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1. INTRODUCTION

An unpublished result of Perin [20] states that a subgroup of I'L(n, q), n =3,
which induces a primitive rank 3 group of even order on the set of points of
PG(n — 1, g), necessarily preserves a symplectic polarity. (Such groups are
known, if ¢ % 2, by another theorem of Perin [19].) The present paper extends
both Perin’s result and his method, in order to deal with some familiar problems
concerning collineation groups of finite projective spaces; among these, 2-
transitive collineation groups [25], and the case ¢ = 2 of Perin’s theorem [19].

An antiflag is an ordered pair consisting of a hyperplane and a point not on it;
if the underlying vector space is endowed with a symplectic, unitary or orthogonal
geometry, both the point and the pole of the hyperplane are assumed to be
isotropic or singular. Our main results are the following four theorems.

Turorem 1. If G < I'L(n, q), 2 = 3, and G is 2-iransitive on the set of
points of PG(n — 1, q), then either G = SL(n, q), or G is A, inside SL(4, 2).

Tueorev II. If G < I'(n, q) and G is transitive on antiflags and primitive
but not 2-transitive on points, then G preserves a symplectic polarity, and one of the
Jollowing holds:
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(i} G= SP(m q);
(ii) G is Aginside Sp(4, 2); or

(iiiy G = Gylg), q even, and G acts on the generalized hexagon associated
with Go(q), which is itself embedded naturally in PG(5. q).

Treoren III. If G < I'L(n, q) and G is transitive on antiflags and imprimitive
on poinis, then q = 2, G < I'L(3n, 4), and G > SL(3n, 4;, Sp(in, 4). or G,{4)
(zeith n = 12). In each case, G is embedded naturally in GL{(n, 2).

TrxoreM IV. If G < I'Sp(n, q), I'O={n, q) or I'U(n, g), for a ciassical
geometry of rank at least 3, and G is transitive on antiflags, then one of the follov:ing
Ffolds (and the embedding of G is the natural one):

{ij G = Sp(n.q), 2(n, q), resp. SU(m, g);
(ity G > G,lq) inside I'O(7, q) (or I'Sp(6, g). ¢ even);

(i) 7, 9) <1 G:Z(G) < PI'O(8, q), with G'Z(G) conjugate in Aux
(PQ-(8, 9)) to a group fixing a nonsingular 1-space;

(iv) Spn,4) << G < Sp(2n,2) (or Qn -1, 4) < G < 020 — 1, 2} for
n even);

& G SP(12, 2) =2 413, 2;
) SU(m, 2) < G < O4(2m, 2), where e = {—)™.

-

Theorem I solves a problem posed by Hall and Wagner [25], wrich hes beea
studied by Higman [8, 10], Perin [19], Kantor [13] and Kornya [15]. An inde-
pendent and alternative approach to this theorem is given by Orchel [1€]; we are
grateful to Orchel for sending us a copy of kis thesis.

If G is 2-transitive, then G is antiflag transitive; and zlse G is antiflag
transitive for each hyperplane H. This elementary fact zllows us w0 use induction,
(Indeed, Theorems I-TIT are proved simultaneousiv by induction in Part I of
this paper.) Another problem, solved in Theorem IT and IV, is that of primitive
rank 3 subgroups of classical groups. This was posed by Higman and
McLaughlin [11], and solved by Perin [19] and Kantor and Liebler {14} except

n the case of Sp(2n, 2) ~ 2(2n — 1, 2). Here, induction is :nade possidle bv
tne fact that the stabilizer of a point x is antiflag ‘ransitive cr xtix,

The striking occurrence of Gy(g) in these theorems is re.ated to 2 crucia:
element of our approach. This case is obtained from a gereral embedding
theorem for metrically regular graphs (3.1), in whick the Feit-Higman theorem
[7t on generalized polygons arises unexpected!y but naturally. Other familizr
geometric objects and theorems come into play later on: the characterizztions
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of projective spaces due to Veblen and Young [24] and Ostrom and Wagner [18],
as well as translation planes, arise in Theorem ITI, while Tits’ classification of
polar spaces [23] and the triality automorphism of PQ-(8, g) are used for
Theorem IV.

All the proofs require familiarity with the geometry of the classical groups.
On tke other hand, group-theoretic classification theorems have been entirely
avoided. Moreover, knowledge of Gy(q) is not assumed for Theorem T, and what
is required for Theorems II-IV is contained in the Appendix, where we have
given a new and elementarv proof of the existence of the generalized hexagons
of type Gy(g)-

This paper began as an attempt to extend Perin’s result [20] to rank 4
subgroups of classical groups. As in Perin [19], one case with g =2 is left
open:

TueoreM V.  Suppose G < I'Sp(n, q)(n = 6), ['O%(n, q)(n = T), or I'U(n, q)
(n = 5). If G induces a primitive rank 4 group on the set of isotropic or singular
potnts, then one of the following holds:

(i) G = Gy(q) is embedded naturally in T'O(7, q) (or I'Sp(6, q), q even);

(i) G=£(7,q), q even, or 2. X7, q), q odd, each embedded irreducibly in
T'O+(8, g); or

(i) G < O=(2m, 2), and G is transitive on the pairs (x, L} with L a iotally
singular line and x a point of L.

The examples (ii) (and (iii) in Theorem IV) are obtained by applying the
triality automorphism to the more natural (7, ¢) inside PQ*(8, ¢). As for (iii),
examples are A, and S, inside O=(6, 2).

Other results in a similar spirit are given in Section 8, as corollaries to
Theorem I.

Some further results are of interest independent of their application to the
above Theorems. A general result on embedding metrically regular graphs in
projective spaces is proved in Section 3; this is crucial for all the theorems.
Theorem 10.3 characterizes nonsingular quadrics of dimension 2z — 1 contained
in an O*(2m, q) quadric for » > 3. In Section 12, parameter restrictions are
obtained for rank 4 subgroups of rank 3 groups (and their combinatorial analo-
gous). Finally, the Appendix gives an elementary construction and characteriza-
tion of the Gy(g) hexagon.

The paper falls into two parts. The first (Sections 2-8) deals with antiflag
transitive collineation groups of projective spaces (Theorems I-III); we note
that Sections 3 and 5, on the primitive, not 2-transitive case, are virtually self-
contained. The second part (Sections 9-14) contains the proofs of Theorems I'V
and V, concerning polar spaces.
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{. THEOREMIS I-II1

2. PRELIMINARIES

A point (hvperplane) of a vector space ¥ is a subspace of dimersior: 1 (codimen-
sion 1}. If 17 is n-dimensional over GF(q), the set o points (equipped with the
structure of projective geometry) is denoted by PG(n — 1, g); but in this paper,
its dimension wili always be #. The notation SL(I") = SL(n, g). GL(n, g). 2ad
I'L(r, g) is standard.

If, in addition, T"is equipped with a svmplectic, unitary or orthogonal gec-
metry, then I'Sp(n, q), I'U(n, q) and I'O%(n, q) denote the groups of semiiineas
maps preserving the geometry projectively. For example, I'C={n, ¢) consists of
all invertibie semilinear maps g such that Q(z?) = cQ(z°} for all z € 1", where
Q is the quadratic form defining the geometry, ¢ is a scalar. and o a feid autc-
morphism. The groups Sp(n, q), SU(n, q) and 2%(n, g) are defired gs usual. We
will occasionally require the fact that Sp(2n, q) =~ 2(2n — 1, g) when g is even.
{(Exolicitly, if V is the natural Sp(2#, g)-module, then there is a 2n — i-dimer-
sional orthogonal space ¥ such that 7:rad ¥ = F, with the naturai map ¥ — i~
Inducing a bijection between singular and isotropic points.) The reader ‘s
referred to Dieudonne [6] for further information corcerning these groups.

Points will be denoted x, v, =, lines L, L', and kvoerplanes H, H'. We wili
generaliv identify a subspace 4 of I with its set of points; " 4 denctes the number
of points, and x =4 will be used instead of x C 4. Similarly, for subspaces .
and 2, 4 — X denotes the set of points in 4 but not Z. The dirzension dim 4 ol 2
subspace 4 denotes its vector space dimension.

If 4 is any subset of ¥, then G, and Cg{4) are respectively the setwise and
vector-wise stabilizers of 4 in the semilinea: group G: Gur =G, " Gr.
Moreover, G * = G,'Cy(d) is the semilinear group irduced on 4 if £ is a
subspzce. Similarly, if x € H, then G¥; is the grcup induced by G,y on the
space H r. :

The rank cf a transitive permutation group s the total number of crbizs of
the stabilizer of a point.

The remainder of this section lists further definitions ard resuits required ir
the proofs of Theorems I-V.

TreorREM 2.1 (Ostrom-Wagner [18], Ostrom {{7]). If a pigjeciive plane P
of prime poiwer order q admits a collineation group G transitive on mnon-incident
point-line pairs, then P is desarguesian and G > PSL(3. gq).

Of course, (2.1) is true without the prime power assumption, but we wii
only need the stated case, which is much easier to prove. The next resuit is
needed for (2.1), and is also used elsewhere in our argument.
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THEOREM 2.2 [4, pp. 122, 130-134]. Let (¥ be an affine translation plane of
order q, L a line, x €L, and E the group of elations with axis L. Then

() E is semiregular on the set of lines different from L on x; and
(i) if 1 E| = q for each L, then (1 is desarguesian.

Additional, more elementary results concerning translation planes will also be
required; the reader is referred to Dembowski [4, Chap. 4] for further informa-
tion concerning perspectivities and Baer involutions.

Consider next a geometry ¢ of points, with certain subsets called “lines”,
such that any two points are on at most one line, each line has at least three
points, and each point is on at least three lines. Call 2 and .Z the sets of points
and lines. If a, b€ # U &, the distance &(a, b) between them is the smallest
number % for which there is a sequence @ =aqy, 4, ,..., 4, = b, with each
2, €2 \U L and a4, incident with a;_; for / =0,..., &k — 1. Such a sequence is
called a “path” from a to b. Now ¥ is a generalized n-gon (n > 3) if

(i) whenever &(a, b) < n, there is a unique shortest path from a to b;
(ii) for all @ and b, &(a, b) < n; and

(iii) there exist ¢ and & with &(a, b) = n.

A generalized n-gon has parameters s, t if each line has exactly s — 1 points and
each point is on exactly £ 4 1 lines.

Tueoren 2.3 (Feit-Higman [7]). Generalized n-gons can exist only for
n = 3, 4, 6 or 8; those with n — 8 cannot have parameiers s, s.

Generalized quadrangles enter our considerations as the geometries of points
and lines in low-dimensional svmplectic, unitary, and orthogonal geometries.
Generalized hexagons are much less familiar; the ones we need are discussed in
the Appendix (see also Sections 3, 5 below).

Generalized 7-gons are special cases of metrically regular graphs. Let I" be a
connected graph defined on a set X of vertices. If x, y € X] let d(x, y) denote the
distance between them. Let d be the diameter, and I'(x) the set of points at
distance 7 from «, for 0 <7 <C d. Then I' is metrically regular if

(i) ' I'yx)' depends only on 7, not on x; and
(ii) if d(x, y) = 7, the numbers of points at distance 1 from x and distance
1 — 1 (resp. 7, 4+ 1) from 3 depend only on 7, and not on x and y.

(Condition (i) follows from (ii) here).

If ¢ is a geometry as previously defined, its point graph I' is obtained by
Jjoining two points of ¢ by an edge precisely when they are distinct and collinear.
This graph may be metrically regular; for example, it is so when ¥ is a generalized
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e the distances 4 and ¢ in graph and gecmetry are related by d(x
yyed)
protp(w hele b, as always, is a 9 i
g 1saprimer | go — lsuchthatrip’ — @ for I < p < g% Now
that r == i(mod ek), by Fermat’s theorem.

M 2.4 {(Zsigmondy [28]). If ¢ > 1 is a power
s a primitive divisor unless either

{1y &k =2 and q is a Mersenne prime, or

3. ExiseppIinG MeTrIcALLY REGULAR GRaPHS 1N PROJECTIVE SpaCes

3 section we will prove a general resuit concernin
ve spaces. Let & be a geometry, w th point
IeL W,(x) be the set of points distant =
lowing axioms (for all x € 2):

cer-te-.iz‘ embeddings

d point grap!

