore assume that m > 4, and use r 1 qmw2 i 1 and R E Syl,G, as 
before, temporarily excluding the case O-(8, q) with q a Mersenne prime. This 
time W = C,(R) is a nonsingular 4-space, with NG(R)W of rank 2 or 3. Moreover, 
since R fixes no points of xl/x, necessarily W has type O-(4, q). Thus, A’G(R)W 
contains -Q-(4, q) or (if q = 3) A,. As in [14, Section 121, we obtain the contra- 
diction G > Q+(2m, q). 

This lea\-es the possibility G < TO-(8, q) with q Mersenne. We may assume 
that -1 E G; note that -I g Q-(X, q). Let L be a line, and let R E Syl,C&). 
Since G/ > SL(2, q), it follows that R # 1. Set W = C,(R). Then dim W = 4 
or 6, while LYLE is line-transitive. Also, :VG(R)i > SL(2, q) by the Frattini 
argument. If dim W = 6 then L\‘~(R)~ > Q=(6, q) by [14, Section 5J and we 
can proceed as before. If dim W = 4 then .AiG(R)@’ > 0+(4, q) while ArG(R)WL 
normalizes the fixed-point-free 2-group RW1. Then C,( W1)w contains .@(4, q) 
if q # 3, and G > Q-(8, q). Suppose that q = 3. Then a Sylow 3-subgroup of 
I\rG(R)W’ has order 1 or 3, so C,(W-) has an element g or order 3. There 
is a point x E W fixed by g, and g E Cc(&/.~). As usual, this implies that 
G > Q-(8, q). 

This contradiction completes the proof of Theorem V. 

Remark. If G < 0%(2m, 2), the argument breaks down when + 1 2mn-2 t 1 
and dim W = 4, but ] LV,(R)~ i = 10 or 20. 

14. CONCLUDING RRSL-WKS 

1. The method used in our proofs for employing p-groups also works for 
suitable permutation representations of the exceptional Chevalley groups. 
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2. After claasif+ig antiflag transitive groups: it is natural to ask abcu: 
transitiviQ- on incident point-hyperplane pairs (where the hyperplane is not the 
polar of the point in the case of a classical geometr+. If a group G is transiti=-e 
on all such pairs in PG(n - 1, q), then it is transitive on incident point-line 
pairs, and hence 2-transitive on point3 (Kantor $Xj); so Theorem I appiies. 
HDwes-er, for classical geometries, results are known 0nlF in the unittzr~ case 
Santcr-Liebier [ 141). 

3. In the proofs of (8.4)<8.6) and Theorem T-, as v~ell as that of PeriiZs 
theorem outlined at the beginning of Section 6, results were e,mpio:-ed which 
had been pro\-en using grcup theoretic classiCcation theorems. However, the 
proofs of Theorem3 I-IV are not dependent on such classification theorems. 
Even n-hen [14] was in\-oked, the required results used nothing more than (2.4) 
and elementary generational properties of classical groups. Of course: proof3 
ha\-e cccasionaailJ7 been lengthened by the requirement that group theoretic 
classification theorems not be used es-en implicitl~~. 

4. However, it should be noted that [14j prcduces a proof of the rank 2 
analogue of Theorem IT-, as follows. We assume that 5’ does not have type 
G74, n). The primitive case proceeds as in Section3 9, 10. In the imprimitive 
case, the block A of Section 11 is a t.i. or t.3. line. If x E LI then G, is transit?e 
on LF - (41 and hence on xL - 4. Thus, G has one orbit of points and twc 2 
orbits each of lines and incident point-line pairs. So\r [14, Sect. 5] applies. 

APPESDIX: 5% G,(p) Hexago-n 

This appendix contains new and elementary proofs of the existence and 
uniqueness statements in Section 3, as well as further properties of the hexagons 
(including antiflag transitiviq). 

Assume that 59 is an in (X2), and set W(A) = W1($. 1-e wyili prcve severe’. 
properties of 9, from which an explicit ccnstruction will easiij- follow. 

IEXMA -2.1, (i) For any points x, y of 3, 

(x, 3’) = 0 {W&d) 1 24 E W,(x) r: w*(y); ; 

if d(x, y) = 1 OY 2, then all points of (x, y} me points of 9. 

@) rf z$<x,r> and d(x, y) = 1 m 2, then W..(z) .Q (.x, y> is &the+ 
(x, y> OY a point. 

