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P R O J E C T I V E  P L A N E S  OF T Y P E  I-4" 

1. I N T R O D U C T I O N  

During the last few years, there has been a mild surge of interest in projective 
planes of type I-4. This paper is intended to both provide a survey of some 
recent theorems, and to present some new results concerning these planes. 

In Section 2, we describe the algebraic setting for these planes. Special 
attention is given to the structure of the relevant homology groups. In 
Section 3, some recent existence theorems are stated. Sections 4 and 5 are 
concerned with the most basic open question concerning these planes: the 
existence problem in the finite case. Both structural and numerical properties 
are studied in some detail. This is probably the most fascinating aspect of 
these planes, involving the interplay of geometric, algebraic, and difference 
set methods. 

Finally, in Section 6, we discuss the related problem of planes of type 1-3. 
A technique is described which gives a minuscule amount of new information 
concerning finite planes of that type. There is some hope that this approach 
will turn out to be useful in the study of planes of type I-3 or I-4. 

Our notation and terminology will generally be that of Dembowski [4]. 

2. NEOFIELDS 

Let ~ be a projective plane of type I-4 which is (U, OV)-, (V, OU)-, and 
(O, UV)-transitive. Coordinatizing as usual-  with (1, 1) any point not on 
OU, O V, or UV- yields a planar ternary ring (R, T) satisfying the following 
conditions. 

O) T(m, x, c)=mx +c for all m, x, ceR (linearity). 
(ii) (R*, .) is a group, where R*=R-{0} .  

(iii) (a+b) c=ac+bc, c(a+b)=ca+cb for all a, b, ceR. 
(iv) If m, n, c, deR and m#n, then mx+c=nx+d and ym+c=yn+d 

have unique solutions x, y. 
(v) If a, b, c, deR and a#c, then the equations xa+y=b, xc+y=d, have 

a unique solution x, y. 
We will call R a neofield. (This is not the usual terminology: Hughes [8] 
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introduced the term 'planar division neo-ring'. However, this seems un- 
necessarily cumbersome.) Conversely, each neofield coordinatizes a projective 
plane which is either of type I-4 or desarguesian. 

I f0,  I~Sc_R and (S, T I S) is a neofield, S is called a subneofield of R. 
Clearly, (S, + ) is a subloop of (R, + ) and (S*, . ) is a subgroup of (R*, • ). 
For brevity, S* will always denote the group (S*, .). Any intersection of 
subneofields is a subneofield. 

Clearly, R is a skew field if (R, + )  is associative. (R, + ) is said to satisfy 
the left (right) inverse property if x ' + x = 0  implies x ' + ( x + y ) = 0  for all 
y(or x + x ' = 0  implies (y+x)+x '=O for all y); (R, + )  has the inverse 
property if both of these conditions hold. 

Let AutR denote the automorphism group of the neofield R. If ?eAutR 
then (x, y ) ~  (x ~, Y0 determines an automorphism of # .  Here CR(r) is a 
subneofield of R. 

(2.1) LEMMA. Each inner automorphism of R* determines an automorphism 
of R. Namely, if r¢R* then x--*r-lxr, x¢R,  is an automorphism. Its fixed 
neofield is CR(r)= {0} w CR,(r), where CR,(r) is the centralizer of r in R*. 

Proof. This follows immediately from distributivity. 

(2.2) LEMMA. If,CT=_R then Cll(~,~)={r~R]rx=xr for all xE.,~} is 
a subneofield. 

Proof. (2.1). 
In particular, the center Z ( R ) =  CR (R) of R is a subneofield. 
The next results show that the group R* must satisfy some relatively 

severe restrictions. 

(2.3) THEOREM. R* has at most one involution. 
Proof. [7], 11.3, or [12] and [15], or [4], p. 120. 

(2.4) THEOREM. l f  A is an Abelian normal subgroup of R*, then A <<. Z(R*). 
Proof. (This is essentially the Cartan-Brauer-Hua Theorem; see [21], 

p. 427.) Suppose A:gZ(R*). Clearly CR.(A)<R*, while CR(A) is a sub- 
neofield by (2.2). Set S=Z(CR(A)) .  Then S is a subneofield, S* is Abelian, 
A<<.S*~__R*, and S~gZ(R). 

