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ABSTRACT

Translation planes of order q are constructed whose full collineation groups have order g2.

1. Introduction

The most interesting finite projective planes are those having reasonably large collineation
groups; such planes are the most amenable to characterizations. The present note concerns planes
that are uninteresting according to the preceding criterion: ones with small groups. If a translation
plane has order g = pt, where p is prime, then its full collineation group has order at least g2(p - 1):
translations and homologies must be present. This minimal possible order can occur, even when

p=2:

Theorem 1.1. If q =22 with n odd, composite and greater than 9, then there are
translation planes of order g whose full collineation groups have order 2. If n is neither 27 nor the
product of 3 and a prime, then there are more than q(2v0/4n2) pairwise nonisomorphic planes of
this sort.

In particular, every point of each of these (boring| affine planes has the property that its
stabilizer in the full collineation group is the trivial group. There does not appear to be any pub-
lished example of a finite projective plane having a point whose stabilizer in the full collineation
group is trivial. Moreover, it appears that the only published examples of translation planes of or-
der g = pt whose full collineation groups have order exactly q2(p - 1) are two planes of order
g = 172 studied in [Ch].

How can one calculate the #z/collineation group of a plane? This is, in general, a difficult
and apparently tedious task —— and one that is especially hard when the plane has very large order.
It is sometimes possible to replace calculations with group-theoretic considerations when the group
is known to be relatively large (e.g., due to transitivity properties). Here we are dealing with the
opposite situation: we want a (very!) small group. However, [Ka2] provides a framework that al-
lows us to have things both ways: the fact that a certain group refared to the collineation group is
somewhat large allows us to get enough information to show that the collineation group is small.

On the other hand, the required group theory is that of the late-1960}s: it does not involve in-
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formation concerning simple groups.

Section 2 reviews the background needed from [Ka23]: orthogonal and symplectic
spreads. Section 3 contains remarks concerning a more computational version of orthogonal
spreads: "Kerdock sets'. Section 4 constructs some translation planes and eliminates homologies.
This appears to be a highly computational question; dealing with it is dull and tedious, somewhat
resembling parts of [Ka3] but noticeably more complicated. It would be very desirable to have a
general framework in which the kernel of a translation plane could be calculated with much less
pain. Section 5 identifies the planes in Section 4 with some of those in Section 2. The pleasant,
noncomputational part of the proof of the Theorem appears in Section 6, where projective
geometry and group theory are used (together with computational results from earlier sections) in
order to limit and then determine the automorphism groups of some orthogonal spreads. Finally,
Section 7 glues together the results of the previous sections in order to complete the proof of the
Theorem.

The techniques in [Ka2 3] are very flexible. There they were used in order to obtain the
only known nondesarguesian affine planes of even order admitting solvable flag-transitive groups,
as well as translation planes of even order ¢ whose collineation groups contain elements having a
g - 1-cycle on the line at infinity (cf. Example 2 in Section 2). In the present paper the same tech-
niques are employed in the opposite direction, producing (minimal{ groups. The possibility of
achieving this minimality was mentioned in [Ka5, p. 154]. The examples studied in [Ka2-4], as

well as those in the Theorem, indicate an inherent difficulty in classifying all translation planes.

2. Orthogonal spreads

Throughout this paper, F, K and K' will be fields satisfying

(2.1) F 2K DK'=GF(2), [F:K'] is odd and greater than 9.

Note that each integer q appearing in (1.1) occurs as |[F| for some fields satisfying (2.1). Let L
denote either K or K.

In this section we will review some of the required background from [Ka2 3]. Let V be a
vector space of dimension 4m over L, m = 2, equipped with a quadratic form Q of Witt index 2m;
the associated bilinear form is (u,v) = Q(u + v) - Q(u) - Q(v). A spreadin the orthogonal space V
is a family ¥ of |L|?m-1 + 1 totally singular 2m-spaces such that every nonzero singular vector is in

aunigque member of Z. If v is any nonsingular point of V, write
Sy =1 GiNX, wiy | Xez ).

Then yl/y is a symplectic space (with respect to the alternating form (u+ y,v+y)={(u,v) for
u,veyL), and 2y 1s a spread in the usual sense [De, p. 219] — but it is even a symplectc spread

each of its members is a totally isotropic 2m-1-space. Let #(Z) denote the translation plane de-
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termined by X and y; it has y./y as its set of points, the lines being the cosets of the members of
2y

Conversely, any symplectic spread in yL/y arises as Xy for an orthogonal spread X in V —-
and X is essentially unique [Ka2].

A crucial property of these planes is as follows:

Proposition 2.2 [Ka2, (3.5), (3.6), (3.7)]. Let 3, be a spread in the orthogonal space V,
over L (with associated quadratic form Q ;) fori =12, and let y; be a nonsingular point of V;. If
g is any isomorphism (X, 1) — sﬁ’(EYz), then there is a semilinear transformation h:V; — V5 such
that the following hold:

O v =¥

@) 3} =3,

(iii) Q,(vh) = aQ,(v)" for some acL, some TEAutL, and all vEV; and

(iv) If h denotes the map yi vy, — yﬁ fy, induced by h, then h also induces an isomot-
phism 55’(23,1) — sﬁ’(EYz), and gh™! is an automorphism of the plane sé’(zyl) that is the identity on
the line at infinity; in particular, it is a homology if 0% = 0.

In other words, two of these planes are isomorphic if and only if there is an isomorphism
of the orthogonal spaces inducing an isomorphism of the planes; and every collineation of one of
these planes is the product of a translation, a homology and a semilinear transformation preserving
the symplectic structure of yi fy, - In particular, the determination of the collineation group of a
plane #(Zy) can be achieved in three stages:

oo determine the group G(Z) of all semilinear transformations of V that (preservel Q as in (2.2iii)
and send X to itself:

o determine the stabilizer G(X)y; and

o determine the group of homologies of #(Z) fixing 0.

This is essentially how Theorem 1.1 will be proved.

First we need to provide examples leading to the orthogonal spreads needed in Theorem
1.1.

Examples. Let F Kand K'beasin(2.1). LetT:F—Kand T "F—K' be the
corresponding trace maps.