(iii) Either dim V = 6 and V is symplectic, or dim 1;’ = 7 and I7 iz orthc- 
gal; in either case, the points and lines of B comikt of ali points and certak t.i. 
GY t.s. lines of V, and W,(x) consists of all points of x:. 

PXX$ (i) The first statement follows from axiom (j) of Section 3; the 
second from the fact that (x, y) _C W(u) if u E TV(s) r\ W(y). 



418 CAMRRON AND KASTOR 

(ii) If Q, y) = I, this follows from the axioms for a generalized hexagon. 
Suppose d(X, y) = 2, and set u = W(X) n W(y). Then W(u) n W,(z) is a 
subspace meeting each line of W(u) on U, and our assertion follows. 

(iii) This follows easily from (ii) and the fact that 59 has exactly (@ - l)/ 
(4 - 1) points (cf. Yanusbka [27, Sect. 31.) 

LE~L~ 6.2. Let a and b be opposite points, and set H = <W(a), W(b)). 

(i) H = E OF, where E and F are t.i. or t.s. planes such that, for e E E, 
f E F, <e, f > is a %line if and only if it is a (t.i. or t.s.) line (Call these E / F-lines.) 

(ii) If e E E, then W(e) = <e, e’ n F). 

(iii) If x is a point on no E ; F-line, then W(x) meets exactly q f 1 E 1 F- 
lines, and the points of intersection me collinear. 

(iv) If V has type Sp(6, q), then q is ezen. 

Proof. (i) Since W(a) n W(b) = 0, dim H = 6. Let a =x1, x,, xs, 
b = xp , xs , ~a be the vertices of an ordinary hexagon in B. Then X, , xg E W(a) 
and .Q , x5 E W(b). Set E = (xa , x4, x,J and F = (x1 , xs , x5). Then E and F 
are t.i. or t.s. and H = E ,s F. Also W(xsi) = (xsi , xi n F}. We can thus 
vary x, , xa E W(a) n E, and also move around the ordinary hexagon, in order 
to show that each t.i. or t.s. line <e, f) is a g-line. 

(ii) This is clear from the above proof. (In fact, the points of E u F and 
the E ! F-lines form a degenerate subhexagon with s = 1, t = q.) 

(iii) If u lies in W(x) and also on an E F-line (e, f ), then e E E n xl 
and f E F n ti. Here, En x’ and F n X- are lines spanning a nonsingular 
4-space I;: If e, E E n XI then G’ contains a Q-line <el , fJ met by W(x). Thus, 
W(x) n U is the desired set of points, and is clearly a line. 

(iv) If V has type Sp(6, q), th en C has type Sp(4, q). But the Sp(4, q) 
quadrangle contains six lines forming a 3 x 3 grid (such as E n xi F n xL, 
W(x) n rr, and any three E 1 F-lines in G) if and ordy if q is even. 

Remark. Because of (A.2iv), and the isomorphism between the Sp(6, q) 
and 0(7, q) geometries when q is even, we will assume from now on that V has 
type 0(7, q). Sow H has type 0+(6, q), and the line mentioned in (iii) is 
W(x) n H. Also, 0(7, q) = SO(7, q) x { +I}, so Tve may where necessary 
assume that linear automorphisms of 59 have determinant 1. 

The next lemma is more technical, and concerns generating 9. 

LEMMA 8.3. Let S be a set of points, containing at least one pm> a, b of 
opposite points, and such that W(a) n b’ C S for any such pair. Then either 
S = E v F for E, F as in (AX), or S con&s of all points of 5?. 

Proof. Certainly S c E u F. Let g0 consist of S together with the set of 
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lines meeting it at least twice. 11-e will show that gO is a (possibly degenerate) 
subhexagon. 

Let L be a line of 9s and .V E S - L; we must show that the unique point II of1. 
nearest x lies in S. Let y EL - u. Since .x is opposite some point of E, 0u1 
hypothesis implies that each line on x meets S - {xj. If d(x, u) = 1: pick 
.s E S r W(x) with d(y, z) = 3, and note that u E TV(;) 9 H-, so z: E S. If 
d(s, 10 = 2 then n(x, y) = 3 and u E W(y) n x- is in S. 

Thus, 9s is a subhexagon. Choose a E S. Then S .n W(a) has the follcxisg 
properties: it meets every line on a at least twice; if .r, y E S f? W(a) and W(n) = 
(a, s, -I./\, then <x, y) c S. (For if 6 E x” n y- n S and 5 is opposite a, then 
<x, y) .= W(a) 9 b’.) Thus, S n W(u) is a (pcssibI:; degenerate) subplane of 
W(a). 