We can find aeS* and beR* such that bab-~a -1 = u #  I. Then b¢S, as 
S* is Abelian. Let a ( b + l ) = v ( b + l ) a .  Then u, veS  as S*<..._R*. Also, 
ab + a = v (ha + a) = ( vua) b + va. Since a, vua, va e S, if a # vua then the equa- 
tion ax+a=(vua) x+va  has exactly one solution x e R  and x must be in S. 
Since b ~ S, we must have a = vua. But now a = va also, so v = 1, and hence 
u = 1, which is not the ease. 
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(2.5) T H E O R E M .  The center of R*/Z(R)* is trivial. 
Proof. See the p roo f  of  [21], 14.2.4. 

(2.6) T H E O R E M .  (i) I f  S is aproper subneofieM of R, then IR* :S*I >/ISI + 1. 
(ii) I f  x E R * - Z ( R * ) ,  then IR*: Ca.(x)l  >i IC~(x)l + 1. 
For  this and further  results of  these types see [21], (14.1.1), (14.1.2), 

(14.2.1), (14.2.2), and (14.3.1). None  o f  the other  proofs  presented in [21 ], 
Chapter  14, seem to extend to the neofield case. Different types o f  results 
concerning subneofields ofneofields are found in [8 ], Chapter  II ;  for  example, 
each abelian subgroup of  R* generates a subneofield with commutat ive  
multiplication. 

Using (2.4), (2.5), or  (2.6), it is easy to construct  groups, each o f  whose 
nontrivial  dements  has infinite order  (compare  (2.3)), and yet which cannot  

be the multiplicative group o f  any neofield. 

(2.7) T H E O R E M .  Suppose (R, + ) satisfies the inverse property. 
O) I f  1 + ( - 1 ) = 0 ,  then ( - 1 ) + 1 = 0 ,  ( - 1 )  a = a ( - 1 )  is the additive 

inverse of a for all a~R, and ( -  1)2= 1. 
(ii) ([19]). (R, +) is commutative. 

(iii) I f  a 2 = 1 then a = 1 or - 1. 
(iv) Let  a # 1. Then a + 1 = ( -  1) a 2 if and only if a 3 = 1. 
Proof. (i) Write  8 = - 1 .1  + 8 = 0 implies 1 = 1 + (8 + 1), so e + 1 = 0. Also, 

a + 8a = 0 = a + ae, while s + 82 = 0 implies 82 = 1. 

(ii) Write -a=ea .  Then, for  any a, beR, - ( a + b ) + ( ( a + b ) + ( - b ) ) =  
= - b, so - (a + b) + a = - b, or - (a + b) = - b + ( -  a). Multiplying through 

by 8, we find a+b=b+a.  
(iii) a 2 = 1 # a implies a (a + 1) = 1 + a = a + 1, so a = - 1. 
(iv) Suppose 8a 2 = a +  1. Then ca+ca 2 = 1 and ea 3 =a 2 +a=~(ea+ea2)=8, 

so a 3 = 1. Conversely, assume a 3 = 1 # a. Write u = a + 1 and v = 8 (a 2 + 1). The  
points (a, u) and (v, 8a 2) are bo th  on the lines y = x +  1 and y=a2x+a,  
since a +  1 =u, v+ 1 = m  2, a2a+a= 1 +a=u, and a2v+a=(sa* +ea2)+a= 
=(sa2+~a)+a=ea 2. Since a ¢  I, we must  have (a, u)=(v, 8a2), as required. 

(v) Suppose an= 1 ~a, b3= 1 ¢b,  ab=ba, and a#b.  The points (a 2, 8b 2) 
and (b 2, ea 2) are bo th  on the lines y = a b x + l  and y=a2bZx+a2b2; for  
example, aba 2 + 1 =b+ 1 =~b 2 and a2b2a 2 +a2b 2 =a2b 2 (a 2 + 1)=a2b28a = 
=8b 2. Since a2 #b  2, we must  have ab=a2b 2= 1. 