. We assume the

{a) £2is a set of points spanning PG(n — 1, g);

i

5} each line L of 4 (or %-line) is a line of PG(n — 1, g);

(¢} £ isthe union of the set of F-lines;

(dy I is metrically regular with diameter ¢ = 2;
(e} T{(x)is a subspace of PG(n — 1, g);

£y W, (J:) = 2 N ULx) for some subspace L;{x);

(g} s}, = (¢" — 1)/(¢g — 1) for some integer &

Note that {a)(d) are among the embedding hvpotheses in Buekenhout-

Theorem I, a

=3 an

id G is a generalized hexagon with param fers & g ?
Vo(x) are subspaces for all x, then n = 6 and x «> W,(x) is a s

'u-\i

,Qs
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Proof. Set m = dim W,(x) (recalling from Section 2 that “dim’” means
vector space dimension). If d(x, ¥) =7 > 1, let

e; = dim Wy(x) N W,(%),
fi = dim Wiy(x) N W(y).

(Note that both Wy(x) N W;_3(y) and Wy(x) N W(y) are subspaces. For, if
Wi(y) = 20 Ufy), then W) N W) = Wy(x) N 2 1 Uy() = W) N
Uj().) These dimensions depend only on #, not x or y. For, if I'y(x) = Wi{x) —
W;_(x) is the set of points at distance i from x, then

| Iy(%) N Dia(9); = (g% — D:i(g — 1)
D@ AT y) = ("~ D~ 1)— (" —Dig—1)—1,
and
| D) N Ly ()] = (g™ — Di(e — 1) — (¢ — (g — 1)

(provided also that ¢ < d). By (g), ' I'y(x) = (¢* — ¢™){(g — 1)-
Counting pairs (y, 2) with d(x, ¥) = 1 = d(y, 2) and d(x, 2) = 2 yields

 Ta(®) H Do) 0 D)1 = 1 Tyl) | | Iy(x) 0 Iy(2);,

whence (¢ — g)(¢g™ — ¢'1) = (¢" — ¢™)(¢° — 1). Equating powers of ¢ yields
1 — f; = m. There are then two possibilities:

i) m—1=¢e,l=m—fi=h—m;or
) m—1l=h—ml=m—f =e¢.

Suppose (i) holds. Each point is on exactly (g™t — 1){(g — 1) = (g% — 1)/
(g — 1) %-lines. Thus, if d(x, 2) = 2, each of the ¥-lines on z contains a point of
the e,-space Wi(x) N Wi(2). Consequently, the graph has diameter d = 2.
Moreover, (2 is a subspace. (For if x and y are distinct points of 2 but {x, y)>
is not a %-line, then there is a point 2 € W;(x) N W,(y); then x and y are in the
subspace W,(2), all of whose points are in .) Now (a) vields k =n,som =n—1
and Wy(x) is a hyperplane. Since y € Wi(x) implies that x € Wy(y), it follows
that x <> W,(x) is a symplectic polarity, so (3.1.i) holds.

From now on, assume that case (ii) occurs. Since e, = 1 there is a unique point
joined to two given points at distance 2. The restriction of the relation “joined or
equal” to I'y(x) is thus an equivalence relation, so I'j(x) is a disjoint union of
complete graphs, each of size (¢t — ¢%1)j(¢ — 1) = g(¢™2% — 1),(g — 1). Since
| (%) = q(g™* — 1)/(g — 1), this implies thatm — 2 m — 1, whence m = 3.
Then f; = m — 1 = 2 (and of course ¢, = 1).

We next determine the sequences {7}, {f;}. Both are nondecreasing: if
d(x,y) =1, d(y,2)=1 and d(x,2) =i+ 1 <d, then Wy(x)n W,,(») C
Wi(x) N Wi(z) and W(x) N Wi(y) C Wi(x) N Wi.4(2). Also, e, <f; since
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"Ly N I(yy = 0.If f; = 3 for some 7, then I}{x) C 1¥,(3), and so7 = d; and
conversely f; = dim(W(x) N Wy(y)) = dim Wi{x) =3. Thus. ¢, =1 and
fi=2fori<d,whilef=3ande; =1 or 2.

We will show that & is generalized (24 — 1}-gon or 2d-gon (with parameters
g, ) according as ¢; = 1 or ¢; = 2. Thus, we must verify axioms {i)-(iii) given
in Section 2, where & was defined. For convenience, we separate the two cases.

Casee; = 1. Since e; = 1 for all 7 > 1, there is =z unique shortest path
jeining any two points. Also, a %-line L contains 2 unique point nearest x, uniess
L T Iy(x). (For, if y e L with d(x, y) = { < d minimal, and » € W, {3} n ¥, (a3,
then {3, u) = Wy(y) N Wi(x) L. ) Thus, there is a unique shortest path
between x and L if &(x, L) < 2d -

Let L and L' be two #-lines. Then there is 2 urique shortest path between

and L', except possibly if L’ C I'y(x) for some x € L. (Two shortest paths couid
not start et the same point of L; but this would yieid points of L and L’ with
riore thar one shortest path: between them.) Suppose L’ C I'y(x). Ther: there is e
l.mqae shortest path from x to each of the ¢ — 1 points of L', io two such patx_‘
using the same line through x (since this would produce 2 point y with &(y, L'}
24 and two shortest paths from y to L"). Then these paths use sli¢ — 1 ?-iines
through x, and hence L must occur among ther. Thus, &(L, L’) =24 2d 2
unigue shortest path again exists. Consequently, axioms (3} 2nd (i) hold. Since
f: =3 and ¢, = 1, so does axiom ({ii}.

Case e; = 2. 'This time, there is a unique shortest path from & to x’ uniese
x" € I'y(x). As above, any %-line L contains a unique point ciosest to x. ard
there is a unique shortest path from x to L. Finally, let L and L’ be %-lines with
& L,L" < 2d. Then only one shortest path can exist betweenr L and L' twc
suck paths would produce either two shortest paths from a point of L to L',
or two shortest paths between points of L and L’. Thus, axioms (I)-{iii) 2gain
hoid.

Since ¢, = 1, we have d > 3. The Feit-Higmar Thecrem (2.3} now showe
that d = 3 and ¢g = 2.

’t rernains to prove the parenthical remark in (3.1.i1). Here 2 = Fiix} is 2
subspace, and dim Wy(x) = dim Wy(x) — 1, so x> FFy{x) is 2z sympiectic
polaritv. Since " Q" = (g% — 1)/(g — 1), we kave n = €, as recuired

THECREM 3.2. Suppose the hypotheses and conclusion (it} of (3.1.) Aeld. Then

(i} Ifn =6, then g is even; and

(i) otherwise n ="7 and Q is the set of singular points of a geometry of
zupe O, g

In either case the embedding of % is unique.

Ve defer the proof to the Appendix.
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4. A REFORMULATION OF ANTIFLAG TRANSITIVITY
Sometimes the following criterion for antiflag transitivity is convenient.

Lrviva 4.1. A subgroup G of I'L(n, q) is antiflag transitive if and only if
G L is 2-transitive for every line L.

Proof. Suppose G, has s orbits of hyperplanes on x, ¢ orbits of hyperplanes
not on x, and 5’ — 1 point-orbits in all. Then s — =75 —1, and G, has s
orbits of lines through x. Each such line-orbit defines at least one point-orbit
other than {x}. Thus t — 1 =s’ — s >0, with equality if and only if GL7 is
transitive for every line L through x, as required.

From Dickson’s list of subgroups of SL(2, ¢) [5, chap. 12], it is seen that only
when g = 41is there a 2-transitive subgroup H of I'L(2, q) for which H N GL(2, q)
is not 2-transitive. We deduce the following.

CoroLLARY 4.2. If g =4 and G < I'L(n, q) is antiflag transitive then so is
G N GL(n, g).

Remark. Subgroups of I'L(n, q) not in GL(n, g) will arise in the inductive
part of our proof, as the examples occurring in Theorem IIT indicate.

5. Tue Heart oF THEOREM II

Suppose G < I'L(n, q) is antiflag transitive but not 2-transitive on the points
of V. The following lemma incorporates Perin’s main idea [20].

Lemma 5.1. If x is a point, then there is a subspace W(x) (different from x and
V') containing x, such that G, fixes W(x) and is transitive on V — W(x).

Proof. A Sylow p-subgroup of G fixes a hyperplane H and a point x € H, and
is transitive on ¥ — H. Then

W(x) = ({H* | g€ G.}

is a Gy-invariant subspace; G, is transitive on the pairs (HY, y) for ge G, ,
y & HY, and hence is transitive on ¥V — W(x).

TueoreM 5.2. Suppose G < I'L(n, q) is primitive but not 2-tramsitive on
points, and is antiflag transitive. Then G preserves a symplectic polarity, and either
(i) G has rank 3 on poinis; or
(i) G has rank 4 on points, G < I'Sp(6, q), and G acts on a generalized
hexagon with parameters q, q.
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The proof involves an iteration of (5.1), followed by {3.1). Let d — 1 denote
the rank of & in its action on points.

Lesoia 5.20  There are subspaces
2= W) CH()C W) C-- CiHg (x})C W, () =T
stith the properties
(a) G, fixes Wi(x) and is transitive on Wi(s) — W, 4(x} for 1 <1 < 4
(b) freWyx)and 0 <i<d— 1, then Wi{y) < W,_,(x);
{c) WAx?) = Wxy for all g € G; and
(d 4>1.

Proof. Set W,,,(x) =V and W, ,(x) = W(x)} (cf. (5.1);. Then d > 1 by
(5.1). Since Wy{x} — W,_y(x) is the largest orbit of G, certainly 17, (x") =
g a{x).

Xow proceed by “backwards induction”. Suppose W;.;{x),..., F{x) have
been defined. Set m; = dim Wy(a) for j =i — i,..., d. A Sylow p-subgroup g
of G, fixes a line L on x; necessarily L C W;_4(x). Let yeL — x. Since zli
P-orbits on ¥V — W;_;(x) have length at least g™:~1, all Pj-orbits on W_I(y)
W;_;{x) have 'e'lgth at least qu+1—1 (By primitivity, W, 4(y) = *,\x\) It
follows that W;_y(x) N W;.4(y) is a hyperplane of ¥, ,(x}. and that G, is
transitive on W,_,(y) — W,_(x). Then

Wiy) = N {Wialay g€ G}

is a subspace of W;_,(y), and G, is transitive on ¥, (v} — W«(y). Then {c;
holds, since G, has only one orb1t of size | Wy 1(x) — #{x).

This process terminates when Wy(x) = x. Then I¥y{x) — x consists of =zl
points 5 for which (x, ¥) is fixed by some Sylow p-subgroup of G. Now (b)
ollows from the construction. Thus, all parts of (5.3) are Droved

Let % be the geometry with line set {Kx, y)'ve Wy(x)}, and I its point
graoh. By (5.3b) and induction on 7, we see that H,\,.,\ is the set of poins at
distance at most ¢ from x (relative to the metric 4 in I"). Consequently, I is
metricallv regular, and (3.1) applies. Since Wy{x) and Wy{x} are subspaces. ke
theorem follows.

By (3.2), the generalized hexagon in (5.2ii) must be the one associated with
G,{q). However, as stated in Section 1, we will make the proof of Theorem I,
and most of Thecrems IT and ITI, independent of the existence and uniqueness of
the G,{q) hexagon. The required information is easily proved (frequently in the
spirit of other of our arguments), and is collected in the following lemma.

181/60/2-7
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Levsa 54. If G is as in (5.2ii), then the following statements hold:

(2) G has exactly tewo orbits of totally isotropic lines;

(b) G has exactly two orbits of totally isotropic planes;

(c) there is a totally isotropic plane E such that Gg# = SL(3, q);

(d) there is an element t € G with t* = 1 and dim C(t) = 4;

(e) 1GNGL(S, q) =9%® — 1)¢* — 1)d, where d )\ g — 1 if ¢ # 4, d 6
fqg=4

(f) if r is a prime divisor of ¢ - 1 and R a Sylow r-subgroup of G,,, then
dim Cy(R) = 2 and Ng(R) is 2-transitive on Cy(R); and

(g) G, has no element of prime order greater than q + 1.

Proof. Since G, has three point-orbits other than {x}, (a) is clear (cf. (4.1)).
Clearly, W;(x)C is an orbit of (¢° — 1)/(¢ — 1) totally isotropic planes. Let E
be any of the remaining

@+D@+De+-D)—E—Dilg—1) =g+ 1)

totally isotropic planes. If L is any %-line, the ¢ - 1 totally isotropic planes on L
are all of the form W,(x) for & € L. It follows that E contains no ¥-lines, and for
y, 2€E, d(y,2)=0 or 2. Let M =(y,2) and x = Wi(y)n Wy(2). If
P 8yl (G,), then there are g choices for E on M (any totally isotropic plane
except (¥, ¥, &), while inside W(x), there are g® choices for M. Thus
| P: Py | < g8, so each orbit of Py on V' — x* has length at least ¢®. Since
E — M is fixed by Py, we have | P: Py | = ¢° and P,y is transitive on
E — M. This proves (b). Moreover, since M is any line of E, (c) follows from
(2.2).