If eacfi iine of 9s has size 2, then S = B v F. Qo suppose that some line of 
9s on a has at least three points. Then S r; W(a) is nondegenerate, and hence is 
all of W(Q). Thus 9 = So. 

~EJIELi -\A!. Suppose g and B’ are both embedded in ‘Y’ as in Section 3. Le! 
xl ,..., .u, and yl : . . . . y6 be the vertices of ordinary hexagons in 29 resp. 9’. Then 
there is an ebmeut of GL( V) mapping xi to yi (i = I,. . . . 6) and irzducing an ko- 
morphlkm OJf B onto 8’. 

Proof. The orthogonal geometries determined by ‘9 and 9’ as in (A.liii) aYe 
equivalent under GL( v); so we may suppose that they are equal. There is an 
orthogonal transformation taking xy to yi (i = l,..., 6), so ;ve may assume that 
xi = yi for each i. Set E = <x2 , x4, x&, F = <si , .r, , x5>. By (..4.2%), lV{e) 
and W(f) are the same whether computed in Y or 8’ (where e E E, f EP>. 

Pick a point x on no E : F-line, and call TVH(x) the line of points in (A.2ii;. 
Then A’,(.v) is one of the 4 - 1 lines in C = (E n xl, F n x-> meeting eta 

E 1 F-line of U’, other than E n xL and F n XI. But O(7, &Fz is transitive on 
these lines, so we may assume that W(x) is the same in B and 9’ for some such .rl. 

Sow if S is the set of points u of V such that W(‘(2;) is the same in both 9 and. 
9’: then (..4.2ii) shows that (A.3) applies, and u-e conclude that Y = 9”. 

GROLLARY A.5. The group -4uty(S) oj aatomor$hisms oj B induced l;l 
elements oj SL( V) is transitive on the set of ordered ordiuar~~ hexagons oi 9. IC 
particular. X&,(S) is a&z&g transitive. 

(Recali the remark following (A.2).) 

COROLLXXS A.6. (i) There is a subgroup K z X.(3, q) oJ’ Aut,,(ZJ) $&g 6’ 
and F and centralizing H’. 

(ii) The stabihker of E in Ilut,(%) induces SL(3, q) on it. 

(iii) ; AU:,(~): = (4” + 1) qe(qe - 1) and Z(..lut,(‘$)‘: = 1. 
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Proof. (i) is clear from (A.4). 

(ii) We show first that Auty(‘?Q& = SL(3, q). Set G’ = Aut&Q,. If x 
lies on no E i F-line, then I G’: G;E ’ is equal to the index in GL(3, q) of the 
stabilizer of a non-incident point-line pair (p, L); and no non-identity (p, L)- 
homology fixes X, since the group of (p, L) homologies permutes regularly the 
q - 1 lines called W,(X) in the proof of (A.4). So (Gi)E has index at least q - 1 
in GL(3, qjDL ; and hence (G’)E = SL(3, q). 

Sow, given E, there are q2 choices for F, permuted transitively by Aut,(g)), . 
So : Aut&$: Aut@))EG : divides (q2, q - l), %-hence Auty(9’)>x = SL(3, q). 

(iii) Clear. 

THEO~I 9.7. Each 0(7, q) space has one and only one class of generalized 
hexagons embedded as in Section 3. An Sp(6, q) space has such a hexagon if and 
only ;f q is ewn. 

Proof. Uniqueness follows from (A.4), and the assertion about Sp(6, q) 
from (-4.2iv). The preceding lemmas (especially (A.l), (8.2) and (-4.6)) tell us 
exactly how 59 must look, and hence how to construct $9. 

Cotzstfuction. Let F be a vector space carrying a geometry of type 0(7, q), 
and E and F t.s. planes such that H = (E, F) is nonsingular of dimension 6. Let 
K < 0(7, q) fix E and F, centralize HJ-, and induce SL(3, q) on both E and F. If 
{er , es , es} is a basis for E and{f, , f2 , fJ the dual basis forF, then the matrices of 
g” and gF with respect to these bases are inverse transposes of one another for all 
gEK.LeiHL=(d). 