Note  that  (2.7v) can fail if R* is nonabelian.  

3. EXAMPLES 

The most  elementary example o f  a neofield is as follows [14]. Let F denote  
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any subfield of  the real numbers. Choose k~R with k #  1, k > 0 ,  and define 
(R, @, .) by: R=F,  a.b=ab, and 

[ a + b  if ab>,.O 
a ~ b = ka + b if ab < O and Ikal <<. [bl 

| a + k - l b  if a b < 0  and [kal>lbl. 

More generally, the same construction works for any ordered field F. 
Note that R* = F*. Also, 1 (~ ( - 1) = 1 - k -  1 # 0 if k > 1, so here - 1 is not the 
additive inverse of 1, even though (if F has characteristic # 2) - 1 is the 
involution in R*. 

Another example using the real numbers is given in [20]. In that example, 
(R, + ) is commutative and has the inverse property. 

While (2.3)-(2.5) restrict the possibilities for R*, only (2.3) has any effect 
when R* is Abelian. That this is the only restriction for infinite R is seen from 
the following basic existence theorem. 

(3.1) THEOREM.  Let G be an infinite Abelian group having at most one 
involution. Then [13] there is a neofield R with R * ~ G  such that 1 + 1 = 0 .  
There is also a neofield S with S* ~ G such that (S, + ) has the left, but not the 
right, inverse property [1 ]. 

Special cases of (3.1) are found in [7] and [8]. 
Similarly, (2.7v) has the following converse in the infinite case. 

(3.2) T H E O R E M  ([1]). Let G be an infinite Abelian group having at most 
one involution and at most one subgroup of order 3. Then there is a neofield R 
with R*~, G such that (R, + ) has the inverse property. 

The preceding results contrast greatly with the situation for commutative 
yields. For, if p # 2  is prime, x P -  - 1 can hold for all x¢R.  

4. F I N I T E  N E O F I E L D S :  S T R U C T U R E  

The basic problem concerning finite neofields is whether they must be fields 
- if this were so, finite planes of  type I-4 would not exist. The next two sec- 
tions are concerned with structural and numerical properties of  a finite 
neofield R. Let IRI -n .  

(4.1) T H E O R E M  ([8, 16]). ( R, + ) is commutative and has the inverse proper- 
ty. 

(4.2) COROLLARY.  I f  ( - 1 ) + 1 = 0 ,  then ( - I ) 2 = 1 .  Moreover, r 2 = l ,  
r~R, implies r =  1 or - 1. 
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Proof. (2.7). 

(4.3) THEOREM ([11]). R* is an Abelian group. 
This is the analogue of  Wedderburn's theorem. The next natural step 

would be to show that R* is cyclic. All that is known in general is the follow- 
ing immediate consequence of (2.7) and (4.1)--(4.3). 

(4.4) COROLLARY. R* has cyclic Sylow 2- and 3-subgroups. 
From (4.3) and [8], III.1, we get the following basic result. 

(4.5) THEOREM. Let m In. Then the mapping r ~ r  =, r~R, is an auto- 
morphism of R. 

We will call an integer m a multiplier if r ~ r  ~, r~R, is an automorphism 
of R. This terminology, together with the proof of (4.5) and (4.6), are due to 
the similarity between finite neofields and planar difference sets (of. [3]; [4], 
pp. 89, 209; [8]). Thus, write G=R*xR* ,  D = { ( a , b ) e G x G b = a + l } ,  
G I = I  x R*, G 2 = R * x l ,  and G3={(r ,  r)lrER*}. Then IDl=n-2,  and 

(4.6) (E ,O(Z d- ' )=n+ Z g -  Z g -  Z g -  Z g 
deD d~D gEG g~G geG2 gEG3 

where the sums are taken in the rational group algebra QG of G. 

(4.7) LEMMA. l f  m is a multiplier, then S= {x~R [ xm=x} is the subneofield 
of R coordinatizing the subplane of ~ consisting of the fixed points and lines of 
the collineation induced by m. 

Proof. Clear. 