Example 1. {Desarguesian spreads,. Consider the K-space FxKx<FxK, equipped with
the quadratic form Q defined by

Qlaapb) =T@) + ab;
the corresponding bilinear form is ((,a,fb), (@' a' f'b)) = T(@wf' + @) + ab' + a'b. The desar-
guesian spread in FxF (lifts] to the orthogonal spread X consisting of the totally singular sub-
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(2.3) 0x0xFxK and
| (o, a, s2a + sT(sa) + sa, T(sw)) | acF, acK } for scF.

Here, (lifts{ refers to the fact that T 1) consists of the subspaces OxOxEx0 + €0,1,0,1) and
{(,0s520,0) + €0,10,1> | weF}, s=F, and these evidently constitute the usual desarguesian
spread in €0,1,0,1)1/0,1,0,1), producing the desarguesian plane (X 1) of order [F|. The
orthogonal spread (2.3) is called the desarguesian spreqad in [Ka2]. Note that the |F| - 1 isometries

(2.4) gt:(Oe,a,B b)e (La,a,l1pb), where [eF*,

of FxKxFxK fix €0,1,0,1, preserve =, and hence act on the plane 5&’(2@,1,0,1;). The points fixed
by all of these isometries are just those of the 2-space ¢(0,1,0,0), (0,0,0,1)).

Example 2 (called rn [Ka2 3] the {thid cousins of the desarguesian spreadl).  Fix
keK - K', and consider the point yy, = 0,k+1,0,17 in the space FxKxFxK appearing in Example
1. This is nonsingular (since Q{0 k + 1,0,1) =k + 1) and produces a symplectic spread Zyk in the

symplectic space Y1i< v, , consisting of the following subspaces:

(2.5) 0x0xFx0 + vy,
! (o, 0, s2a + ksT(sa), 0) + ¥y | «eF } for seF.

Namely, (o, a, s2ac + sT(s@) + sa, T(sa)) is perpendicular to (0k+1,0,1)  if and only if
a=(k+1)T(s), in which case (, a, s20¢ + sT(sw) + sa, T(sw)) = (o, 0, s2a + ksT(sa), 0) +
T(sa)0 k+1,0,1).

Since y, ={0 k+1,0,17 is fixed by the automorphisms g, defined in (2.4), each g, induces
an automorphism of the translation plane ﬁ(Zka.

Example 2'. The symplectic space y, 7y, over K can also be viewed as a symplectic
space over K' by using the bilinear form (u,v) =T '((u,v)) for U,VEYIL( v - Then (2.5) also is a
symplectic spread of this K'-space.

Example 3. Now consider the K'-space V = FxK'xFxK', equipped with the quadratic
form Q' defined by

Qafb)=T '@f)+ ab;
the corresponding bilinear form is (again}
2.6) ((wapBh) (app))=T@L +aB)+ab +ab.

The subspaces FxK'x<0x0 and 0x0xFxK' are totally singular. The spread (2.5), viewed as in
Example 2, lifts to the following orthogonal spread =k (where we have written k*= 1 + \/E ):
2.7) 0 0xFx<K",

f (o, a, s200 + ksT(s) + k*sT '(k*sa) + k*sa, T '(k*sc)) | acF, acK' } for scF.
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Namely, the members of 2k are totally singular subspaces intersecting pairwise only in 0, and the

spread (Zk)p 1 1) consists of the subspaces

0x0xFx0 + {0,1,0,17,
{ (e, 0, 200 + ksT(s0x), 0) + (0.1.0,1) | aeF, acK' } for seF,

asin (2.5). (Note that (w, a, s + ksT(s®) + k*sT '(k*sa) + k*sa, T '(k*sw)) is
perpendicular to (0,1,0,1) if and only if (¢, a, s2 + ksT(sa) + k*sT ‘(k*sq) + k*sa, T
(k*sa)) = (¢, 0, s2a + sT(sw) + sa, 0) + T '(k*sa)(0,1,0,1).)

Define linear transformations g't as in (2.4), but this time using the present orthogonal
space. Then each g't is in G(Zk), and these isometries form a cyclic group fixing the two members
FxK'x0x0 and 0x0xFxK' of Zk while permuting the remainder of 2k in a single cycle. Note
that O0xK'x0xK' is the set of vectors fixed by all of the transformations g't, and that <0,1,0,1> 75
the only gogsiewlar pofat fived by all of these rsometryes since K'=GF(2). We will determine
G(ZK) in Section 3. For now, we note only that

(2.8) G(Zk)p 1 0.1) is generated by the isometries g’ . and some field automorphisms
(afb)e (@ a’ BT,bl), 1eAutF (cf. [Ka3, (4.2iii)]).

Example 4. Let ¥eF with T '(¥) = 1, so that the point {¥,0,1,0> of V is nonsingular:
Q(¥,010=1. If Zk is as in Example 3, then (ZK)op o10; is a symplectic spread in the
symplectic K'-space ¥ ,0,1,0:/¥,0,1,0>. The planes occurring in (1.1) are just those of the
form 5&’((21()@;,0,1,0; ) such that ‘¥ generates F.

3. Kerdock sets

Assume that F, K, K', T, T ' k*, k=k*2+1, V=FxK'xFxK' and Q' are as in Section 2.
Note that

3.1) OTW)=1=T (1), ()T '&TH) =T '(KY), and Gii) T '(KYTOD) =T '(kY¥2) for all YF,
keK

[Ka3, (9-1)]. (In (i) we have T '(RYT(Y)) =T (TKYT())) =T 'KTONT) =T 'T)=T
(TEE) =T 'KV).)

Fix a basis eq,...,ene1 of FxK'x0x0, and let fq,... f,,1 be the corresponding dual basis
of 0xOxEFxK' (so (e f)=9;; for all i,j). Temporarily use the basis ey,....enor1.f1,--- fos1 of
FxK'xFxK' in order to write vectors and matrices. If a subspace X of V satisfies
0>0xFxK'MX=0, then X has the form {(Ot,a,0,0)( (I, l\f) | (w,a)eF<K'} for an (n+1)x(n+1)
matrix M. Here, X is totally singular if and only if M is skew-symmetric (i.e., symmetric with O

diagonal). Letting X range over Tk-{ 0x0xFxK'} produces a binary Kerdock ser K of matrices
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M: a set of 22 binary skew-symmetric (n+1)x(n+1) matrices such that the difference of any two is
nonsingular (cf. [Ka2, Ka4]). We will not actually need to use matrices: linear transformations will
suffice for our computational requirements.