Let X < G induce all (2, {w, 2))-elations (transvections) of E, where
w e E — M. Then X fixes M, and hence also the unique point x joined to all of
M by %-lines, as well as the unique point x’ joined to all of {w, 2> by ¥-lines.
Since we may assume that X is a p-group, Cp(X)2 (g, & )~; then Cp(f) =
{=, x'>* for all € X — {1}. (Note that G cannot contain nontrivial transvections
of Sp(6, q), since Wy(x) N Wy(n) = Wi(x) N Wy(u') for u, u' € I'y(x), u £ u'.)

Clearly, |G| =(¢*+1)¢*| Gz . But | Sp(6, q)e| =¢°| GL(3, g)|. If ge
Cs(E) is a p-element then, proceeding as above, we find that g fixes a basis for V.
Thus, | Gg N GL(6, ¢)] divides | GL(3, ¢)', and (e) holds.

Since G, is transitive on the g - 1 #-lines through x, the group R in (f)
cannot fix any point of - — x. Recall that R <{ GL(6, ¢). Since R fixes a point of
V—at, dmCy(R)>=2. But Cp(R)Nnaxt=x, so dim Cy(R)=2. The
last part of (f) follows from antiflag transitivity.

Finally, (g) follows from (e), or more simply thus. If there were such an
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L2
Nel
N

element g € G, , then g would fix all ¢ -+ 1 %-lines through x and all their points,
and hence all points of %, by connectedness.

Remarks. 1. Only (5.4 d,e,f,g) are nceded for Theorem 1.

2. G Sp(6, g) is generated by the conjugates of the group A appearig
in the above procf.

-

3. If G < I'L(n, q) is antiflag transitive and primitive on points, then ir is
primitive cn hyperplanes. For, if G preserves a svmplectic polarity, then its
actions on points and hyperplanes are isomorphic; otherwise, by (5.2), & is
2-transitive on points, and so also on hyperplanes. We wili see later (7.1) that 2
stronger result can be obtained by elementary arguments independent of (3.1}

L >l e

6. THE PriviTivE Case

We now begin the inductive part of the proof of Theorems I-IIL. In orde- ¢
avoid identifying Gy(g) during the proof of Theorem I {cf. Secticn 1), we
restrate the theorems in slightly weaker form.

TuroREM 6.1. Let G < I'L(n, q), n = 2, be antiflag transitive. Then one of
the following holds:
 G=SL(n,q);
(i) Gis A, inside SL(4, 2);
(it) Gr=Sp(n, q);
(iv) G is Aqinside SL(4, 2);
) G| =20,G<TILQ2,4);
(vi) G < I'Sp(6, q) < I'L(6, q), q is even, and G acts as a rank 4 group oz

the points of a generalized hexagon with parameters q, q, whose poinis and Fves
consist of all points and certain totally isotropic lines for I'Sp(6, g);

{vii) G > SL(3n, 4), embedded naturally in SL(n, 2);
(viil) G = Sp(3n, 4), embedded naturally in SL(n, Z); or

(ix) G is a subgroup of I'Sp(6, 4), itself embedded naturally in SL{12, 2},
such that G acts on a generalized hexagon in PG(S, 4) as ir (vi).

Note that 2-transitive subgroups of I'L(wm, ¢) are automaticaliy antiflag
transitive (Wagner [25], or (4.1)).

The theorem will be proved by induction on # in Sections 6, 7. The case
n = 2 is omitted, while (2.2) handles n = 3. We therefore assume z > 4. Bv
(4.2), if g = 4 we may assume that G < GL(n, g}.
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In this section we will consider only primitize groups G. Then either (5.2)
applies, or G is 2-transitive. In either case, induction or known results almost
always produce sufficiently large groups of transvections for G to be identified.

ProrostTioN 6.2. If (5.2i) holds then either G > Sp(n, q) or G is Ag inside
Sp(4, 2).

Proof. Let x and y be distinct points of the (totally isotropic) line L. There
is a Sylow p-subgroup P of G fixing x and L, and transitive on ¥ — x*. Then all
orbits of P, on ¥ — x* have length at least g"%/g, so P, is transitive on y* — x~,
Since G, is already transitive on y'/y, it is thus antiflag transitive there.

By our inductive hypothesis concerning (6.1), K = G%'/¥ satisfies one of the
following conditions:

(o) K= Sp(n—2,0q)

B) K=43,n—2=4,q9q=2;

(¥) K acts on a generalized hexagon as in (6.1v), n — 2 = 6;

() Splin— 1, H< K< T'Sp(In — 1, 4); or

() K < I'Sp(6, 4) acts on a generalized hexagon over GF(4) as in (6.1 v),
g=2,n—2 =12

At this stage it is easiest to quote Perin [19] when ¢ > 2. In fact, we will use
his method to handle all these cases when g = 2. Since Sp(r, 2) is generated by
transvections, it suffices to show that G contains a nontrivial transvection.

Set S = Sp(n, 2) and P = Oy(S,) = Cy(y-/y). Then ' P' =271 and P is
S,-isomorphic to the natural representation space of S,/P =~ Sp(n — 2, 2) ~~
(n — 1, 2) of degree n — 1; the radical of the orthogonal space corresponds to
the group T of all transvections in P. (Explicitly, view S as 2(n - 1, 2), acting
onann — 1 — space V. Let e and f be non-perpendicular singular vectors, with
(€) —rad ¥ =y. Then P consists of all transformations e — e, f—f+e¢,
u—u + (u, c)e for some ce e, f)~ and all ue (e, f)~) Now suppose that
GNP+#1and GN T =1. Since G, is a transitive on y*/y, it is transitive on
P|T — {1}. Thus | G N P| =272, and Gy fixes a nondegenerate hyperplane
of ¥, 50 K < O=(n — 2, 2). But no subgroup of the latter group can be transitive
on yt/y.

Consequently, if we can show that GNP 5= 1 we will have GN T =41,
and hence G = S.

First, suppose 7 = 6, so K < Sp(4, 2). Certainly, 25| |G|, and 25¢ | K|,
soGNPs£1.

Now let # > 8, and consider (), (y), (8) and (). For these cases, set { =
(n—2)—4,2,(n—2) — 4, resp. 4.

Let # be a primitive divisor of 2! — 1 (see (2.4); use r = 7 if { = 6), and
R € 8yl,(G,;) for x e L. By (5.4f), dim,.,,(R) = 2 resp. 4 in cases (8) resp. (e),
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and hence dim Cy(R) = 4 resp. 6. Similarly, in cases () and (8) dim C..{R) =
except that dim C,(R) =4 when # = 8 (and r = 3) in (o).

Since R is completelv reducible by Maschke’s theorem. TF = Cp{R) is 2
nonsingular subspace.

Now R is a Sylow subgroup of the stabilizer of two distinct perpendicular
points, and also of two non-perpendicular points uniess # =8 and ::= 1.
Thus, Ne(R) induces a rank 3 group on W. (If r = 3, » = 8 2ad dim I =: 4,
then Ng(R)¥ is a subgroup of Sp(4, 2) == S transitive on ordered pairs of
distinct perpendicular points.) Then N(R)¥ is Sp(6. 2), Sp(4, 2) or ;.

Also, Ng(R)¥™ is a subgroup of I'L(1, 2{), TL(2, 2% {f { =2), I'L{Z. 3%
(when # = 12 and i = 6 in (%)) or I'L(2, 2*) (when / = 4 in {¢)).

It follows that N4(R) has a subgroup N inducing the identity on I~ and
Spl6, 2) or Agon I¥. In either case, .V, has an involution centralizing {y— ~ ’).x.
Thus, GNP = 1, so G = Sp(n, 2), as required.

ProrosiTioN 6.3. If G < I'L(n, q) (n > 3) is 2-transitive on points, then
either G = SLin, q) or G is A, inside SL(4, 2).

Proof. TIn view of Wagner [25], we may assume that n 2> 6. We recadl the
following additional facts from Wagner [25]: G is 2-transitive on kyperplanes. anc
if H is a hyperplane, then G4¥ is antiflag transitive.

Once again, we will run through the possibilities provided 5y induction for
Gy ard, dually, GY . If either is 2-transitive, then G is flag-transitive. and the
result follows from Higman [8]; so suppose not.

Suppose G% ® is contained in FSp(n — 1, g). If x" is a second peint, then
G, fixesa hy perp]ane Honxand x". So there is a G-orbit of length ¢{z — 1,
ordered triples (x, ', H) with x, ¥’ e H, x 5= x'. (Here v = (g — 1):(qg —

& wili denote (g"* — 1)/(g — 1).) Then G,% has an orbit of leagth v(z — 1).'
vk = g, where x e H. By (4.1), this orbit, together with x, forms a line
Clearly Gy < G,y , so Gy is imprimitive. (Conversely, if G,y fixes z line 4
with x€ 4 T H, then 4/x<«» H:x is a svmplectic polaritv cf [7'x preserved by
G,

Thus we may assume that ¢ = 2 and K = G/¥ is ‘mprimitive. Then n —
iseven, n > 7. and K < I'L(F(»= — 1), 4) behaves in one of the following ways:

(&) K= SL((n — 1), 4);

(B} K= Sp(k(n—1),4); or

{y) K < I'Sp(6, 4) acts on a generalized hexagon over GF(4) as in (6.1¢),
n—1 =12

Letibe(n — 1) — 2in(a), (n — 1) — 4in(B8) and 4 in {v). Let r be a orimi-
tive divisor of 2! — 1 (use r = 7 if { = 6), and R e S¥1(G,5) for x € H. Threr
dim: Cp{R)is 1 =2 in (2) and 1 — 4 in (B) and (y) {using (5.4f) in case (y}}.
Moreover, NG(R) is 2-transitive on Cp(R), while NG(R); is impromitive on
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Cy(R). Since Ng(R) induces SL(3, 2) or SL(S, 2) on Cy(R) by induction, we
have the contradiction which implies the proposition.

Now (5.2), (3.2), (6.2) and (6.3) complete the inductive step in (6.1) when G is
primitive on points.

Having dealt with the primitive case, we record an elementary corollary for
use in the next section.

Levma 6.4, Suppose G is as in (6.1) and is primitive on points. If F < G
with F antiflag transitive and G:F | a power of p, then F is also primitive on
points.

Proof. Let PeSyl,(G,). Then P fixes a unique line on x. (In case (6.1vi),
apply (4.1) to a line L of W,(x) not on x.) Clearly G = PF and P N F € Syl (F,).

In each instance of (6.1), P N F also fixes a unique line on &. (For (6.1vii—ix)
this just says that P N F fixes a unique point over GF(4).) If F were imprimitive,
then F,, PN F, and jence G, = PF, would fix L, contradicting (4.1) and the
primitivity of G.

7. TuE ImpRIMITIVE Casg; COMPLETION OF THE PROOF

Continuing our proof of (6.1), we now turn to the case of an antiflag transitive
subgroup G of I'L(n, q) which is imprimitive on points. The method here is
entirely different from that of Sections 5, 6; we build a new projective space on
which G continues to act antiflag transitively.

If A is a nontrivial imprimitivity block for the action of G on points, then 4
is the set of points of a subspace. (For, G, is transitive on the hyperplanes of
{4, hence on its points, and thus 4 must contain all points of {4>.) We usually
identifv 4 with {4}. Let8 = dim 4. By Remark 3 at the end of Section 3, G is
also imprimitive on hyperplanes, and a block of imprimitivitv consists of all
hyperplanes containing a subspace Z. The next result (independent of the afore-
mentioned Remark) shows that there is a close connection between blocks of
points and hyperplanes. It is due to Orchel [16], and simplifies and improves a
result in an earlier version of this paper.

Lentvia 7.1 (Orchel). Let A be a block of imprimitivity for G acting on points,
and 8 = dim A. For any hyperplane H, let X be the union of the members of 46
contained in H. Then X is a subspace of dimension n — 8, and the set of hyperplanes
containing 2 is a block of imprimitivity for G acting on hyperplanes.