(4.8) LEMMA. Let t be a multiplier, xeR*, and suppose t induces an auto- 
morphism group of even order on (x) .  Then n is a square, and R has a sub- 
neofield of order ~/n. If, moreover, x' =x -1 # 1, x, then x4"=x or x -1. 

Proof. Clearly t induces an automorphism x of R of even order, so x * is a 
involution for some i. This proves the first assertion. By (4.7), x t' =x" =x 4~, 
where x ~l =x or x - t  according to whether i is even or odd. 

We next discuss some consequences of the preceding results. Let ~ be the 
plane coordinatized by R. 

(4.9) LEMMA ([7]). The mapping a: (x, y) ~ (y, x) induces an involutory 
perspectivity of ~ .  

Proof. I f y = m x + b  with m # 0 ,  then y + ( - b ) = ( m x + b ) + ( - b ) = m x  by 
(4.1), so x = m - l y  + m - 1 ( _  b). It follows readily that a induces a collineation. 
Since (x, x)*= (x, x), a is a perspectivity. 
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(4.10) THEOREM. Suppose ~ is nondesarguesian and F is its collineation 
group. Then F = ( G A )  x S, where S ~, S a, A "~ AutR, G ~, R* x R*, G < F ,  
G A < F ,  and G n A = I .  

Proof. By (4.9), there are involutory perspeetivities o and x with O ' =  O, 
U ~ = V, U' = U, O' = V. Set S = (a,  z). Let A consist of the collineations 
(x, y) ~ ( x  ~, y ' )  with ~eAutR.  Clearly, A ~ A u t R .  

As ~ has type 1-4, F fixes {O, U, V}, and permutes these 3 points. Here 
GA is the kernel of  this permutation representation (since G is transitive on 
the points on none of the lines OU, OV, UV). By (2.3), o and • centralize GA. 
Thus, S ~ $ 3 ,  and (4.10)follows. 

(4.11) THEOREM. Aut R has at most one involution. 
Proof. If cteAutR is an involution, it induces a Baer involution on ~ ,  so 

IC~(a)}=~/n. By (4.5), fl:r--*r "/" is an involutory automorphism. Suppose 
a#f t .  Clearly ~ft = ft~, and IC~ (/~)1 = ICR (~ft)l =x/n. Let q be a prime dividing 
x/n+ 1, and Q be the Sylow q-subgroup of R*. If q#2 ,  then <~, ft) is fixed- 
point-free on Q, which is impossible. Thus, q = 2  and v/n+ 1 =2  ~ for some i. 
Now Q is cyclic by (4.4), and since 4 y x / n -  1 we must have ICe(y)l =2 for 

= ~, ft, aft. This is also impossible. 
Beyond (4.1) and (4.2), very little is known about the loop (R, +) .  

(4.12) LEMMA ([8], II, 11). (i) I f  n is even then 1 + 1 = 0  and GF(2)  is a 
subneofieM of  R. Conversely, 1 + 1 = 0  implies 2 In. 

(ii) I f  3 I n then (1 + 1) + 1 =0  and GF (3) is a subneofield of R. Conversely, 
(1 + 1)+ 1 =0  implies 3 In. 

(4.13) LEMMA. (i) I f  n is even and 3 [ n -  1, then GF(4) is a subneofield of 
R, and n is a square. 

(ii) I f 3  [ n and4 [ n -  1, then GF(9) is a subneofield of  R, and n is a square. 
(iii) I f  5 I n and 3 ] n -  1, then GF (25) is a subneofield of R, and n is a square. 
(iv) / f  7 [ n and 8 [ n -  1, then GF(49) is a subneofield of  R, n is a square, 

and 48 ] n -  1. 
Proof. m = 2, 3, 5, or 7 is a multiplier in the appropriate parts of  the lemma. 

By hypothesis, there exists x e R *  satisfying x ~ = x  -~ ~ +_ 1, so n is a square by 
(4.8). Note that m 2 - 1 has the form 2~3L Thus, if S is defined for m 2 as in 
(4.7), then S* is cyclic by (4.4), and hence IS*l I m2 - 1. This proves (i). As 
n is a square, 8 ] n - 1  in (ii), and hence I S * l = 8 = m - 1  there; that S is 
GF(9) follows, for example, from (5.12). The proofs of (iii) and (iv) are 
similar, also requiring the use of (5.9) and (5.12ii). 