We must use the E ! F-lines <e, f ), with e E E, f E e’ n F, as 5Mnes; set 
W(e) = (e, ei n F), W( f ) = (f, f L n E). Kate that K is transitive on the 
(q2 i q + Nq f l)(q - 1) points on the union of the E j F lines but not in 
E u F, on the (q* + q + l)(q* - qe) points on no E ! F-line, and on the 
(q* -+- q + l)(q* - q”) lines contained in the union of the E i F-lines but not 
meeting E or F. 

Pick an E 1 F-line (e, f ), a point u E (e, f > - {e, f >, and a plane W(U) r) 
(e, f) with W(u) # W(e), W( f ). Write W(ug) = We for all g E K. The new 
points must be the t.s. points of V - H, and the new B-lines must be the lines 
of W(ug) through ug, for all g E K. We must show that this is well-defined and 
yields a generalized hexagon. This will be done in several steps. 

(1) If Ug = u then W(H) = W( u ; so W(ug) is well-defined. For, 1 Ku 1 = ) 
q8(q - I), and Ku fixes W(e)/<e, f > and W( f )/<e, f >. Thus, each p-element of 
Ku fixes every plane containing <e, f ). Suppose the order of g divides q - 1. 
We may assume that e = <el>, f = <fi>, u = {e, -+- fa), in the above notation. 
Then we find that erg = or , f2g = olfa , ezg = de2 , fig = d-f1 , whence 



esg - es . ,&c =fa . Since W(U) contains a uniTAe point of !:ea , i$ , G; > it is 
fixed 3-i 8. 

(2) If W(z@) = W(U), then 218 = U. For suppose i.V(ng) = W(uj. Then R 
fixes IV(U) p E = e and W(U) c F = f. H ere, K,, is the stabilizer of a flag of 
PG(2, q), of order q3(q - 1)“. If ug + u, then the order of g divides q - ! and F 
is diagonalizabie. We may assume u = (e, - $&, W(X) = (pl : ,fZ , eQ - fs L 2::. 
If gE = diag(l, 8, y), then (ea + f3 - d)Q = ye3 - y-ljb T d. SC y = 1, -+nce 
a,+ = I. andug==. a 

(3) If L is a Q-line on u then L C W(u). (For, \ye may assnme L C II and 
i” C W(Z), SC u = L n H = ug and L C W(u).) The total nu,mber of ‘$-iines is 
then 

(q’ -- q - l)(q 7 1) + (q’ + q - l)(q + l)(q - 1)q = (46 - l)‘(q - ;;. 

Th!S, each point Y $ H lies on 

(q’ - q - I)(q - l)(q - i)q a ql(q* T q + l)(q3 - q*) = q - I 

g-lines. 

(4) Fix s E V - H. Then K, = SL(2, q) fixes the non-perpendicular 
ooints E,- c F and FZL n E, where E, = E n s’ and i”, =F A .x- zre lines. 
Here. K,. acts on the nonsingular 4-space ::Z& ? ,P,,: fixing q - 1 iines. Each 
Q-line 5 on s meets one of these lines (since W(L .Q -H) is ts. and contains 2: 
and points of B and F); but none meets E, or F, . The action of K, then imclies 
that they ail meet the same line M, and they he in a plane IV(r) = /s. X: . 

A 

3~ transitivity;. each line of H missing E u F occurs as W(X) e H for some 
s E T- - H. Since the numbers of such x and such lines are the same: distinct 
pcints .t yieid distinct W(X). It follows thzt, for any tic distinct points a, E of T;; 
x-e have W(a) A TV(b). 

(5) Points a, b are perpendicular if and only if d(a, b) G 2. For, if n(a. 5) -5 
2 then G: 5 E W(c) for some c, and W(c) is t.s. But the number of such pairs is 
rhe same as the number of pairs of perpendicular points. 

(6) 3 has no K-gons for K G 5. For, iet a 1 ,.. ., ug ‘se the vertices of a k-goa. 
Then j(af , n,) d 2 for all i, i so <a, ,..., aa: is a t.s. piace: :5-hich must be bcth 
IIT and W(CL,), contradicting (4). 

,-’ 
,I; 3 is a generalized hexagon. This foiiows from the same counting 

argilmenr as in Section 3. 

This completes the proof of (9.7). 

&FF?CZlk Further properties cf the group G,(q) = :\ut,(Y) are found in 
(5.4). Additional information, such as simpliciti- when q =L 2 and identification 
with PSL-(3, 3) x 2, if q = 2, is left to the reader, end can be found in Ti:s !221. 
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