Proof. Wehave 4% = (g* — 1)}(¢° — 1).Set HN A4S ={4" €45 4" H}.
If 4'e 4%, 4'C H, then ' 4’ — H' = g*>1; so there are g»~® such subspaces.
Thus ! HN 4% = (g% — 1)j(¢° — 1). The union X of the members of
H N A6 has cardinality (g"% — 1)/(g — 1).
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Let P be a Sylow p-subgroup of G . Then P is transitive on 7" — ¥, and
hence on 46 — (H N 45). Let X’ be a subspace of H of dimension z —3
fixed by P. If 2’ N 4’ £ 0 for one (and hence 2li) 4’ € 4 — {H N A°), then

X’ > ¢+ which is false; so 2’ C %, and comparing cardinalities shows that
=2

Now, if H' is any hyperplane containing Z, ther 2'is the union of the members
of 4% n H'; and Gy is transitive on the set of such hyvperpianes H'. This proves
the lemma.

Notation. Let 4 be a minimal proper block of imprimitivizy, and define X
as in (7.1). Set BN A4S ={4'€ 49 4’ C ¥} for any subspace I¥. We have
showr: that X' N A4S partitions 2. Let & be the lattice of ail intersectisns of
members of XC,

Lenua 7.2, Ifn > 28 then & is the lattice of subspaces of a projective pace
PG(n'8 — 1. ¢°) on which G acts as an antiflag transitive collineation group.

Proof. HWeP, WCX X6, and W4, =0for 4L, 4% thend, Z 7, ,
by (7.1). Thus, W N AC partitions W. If W = {4, ,..., ;> with 4, T 4% and
k minimal, then dim W =48 and ; W N 4% = (¢*® — 1}:(¢®> — 1). Call i~
Point, Lize, or Plane if 2 =1, 2 or 3, respectiveiy. Then two Points are on =
unique Line {containing ¢*> — | Points), and thres Points not on a Line are in 2
unique Plane {containing ¢% <+ ¢° — 1 Points). The Veblen and Ycung axioms
[24] imzly that # is a projective space.

By (7.1}, H N 4% = Z N 49, and Gy, is transitive on the ¢"~ Points not in 2.

Thus, G acts antiflag transitively on &, and the lemma follows from {2.1}.

m

DerixiTioN, Let (7 denote the set of all cosets ¢f members of 2. (Sinc:2
0 e 2. ai: vectors of |7 are in (7))

Levyia 7.3, If n > 23 then (U is the lattice of subspaces of AG(n'3, ¢°).

Proof. From (7Y & by attaching & “‘at infinity” as follows: adjoin L'c &
te W= o¢if UC We Z. Thus, (7 U ¥ will have two types of “points” {vectors
and members of 45), and two types of “lines” (cosets of members of 4¢), and
two types of “lines” (cosets of members of 49, and Lines of £). I£ {4, 2" is =
Line of %, then it and any vector determine a transiation plane of order g°
in a standard manner [4, p. 133]; <4, 4’) plays the role of line at infinity. Bv
{7.2}, (1 & & satisfies the Veblen and Young axioms, and herce is PG(n9, ¢°.
This proves the lemma.

Levva 7.4, If n = 28 then (1 is AG(2, ¢°).

Proof. As above, ( is an affine translation pizne. But here A¢ is merely its
Iine at infinity, so proving that (7 is desarguesian will be more difficulr.
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Let x € 4 and P e Syl (G,). The group E = C,(4) consists of all elations of £7
with axis 4; it is semiregular on the set A¢ — {4} of linest 5 4 of £Z through the
point O of (7, and (7 is desarguesian if | E | = g5, by (2.2). We may thus assume
that | E| < ¢°

Since | HN 4% =1, G, is transitive on A¢ — {4}, Thus, G, is transitive
on the pairs (x, 4') with x € 4 and 4" € 45 — {4}, so G3. is transitive. But P,
is transitive on 4’ — H if P fixes HD 4. Thus, G5. is even antiflag transitive.
Moreover, G4 = P - G,y since P is transitive on 4¢ — {4}, Then G4 =
PAGA. ; since G is primitive by the minimality of 4, Gj. is primitive by
(6-4). We claim that C;(4), = 1. For, Ce(4) <1 G4, where G, is transitive on
A4S — {4}, while Cg(4), consists of homologies of (¥ with axis 4. Thus, if
Cy(4) 4 == 1, then this holds for every A’ € 4 — {4}. Then in the action of
C(4) on AS — {4}, the stabilizer of two points is trivial, but the stabilizer of any
point is nontrivial. This implies that C(4) acts as a transitive Frobenius group
on 4¢ — {4}, with kernel E of order ¢% contrary to assumption.

It follows that Ce(d) = E, and G2 G,4. =¢% | E"

Suppose ¢ is odd. By (4.2) we may assume that G < GL(n, g). By induction,
both G, 3. and G4 have normal subgroups SL(3, g) or Sp(8, g) or a group as
in (5.4). It follows that G4 = G,4,. (cf. (5.4)), and | E | = g%, a contradiction.

Consequently, g is even. If t € G4 y is an involution, then dim C () = $8 and
' Cx(f) < ¢'/?® (since Cg(f) acts on the Baer subplane for z). Induction for
G, 4., together with this restriction on involutions and (5.4), imply that either
()6 =2, 0r (B} =4,9=2.

(«) The argument used for ¢ odd applies, unless ¢ = 4, G4 = SL(2, 4).2
and G,4 > SL(2,4). Here 4%/ |E, =¢% E|=2, so an SL(2, 4) inside
G, o will centralize E. Choosing ¢ in this SL(2, 4) yields a contradiction to
FCe(?) < 4.

(B) In this case, ' G#4: G, 4.1 =8 or 2, corresponding to (6.1ii, iv), so
| Et =2 or 8. Since G, 4. > 4, the arguments in (o) yield | E| = 2. Then
G2 2¢ Ag acts on the ¢%/ i E | = 8 nontrivial E-orbits on 46. If 4" € A¢ — {4},
then G, 4 fixes the unique 4" for which 4’2 = {4’, 4”}. It follows that G
preserves a Steiner triple system on A€, which is impossible since ' 4% | = 17.

This completes the proof of (7.4).

Proof of 6.1. We may temporarily assume that G contains the group S of
all scalar transformations of V. Then V'S = V' X S'is a collineation group of (7,
with V its translation subgroup. Each minimal imprimitivity block of V'S in its
action on the vectors of J" is a coset of a 1-space of V. Thus, the structure of
V as a GF(g)-space is deducible from (7 in a unique manner. The group G+ of all
collineations of (¥ induced by elements of I'L(n, g) must then be I'L(n/s, 4°).

In particular, (G ;)4 is the semidirect product of GF(¢%)* with Aut(GF(g%)),
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and | G ={g® — 1)3¢j(¢ — 1), where ¢ = p*. Since this group is antiflag
transitive, g5 divides 8, whence ¢ =8 = 2.

Finaliv, G acts primitively on the set 4¢ of points of .#. For otherwise, taere
must be an imprimitivity block I'D 4 of dimensicn 4. correspording to an
imprimitivity block for the action of G on 4¢. This contradicts the previous
paragraph, since % is a projective space over GF(4), not GF{2). This corapietes
tke proof of (6.1).

Remarks. 1. The argument used for g odd applies ir: aimost all cases provided
that the groups in (6.1vi) have been identified. The only cbstacles occur when
g=4,0org=2,8=4.

2. Examples of (6.1 vii-ix) actually occur. Consider G = I'Sp(in, 4; <
GL(n, 2), for example. Clearly, G is transitive on I — {0}. Let P € Syi,(G). Then
P fixes 2 hyperplane F over GF(4), and is transitive on the GF(4)-points 1
outside . Over GF(2) we have dim F =7 — 2, and P fixes a hyperplane
HJF. Clearly Y — H| = 2. Let t€ P acts as 2n involurory field automor-
phism. Then Cp(t) = 2", and we may assume that ¢ fixes ¥. Thus (" is
transitive on 1" — H, and G is antiflag transitive.

By (6.1), the proof of Theorem I is complete. Moreover, for Theorems IJ arnd
[TI, we have only to identify the groups occurrirg in (6.1 vii)—the hexagon is
already known, by (5.2) and (3.2). Itis known that the group of automorokisms
of the hexagon % induced by elements of Sp(6, ¢) is G,{g); this is implicit
in Tits [22] and explicit in Tits [23]. We prove, independently of this,
that G N Sp(6, g) = Gy(g). Since Gy(g) < Auy(¥), this follows from the
fact that ' GS N GL(6, q) = Gy(g)S and Gy(g) ~ S =1 (where S denotes
the group of scalar transformations of 7). But this is shown in (A6 iii).

8. COROLLARIES

In this section we give seme consequences of Theorems I-III.
The affine group AI'L(n, q) is defined as the group

{v-—>e9—¢c gel'Ln,q),ce V} M T 2 ['L{n, g)

of all collineations of the affine space AG(n, q) based on I, an #-space cver GF{g}.
{T denotes the translation group.)

ProposiTION 8.1. Let G << AI'L(n, q), n == 3, be transiiive on ordered non-
collinear triples of points of AG(n, q). Then G = T x G, , where T is the transla-
tion group, and Gy == SL(n, q) or Gy is A, (withn = 4, § = 2}.
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Proof. The hypothesis implies that G, (the stabilizer of 0) is one of the
groups of Theorem I; it remains only to show that G contains T If not, then
G N T =1 (since G, is transitive on nonzero vectors), and so | G | < | I'L(n, g)|.
But then | G: G, | = ¢" contradicts | I'L(n, q): Gy | << (g — 1)e (resp. | I'L(n, q):
G, =8)if G, = SL(n, 9), g = p° (resp. Gy = 4,).

CoroLLARY 8.2. The only 3-tramsitive proper subgroups of AGL(n, 2) are
Vlﬂ ><A7Wheﬂn=4-

This corollary improves various results in the literature (for example [3,
Theorem 1]); and also Jordan’s theorem (Wielandt [26, (9.9)]):

CoROLLARY 8.3. .4 normal subgroup N of a 3-transitive group G is 2-transitive,
unless it 15 elementary abelian of order 2™ and either G = N X GL(n,2)orn =4
and G=N % 4,.

From results of Perin [19] and Kantor [12], we deduce the following.

ProposiTioN 8.4. Suppose G < I'L(n, q) is transitive on the j-subspaces of
PG(n — 1, q) for some j with 2 <j <n— 2. Then G is transitive on the i-sub-
spaces for all i with 1 << i < n— 1, and one of the following occurs:

() G= SL(n, g);
(i) Gis Ayinside GL(4, 2); or
() G is I'L(1, 25) inside GL(5, 2).

Remark. A “t-(v, k, A) design in a finite vector space’ is a collection of
k-subspaces or “blocks” in a v-space, any f-space being contained in precisely
A blocks. No nontrivial examples are known with ¢ >> 2; and (8.4) shows that
none can be constructed by the analogue of the familiar construction of i-
designs from ¢-homogeneous groups (Dembowski [4, (2.4.4)]).

To motivate the next result, we sketch the deduction of Perin’s Theorem [20]
(mentioned in Section 1) from Theorem II. Suppose G <X I'L(n, q), n >> 4, and
suppose G acts as a primitive rank 3 group of even order on the points of
PG(n — 1, g). For a point x, G, has three orbits on points, and hence three
orbits on hyperplanes. If G is antiflag transitive, then G < I'Sp(n, q) by
Theorem II (and indeed G is known). Otherwise, G, is transitive on the hyper-
planes through x, and so also on the lines through x, in contradiction to Kantor
[12].

Prorositiox 8.5. Suppose G < I'L(n, q), n = 4, and G acts as a primitive
rank 4 group on the points of PG(n — 1, q). Then cither q =2, 3, 4 or 9, or
G = Gy(q), q even, embedded naturally in I'Sp(6, q).
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Proof. By Theorem II, we may assume that G is not antiflag transitive;
by the previous argument and Kantor [12], we may assume it is net transitive
on incident point-hyperplane pairs. Thus, of the four G,-orbits on hyperplanes,
wo consist of hyperplanes containing x. Then G, has rwo orbits on lines con-
taining x. There are thus two G-orbits on lines, with G, transitive on the lines of
each orbit which pass through x. Consequently, G, £ is transitive for each line L.

Since G, has three orbits on points different from v, it follovs that, for suitable
L ané 3f chosen from different line-orbits, G5~ is transitive while G’ has
two orbits. Thus, G, is 2-transitive while G, has rark 3. But, using Dickson’s
list of subgroups of PSL(2, q) [5, chap. 12], we see that PI'L{2, ¢) has a rank 3

ubgroup only if g =2, 3,4 or 9.

Prorosriion 8.6. Let G be an irreducible subgroup of PIL{m, g;, n < 4.
Suppose G, is wransitive on the lines through x, for some poin: x. Then G s 2Z-
transitive on points (and Theorem I applies).