We leave to the reader the exercise of inventing variations on the theme 
of (4.13). 
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(4.14) LEMMA. 13' m is a multiplier, then ( n -  1, m -  1 )=  1 implies 1 + 1 =0, 
while ( n -  1, m -  1)=2 implies (1 + 1)+ 1 =0. 

Proof. Assume 1 + 1 # 0. Then (1 + 1 )m = 1 + 1 implies (1 + 1)m- 1 = 1. Since 
1 + 1 # 1 ,  ( n - l , m - 1 ) # l .  If  ( n - l , m - 1 ) = 2 ,  then 1 = ( 1 + 1 ) 2 = ( 1 + 1 ) +  
+ (1 + 1), so 1 + 1 = 1 + ( -  1 - 1) = - 1 (by the inverse property), as required. 

Note that the first parts of (4.12i, ii) are contained in (4.14), (with m = 2 or 
3). Arguments similar to that used in (4.14) will reappear in the next section. 

A polarity 0 of ~ is called orthogonal if it has exactly n + I absolute points, 
and unitary if n is a square and each nonabsolute line has exactly ~/n + 1 
absolute points. 

(4.15) THEOREM. ~ has an orthogonal polarity. I f  n is a square, ~ also 
has a unitary polarity. 

Proof. Define 0 by 

(a, b )~--, y = ax - b 
(m)~-~x = m 

Then 0 is an orthogonal polarity. Let n be a square, and let ~ be the Baer 
involution induced by the involutory automorphism of R. Then 0~=~0 is a 
polarity, which is readily seen to be unitary by using [22]. 

5. FINITE PLANES: NUMERICAL RESTRICTIONS 

Finite neofields are subject to numerous numerical restrictions, mostly 
derived from (4.5). Nevertheless, it is still not known whether the order n of 
R must be a prime power. 

Let m denote any multiplier- in particular, m may be any divisor of n. 

(5.1) THEOREM. / f n > 4  is even, then 8 [ n. 
Proof. By (4.6), ~ has an involutory elation. Consequently, by [9], 4 In. 

Suppose n -  4 (mod 8). Then 2 / ( n -  1 )=  - 1 by an elementary property of the 
Jacobi symbol ([5], p. 298). Thus, 2 is a non-residue modq for some prime 
q l n - I .  Consequently, the multiplier 2 has even order. By (4.8), n is a 
square, and there is a neofield of order ~ /n-2(mod4) .  Again by [9], this is 
impossible. 

(5.2) LEMMA. l f  n has a divisor m such that ( rn+l ,  n - l ) > 2 ,  then n is a 
square. 

Proof. (4.8), using 2~lxl I (m+ 1, n -  1). 
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(5.3) LEMMA. l f  n is even, then 3 I n - 1  if and only if  n is a square. In this 
case, R contains GF (4). 

Proof. I f n = s  2, then 3 X s by (4.12). Also, s 2 -  - 1  (rood3) is impossible, 
so s 2-= 1 (rood 3). The remaining assertions follow from (4.13i). 

(5.4) THEOREM. I f  (n - 1, m - 1) = 1 then n is even. I f  also (n - 1, m + 1) ~ 1, 
then (n - 1, m + 1) = 3 and n is a square. 

Proof. The first assertion is just (4.14)and (4.12). Let 1 ~[xl [ ( n -  1, m +  I). 
Then ( x + l ) m = x m + l = x - l + l ,  so ( x + l ) ' - X = x  -1. As ( n - l , m - 1 ) = l ,  
x + l e ( x ) ,  so ( x + l ) ~ + X = l  also. Consequently, l = x - X ( x + l )  2, so x =  
= (x 2 + x) + (x + 1). By (4.12i), x 2 + x = x + (x + 1) = 1, so x 3 = 1 by (2.7). Now 
(4.4) implies that ( n -  1, m +  I )=3 ,  and (5.2) completes the proof. 