For each scF define (for all ®eF, acK')

(3.2) (oa)M, = (20 + ksT(sa0) + k*sT ‘(k*sq) + k*sa, T ‘(k*s)).

Then K consists of O0xOxFxK' and { (x, xM) | xeFxK'} for seF; or, alternatively, of
Ox0xFxK' FxK'x0x0 and { (){M;1 LX) | xeFxK' } for seF*. Itis clear from (3.2) that Mg
"depends quadratically" on s, in the sense that the map Mg, + Mg + M, is additive in both s and t
(we Wﬂ1l use this sort of observation often in the next section). We will also need a similar formula
for My

Lemma 3.3. If s=0 then
BoM; = (s2B+ k*1s1b + kk* 25 IT(s 1)+ k11T (*-1s-1B), T (k*-1s-1B)).

Proof. If the right side of (3.3) is (&x,a) then calculate as follows, using (3.1) and the fact
that k* + kk*1 + k*-1 =0
T '(k*sox) = T ( k*s[s‘2[3+ k*1s71p + kk* 25 1T(s71B) + k*-1s71T '(k*‘ls‘IB)])
= T ks )+ T )+ T (kk*ITGIP)) + T (T ‘(k*-1s1B))
= b+ T '&s )+ T 'kk*Is )+ T '(k*1s1f) = b,
s2¢ + ksT(s) + k*sT '(k*s@) + k*sa
= 52[5‘2[3 + ks lo4kk* 25~ 1T (s 1B)+ k*‘ls‘la]
+ ksT(s[5‘2[3+k*‘ls‘1b+kk*‘zs‘1T(s‘1B)+k”“1s‘1a])
+k*sT '(k*s[s‘2[3+k*‘1s‘1b+ kk* 25~ 1T (s 1B)+ k*‘ls‘la]) + k*sa
= B+ k*1lsb+kk*2sT(s1B)+ k*Lsa
+ ksT(s1B)+ksk* 1T '(0)+kskk*2T(T(s"1))+ksk* 1T '(a)
+ kT '(k*s71B) +k*sT '(0)+ k*sT {kk*IT(s1B))+ k*sT '(a) + k*sa
= B+ k*1lsb+ksk* b + k*sb
+ kk*2sT(s7IB) + ksT(s71B) + kskk*2T(s"1[3)
+ k*lsa + ksk*la + k*sa
+ k*sT '(k*s71B) + k*sT '(kk* IT(s"1B) + k*sa
= B+ [k*1+ kk* 1+ k*]sb + [kk*2 + k +k2k*-2] sT(s"1[3)
+ [kl ket 4 k*]sa + kT ([k*+ kk*1+ k= 1]s71B)
- B. O

Let No=0 and Ny = (M_,)! if se€F".

Corollary 3.4. =K consists of FxK'x0x0 and { (xNg, x) | xeFxK'} for seF. If
0=k#(k+1) then =k and % are orthogonally equivalent by an orthogonal transformation



interchanging Ox0x<FxK' and FxK'x<0x0.

Proof. The first statement was noted above. Let & =./2 + 1, so &* = k*1. By (3.3),

(3.5) (Bo)Ng=(s?p + &T(P)+ 25T (U'sP)+ Lsb, T (2*sP))

for all s=F, which is the same as (3.2) with k replaced by £. Thus, the orthogonal transformation
(c,a3b)e (Bbo,a) produces the desired equivalence. O

Proposition 3.6. (i) {M;|seF} is not closed under addition.
-1
(i) {0, Mg | O=seF} is not closed under addition.

Proof. (i) Assume that this set is closed under addition. Let r,steF with M, + Mg = M,.

Since (0,a)Mg = (k*sa,0), it follows that r+s=t. By (3.2), for all %=F,
krT(ra) + kT '(kre) + ksT(sa) + k*sT '(k*s@) = k(r+s)T{(r+s)a) + k*(r+s)T "(k*(r+s)a) |

so that

ko T(se) + kasT(ra) =k*ar'T '(k*sq) + k*asT (k)

0 = Tlkar)T(sw) + Tlkas)T(ra) = Tk*ar)T '(k*st) + Tlk*as)T '(kK*rae),
and hence TOHT '(B)=T(&T '(Y) for all ¥ 5=F. When d=1 this states that T(H)=T ') for all YeF,
which is ridiculous.

(ii) This follows from (i) and (3.5). O

More generally:
Proposition 3.7. No binary Kerdock set is closed under addition.

Proof. If a binary Kerdock set closed under addition, then the corresponding binary
Kerdock code C also is closed under addition (cf. [Ka2, 85, or Ka4]), and the weight distribution
of the linear code C is unigquely determined. Then so is the weight distribution of the dual code
CL. The latter weight distribution is that of a Preparata code [MS, p. 466]. However, there is no
frnearcode CL having the weight distribution of a Preparata code [GS, 7.2]. O

Much more generally:

Theorem 3.8 (P. J. Cameron). If U is a subspace of the space of all skew-symmetric
2mx2m matrices over any finite field, and if all nonzero elements of U are nonsingular, then

dimU = m.

Proof. If (a;;)€U then det(a;) = Pf(aij)z, where Pf(a;;) is the Pfaffian of (a;;) and is a
polynomial of degree m in the a; [La, p. 373]. Let Ay, ..., Ag be a basis of U. If A=>x;A; for
scalars x;, then PI(A) = f(xq, ..., x¢) for a polynomial f of degree m. By the Chevalley-Warning



Theorem [La, p. 140],{ has more than one zero if d>m. O



4. Quasifields

In this section we will study a class of translation planes defined using a horrible-looking
guasifield. In the next section we will see that these planes are exactly the same as some of those
arising from the orthogonal spreads XK.