Proof. Bv Kantor [12], it is enough to show that G is transitive on points.
So let X = % and assume X is not the set of all points. If L is a line and
LNX=0 then = LN X' is independent of L, and 1 < I <<g— 1. If
dimiV=mandWN X50,then WNX|=1—(—i}g"*—1){g—1).

It follows that there is an (r — 2)-space L disjoint from X (for otherwise tix
hyperplane sections of X would be the biocks cf 2 symmetric design). The

hyperplanes containing U partition X into sews of cardinmality : — (I — 1}
(g2 —Ni(g—1) =k so k divides 1 + (I —ijjg" ' — g —i}y= X .

1
whence % divides ¢" 2 Since k> ("2 — 1){g— 1) >gwehave C =k =
{mod g}, whence / = g. But then the complement of .X contains one or 2l

points of each line, and so is a hvperplane fixed by G, contradicting irreducibpility.

II. THEOREMS IV axo ¥V

9. Ta:x GEOMETRY OF PRIMITIVE ANTIFLAG TRANSITIVE GROUPS

The proof of Theorem IV occupies Sections 9—11. The present section centains
rotation and the analogue of (5.3). The primitive case is conciudea in Section 1J;
there the metbod is different from that of Section 6. Lnl'ke Theorems I-111, the
primitive case here does not depend on the imprimitive one. Finaliv, Section i
corresponds to Section 7.

The symplectic case is covered by Theorems II and [I1; so we wifl exclude the
case G < I'Sp(2n, q) for the remainder of the proof. Also, in view of the isc-
moerphism between the Sp(2n, g) and O(2% — 1, ¢) geometries when g is even.
we will also exclude the case G < I'O(2n — 1, q), g ezen. Thus, the gecmetry is
associated with a nondegenerate sesquilinezr form.
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In the proof, 2 denotes the set of totally isotropic or totally singular (abbre-
viated t.i. or t.s.) points of the appropriate classical geometry, defined on a
vector space I over GF(g). (This assumption involves a slight change of notation
in the unitary case: G will be a subgroup of I'U(n, ¢'/2).) By convention, we
make no reference to ]-spaces outside  without explicit mention. Thus, if .S
is a subset of £2, then S* is the set of points of {2 collinear with (i.e. perpendicular
to) every point of S. The subspace 0 plays the role of 7,500+ = Q. At.i. orts.
subspace W is maximal if and only if W+ = W. The dimension of a t.i. or t.s.
subspace is its vector space dimension, and the rank r of the geometry is the
maximal such dimension.

We begin with two preliminary lemmas.

LevMa 9.1. There do not exist subspaces T, W with TV T- = W- and
T, T- == W™

Proof. UTUT-=W-then TNT-=(W)-=W.Lett;ye T — Wand
tye€ T- — W, and observe that a point of {#, #,> — {¢;, t,} is not in TU T,

Lemma 9.2. Suppose T, W are t.i. or t.s. subspaces with dim T =i — 1,
dim W =1, and TCW. Then ' T= — W~ = g¥~—¢, where ¢ > —| depends
on the type of V but not on r = rank (V) or i, and is given in the following table.
Typeof V O*(2n,q) O2n--1,q9) O(2n42,q9) U(2n,¢'?) U@2n—1,4?)

¢ —1 0 1 —% 3

Proof. Fori=1, T-— W+ = Q— W*, is the number of points not
perpendicular to the point W, and is easily computed. For i > 2, T/T has
rank n — 7 -1 1 and the same type as V; each of its points outside W=;T corre-
sponds to a coset (containing ¢*~ points) of T outside W/~

Throughout the rest of this section and the next, G' will be assumed to act
antiflag transitively on the geometry and primitively on the set 2 of points. Let
d - 1 denote the rank of G.

Levva 9.3. There is a chain of G-invariant subspaces 0 = W_y(x) Cx =
Wy(x) C Wy(x) C -+ C Wi(x) = V with the following properties:
(i) Wi(x)r = Wy_;_s(x) (whence, in particular,W(x) is t.i. or t.s. if and only
if i <Hd — D)
(ii) G, is transitive on Wy(x) — W;_y(x) for each i;
(iii) y e W;_y(x) implies Wy(y) C Wi(x) for i > 1;
(iv) Wiy(x9) = Wi(x) for all i, x, g;
(v) Wyx) N Wi(y) is a hyperplane of Wi(x) if y € Wi(x) — {x} and d > 4.
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Proof. Let L be a line on x fixed by some P = Sy1,{G,). For yeL — x. ai;
P -orbits on I — &+ have length at least g®-1-9-1 by (9.2), so0 P, is transitive on
y— — L~ {again by (9.2)). Set Wi(y) =<(L? g€ G,;. Ther

W) =Ly lgeGy

and G, is transitive on y~ — Wy(v)~. Define W (37) = H3(yY for ali g G.

it H'Z(x)— = x, we are finished (and d = 2). So suppose H'l(av); =£ x. Then
W.(x) v Wy(x)- # x4, by (9.1). Since G, is transitive on x~ — Wi{a}*, it
follows that I (x) C Wy(x)-, that is, Wy(x) is t.i. or t.s. Also, G is transiiive on
Wi(x) — x. (For, Wy(x) is naturally isomorphic to the dua: space of ;T {x)*.
Now G. has two orbits on 1-spaces of ¥/Wy(x)-, namely those in x~/W; p‘—
znd those not in x—/Wj(x)*; so it has two orbits or. the points of 1¥;(x}, namely x
and W,{x) — ».) Consequently, Wy(») ={{L* i g€ G.].

Now sroceed by induction, assuming that 7 <C ${d — 1) and that t.i. or t.s.
subspaces Wy(x), Wy(x),..., Wi(x) have been defined, subject ¢ (ii)<iv). Set
Wy_;_afey = Wi(x)~for 0 <j < i,and m = dim Wy{x). Br (9.2}, the P-orbits on
¥ — W{x)~ have length at least g>"*¢, and hence the P,-orbits have length at
ieast g2r—#—¢-1 We may assume that m £ r, since otherwise we are finished.
Again by (9.2), 2r—m—c—1>m— 1. Thus, W(yC TT/,(»); and
(W(x), WL v)> is ti. or ts., where Wi(x) % W(») by primitivity. Since 2,
acts on F{y)- — (Wix), Wy(y))* with orbit iengths at isast q”‘“““’”‘ (9.2
implies that Wy(y) is a hyperplane of (W (x), W, {¥)> and P, is transitive ca
Wi(y)- — (Wi(s), W)™

Set W,_ () = (W(x) ' g € G>. Then G, fixes ¥V, ;(3} ard is transitive on
Wiy — W () If Wau(y) = Wi(y), the proof is ended. Otherwise.
Wi_1(3) v Wi_y(y)+ == WL{)*5 by (9.1). As before, this implies that 7, () C
W._.(5)- and G, is transitive on W;.((¥) — W,(»). This ccmpletes the irduc-
tive step.

Finally, {v) was proved in our argument (letting / = 1}, since m == r in tha*
case.

DerFixitioN.  The geometry & consists of the peints of 2, together with those
Iines joining x to points of Wy(x) for all x e 2. The point graph of % is I

Learva 9.4, () I'is metrically regular.
i) 4<4.

(i) If V has type O(2n + 1, q), then the conclusions of Theorem IV hold.
(iv) If d = 2 then the conclusions of Theorem IV hold.

Proof. (i) This follows from (9.3 iii).

(ii) Ifd = 5 then Wy(x)is t.i. or t.s., and hence (3.1) yields a contradicticn.
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(iii) Note that W/y(x) is either x~ or t.s., and hence | Wy(x), = (¢* — 1)/
(g — 1) for some k. If d = 2 then G has rank 3 on points, and Kantor—Liebler
[14, (1.3)] applies, since ¢ is odd. If = 3 then (3.1) and (3.2) show that ¥ is the
generalized hexagon associated with Gy(q), embedded naturally in I of type
O(7, g). Then G > Gy(g) as in Section 7.

(iv) Again, Perin [19] and Kantor-Liebler [14] apply.

Notation. e, = e and f; = f are defined as in Section 3; W{(x) = Wy(x), and
m = dim W(x).

Leviva 9.5. d = 4 is impossible.

Proof. If d = 4 then the chain in (9.3) is
0CxCWECWk)CxiCV,

the differences being orbits of G, . By (9.3 v), f = m — 1. Let N,_,, denote the
number of points of W(x)L/W(x). Then | W(x)* — W(x)| = ¢™N,_n , as in the
proof of (9.2). As in Section 3, a count of pairs (y, 2) with d(x, y) = d(y, 2) =1,
d(x, ) = 2, yields

@ — @™ — ) = ¢"Ny_mlg — D(g* — 1).

Thus, e divides m — 1.
Since W(x) 5= W(y) for x 5 y, W(x) is not a clique. Let y, 2 € W(x) be non-~
adjacent points, Then
e = dim W(y) N W(z)

= dim W(x) N W(y) N W(s)

> m— 2’
since W(x) N W(y) and W(x) N W(z) are hyperplanes of W(x). Now :V,_,, # 1
and e | m — 1 force m < 3. Clearly m > 2, since I' is connected. Thus, m = 3,
and N,_, =(¢* — 1)/(¢¢ — 1). Thene =1 and | Wy(x)| =} Wy(x)| + ¢"N,_n =
(¢® — 1)/(g — 1), in contradiction to (3.1).

10. T CasE d =3

In this section we continue the proof of Theorem IV in the primitive case.
By Section 9 we may assume that d = 3 and V is not of type O(2r + 1, g). The
chain of subspaces in (9.3) is now

0CxC Wx)CxCV,

with W(x) maximal t.i. or t.s. Set £ ='at —x; and ¢; = (¢ — 1)/(g — 1).
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Levpia 10.1. V has type O (2r, q) withr =4, S or 6, while f =r — 2 and
e=2.

Proof. Asusual, count the pairs (y, 2) withd(x, y} =d(y, 2) = 1,d(x, 2} =
2, tkis time obtaining

€ — D), — o) =k — (2, — 1)o,.
In particular, 2 < (v, — I)(z, — oy — 1) < (9, — 1). However, & is easily
computed for each type, and the types O~(2r 4 2, g) and U(2r + 1, ¢~}
fail to satisfy this inequality. Moreover, in the case U{2r, ¢%/%), we have
k= {g" — 1)(@¥* + 1)/(g — 1), whence

T, — vy = q" 3%, .

and f = r — 3/2, which is absured.
Thus, V has type O*(2r, ¢). This time,

k—v+ 1= g — g — 1) = ¢z, — 1)

qr_zve =¥ — ¥y,

whence f =7 — 2, e =r — f = 2. By definition, f > 2,s6 r > 4.
Let y, =z be nonadjacent vertices in W(x). Then

2 = ¢ = dim W(x) N W(y) "~ Wz}

>2r—2)—7 Ox)

~—

=r —4,

whence 7 < 6, as required.

Leva 10.2. r =4.
Proof. Suppose # = 5 or 6. Call the span of three noncollinear but pairwise

adjacent points a special plane; note that all lines of = special plane belong to ¢.
If y € W{x) — x, then

| W(x) 0 W(y) — <x, 901 = (¢ — ¢Dilg — 3),
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so {x, y) lies in exactly (¢~ — 1)/(g¢ — 1) special planes. If f = # — 2 = 3, this
number is 1, so the number of special planes is

v5(g* + 1) oy 1P — g+ 1)g+ 1),

which is not an integer. So r = 6.

In this case, we will show that the %-lines and special planes which pass through
x form a generalized pentagon with parameters g, ¢, contradicting the Feit—
Higman Theorem (2.3).

Any special plane through x contains ¢ + 1 %-lines through x, and any such
%-line lies in (g2 — 1){(g — 1) = q + 1 special planes. If xy and x2 are lines
through x not contained in a special plane, tightness in the inequalities (x)
shows that W{(x) N W(y) N W(2) is a line through x, the unique such line
lying in special planes with both xy and x=2. This yields the generalized pentagon
and the desired contradiction.

There are several ways to handle the case » = 4. One is to show that % is a dual
polar space (of type O(7, g)) in the sense of Cameron [3]; another is to quote
transitivity results in Kantor-Liebler [14]. The method used here involves
triality, a concept which we now briefly discuss. (T'riality is used since not just G,
but also its embedding, must be determined for Theorem IV.) We refer to [22]
for further discussion of triality.