(5.5) COROLLARY. I f  n is even and ( n - l ,  2 i+1 )>3 ,  where i~>1, then 
( n -  1, 2 ~- 1)# 1. Moreover, n is a square. 

Proof. Use m = 2 ~ in (5.4). 

(5.6) COROLLARY. Suppose n is even. fi) / f  5 ] n -  1 then 3 [ n -  1 and n 
is a fourth power. (ii) I f  9 [ n -  1 then 7 [ n -  1 and n is a square. 

Proof. For (i), use 2 t=4  in (5.5), and then use (5.3). For (ii), use 2 t=8 in 
(5.5). 

(5.7) THEOREM. Suppose ( n - l , m - 1 ) = 2 < ( n - l , m + l ) .  Then 3In ,  n 
is a square, and ( n - I ,  n + l ) = 4 .  Moreover, ( 1 + 1 ) + 1 = 0 ,  and R contains 
GF(9). 

Proof. Take x # - I  with x ~ + l = l .  Then ( x + l ) m = x ~ + l = x - * + l ,  so 
( x +  1) m-I =x-* .  Consequently, as ( n -  1, m -  1)=2,  

(x+l)2E(x). 

If Ix[ is odd, then ( x +  1) m+l = 1, so x = ( x +  1) 2. Now x = ( x 2 + x ) + ( x +  1), 
SO -- 1 =Xq- (--X-- 1)----X 2 WX. By (2.7), x a = 1, SO by (4.12) and (4.14), x =  1. 

Thus, ( n - l , m + l )  is a power of 2. Now suppose 21xl I m + l .  Then 
x (m+1)/2 = 1, so ( x +  1) ~+l = 1, and the above argument yields x =  1. That is, 
x ~ + t = l  and x # + l  imply 2lx{~Vm+l. Consequently, 8 ~ m + 1 ,  so 
( n - l ,  m + l ) = 4 .  

The remaining assertions follow from (4.13) and (4.14). 
Let exp R* denote the exponent of R*. 

(5.8) THEOREM. Let m , m ' , m " , m "  be multipliers such that m - m  '= 
=-m"-m"  (rood expR*). Then (m- re ' )  (m-m")=-O (rood expR*). 

Proof. Let D be as in (4.6). Then D is fixed by each automorphism of R. 
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m t Let d~D. Then d"d- '* '=dm"d -=''. By (4.6), d =am or d ~'. Thus, 
d ( '-~') t~-'") = 1. Since D generates G = R* x R* by (4.6), the result follows. 
The next result follows primarily from (5.8). 

(5.9) THEOREM ([8], 1II.3). n is not divisible by 2"3, 2"5, 2.7, 2.13, 3"5, 
3"7, 3.11, 3.13, 3"17, 3.19, 5.7, or 5.11. 

Several of the preceding results are very reminiscent of analogous results 
concerning planar difference sets. We leave it to the reader to formulate more 
analogues of results presented in [3], Chapter IV. In particular, statements 
can be made concerning the orders of multipliers modp for odd prime divisors 
p of n -  1. A different sort of result concerning orders is given by the following 
theorem. 

(5.10) THEOREM ([ 17 ]). Suppose n >I 8, p is a prime divisor of n, and e is th 
exponent of  p ( m o d n -  1). Then R* cannot be cyclic if 3X e and either e is odd 
and e> [ ( n -  2)/6], or e is even and e> 2 [ ( n -  2)/6]. 

Finally, yet another different type of restriction is provided by the fol- 
lowing result. 

(5.11) THEOREM ([10]). I f  n is even and p is a prime dividing n - l ,  then 
there are integers x, y, z, not all O, satisfying 

n x  2 + ( - -  1 ) ( P - l ) / 2 p y  2 = z 2 . 

The most decisive known results concern planes of small order. 

(5.12) THEOREM ([7], [18]). (i) I f  n<<. 1000, then n is a prime power. 

(ii) l f n = 9 ,  11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 64, 
81, or 128, then R is afield (and hence, no plane of order n and type I-4 can 

exisO . 