Let F, K, K'=GF(2), Tand T 'be asin Section 2. Choose k, k* and ¥ follows:

(4.1) keK-K', k*=1+Vk ;and ¥eF-K, T '(¥)=1.
Define the following binary operation # on F:

42) s =Bys+ T (Bys®)+ T (es[{Y+ T 0} + Jys¥])

where

Fesi=T ([2{7+T )} + ksTG{Y+T D)
4.3) ST (s + T (D)) + k'sT (D]¥)ek  and
Bysi= 2LV + T 0} + Jy %] + ksT(sL i+ T o) + Jys¥])
ciesT Cess[ iy T 0} + Iy g 1)+ ks ()

for all % seF. It is difficult to motivate these bizarre formulas: they are precisely what are needed in
Section 7. However, recall that we are trying to prove Theorem 1.1, and hence the unpleasant ap-

pearance of (4.2, 4.3) may perhaps be forgiven. By (3.1ii, 4.1),
@4) T O+T ') =0andT ((¥+T )} + J\;,;P) =T '(¥)ys=Jys

Proposition 4.5. (i) (F#) determines a translation plane as follows: the points are the
elements of FxF, and the lines are the subsets with equations x =c¢ or y=m#x + b for some
c.mbeF.

(i) This plane has no nontrivial homologies with center (0,0).
In other words, these translation planes have kernel GF(2) [De, pp. 132-133].

Proof. (i) (A second proof of this is implicit in the next section. The present proof is in-
cluded both for completeness and because some parts of it will be needed later in this section.) The
binary operation # is right distributive, so we only need to show that, for all distinct s t=F, the map

¥ o s#Y - t#Y is bijective. In other words, we must show that
(4.6) £s#Y =t ands =t thea| = 0.

By (4.2), we are assuming that
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Bys+T '(Bys¥)+ T Cors[{¥+T (0} + Jys¥]) =
By + T By )+ T (e[ {Y+T 00} + Iy w]).

If we write

(4.7) w={V+T N} +Jys¥, a={V+T 0N} +Jy¥, P:=Bys, and B:=By,,
then this becomes

4.8) B+T B¥)+T Ksa)=p'+T 'B¥)+ T 'kw).

Multiply by ¥ and apply T "

T 'BE)+T ‘BT '¥)+T 'ksa)T (¥)=T 'B¥)+T 'B¥)T '¥)+T
(k)T '(\¥).

Since T '(¥) = 1 it follows that
4.9 T 'k'sa)=T 'k'tax)and B+ T '"B¥)=R"+T '(B"¥).
Next, T ‘(&) = Jy s by (4.44.7), so that by (4.7,4.9) we have
(4.10) o+ T @¥ =Y+T ') asd @'+ T @¥=Y+T ‘(.
By (4.34.7),
(4.11) B = By = s2a + ksT(sa) + k*sT '(k*sa) + k*sT (Y).
By (3.1iii4.4,4.7), if 0:=Y+ T '(Y) then a=0+Jy s¥ and
T 'B¥) =T '(s20¥)+ T (S2F¥Jys)
+T '(ks¥T(s0)) + T '(k-s¥T(¥Iy )+ T '(k*s¥T (V)
+ T '&sE)T '(k*s0)+ T '(k*s¥)T '(k*sPlys)
T (s20¥) + T '(ks¥T(s0)) + T '(k*s¥)T '(k*s0) + T '(k*s¥T ‘()

T (2P + T (kesPsP)+ T (k'sE)T ('s¥) } Iy
Jys =T (@)

since
T (292)+ T '(ks¥s¥) + T '(k*s¥)T '(k*s¥) =T ([1+k+ k*2]s292) = 0.
Again by (3. 1iii 4. 11),

T '@p) =T (s202 + k-soT(sqx) + k*soT '(k*sa0) + k*saT ‘(Y))
=T '(s2a2) + T ‘'(kstwse) + T '(k*sa)2+ T '(k*se)T '(Y)
=T '(k*sa)T '(Y).
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Thus,
T (lo+T @¥IB+T G =T (fa+T @B +T (@)
=T (f)+T @&l @) +T (T @¥p)+T '(T
@¥FT (@)
=T '(k*sa)T 'O+ T "@?2+T "@T ¥R+ T ()32
=T '(k*sa)T '() + 3T ‘()2

By (4.9, 4.10), it follows that 3T ‘()2 = 3T '(')?, and hence ® =’ by (4.10). Then T '(B¥)
=T (o) =T(R"¥Y) by symmetry, so that B = [3' by (4.9).
Write x:= st and y:=tQ. Since o = ['ae’, (4.11) yields

(4.12) x2 + kxT(x) + k3T (k'x) + k5T '(Y) =v2 + kyT(y) + k*vT '(k*y) + k*yT '(Y).
Apply T:

Tx)2 + kKTx)Tx) + K*TET "(k*x) + k*TET ')
=T(y)? + kKT(y)T(y) + K'T(y)T &'y) + K*TET '(Y),

where T '(k*x) =T ‘(k'y) by (4.9). Since 1 + k = k*2,
kK 2T(x + y)2 + K*T(x + ¥)T '(k*x) + T(x + y)k*T ({) =0.
If T(x) = T(y) then k' T(x + y) + T (k") + T '(Y) =0. Then
0=T &x)+T &y =T &&x+y)=T (Tkx+y)) =T &x)+T )

by (3.1ii), so that K*T(x + y) + 0= 0.
Thus, T(x) = T(y), and (4.12) becomes

X+vP+ kx+v)TE) + k*x+ )T '(kx) + k*x+y)T '(y) =0.

fFx=ythenx + v+ kT(x) + k*T '(k*x) + k*T '(\)=0. Apply T and subtract in order to obtain
x+y=Tx+y)=0.

Thus, x =y, which says that s&¢ =t. Now & =0, and hence f =k*sT '(}f) by (4.11).
By symmetry, B'= k*tT '(Y). Then k*sT ‘() =k*tT '(Y), sothat T '(¥) =0. Now (4.10) implies
that 'Y = O, as required.

Remark. It should now be clear that methods using orthogonal spreads can not only make
the discovery of unusual planes easier, they can also make it far simpler to prove that a given ge-

ometry is a plane.

(ii) We need two more consequences of definitions (4.2) and (4.3). By (3.1i),

(4.13) J1s=T '(k*s¥).
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By (4.2), T ((s#1)¥)=T '(Bl,S‘P) +T '(Bl,S‘P)T (¥)+T '(k*s]l,S‘P)T (¥)=T '(k*s¥)T
'(k*s¥), so that, since K'=GF(2),

(4.14) T ((s#1)¥) =T '(k*s¥).
Next, we need a quasifield for the plane in (i). Define a new operation - on F by
(4.15) (x#1)-(1#y) = x#ty for all x,ycF.
Then (F ,+,-) is a quasifield with identity element 1#1. The kernel of this quasifield is contained in
D:={ zeF | (X + y¥)ez = Xz + y-z for all x, y=F }
[De, p. 132]. Let x © x denote the permutation of F defined by the equation
(4.16) x =xi#1.
By (4.14),
4.17) T '&x¥) =T '(k*¥x) for all x&F.
Moreover, x-(1#Y) = x#Y by (4.15), and D consists of those elements 1#Y such that
(4.18) x+y#Y = x#Y + v#tY for all x yeF.