Let 2 be the set of points of the geometry of type O+(8, ¢), £ the set-of lines,
and .#, and .#, the two families of solids (maximal t.s. subspaces); thus, any plane
lies in a unique member of each family. More generally, two solids lie in the
same family if and only if their intersection has even dimension. The geometry
admits a “‘triality automorphism” + mapping & — % and # — .#, — M, — P
and preserving the natural incidence between 2 U ) U 4, and & (defined
by inclusion or reverse inclusion). Also, = preserves the “incidence” on & U
A, U .#,, in which a solid is incident with a point contained in it, and two
solids are incident if they meet in a plane. This automorphism induces an
automorphism of P2+(8, g).

Before continuing with the proof, we outline the way in which the examples of
Theorem IV (iii) arise. Let v be a nonsingular ‘“‘point”, so that v~ N Z carries a
geometry of type O(7, q). If M, e #; ( = 1, 2), then ¢ N M; is a plane, con-
tained in a unique member M} of .#, ,; thus ¢ induces bijections between
My, M,, and the set of planes (maximal t.s. subspaces) of v~ 2. These
bijections are invariant under G = (8, g), , which acts transitively on each set.
Now apply triality: G~ is an irreducible subgroup of 2+(8, ¢), transitive on 2,
and preserving a ‘“‘geometry’’ on £ isomorphic to the dual polar space of t.s.
planes of ¢t N 2. (Strictly, in place of G”, we use the inverse image in 2+(8, ¢)
of (G/Z), where Z = Z(2(8, g)).) G is transitive on disjoint pairs of planes of
o' N P, and hence on disjoint pairs of elements of ., ; hence G~ is transitive on
nonperpendicular members of 2, that is, antiflag transitive. Note that G~ and
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G"* lie in different conjugacy classes in 2-(8, ¢). Note aiso that G* = 2{7. g°
oniy if ¢ is even; for g odd, G* contains the element —! & 2+(8, g).

The process can be continued one further time. If % is a nonsingular vector,
then G~ acts transitively (and even antiflag transitively) on & N 2, preserving
a geomeiry which is the G,(g) hexagon, naturally embedded.

We return to the proof. There are (¢* — I){g® — 1):(g — 1} ={(
(g2 — 1)(¢* = 1) points, and equally many subspaces w {»). Since f =
dim H(x) N W(y) =2 or O for x 5 y, and so all subspaces W7x) belong
same family; without loss of generality, {W(x) v € #} = ...

Now take W e #,. If L is a %-line in .M and x a point of M not on L, then
{%, L} is contained in a unique member W(3) of .4; , and W N W(3) = (&, L .
Since & has no triangles, we have y €L, and {», y) is a ¥-line. Thus, the
%-lines in .M form a (possibly degenerate) generzalized quadrangle. Call A7
spacial if this quadrangle is nondegenerate. If 37 is special, then the %-lines in
Af are the absolute lines of a svmplectic polarity &« 3 N 17x); so the quac-
rangle is of type Sp(4, ¢).

Let /1 be the set of special solids, and form 7. This is a set of points. We claim
that, for any solid W, W N A7 is a plane. This folicws from the assertion that, for
anv s € 2, a special solid contains x if and only if it meets ¥ \) in a plane. (If
E =~ M, is a plane, with M, € .#; : M,e #,, then E=" is the set of
memters of .#, containing the point 37" and meeting the solid M ir a
piane.)

The following result now identifies A7 (and hence .1}

"

q 1
e =2
16 <he

THeor=M 10.3. Let D be a subset of Q, the point set of a geometry of type
O~(2r. g), r = 3. Suppose that, for everv t.s. r-space U of 2, UN@ 15 an
{r — 1)-space. Then Am{DP} =r — 1, and so @ = Q N v~ for some nonsinguicy
vector T

Proof. 'We treat first the case r = 3. Identify 2 (the Klein quadric) with the
set of all Iines of PG(3, ¢). Then a plane of Q is  either the set of lines on point
or the set of lines in a plane; and a line of £ is the set of lines in a plare E and
on a point x € K. Thus, under this identification, @ is a set of lines of PG(3, q)
having the preperty that the members of @ on a pein: x 2ll lie in a plane E, while
tnose in 2 plane E all contain a point x. Then » « E is a svmplectic poiarity,
and @ :is set of absclute lines. Now 2 symplectic polarity of PG{3, g} can be
identified with a point ¢ cutside the Klein quadric Q, its absolute lines corre-
sponding to points of ¢t N 2.

For r > 3, use induction on r. Take two nonadiacent points x, y of @. Then
2n x, v =02 is of trpe OH(2r — 2, ¢). We ciaim that & N (x, )~ =P’
satisfies the conditions of the theorem in £’ {with i — : replacing r). If Uis a t.s.
(r — )-space in £2', then {x, L") is a t.s. r-space, and x, L', NP an (r — 1}

481'60/2-8
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space containing x; so UN® =U NP is an (r — 2)-space. By induction,
dim{®@ N {x, 9> = 2r — 3.

Now if u € @ N x*, then the line (x, ) contains a unique point of @ perpendi-
cular to y, so @ N x- C {x, D N {x, YO, and dim{P N x> = 2r — 2.

We claim that @ C (x, v, ® N {x, ¥>*>; from this dim{P) = 2r — 1 follows.
Choose 2z € @; we may suppose 2 ¢ x4, 2 & y—. Then (@ N {x, y>*) N 2z spansa
space of dimension 27 — 4. Choose w € @ N {x, ¥, 2>—. Now (@ N w*> contains
x and y and meets (@ N {x, ¥>> in a subspace of dimension at least 2r — 4;
since dim{® N w~) = 2r — 2, we have

ze@ﬁwJ'Q(x,J’:@n(xsy)l)

Remark. The theorem fails if r = 2, ¢ > 3: Qs a ruled quadric(a (g 1) X
(g — 1) square lattice), and there are (g + 1)! sets P satisfying the hypothesis of
(10.3), only (g - 1)g(¢ — 1) of which are conics.

Completion of the proof of Theorem IV. It remains to identify G. Let H be
the group induced by G on the 0(7, g) geometry A*. Then H is transitive and
has rank 4 on the set of planes contained in 4.

If E is a plane, then Hp is transitive on the g% planes disjoint from E. Since any
point outside E lies on ¢° such planes, every point-orbit outside E of a Sylow
p-subgroup P of Hy has length divisible by ¢®. Let L be a line of E fixed by P.
Since L only lies in g planes E' 5= E, it follows that P;- is transitive on E' — E.
Also, H is transitive on the pairs (E, E’) of planes for which £ N £ is a line.
Thus, HE is antiflag transitive. By (2.1), H;F is 2-transitive.

If x is any point of E, then Cy(x) is transitive on E/x. Thus, Cg(x) is transitive
on x'ix,

Since H is transitive on the g® planes disjoint from E, we have ¢° I {Hi.Let Q
denote the centralizer of both x and x*/x in £X(7, ¢). Then HN Q +# 1 since
¢+ HZ ® . But Q is elementary abelian of order ¢5, and is Cy(x)-isomorphic
to x*/x. Then Cy(x) acts irreducibly on Q, and hence HN Q = Q.If h € H and
x* & x—, then H 20, 0% = (7, g).

This completes the primitive case of Theorem IV.

11. THE IMPRIMITIVE CASE

Throughout this section (which corresponds roughly to Section 7), G satisfies
the hypotheses of Theorem IV and is imprimitive on points. We are assuming
that 7 has rank r > 3; however, we will need the case G < I'U(4, g) in our
proof (cf. Remark 3 in Section 14).

Let 4 be a proper block of imprimitivity for G. Then G 4 is transitive, while
G, = G4 s transitive on " — %~ for x € 4. Thus, 4 C 4+ (since the relation of
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non-orthogonality of points is connected), and G, is transitive on ;" — A~
Then {4} is t.i. or t.s., and (by the duality between ¥/{4>~ and {43) G, is
transitive en {(4>. Thus, 4 = {4 is a t.i. or t.s. subspzce,

From now on, 4 will be a minimal proper block of imprimitivity. Setd = dim 4,
and choose x € 4. There are ' 4% (¢* — 1)i(g — 1) points. Counting the pairs
(41, 3) with 4, €45 N y~, we also find 49 14~/ 45Nt to be the
number of points. (Here, as before, 46 M x- is the set of members of AC con-
tained in x-.) Thus, ' 4+ ="45Nnx= (g — 1)(¢g — 1).

Levdia 1110 4% N x— = AS N At partitions A-.

Proof. Supposed’€A%and 4’ N 4~ 50, 4" Pick ve 4 with 4" Z v-. Then
4" — y»=" =41 50

4-—4" 2> A°—(4°Nny7) = v—yt P
However, a check of each classical geometry (computing *4- — 4 as in {9.2)}
shows that this inequality never holds.
Thus, 4’ € 4% and 4’ N 4~ = 0 imply that 4° Z 4-. Then 4~ is partiticned
bv 49N 4-. Since 45N x~ = 4+°/' A, the resuit foliows.

CoroLLarY 11.2. If W is an intersection of subspaces (49)~, then W is parti-
tioned by W N 4°.

Lewnia 11.3.  There is a subspace 4’ = 45 N 4+, £" = 4.

Progf. Suppose not. By (11.1), 4+ — 4 = z, so 4 is a maximel t.i. or ts.
subspace. Note that 46! =1 —¢* where e =7 —c =8 ~c. and ¢ s as in
(9.2) (so —1 < c <))

Choose any 4" € 4¢ — {A4}. Let r be a primitive divisor of ¢> — 1 (if ore exists;
cf. (2.4)), and R e Sx1,(G,x). Then R acts contragrediently on 4 2nd 4", Since
8 > 2, hese actions are not isomorphic; so R can fx nc further member of 4¢,
Thus r divides (g 1+ 1) — 2, whence « =38, and ¥ is of type 028 — 1, ¢). ¢
odd. If ¢ = 25, the same argument applies with r = 7.

Since g is odd, Theorems I and IT imply that G3, contairs Sp(s, q). Let
g€ G,y be a p-element inducing a transvection on 4. Then g also nduces a
ransvection on 4. Thus, g centralizes a 2(8 — 1}-space of ¥4, 4", as wel! as
{4, 4"+, Since (26 — 1) +8 > 26 4 1, each member 4" of 4% meets C,(g)
nentrivially. But 4” is a block of imprimitivity, and hence must be fixed by g.
Let H denote the subgroup of G, generated by all such elements g; thus. H4 is
Sp(3, ¢} or SL(8, q). If 4" € <4, 4", then H must acz on 4", ang hence alsc en
tie (6 — I}-space 4" N {4, 4", which is absuré.
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Digression. It is convenient to show at this point that the case 8 =2,
G < I'U(4, ¢*/%) cannot occur. Note that (11.1) and the remarks preceeding it
apply, and that |46 =¢32+ 1. Then G, 4. > SL(2, q) (if g + 4), while
g <,E < g2 An element g of G, whose order is a primitive divisor of
g% — 1 will thus centralize E. (Recall that g is a square here.) But, if X denotes
I'U(4, ¢*/?), then | Cx(4) = ¢? and g acts fixed-point-freely on Cy(4);s0 E = 1,
a contradiction. A similar argument applies if ¢ = 4.

Levma 11.4. If A €4, A C AL, and W =<4, 4", then W N AS parti-
tions W.

Proof. By (11.2), W+ = 4- N (4')* is partitioned by the members of A€ it
contains. Since the case where WW* is anisotropic (or, equivalently, 4 maximal
ti or t.s.) has been excluded by (11.3), W* is spanned by these members of
46, and (11.2) applies to W—. Since the bilinear form defining the geometry is
nondegenerate (cf. remark at the opening of Part IT), W+ = W, concluding the
proof. (Remark. It is necessary to exclude the case G < I'O(2m -+ 1, g), g even,
here. The Lemma fails for Q(m - 1, 4) <1 G < I'O(2m — 1% 2), m even.)

Leanaa 11.5. Vis orthogonal and & = 2.

Proof. Choose A’ € 4-, 4" € AS. Then A’ N 4+ =0, by (11.1), so W =
{4, 4" is nonsingular. If y, , ¥, W — x~, and y;€4;e€4% (i =1, 2), then
an element of G, mapping y, to ¥, also maps 4, to 4, and so fixes W, since
W =144, 4> =1, 2) by (11.4). So Gy is antiflag transitive and imprimitive;
and so (11.3) and the subsequent degression give the result.

Remark. The O*(4, g) geometry is a ruled quadric, and 2+(4, ¢) has two
natural svstems of imprimitivity.

Derixitiox. Let # be the lattice of all t.s. subspaces which are intersections
of members of (4+)S.