6. P L A N E S  OF TYPE 1-3 

Let ~ be a projective plane of type at least 1-3. Suppose g is (V, OU)- and 
(U, O V)-transitive. Then the corresponding planar ternary ring R is linear, 
R* is a group, and a (b + c)= ab + ac for all a, b, c~R. Examples are provided 
by planar nearfields. A trivial but basic observation is the following fact. 

(6.1) LEMMA. I f  ~ has type I-3, then (R, + )  is not a group, and R* is 
nonabelian. 

The first infinite examples of R with ~ of type I-3 were obtained by Yaqub 
[23 ], by replacing F in the first paragraph of Section 3 by a proper ordered 
planar nearlield. Recently, Bachmann [2] proved the following existence 
theorem. 
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(6.2) THEOREM. Let G be an infinite nonabelian group. Assume: (i) G has 
at most one involution; (ii) for each a e G, [(xe G[ x 2= a} [ <lGl; and (iii) for 
each a e G - Z ( G ) ,  IG: Co(a)I=IGI. Then there is a plane of type I-3 such that 
R*~,G. 

However, the precise determination has yet to be made of all infinite groups 
G such that G ~ R* for some R (as above) coordinatizing a plane of type 1-3. 

Most of the results of the preceding sections do not hold. However, (2.3) 
holds by [12] and [15], as does (5.10). Also, (4.6) still holds. 

(6.3) THEOREM. l f  R is finite, and IRI =n is not a square, then R* does not 
have a non-cyclic Abelian 2-group as a homomorphic image. 

Proof. Suppose R* has a Klein group K as a homomorphic image. Then 
there is a homomorphism from QG onto QK (where G = R* x R* again). 
Apply this homomorphism to (4.6), solve the resulting system of 4 equations 
in 4 unknowns, and find that n is a square. (Alternatively, the resulting system 
can be interpreted as an integral matrix equation of the form AA t =B, where 
det B is a square only when n is.) Unfortunately, this approach does not seem 
to work in other situations; we do, however, believe that some variation of it 
will imply both here and for neofields that R* has no noncyclic elementary 
Abelian factor group, at least if n is not a square. 

By (2.3), the Sylow 2-subgroups of a finite R* must be cyclic or generalized 
quaternion. It follows that the noncyclic composition factors of R* are known. 
(6.3) yields further restrictions on R*. For example, if n is odd and not a 
square, and has noncyclic Sylow 2-subgroups, then 2 1 n - 1 .  The following 
is a more straightforward consequence. 

(6.4) COROLLARY. / f  n > 9 then n -  1 is not a power of 2. 
(5.11) still holds. Using this, (2.3), the noncommutativity of R*, and the 

Bruck-Ryser theorem, Yaqub [24] has shown that most non-prime-powers 
n<~ 100 cannot be the orders of planes of type I-3. One of the difficulties in 
working with type I-3 (alluded to in [24] is that finite examples of planar 
ternary rings R exist satisfying the conclusions of (6.1), but coordinatizing 
nearfield planes). 

7. C O N C L U D I N G  REMARKS 

The proofs of the following results are similar to those of (4.9) and (4.3). 

(7.1) THEOREM. Let A be a sharply transitive collineation group of a finite 
projective plane. O) There is no Klein group of collineations normalizing A. 

(ii) If  A is Abelian, there is at most one involutory collineation normalizing 
A. 
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(7.2) THEOREM.  Let R be a finite linear planar ternary ring with R* a 
group. Suppose 

t-1(a+b) t = ( t - lat)  + ( t - lbt)  

for all a, b, teR*. Then R* is Abelian. 
Finally, we note that we have not mentioned topological projective planes 

of type I-4. These have been studied by K. H. Hoffman - see [6] for a survey. 
We mention one of his results. 

(7.3) T H E O R E M  ([6]). Let R be a locally compact, not totally disconnected 
topological neofield. Then the multiplicative semigroup of R (i.e., (R, ' ) ) ,  
is algebraically and topologically isomorphic to the multiplicative semigroup 
of the field of real or complex numbers, or of the quaternions. 

The first example in Section 3 shows that R need not be isomorphic to one 
of the above fields. Other such examples are mentioned in [6], p. 63, in which 
the complex numbers arise as (R, • ) in (7.3). 
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