We will show thar(4.18) implies thar VEK', and hence 1#Ye{1#0, 1#1} = {0, 1#1}, so the kernel
has size 2, as required in part (ii) of the proposition.

Since (4.18) asserts that x + y=x +y in case ¥ =1 (cf. (4.16)), (4.18) holds when Y is
replaced by T '(Y); and then by adding the two equations we find that

(4.19) We may assume that T '() =0: we must show thar = 0.
Let
(4.20) U:={seF|T (k*s¥)=0 },

so that dimgU = dimgF - 1. If x€U then J; x =0 by (4.13), so that By x = k*x by (4.3, 3.1i)
and hence x#1=B1x+T '(B1x¥) + 0=k'x+T '(k*x¥) by (4.2). Consequently, by
(4.164.20),

(4.21) x =x#1 = k*x for all xel.
Equations (4.17) and (4.21) produce a significant simplification of (4.18): if x, yU then
T 'k¥x+y)=T ((x+y)¥) =T '&K¥x)+T '&K*¥y)=0+0

by (4.17), which means that x+veU by (4.20), so that kK*x+y = x+y = K*x + k*y by (4.21).
Hence, if s = x and t = y then (4. 18) implies that
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(4.22) (s + t#Y = s#Y + t#Y for all s teU.

From now on, s azdt wel always deaote elements of U.
Next, by (4.3, 4.19, 4.20),

(423 Hs =T (29 + ksTYW + k*sT '(*'s)F) + 0=T '(s2Y¥) + T
(ksT(SY¥) + 0+ 0
By s = s2Y + s2Jy ¥ + ksT(sY) + ksT(sJ\;,S‘P) + k*sT '(k*s¥) + 0+ 0.

By (4.20),

T (Bys¥)=T (V¥)+ T 2y FE) + T &TENE) + T (sT(sTy $E)F) + 0
=T '(2Y¥)+ T '(s2¥2)Iys + T '(ks¥T(sY) + T '(k-s‘PT(s‘P))Jw;,S.

By (3.1iii 4.1,4.20),

T '(s2¥2)+ T (ks¥T(s¥) =T '(s2¥2)+ T '(k-s¥s¥)=T '(k*2s2¥2)=T
(k*s¥)2 = 0,
so that T '(BV,S‘P) =T '(s2Y¥) + T '(ks¥T(sY)). Then, by (4.2,4.19,4.20,4.23),
(4.24) sty = {2V + s2y g + ksT(sY) + ksT(sJy s) + k*sT '(k*sY)}

+{T 's2Y¥) + T '(ks¥T(sY)} + T '(k*sY) + 0.
Three of the terms on the right side of (4.24) are visibly additive in s. By (4.22),
(s + 2P Iy gt + 2¥ Iy g + 2Py,
+ k(s + T (s + ) + k(s + OT(s + OF )y 511
+ ksT(sYV) + ksT(sW )y s + ktT(Y) + keTEV ) Iy ¢

+ k*(s+ 0T '(k*(s + 0)¥) + k*sT '(k*sY) + k*tT '(k*tY)
+T (k(s+ OFT((s+ V) + T (s¥TGY) + T GeFTED) = 0.

(4.25)

This apparently unwieldy identity yields, for all s,teU, an inclusion relationship of the form
(4.26) 2V {Jysic+ Jys) + ¥ {Iv s+ JyJEKs + Kt + K.
By (4.20) and (2.1), [KNU| = 3/K| > 2. If we choose s,;teKMU then (4.26) states that
SPV{ Iy sie + Jy st + B { Iy s+ v EK

with Jysic+ Jys, Jysec + JyeEK' = {0,1}.  Fix se(KNU) - {0}. Since ¥&K, for each of the
IKMU| - 2 choices of tin (KMU) - {0,5} we see that Jy s = Jy g = Jy- Since s€K, (4.23) implies
that Jy s =T '(s2¥¥) + T '(kssT(Y)'¥) is additive in 5. Thus,

(4.27) Jy =0 for all seKNU.

More generally:
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Lemma 4.28. Jy =0 for all sel.

Proof. Let 0 =teKMU, so that Jy; = 0 by (4.27). Whenever s€U - K, (4.26) states that

where Jy g + Jy s, Jys+t210,1}.

Let B:={ xeU | Jyx=1}. Then BN(KNU) = @ by (4.27). Consider an arbitrary seB.
Then {Jysit+ Jys, Jysee F =10, 1}

Suppose that Jy s, + Jy 5= 1 and Jy s, = 0. Then (4.29) becomes a quadratic equation of
the form s2'¥ + as + 3 = 0 with oK not both 0. There are fewer than |[K|2 equations of this
sort, with fewer than 2|K|2 possibilities for roots s.

On the other hand, if Jys ¢ + Jys= 0 and Jys,¢ = 1 then (4.29) states that ‘¥, 1 and s are
linearly dependent over K. This occurs for fewer than |[K + K'¥| = |K|? choices of s.

This shows that |B| < 3|K[2.

Now fzx s€U - B. There are at most |B| elements ueU-B such that K's+K'u={0 su s+u}
meets B, and so at least [U|-|B| elements ueU-B such that s+uelU-B. In view of the definition of
B, since sus+ucB we have Jys=Jyy=Jysqu=0. By (4.23), the equation Jyg u+ Jys+
Jyw = 0 simplifies to

(4.30) T '(ksT@)¥) =T ‘(kuT(sY)¥).

This identity holds for at least [U| - |B| > 3|F| - 3]K|2 = |U]-3]K]? = i[U| elements u of U (since
IF| = 8]K[2 by (2.1)), and hence these must span the K'-space U! Thus, (4.30) holds for all uelU.
Similarly, for each ueU we now know that (4.30) holds for at least |U| - |B| choices of seU and
hence (4.30) Aolds for afl s uel.