Leviva 11.6. £ is the lattice of all t.i. or t.s. subspaces of a classical geometry
of type U(ni2, q) (over GF(g%)).

Proof. By (11.2), each member of & is partitioned by the members of 4¢
it contains. If M is a maximal member of %, then M is a maximal t.s. subspace.
(For, if x € M~ — M, then the member of 4¢ containing x would be in M, by
(11.1).) If » = dim M > 4, then M is a projective space with ¢ — 1 points per
line, exactly as in (7.2). If 4 L M then 4+ N M = {4, M*)* has dimension
n—(2—n—¢)=r—2, 80 4-N M is a hyperplane of our new projective
space .M.

Note that an (r — 2)-space .V in & lies in at least two maximal members of #,
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since | A= > {¢" — 1)i(g — 1). Now, if M and 3" are r-spaces in # with
nonzero intersection, let .V be an (r — 2)-space 1n 3 with N 2 W', N r‘. ‘sI cC
M' N M. There is a subspace U'e ¥ with N =MW n NS [, i =
(MNMYES T and so U-Nn M =M 0 3 Now, if JI is a'xo‘.hex r-8pace
in & containing N, then NNMIIM' "M U-NnH =M n]I s
AN M =NnMCM n M Continuing, we find tha: there exist disjocint
r-spaces in Z.

It follows from Tits [23] that % is a classiczl polar space.

Now if 37 and 3]’ are disjoint maximal subspaces of & and M, A" =T
then there is a member of A€ disjoint from <31, M'». So 5 = dim "= 2r or

= 2. If # =2r — 2 then ¥ has tvpe O~(2r — 2, ¢); then ' 4% = (¢" — i}
(g — 1) (g2 — 1), and & is of tvpe U(r - 1, ¢}. Simitarly, if n = 2r, ther ¥
has type G—(2r, g), and the same argument shows .# has tvpe U(r, ¢).

Next suppose that 7 = 4. Then % is the lattice of points and iines of a geo-
metry %. Arguing as above, we find that % is a generelized quadrangle witk
parameters s = g%, t = ¢ or ¢° according as V" has tvpe C+(8, gj or G—{(i0, g}.

IFAC AL then {4, 4> N A5 =g+ 1 by {11.4),andforany 4" e /4, £ n
46, (4" 2 4~ N {4")~. Thus a theorem of Thas [21] identifes the quadrangie
with 7 = ¢?® as that of type U(5, ¢).

In the case t = g, the points and lines of the quadrangle are certain lines anc
solids of the O*(8, g) geometry. Any two of the solids are d1a_]omt crmeetina
iine, and so they all belong to the same class. Applying the triality map (Section
10}, the dual quadrangle is embedded as a set of pomta and lires iz 008, ¢},
satisfring the hypotheses of Buekenhout—Lefévre [1]. Thus the dua® of & 1s of
wvpe O(6, ¢), and Z itself of type U(4, gj.

This proves (11.6).

We can now complete the proof of Theorem IV as follows. By {11.6;, & is
aniquely embeddable in a projective space derived from a vector space F{n:2, g%).
Proceeding as in Section 7, we obtain the original space ¥ by restricting the
scalars, and repeat the arguments of that section tc show that g = 2 end that G s
primitive and antiflag transitive on the L'(n/2, g) geometry. Now by Sectiorn: 19,

G > 8L(n'2, g), as required.

R

12. RAXK 4 SuvBGROUPS OF RaxK 3 Gror=s

In this section, G will denote a primitive rank 3 permutarion group on a set X,
and H a subgroup of G having rank 4 on X.

Let &, /, A, p be the usual parameters of G, as defined in Higman [9], and lez
1, A, B be the adjacency matrices corresponding to the orbits {}, A(x yand I' 3
of G,, x€X. If k, r, 5 are the eigenvalues of 4, then A=k 47 -5 —rs,
w=k—rs, k(k—2—1) =l

We assume that H, splits I'(x) into two orbits I'y(x) and T,{x), of lengths
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m, ] —m and with adjacency matrices C, B — C respectively. Set mt =
 Ty(x) N 4(y)| for y e I'y(x). Then, with respect to the A-graph, the inter-

section numbers for H are as in the following diagram.

k=p~(&-mN

k=g -mt

Then AC = (k — A — 1)(m/D)A + (k — p — (I — m}t)C + mi(B — C). apply-
ing this to an eigenvector of 4 and C with eigenvalues r, 8, respectively, yields

9 = (k — X — 1)m/lyr ~ (k — p — (I — m)) + mt(—r — 1 — 6).

(Since 4 — B - Iis the all — ] matrix, —7 — 1 is an eigenvalue of B.) simpli-
fving,

(s + 1) + I5)0 = —(m/I}r — D)(r(s + 1) — k).
Similarly, if ¢ is an eigenvalue of C corresponding to the eigenvalue s of 4,
(s(r — 1) + Ityp = —(mfl)(s L 1)(s(r + 1) + Z).

But the centralizer algebra of H has dimension 4, so exactly one of the eigen-
spaces of .4 must split into two eigenspaces for C. If this corresponds to r, then §
is not unique, so

s+ 1)+t =0. (12.1)
Since r # s, it follows that

o= —m(s + 1)/I (12.2)
But p must be an integer, so

Li(l, s + 1) divides m. (12.3)
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Also, for y e Iy(x), | A(x) N T(y) = m(l — m)t’k, so
ki divides m(l — my(s + 1). {(12.4)

Remarks. (1) The results of this section can be used to give an aiternative
proof of (10.2).
(2) Of course, the same results hold in 2 more general situation {:nvoiving
association schemes).

13. TueoreM V

The proof of Theorem V follows (and was inspired by) the pattern of Perin’s
Theorem {20] discussed in Section 8. Suppose what G satisfies the hypotheses of
Theorem V. If G, is transitive on the points outside x—, then G is antiflag
transitive, and Theorem IV applies. So we may assume that G, is transitive on
x— — x, and splits ¥ — x* into two orbits. We use the rotation of the iast
section.

Suppose first that G < I'Sp(2m, g). If G has two orbits on the nonsingular
2-spaces containing x, then the stabilizer of any projective line (singtlar or noz;
acts 2-transitively on it. By (4.1), G is antiflag trarsitive, contrary to assumptior.
So G is transitive on the nonsingular 2-spaces containing x; and if ¥ is one such,
then Gy” has rank 3, with subdegrees 1, #, ¢ — &. As in (8.3), (g, B) = (2, 1},
3, 1), (4, 2j or (9, 3).

“'e have k=q(g® 2 —1)j{g— 1), I=¢*1 m=¢""% Aiso r, s =
g — 1. By (12.4),

g {g®™* — 1){(g — 1) divides ¢*"~*h(q — A) g"g" ™ = 1),

whence
g™l = 1 divides (g — 1){g — 7).

"This is impossible if m >> 4; and none of the specific values cf ¢ znd 4 satisfy i:
when s = 3. So this case cannot occur.

The case }7 unitarv is ruled out by Kantor and Liebler [4, {£.2)].

SUDPOSP G < TO@2m 1, g), m = 3, g odd. Let r be a primitive division of
g2 —1 (see (2.4)), and ReSyl,G,. Then W=C V(R\ is a nonsingular
3-space, a.ad NG(R)¥ has rank 2 or 3. If g > 3 then NG{R)" contzins ({3, ¢;
or (if g = 9) A4; . Proceeding as in [12], (compare the proci of (6.2)) we obtain
the contradiction G = 8002m - 1, g).

The case g = 3 is somewhat harder. Here, chooser ! 3292 — lorr! 371 — §
according as m is odd or even. (The case m = 2 is not dﬁic ult and is omitted.;
Ther N(R)¥ contains (3, 3) or Dy, while NG{R)*" conzains ro Ds. ’h
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fact, No(R)"" < TO*(2, 3-1) by Sylow’s theorem.) Thus, there is an involution
t€ Co(W™) with ¥ == diag(—1, —1, 1). Now note that G has 2 orbits of pairs
(x, b) with x a singular point and b € x* a 1-space of length 1 (or, alternatively,
length —1). If # induces —1 on &, then ##" is a reflection while G% has at most
2 point-orbits. We may then assume that any two G,~conjugates of ¢ commute.
(For otherwise, the product of two such non-commuting conjugates has a
product of order 3 centralizing y*/y for some point y € . The argument in
[14] or (6.2) now yields the contradiction G > Q(2m + 1, 3).) Since G% has at
most 2 point-orbits, it cannot be an irreducible monomial group. It follows that
G, fixes an anisotropic 1-space or 2-space T' C b, and is transitive on the points
of bt n T*. Now one of the G,-orbits of nonsingular 1-spaces in x* has length
$3mE™ L 1) - 33t — D™ — 1) or B3mE™ = 1) - JEm1 — (37 + o)
#(3?™ — 1) with ¢ = 1 or —1. Since this is not an integer, we again obtain a
contradiction.

Finally, consider the case G < I'O*(2m, ¢), m >3, ¢ > 2, in which x'/x
has (g™ F 1)(¢™®4-1){(¢ — 1) points. If m =3, use [l4, Section 5].
We therefore assume that m >4, and use r|[¢™2 =1 and ReSyl,G, as
before, temporarily excluding the case O—(8, ¢) with ¢ a Mersenne prime. This
time W = Cy(R) is a nonsingular 4-space, with Ng(R)" of rank 2 or 3. Moreover,
since R fixes no points of x*/x, necessarily W has type O—(4, g). Thus, No(R)¥
contains 2-(4, q) or (if ¢ = 3) 4;. As in [14, Section 12], we obtain the contra-
diction G = Q=(2m, g).

This leaves the possibility G < I'O~(8, ¢) with g Mersenne. We may assume
that —1 € G; note that —1 € 2-(8, g). Let L be a line, and let R & Syl,Cg(L).
Since G * > SL(2, g), it follows that R = 1. Set W = Cy(R). Thendim W = 4
or 6, while N;(R)¥ is line-transitive. Also, N;(R): > SL(2, g) by the Frattini
argument. If dim W = 6 then Ng(R)¥ = £2=(6, q) by [14, Section 5], and we
can proceed as before. If dim W = 4 then N(R)¥ > O+(4, q) while Ng(R)*"
normalizes the fixed-point-free 2-group R#", Then C4(W)¥ contains 2+(4, g)
if g 5= 3, and G = 2-(8, ¢). Suppose that g = 3. Then a Sylow 3-subgroup of
Ng(R)"* has order 1 or 3, so Co(W") has an element g or order 3. There
is a point x€ W fixed by g, and ge Cy(x~/%). As usual, this implies that
G > 28, q).

This contradiction completes the proof of Theorem V.

Remark. If G < OX(2m, 2), the argument breaks down when r | 272 — |
and dim W = 4, but | Ng(R)*” | == 10 or 20.

14. CoNCLUDING REMARKS

1. The method used in our proofs for employing p-groups also works for
suitable permutation representations of the exceptional Chevalley groups.
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2. After classifying antiflag transitive groups, it is naturai to ask abcus
transitivity on incident point-hyperplane pairs (where tse byperplane is not the
polar of the point in the case of a classical geomet*v‘ If a group G is transitive
on ail such pairs in PG(n — 1, g), then it is transitive on incident pomf-lme
pairs, and hence 2-transitive on points (Kantor [i2]); so Theorer: I appiies

However, for classical geometries, results are known only in the unitary case
Kantcr—Liebler [14]).

3. In the proofs of (8.4){8.6) and Thecrem YV, as well as that of Perin’s
theorem outlined at the beginning of Section 6, results were emploved which
had been proven using group theoretic classification. theorems. However, the
proofs of Theorems I-IV are not dependent on such classification thecrer
Even when [14] was invoked, the required results used nothing moze than (2.4)
and elementary generational properties of classical groups. Of course, proofs
have cccasionally been lengthened by the requirement that group theoretic
classificztion theorems not be used even implicitly.

4. However, it should be noted that [14] produces a proof of the rank 2
anzlogue of Theorem IV, as follows. We assume that }” coes not have tvpe
G4, ¢). The primitive case proceeds as in Sections 9, 10. In the imprimitive
case, tae block 4 of Section 11 is a t.i. or t.s. line. If x € 4 then G, is transitive
on A5 — {4} and hence on ¥~ — A. Thus, G has cne orbit of points and two
orbits each of lines and incident point-line pairs. Now [14, Sect. 5] applies.

APPENDIX: The Gy(q) Hexagon

This 2ppendix contains new and elementary proofs of the existence and
uniqueness statements in Section 3, as well as further properties cf the hexagons
(including antiflag transitivity).

Assume that ¢ is an in (3.2), and set W(x) = W{s}. We will prove severa:
properties of &, from which an explicit construction wul easily foliow.

Lesnia A1, (i) For any points x, y of %,
<x, 3% = (V{W(w) | u e Wylx) 0 W(5)55

if d(x, y) = 1 or 2, then all poinis of {x, y) are poinis of &.
(i) If 2¢<x, > and d(x,y) =1 or 2, then Wy(2) N {x, y) ir either
%, ¥ oF a point.
(i) Either dim V = 6 and V is symplectic, or dim V =7 and V iz orihc-
gonal; in either case, the points and lines of G consist of all points and certain *.i.
or L.5. lines of V, and Wy(x) consists of all points of x~.

roof. (i) The first statement follows from zxiom (f} of Section 3; the
second from the fact that (v, ¥> C W(u) if u e W{x) N W(y).
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(ii) Ifd(x, y) = 1, this follows from the axioms for a generalized hexagon.
Suppose d(x,y) =2, and set u = W(x) N W(y). Then W(u) N Wy(2) is a
subspace meeting each line of W{(u) on u, and our assertion follows.

(iii) This follows easily from (ii) and the fact that & has exactly (¢5 — 1)/
(g — 1) points (cf. Yanushka [27, Sect. 3].)

Levvia A2, Let a and b be opposite points, and set H = {W(a), W(b)).

(i) H=E QF, where E and F are t.i. or t.s. planes such that, for ec E,
feF,{e,f>ts a G-line if and only if itis a(Li. or t.5.) line (Call these E | F-lines.)
(i) IfecE, then W(e) = e, e- NF).
(iii) If x is a point on no E | F-line, then W(x) meets exactly g — 1 E | F-
lines, and the points of intersection are collinear.
(iv) If V has type Sp(6, q), then q is even.

Proof. (i) Since W(@)N W(b) =0, dim H=6. Let a=uwx, x,, %3,
b = x,, x5, x¢ be the vertices of an ordinary hexagon in &. Then x, , x; € W(a)
and xg, x5€ W(b). Set E = (%, , %5, Xgp and F =, , xs , ¥5>. Then E and F
are t.i. or t.s. and H = E @ F. Also W(x,;) = (xp;, 233 NF>. We can thus
vary X, , £ € W(a) N E, and also move around the ordinary hexagon, in order
to show that each t.i. or t.s. line {¢,f> is a %-line.

(ii) This is clear from the above proof. (In fact, the points of £ U F and
the E | F-lines form a degenerate subhezagon with s =1, £ =¢.)

(iii) If % lies in W{(x) and also on an E F-line {e, f), then ee EN x*
and feF N x*. Here, ENnx- and F N x~ are lines spanning a nonsingular
4-space U. If ¢; € E N x* then U contains a @-line {e; , f;> met by W(x). Thus,
W(x) N U is the desired set of points, and is clearly a line.

(iv) If V has type Sp(6, q), then U has type Sp(4, ¢). But the Sp(4, q)
quadrangle contains six lines forming a 3 X 3 grid (such as E N x—, F N x4,
W(x) N\ U, and any three E | F-lines in L) if and only if ¢ is even.

Remark. Because of (A.2iv), and the isomorphism between the Sp(6, q)
and O(7, ¢) geometries when g is even, we will assume from now on that ¥ has
type O(7, q). Now H has type OH(6, g), and the line mentioned in (iii) is
W(x)n H. Also, O(7, q) = SO(7, q) X {1}, so we may where necessary
assume that linear automorphisms of % have determinant 1.

The next lemma is more technical, and concerns generating %.

Levmma A3. Let S be a sei of points, containing at least ome pair a, b of
opposite points, and such that W(a) Nb-C S for any such pair. Then ezther
S =EVUF for E, F as in (A.2i), or S consists of all points of 4.

Proof. Certainly SCEUPF. Let %, consist of S together with the set of
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D

Lines meeting it at least twice. We will show that % is a {possibly degenerats)
subhexagon.

LetL be aline of #yand x € S — L; we must show that the unique point 1 of L
nearest x lies in S. Let yeL — #. Since x is opposite some point of &, our
hypothesis implies that each line on x meets § — {x}. If 4(x, 4} = 1, pick
g€ S W(x) with d(y, 2) =3, and note that ue W(;, N 2-, so 28 If
d(x, u) =2 thend(x,y) =3 andue W(y)Na-isin S.

Thus, %, is a subhexagon. Choose a € S, Then 5 N W(a} has the follewing
properties: it meets every line on « at least twice; if x, y € S N Wa) and #{a) =
{a, x, ¥, then {x, 3> C S. (For if bex* ~y~-N .S and b is opposite ¢, then
<x, vy = W(a) N b~) Thus, SN W(a) is a (possibiy degenerate) subplane cf
W(a).

If each line of ¥, has size 2, then S = E U F. Sc suppcse that some line of
%, on a has at least three points. Then S N W(a) is nondegenerzte, and herce is
zli of Ha). Thus ¥ = 9,.

w

LEanis Ad. Suppose G and 4’ are both embedded in V™ as in Seciion 3. Let
Xy yeeey Xg and 3y ..., ¥g be the vertices of ordinary hexogons in 4 vesp. 9'. Then
there is an element of GL(V') mapping x; to y; (i = 1,.... 6) and inducing an iso-
morphism of G onto ',

Proof. The orthogonal geometries determined by % and %" as in (A.liii) aze
equivalent under GL(V"); so we may suppose that they are equal. There is a2
orthogonal transformation taking x; to y; ({ = 1,..., 6}, so we may assume that
x; = y; for each 7. Set E = (&, , &y, %), F = {xy, X3, x50, By (A.2ii), Wi}
and W(f) are the same whether computed in % or %’ (where e E, fF).

ick a point x on no E  F-line, and call Wy(x} the iine of points in (A.2ii}.
Then H7y(x) is one of the ¢ — 1 lines in I’ = (E N x~, F N 3~} meeting eacn
E | P-line of U, other than E N & and F N x+. But 0(7, @), is transitive on
these lines, so we may assume that W(x) is the same in % and &’ for some such .

Now if S is the set of points u of ¥ such that I¥(%) is the same in both ¥ anc
&, tken (A.2ii) shows that (A.3) applies, and we conciude that ¥ = %',

CoroLLary A.5. The group Aut,{¥) of automorphisms of & induced by
elements of SL(V") is transitive on the set of ordered ordinary hexagons sf &. In
particular. Aut,(¥) is antiflag transitive.

{Receli the remark following (A.2).)
CoroLiary A6. (i) There is a subgroup K =~ SL(3, §) of Aut(¥) fixing €
and F and ceniralizing H*.

(i) The siabilizer of E in Auty (%) induces SL{3, q) on if.
(i) :Aut(9). =(¢°+ 1) ¢®(¢® — 1) and Z(Aut,(F; = 1.
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Proof. (i) is clear from (A.4).

(i) We show first that Aut, (%), = SL(3, g). Set G' = Aut(¥)gr. If x
lies on no E [ F-line, then | G": G, ' is equal to the index in GL(3, g) of the
stabilizer of a non-incident point-line pair (p, L); and no non-identity (p, L)-
homology fixes «, since the group of (p, L) homologies permutes regularly the
g — 1 lines called W (x) in the proof of (A.4). So (G,)F has index at least ¢ — 1
in GL(3, q),; ; and hence (G} = SL(3, g).

Now, given E, there are ¢2 choices for F, permuted transitively by Aut,(¥)g .
So | Auty(¥)E: Aut,(¥)s | divides (¢%, g — 1), whence Aut,(%)E = SL(3, ¢).

(iii) Clear.

TreroreEM A.7. Each O(7, q) space has one and only one class of generalized
hexagons embedded as in Section 3. An Sp(6, q) space has such a hexagon if and
only if q is even.

Proof. Uniqueness follows from (A.4), and the assertion about Sp(6, g)
from (A.2iv). The preceding lemmas (especially (A.1), (A.2) and (A.6)) tell us
exactly how % must look, and hence how to construct %.

Construction. Let V" be a vector space carrying a geometry of type O(7, g),
and E and F t.s. planes such that H = {E, F’) is nonsingular of dimension 6. Let
K < 0(7, q) fix E and F, centralize H*, and induce SL(3, ¢) on both E and F. If
{e, , &; , &5} isa basis for Eand{f; , f, , f5} the dual basis for F, then the matrices of
2F and gF with respect to these bases are inverse transposes of one another for all
geK. Let H-={d).

We must use the £ | F-lines {e, f), with ee E, fee- NF, as -lines; set
W(e) = (e, et NF), W(f)=<f,f+NE). Note that K is transitive on the
(4?2 + g + 1)(g = 1)(g — 1) points on the union of the £ | F lines but not in
EUPF, on the (¢® -+ ¢+ 1)(¢® — ¢®) points on no E'F-line, and on the
(g% - g + 1){(¢® — ¢ lines contained in the union of the E | F-lines but not
meeting E or F.

Pick an E |F-line {e, f>, a point ue{e, f) — {¢, f}, and a plane W(u)D
e, f) with W(u) = W(e), W(f). Write W(u?) = W(u) for all g € K. The new
points must be the t.s. points of ¥V — H, and the new ¥-lines must be the lines
of W(u?) through ¥, for all g € K. We must show that this is well-defined and
yields a generalized hexagon. This will be done in several steps,

(1) If ¢ = u then W(uf) = W(u); so W(ur) is well-defined. For, | K, | =
g%(g — 1), and K, fixes W{e)/<e, f> and W{( f)/{e, f>. Thus, each p-element of
K, fixes every plane containing <{e, f>. Suppose the order of g divides ¢ — 1.
We may assume that e = (&>, f = {fp), # = {&; — f5), in the above notation.
Then we find that ef = oe;, f,f =af;, &f =%, fif = «~lf;, whence
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e ==¢;, f3* =f;. Since W{(u) contains a unique point of ey, f3, d,, it is
fixed by g

(2) M W(u) = W(u), then u? = u. For suppose i¥(u?) = r'I'\u) Ther g
fixes W{w) " E = e and W(u) N F = f. Here, K, is the stabilizer of a flag of
PG(2, q), of order ¢%(g — 1)2 If uf = u, then the order of g d"vides g—leandg
is diagonaiizabie. We may assume # = {e; — f>, W’(') =t . fo,ea— fz—a:
Ifg = diag{x, 8, y), then (&g + f3 — dff = yeg — y7Yy —d. scy = 1, whence
(X.J =l znd 9 = u.

(3) IfLis a #-line on u then L C W(y). (For, we mayv assume L T # anc
LICH (), sc u =L N H=u and L C W(u).) The total number of ¥-iines is
tken

(@—a—Ng— 1)+ (@+qg—1)g+ 1)g— e ={¢*— 1}¥{g — %}

"Thus, each peint x & H lies on

(@—g—Dg—Vg—Dg ¢ ~9+-NP—¢)=9—1!
%-lines.

(4} Fix xe V' — H. Then K, = SL(2, q) fixes tne non-perpendicular
voints £,- N F and F,;* N E, where E, = EN x* and F, =F N x— are lines.
Here. K acts on the nonsingular 4-space (£, , F,>, fixing ¢ — ! lines. Each
%-line L on x meets one of these lines (since W(L N Hjis t.s. and contains x
snd points of E and F); but none meets E, or F, . The action of K, then ichies
that they ail meet the same line 3, and they iie in a plane #{x) = /x, 3I.

By transitivity, each line of H missing E U F occurs as I (x) » H for some
x & I" — H. Since the numbers of such x and such lines are the same, distinct
peints v vieid distinet F¥/(x). It follows that, for any *we distinct points g, 6 o7 T,
we have TI{a) = W(b).

(5) Points a, b are perpendicular if and only if d(a, ) < 2. Foz, if d{a, )
2 thea @, b & I¥(c) for some ¢, and W{c) is t.s. But the number of such pairs :
the same as the number of pairs of perpendicular points.

N

n

{6} % hasno k-gonsfork < 5. For, 1et ay ..., ay, be the vertices 5f a k-gon.
Then d{a: , a,) < 2 for all , j so {a, ,..., @ is a t.s, piare, which must be both
i¥(a,) 2nd 1"(a,), contradicting (4).

—

{7} ¥ is a generalized hexagon. This foilows from the same counting
argument as in Section 3.

This compietes the proof of (A.7).

Remarks. Further properties cf the group Gy{g) = Aut{¥) are found in
(5.4). Additicnal information, such as simplicity when ¢ == 2 and identlﬁcation
with PSU(3, 3) » Z,if ¢ = 2, is left to the reader, 2ud can be found in Tits 1227
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