Now consider any bEB. There are at most |B| - 1 possible K'-subspaces of U of the form
Kb+ K'c={0b,cb+c} with ceEB - Kb. Then there are at most |B|-1 elements sEU-B such that
b+sEB. Consequently, there are at least |[U|- [B|-(|B] -1)>8/K|2 - 3]K|? - 3|[K? elements scU-B
such that b+s€U-B. In particular, there is at least one such element sEU-B. Writeu=b +s. In
view of (4.30) and the definition of B, (4.23) implies that

l=Fp=0+0+siu=Jys+lyu+ Fysiu =T 'ksT@V¥)+ T '(kuT(s)¥) = 0.

This contradiction shows that B =. O

We now return to the proof of (4.5ii). In view of (4.28), (4.25) states that

ksT(tY) + keT(sY) + k*sT '(k*ty) + kT '(k*s¥) + T '(ks¥TY)+ T
(ke PT(sY)) =0
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for all st=EU. Then

sTkT(@Y) + k*T '(k*tY)} Kt + K.

Let teU-{0}, and then choose any seU - (Kt + K) (there is such an s by (2.1)) in order to
deduce that

(4.31) KT(Y) =k*T '(k*tY) for all teU.

Again let telU-{0}. Since [UNKt| = 3/Kt| = 2, there is some acK - K' such that atelJ. By
two applications of (4.31), T ‘'(k*atY) = (k/’k*)T(aty) = (k/k*)aT({ty) =aT '(k*tY). Since azK' it
follows that T '(k*tY) = 0 = T(tY) for all teU. However, U has index 2 as a subgroup of F, and
hence is mnot a vector space over K, so that F=KU. Consequently,
T(FY) = T(KUY) = KT(UY) = 0, so that ' = 0, as required in (4.19). This completes the proof of
(4.5). O

We need one additional equally dull computation:

Lemma 4.32. If |F| > 25|K|3, then the affine plane in (4.5) has no nontrivial elation with

axis x=0.

Proof. Suppose that there is such an elation. If the line ¥=0 is sent to the line y=a#x, then
a=0 and (x,0) @ (xa#x) for all xeF. Also (0y) e (0,¥), so that (x,y) @ (x,y+a#x) for all x,yeF.
Since the line y=m#x must be sent to a line, it follows that m#x + a#x = m'#x for a permutation

mem' of F. We will change notation slightly in order to conform to (4.2) and (4.3):
sty + a#t¥ =s®Y Jsor af sNeF.
From now on, choose Y so that T '({)=0. Then (4.2) and (4.3) imply that

2V + a2y + 52V + PPIyg+ a VI, + s2¥yg
(4.33)  + ksT(sV+s¥Jys) + kaT(aV+a¥Jy o) + ks T(s"+s" Py )
+ kST '(k*sY + Jy ok*s¥) + k*aT ‘(k*aV + Jyk*a¥) + k*sT '(k*s" + Jy gk*s"¥)
K'.
Then (s+a+s)2Y € s2PK' + a2¥K' + s2¥K' + sK + aK + s'’K +K'. The K'-subspace on the right

has size < 23|K|32, and this is less than |F|/2, by hypothesis. Since there are |F|/2 choices for ¥, it

follows that s' =5 + a.
Now (4.33) states that

SPVUy s+ Jy )+ a2¥ Ty + Jyg)
+ ksT(sY+sPJy s + sY+s"FIy o) + kaT(@f+a¥PIy o + sV+s"FIy &)
+ k*sT '(k*sV+Jy sk*s¥ + k*sf + Jy gk*s"P)
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+k*aT '(k*a¥f +Jy k*a¥+ k*'s" + Jy gk*s"¥)e K"
This can be viewed as a polynomial equation in s of the form Gs2¥F+0s + Bra2¥ + Bra+ Po=0
with G2, B2, BoEK' and oy 31EK. There are at most 23|K[2 - | nonzero equations of this form,

and each has at most 2 roots. Since |F|>2-23|K|? by hypothesis, there is an element s of F that

satisfies no nonzero equation of this sort, and hence such that

Jys+Iys =0 anzd KT(a¥+sVJys+s"Vlyg) +K*T (k*a¥+Jy k*s¥ + Jy gk*'s"¥) =0
whenever T '(Y)=0. In particular, s¥Jys +s"¥Jy ¢ = a¥Jy 5, and hence
(4.34) T(aY) = T(a¥)Jy s + (KT '(k*af+Jy sk*s¥ + Jy sk*'s"¥) whemever T '()=0.

The right side of (4.34) lies in the K'-space T(a¥)K' + (k*/k)K' of size at most 4, while the
left side ranges over a K-subspace of F. It follows that T(aY)=0 whenever T '({)=0. Then a
hyperplane of the K'-space F is contained in a hyperplane of the K-space F, which is ridiculous. O

Remark. The restriction on |[F| in (4.32) is unfortunate and unnecessary: it can be re-

moved, but at the expense of a great deal more computation which we omit.
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5. Identification-

Now we consider some of the planes ﬁ((ik)@’o,l,@) arising in Example 4 of Section 2.
Choose k and ¥ as in (4.1). The point y = (¥ ,0,1,00 of V is nonsingular: Q'("*¥,0,1,0) = 1.

Lemmas 5.1. ‘sﬁ’((Ek)@,O’l,O)) is one of the planes in (4.5), and hence has kernel
K'=GF(2).

Proof. By (2.6), y' consists of the vectors (¢, a3 b) such that T '(@)=T '(BY¥). Define

a linear transformation M:yl/y — FxF by
mo,a, B b)+yve@+T W@W¥+a,p+T (¥ +b);
this is well-defined since, for all keK',

@+kP)+T (@ +k¥)¥Y=+k¥Y +T @¥Y+kT (¥)¥=a+T Q¥
B+R)+T ((B+)¥)=p +k+T 'B¥)+ kT ¥)=p+T '(BY¥).

We claim that U r5 # &rrection. For this it suffices to show that its kernel is O, so suppose that
({oe,a,B,0) + v)"=0. Then B=T '(BY¥)+ beK' so that (x, a, B, b) + y=(x+p¥,a,0,b) + vy
and hence we may assume that B=0. Now b=0,T (@)=T '(B¥)=0 and a+a=0. [t follows that
a=T '(z+a)=0 and hence that a=0, which proves the claim.

Thus, by (2.7), ((Zk)<\11,0,1,0>)” consists of the following n-dimensional subspaces of
FxF:

(5.2) OxF, and, for seF,
{(@+T @¥+aB+T BY)+T ('sw) | e ack’, and T B¥) =T
@ },

where B:= s2a + ksT(st) + k*sT '(k*s®) + k*sa depends on s, & and a.
In order to identify these subspaces, we will construct a subspace of each of the second
type of subspace in (6.2) that has K'-dimension equal to that of F. Fix s Y=F, and define elements

of F as follows:
0:=%+T '(Y), a=T (V) and =90+ Jy ¥

in the notation of (4.3). By (3.1ii)), T (@ =T "N+ T (T ')+ JysT (¥)=Jys If we write
B =s20 + ksT(sa) + k*sT '(k*sa) + k*sa as above then B = By gin the notation of (4.3), and
then the exact same calculation as that following (3.11) yields T '(B¥)=Jys=T ‘(@)

Moreover,

0+T @W¥+a=0+Jy¥+T @¥+T (=" and
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B+T 'BY)+T 'k'sw)=P+T 'BE)+ T 'k*s[0 + Jy ;¥]) = s#Y

by (4.2). Then, for each s€F, we have

o+ T @¥+aB+T BF)+T (ksow)| asF, acF with T B¥) =T (@)} 2 {8V |
YEF].

The preceding two subspaces of FxF have the same K'-dimension and hence coincide. Thus,

(5.2) is the set of lines through (0,0) of the plane appearing in (4.5). O

6. Groups

We now return to the study of the orthogonal spreads Xk appearing in Example 3 of Section
2. In this section we will determine the group G(Zk). Since V is a vector space over K' = GF(2),
in (2.2iii) we have a =1 and T = 1; moreover, we can identify a point with its unique nonzero vec-
tor.

Write z =<0,1,0,12, so that (Zk), is the symplectic spread appearing in (2.5); see the dis-
cussion following (2.7). By (2.8), G(Zk), has a normal subgroup A = F*. Moreover,

(6.1) G(Zk), = G(Zk)wy, isisomorphic to a subgroup of AxAutF, and has odd order,

where W is one member of {FxK'x0x0, 0x0xFxK'} and X is the other one. In particular,

G(Zk), has no element interchanging W and X. Write |F| = 21, so that dimV =2n + 2.

Theorem 6.2. If [F| = 25K|3, then G(Zk) = G(Zk), < AxAutF.

Proof. Write G=G(Zk), z=w +x with weW, xcX, W' =Wnz! and X' =Xzt
Then wgW' since 0 = Q'(z) = (wx) =(w,z). Similarly, xZX'. Moreover, W', X', w and x are
fixed by A, and A cyclically permutes the 29 - 1 points of W' (or of X') as well as the 22 - | points
=w of W - W' (and the points =x of X-X'). (Note that { W' X'}={Fx0x0x0, 0x0xFx0}.)

The next three lemmas gradually restrict G.
Lemma 6.3. Gwx =G, and zis the unique nonsingular point fixed by Gwx.

Proof. Assume that Gwy moves z. Then it moves w or X, and we may assume that it
moves W. The known orbits of the subgroup A of G, and Gwy show that G, fixes only one non-
singular point, and also that the orbit &= WGWX of Gwx is one of the following subsets of W:
(1) w together with the points of W'; (ii) all points of W - W', or (iii) all points of W.

(1) This is impossible since W' would be the only subspace of its size inside (%

(ii) Here G is 2-transitive on the set W-W' of size 20. Moreover, Gy fixes W' and
hence fixes W''NX=x. Then the stabilizer (Gwx)w = (Gwx)w of the point w fixes z and hence

is a group of odd order having a cyclic normal subgroup A = F* of composite order that is transi-
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tive on &-{w}. By [Be], it follows that the group induced by Gywy on W-W' has an elementary
abelian regular normal subgroup. Also, since (G )w fixes z we can use the known behavior of
Gy, (cf. (2.4 2.8)) in order to conclude that that Gy acts faithfully on W-W' and hence on W.
Thus, Gwy has an elementary abelian normal subgroup E of order 20 and A acts transitively on
E-{1}.

Since EA also acts on 2k - {W X} and E fixes a member of this set, E must act trivially: E
fixes each member of k. If 1 =ecE then e is an involution, so that dimCvy(e) = (dim Y)/?2 =
(n + 1)/2 for each of the 20 + 1 members Y of Xk. Then dimCy(e)>n+1, so that Cy(e) contains at
least two nonsingular points v. It follows that e induces a collineation of mﬁ’((Zk)y) that fixes O
while acting trivially on the line (2k), at infinity, and hence induces the identity on this plane of
even order. Then e is a transvection of V with center v for at least two choices of v, which is
ridiculous.

(iii) Since A is transitive on the lines of W through w, Gy is line-transitive on W. By
[Kal], it follows that Gy is 2-transitive on W. Then (Gy)w =Gwxy 1S transitive on W-W'

(by an orbit count [De, p.78]), and this leads to the same contradiction as in (ii). O
Lemma 6.4. G fixes W or X.

Proof. First assume that some element gEG interchanges W and X. Then g normalizes
Gy and hence fixes the unique nonsingular point z fixed by Ggwy (cf. (6.3)). This contradicts
(6.1) since G, fixes X and W.

Thus, G moves {W X}. Since A is transitive on 2k-{W X} it follows that G is

2-transitive on 2K, which contradicts the preceding paragraph. O
Lemma 6.5. G fixes W and X.

Proof. Suppose that G fixes W and moves X. By (3.3) and (3.4), if ¢=k/(k+1) then Z*
is orthogonally equivalent to XK by an orthogonal transformation interchanging W and X. Hence,
we can replace k by 2 if necessary in order to have W= 0x0xFxK'. Then w=(0,0,0,1).

The transitivity of A on Zk-{ W X} implies that G is 2-transitive on Zk-{W}. Since G is
faithful on 2k (by (6.3) and (6.1)), and since the stabilizer of X has odd order, we can again apply
[Be] in order to conclude that G has an elementary abelian normal subgroup E that is regular on
Sk-{W1.

Casel. E=1 osW. In the notation introduced following (3.1), E consists of matrices of the form
E(I) I\f % with M skew-symmetric. The set K of these matrices M is closed under addition, since E

is a group. This contradicts (3.6) (or (3.7), or (3.8)).

Case2. E AxesW'. Then E fixes some point of W', while A is transitive on the points of W', so
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that E=1 on W' If 1=ecE then e fixes only one member W of Xk and hence fixes no singular
point outside of W.

Since e is an involution, dimCy{e)=n+1; and Cyie)=W by Case 1. Thus, Cy(e) contains a
nonsingular point. Since all singular points in Cvs(e) lie in the totally singular subspace W', the
radical of Cy(e) must contain W'. Consequently Cv/(e)W' contains the unigue nonsingular point
(W' z)/W' of W'L/W', so that e lies in G;. This contradicts the fact that G, has odd order, by (6.1).

Casel. E morves W' Since E fixes some point of W, and A acts on the set S of such fixed
points, S is a union of orbits of A. By Case 2, S is not contained in W'. If S contains a point =w
of W-W'then it contains a spanning subset of W, whereas E is nontrivial on W. Thus, S={w}.
Now E fixes some hyperplane on w, while A is transitive on the hyperplanes on w, so that E fixes
every hyperplane on w. Consequently, E induces on W the group of all elations with center w.

If 1=ecE then e induces an elation of W whose axis Cyw(e) contains w. As in Case 2,
Cyf(e) must contain a nonsingular point in Cw(e)l. If T'(¥)=1 then the nonsingular point
v=(¥ 0,107 is perpendicular to w=(0,001> by (2.6). In view of the transitivity of A on the
hyperplanes of W we can conjugate e by an element of A in order to assume that Cy(e)=yLlMW.
Then e acts on a{?((ik)y) as an elation with axis (y-MW y)¢y . This contradicts (4.32). O

Completion of the proof of (6.2). By (6.3) and (6.5), G=G,. Now use (6.1). O
Theorem 6.2 produces a proof of a weak version of the main result in [Ka4]:

Theorem 6.6. Suppose that n=ab>9 for odd integers a,b>1.

(i) If n>5+3b then there are at least (20-2)/2n pairwise inequivalent orthogonal spreads XK
inan Q+(2n+2 2)-space.

(ii) If n is neither 27 nor the product of 3 and a prine, then there are at least (2v0-2)2n

such spreads.

Proof. (i) Let k ¢cK-K', and suppose that Sk and ' are equivalent by an orthogonal
transformation g of V. By (6.2), z is the only nonsingular point fixed by G(ZK), and g sends z to
the nonsingular point z fixed by G(=%. Then g sends 5&’((21{)2) to sﬁ’((E-Q)Z). In the notation of
Examples 1 and 2 of Section 2, (Ek)zziyk.
fixing X and sending v, to yo. Then g* conjugates G(Z)yk to G()y, , and hence normalizes the

By (2.2), g lifts to an isometry g* of FxKxFxK

group C consisting of the transformations g, defined in (2.4).
By [Ka4, (3. 1)], G(Z)=PTL(2.21), so that [Ng(z)(C)|=20|C|. Since C fixes yy it follows
that yx has at most 2n images under Ng(s)(C). There are |K|-2 choices for k in K-K', so this

proves (i).
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(ii) Let a be the smallest factor of n greater than 3, let K=GF(2b) and observe that
n=ab>5+3b and 2b=2/n. O
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7. Proof of Theorem 1.1.

Let F=GF(21) with n odd, composite and > 9. Then there is always a choice for a factor m
of n such that the subfield K=GF(2m) of F behaves as in (2.1) and (6.2). Fix such a choice of m.

Let kin K - K'. We will use the planes sﬂ((ik)@,o,lm) arising in Example 4 of Section 2,
with ¥ restricted as follows.

The number N of generators of F satisfies

(?1) 2n-N«< 1+ Z(zd - 1) < 21+n/3 .

n¢d|n

If ¥ is a generator then so is ¥ + 1, and either T '(#¥)=1 or T '( + 1) =1. Thus, N2 of the
generators ‘¥ satisfy T (W) = 1; and these are the slements V¥ we wil/ usein order to obtain the
planes 55’((21‘)014,0,1,09-

As in Section 6, let z=1¢0,1,0,17 and {W, X} = {FxK'x0x0, 0x0xFxK'}. As in
Section 5, let y = (¥ ,0,1,0». By (2.8), G(ZK)y, = 1 since no nontrivial element of AutF fixes the
generator '¥. Then G(Zk), = 1 by (6.2).

By (2.2iv), every collineation of sf((Zk)y) induces the identity on the line at infinity. By
(5.1) and (4.5), the kernel of this plane is GF{(2), so every collineation of ﬁ((Zk)y) must be a
translation. This proves the main part of (1.1).

In order to count the number of planes obtained in this manner, recall from (6.2) that dif-
ferent choices ‘¥, V' can yield isomorphic planes only if there is an element of G(Zk) = G(Zk),
sending ¥ ,0,1,07 to ¢¥',0,1,0>. By (6.1) this occurs only if ¥'&¥FAuF. Thus, each choice of k
produces at least (N/2)/n different planes behaving as required in (1.1).

While this already proves that we have constructed many nonisomorphic planes, (6.6)
provides a slightly improved lower bound on their number. Namely, while different choices of k
in K - K' can produce orthogonally eguivalent spreads =k, by (2.2) and (6.6) the total number of
different planes obtained is at least {N2n}{ (K| - 2)/n}.

Now assume that n is neither 27 nor the product of 3 and a prime. Then we may assume
that K has been chosen so that |K| = 2¥0 in addition to the condition in (6.2). By (7.1), we have
obtained more than (2071 - 203)(|[K| - 2)/n2 > 20+vn2/y2 planes. This completes the proof of
(1.1). O

The number of planes is as stated in Theorem 1.1 even when the additional restriction on n
is dropped, but then the analogue of (6.2) is significantly messier to prove.

The proof of the theorem begs an cbvious question: Are there orthogonal spreads 2 such
that G(X) = 1? The answer undoubdtedly is {Yes, and in great numbers{. It is likely that such
spreads can be constructed by another iteration of the field change method seen in Examples 2' and

3 (cf. [Ka3, Section 2]). However, proving that G(Z) = 1 would require new ideas.
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